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Abstract The study at hand introduces anewapproach
to characterize fatigue crack growth in small strain
linear viscoelastic solids by configurational mechan-
ics. In this study, Prony series with n-Maxwell ele-
ments are used to describe the viscoelastic behavior.
As a starting point in this work, the local balance of
energy momentum is derived using the free energy
density. Moreover, at cyclic loading, the cyclic free
energy substitutes the free energy. Using the cyclic
free energy, the balance of cyclic energy momentum
is obtained. The newly derived balance law at cyclic
loading is appropriate for each cycle. In the finite ele-
ment framework, nodalmaterial forces and cyclic nodal
material forces are obtained using the weak and dis-
cretized forms of the balance of energy momentum
and cyclic energy momentum, respectively. The crack
driving force and the cyclic crack driving force are
determined by the nodal material forces and the cyclic
nodal material forces, respectively. Finally, numerical
examples are shown to illustrate path-independence of
the domain integrals using material forces and cyclic
material forces. The existence of the balance of energy
momentumand cyclic energymomentumare also illus-
trated by numerical examples.
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1 Introduction

A lot of structures or materials exhibit stress relaxation
and creep. To describe this behavior, viscoelastic mate-
rial models are employed. In the literature, many publi-
cations present approaches to characterize the behavior
of linear viscoelastic solids. The foundation of linear
viscoelastic models started with the works of Boltz-
mann (1878). The stress at a particle within a viscoelas-
tic solid depends on both history and temperature at
the particle. Further information regarding thermome-
chanical analysis of linear viscoelastic solids can be
found in the work of Taylor et al. (1970). In the study
of Holzapfel and Reiter (1995), a fully coupled thermo-
mechanical finite element formulation of viscoelastic
solids is derived. Further studies related to viscoelas-
tic solids can be found in the work of Kaliske and
Rothert (1997), Park and Kim (1999), Lakes (1998),
Wineman (2009) and in many others. However, in the
study at hand, we limit us to small strain linear vis-
coelastic solids using Prony series with n-Maxwell
elements. Analysis of fracture of structures is of high
interest for engineers because crack propagation leads
to the failure of the structure at loads that are smaller
than their real bearing capacity. The analysis of stress
fields in linear elastic continuawith a sharp crack is car-
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ried out in the work of Westergaard (1939), Sneddon
(1946) and others. Although a lot of studies investigate
cracks in elastic continua, however, the first who pre-
sented a proper application of the stress intensity factor
is Irwin (1957). The stress intensity factor derived by
Irwin (1957) is limited to problems with small yielding
zones around the crack tip, or, in other words, to cases
where the theory of linear elastic fracture mechanics
is governing. The analysis of crack propagation in vis-
coelastic solids started earlier in the works of Schapery
(1964), Knauss (1963) and others. The crack speed is
defined as a criterion for unstable crack propagation in
Knauss (1966). The stability of crack propagation is
investigated by Knauss (1969). Furthermore, an ener-
getic fracture criterion to characterize initiation and
propagation of cracks in viscoelastic media is derived
in the work ofWilliams (1965).Moreover, an appropri-
ate crack growth law in Maxwell solids subjected to
small-scale and large-scale yielding, based on energy
and crack opening displacement fracture criteria, is
derived in the study of McCartney (1979). A Baren-
blatt fracture criterion is used in the work of Willis
(1967) to characterize crack propagation in viscoelastic
solids.

Configurational forces or material forces are known
as non-Newtonian forces that act on an inhomo-
geneity within a homogeneous body. These inhomo-
geneities can be either inclusions, voids or even cracks.
The theory of material forces arises from Eshelby’s
thought experiment Eshelby (1951). In the aforemen-
tioned study, Eshelby considers that the energy vari-
ation within a homogeneous elastic body due to the
movement of the inclusion is equal to the product
between the material force vector, that is acting on the
inclusion, and the displacement vector. In the frame-
work of fracture mechanics, the inclusion can be con-
sidered as a crack. The material force acting on the
crack tip is considered as the crack driving force. In
linear elasticity, the component of the material force in
crackdirection is nothing else but the J -integral derived
byRice (1968). The use ofmaterial forces in the field of
the finite element method starts with the work of Braun
(1997) and Mueller and Maugin (2002). The formu-
lation of material forces in viscoelastic materials can
be found in the publications of Kaliske et al. (2005),
Näser et al. (2009) and others. In the work Nguyen
et al. (2005), material forces are derived for small strain
linear viscoelastic solids, that are characterized by the
Prony term with one Maxwell element.

At cyclic loading, the pioneering law that describes
crack growth is Paris’ law introduced by Paris and
Erdogan (1963). This law correlates the cyclic stress
intensity factor ΔK to the crack growth rate per cycle
da
dN .However, the cyclic stress intensity factor is limited
to the cases, where the theory of linear elastic fracture
mechanics (LEFM) is applicable. To overcome the lim-
itation of LEFM, Dowling and Begley (1976) derived
the cyclic J -integral ΔJ , which is appropriate for
gross plasticity. Moreover, Ochensberger and Koled-
nik (2014) derived the elasto-plastic cyclic J -integral
ΔJ ep using configurational forces, that is appropri-
ate for fatigue crack growth at non-proportional load-
ing. In a further work of Ochensberger and Kolednik
(2015), an appropriate parameter known as the active
plastic zone elasto-plastic cyclic J -integral ΔJ epactPZ is
derived. This parameter is able to depict the overload
effect in elasto-plastic materials. However, this param-
eter is path-dependent and requires to know in advance
the active plastic zone around the crack tip. In our pre-
vious study Khodor et al. (2021), a path-independent
domain integral based on cyclicmaterial forces is intro-
duced. The domain-integral is able to characterize the
overload effect in small strain elastic-plastic materials
without any need to identify the active plastic zone.

The aim of the study at hand is to derive a path-
independent domain integral to describe fatigue crack
growth in viscoelastic solids at cyclic loading. The
method has been previously introduced for elastic-
plastic materials in Khodor et al. (2021). The approach
is based on cyclicmaterial forces. These forces are sim-
ilar to conventional material forces used at monotonic
loading, however, they are derived using the cyclic free
energy density.

The paper at hand is structured as follows. In Sect. 2,
the constitutive equations used to characterize the vis-
coelastic solids are presented. Moreover, the balance
of energy momentum and the balance cyclic energy
momentum for n-Maxwell elements are derived in
Sects. 3 and 4, respectively. Furthermore, the numerical
computations of nodal material forces and cyclic nodal
material forces are shown inSect. 5. Path-independence
of the domain integrals using both material forces and
cyclic material forces as well as the proof of the exis-
tence of the balance of energy momentum and cyclic
energy momentum are presented in Sect. 6. Further-
more, the cyclic material force approach is validated in
Sect. 6 by comparing it to experimental data. Finally,
concluding remarks are drawn in Sect. 7.
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2 Material description

Small strain linear viscoelasticity in the subsequent
derivations is characterized by Prony series. The
Cauchy stress tensor is obtained as

σ =
∫ t

0
2G(t − τ)

de
dτ

dτ + I
∫ t

0
K (t − τ)

dΔ

dτ
dτ,

(2.1)

where τ , e and Δ are the past time, deviatoric strain
and volumetric strain, respectively. The parameters
G(t) and K (t) are the Prony series shear-relaxation
and bulk-relaxation moduli, respectively. The shear-
relaxation and the bulk-relaxation moduli are formu-
lated as

G(t) = G0

[
αG
eq +

nG∑
i=1

αG
i exp

(
− t

τG
i

)]
, (2.2)

K (t) = K0

[
αK
eq +

nK∑
i=1

αK
i exp

(
− t

τ K
i

)]
, (2.3)

where τG
i and τ K

i are the shear relaxation time and
bulk relaxation time, respectively. G0 and K0 are the
shear and bulk moduli at t = 0. More details regarding
the constitutive equations can be seen in the paper of
Kaliske and Rothert (1997). nG and nK are the num-
ber of shear Maxwell elements and bulk Maxwell
elements, respectively. The total number of Maxwell
elements is equal to the maximum of nG and nK . αG

i
and αK

i are the relative moduli. Using the relative mod-
uli, αG

eq and αK
eq can be obtained as

αG
eq = 1 −

nG∑
i=1

αG
i , (2.4)

αK
eq = 1 −

nK∑
i=1

αK
i . (2.5)

The linear viscoelasticmaterial model can be described
using a generalizedMaxwell solid as shown in Fig. 1.
The model consists of a set of n-Maxwell elements in
parallel to a spring that is the equilibrium spring. Each
Maxwell element consists of a spring and a dashpot,
each spring within this element is a non-equilibrium
spring.

Fig. 1 Generalized Maxwell model

Due to infinitesimal strain, the total total strain tensor
ε is an additive decomposition of the elastic strain and
the viscous strain within each Maxwell element and
can be written as

ε = εei + εv
i for i = 1, . . . , n, (2.6)

where εei and εv
i are the elastic strain tensor in the i th

Maxwell element. The total Cauchy stress tensor is
a sum of the stress tensors in the equilibrium spring
and the non-equilibrium springs and can therefore be
obtained as

σ = σ eq +
n∑

i=1

σ
neq
i , (2.7)

where σ eq and σ
neq
i are the Cauchy stress tensors in

the equilibrium spring and the non-equilibrium spring
of the i th Maxwell element. The free energy is also
the summation of the free energies in the equilibrium
and non-equilibrium springs and can be calculated as

ψ(ε, εe1, . . . , ε
e
n) = ψeq(ε) +

n∑
i=1

ψ
neq
i (εei ), (2.8)

where ψeq and ψ
neq
i are the contributions to the free

energy of the equilibrium spring and non-equilibrium
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spring in the i th Maxwell element, respectively. Let
C
eq and C

neq
i be the fourth order elasticity tensors in

the equilibrium spring and the non-equilibrium spring
of the i thMaxwell element. In isotropic material, the
fourth order elasticity tensor is obtained usingYoung’s
modulus E and Poisson’s ratio ν or using the bulk
modulus K and shear modulus G. Therefore, Ceq is
obtained using Geq = αG

eqG0 and K eq = αK
eqK0. On

the other hand, Gneq
i = αG

i G0 and K neq
i = αK

i K0

are taken to compute Cneq
i . By C

eq and C
neq
i , the free

energy and the Cauchy stress tensors reformulate into

ψ = 0.5 ε : Ceq : ε +
n∑

i=1

0.5 εei : Cneq
i : εei , (2.9)

σ eq = ∂ψeq

∂ε
= C

eq : ε, (2.10)

σ
neq
i = ∂ψ

neq
i

∂εei
= C

neq
i : εei . (2.11)

3 Balance of energy momentum

In Nguyen et al. (2005), the local balance of energy
momentum is derived for small strain linear viscoelas-
tic solids with one Maxwell element, in other words
n = 1. In this section, the local balance of energy
momentum is derived for n Maxwell elements. The
inertia effects will be neglected and, therefore, the bal-
ance of linear momentum is expressed as

∇X · σ + b = 0, (3.1)

σ jk,k + b j = 0 for j, k = 1, 2, 3 , (3.2)

where ∇X · (•) is the divergence operator, and b are
body forces. The starting point to obtain the balance is
by calculating the gradient of the free energy density,
which can be written as

∇X ψ(ε, εe1, . . . , ε
e
n, X)

= ∂ψeq

∂ε
: ∇X ε +

n∑
i=1

∂ψ
neq
i

∂εei
: ∇X εei

+ ∂ψ

∂X

∣∣∣
exp

,

(3.3)

where the operator ∇X (•) is the gradient operator and

the term ∂ψ
∂X

∣∣∣
exp

is the explicit dependence of the free

energy on the position X . This term is used when for

instance theYoung’smodulus is a function of the posi-
tion X , E := E(X). Inserting Eqs. (2.10) and (2.11)
into the above equation yields

∇X ψ = σ eq : ∇X ε +
n∑

i=1

σ
neq
i : ∇X εei

+ ∂ψ

∂X

∣∣∣
exp

.

(3.4)

Using the additive decomposition of the strain ten-
sor, Eq. (3.4) can be recast into

∇X ψ = σ eq : ∇X ε +
(

n∑
i=1

σ
neq
i

)
: ∇X ε

−
n∑

i=1

σ
neq
i : ∇X εv

i + ∂ψ

∂X

∣∣∣
exp

= σ : ∇X ε −
n∑

i=1

σ
neq
i : ∇X εv

i + ∂ψ

∂X

∣∣∣
exp

.

(3.5)

By the balance of linear momentum and due to the
fact that ε = 1

2 (∇X u + (∇X u)ᵀ), the term σ : ∇X ε

can be written as

σ : ∇X ε = ∇X · (
(∇X u)ᵀ σ

) − (∇X u)ᵀ ∇X · σ

= ∇X · (
(∇X u)ᵀ σ

) + (∇X u)ᵀ b,
(3.6)

where ∇X u is the gradient of the displacement field
and (•)ᵀ denotes the transpose operator. The insertion
of Eq. (3.6) into Eq. (3.5) yields

∇X ψ = ∇X · ((∇X u)ᵀ σ ) −
n∑

i=1

σ
neq
i : εv

i

+ (∇X u)ᵀ b + ∂ψ

∂X

∣∣∣
exp

.

(3.7)

The gradient of the free energy can take the form
∇X ψ = ∇X ·(ψ I), and, therefore, leads to the balance
of energy momentum that can be written as

∇X · � + B = 0, (3.8)

where � = ψ I − (∇X u)ᵀ σ is the Eshelby stress
tensor and B = ∑n

i=1 σ
neq
i : ∇X εv

i − (∇X u)ᵀ b −
∂ψ
∂X

∣∣∣
exp

are the configurational volume forces.

123



Fatigue fracture characterization by cyclic material forces 133

4 Balance of cyclic energy momentum

In case of fatigue crack propagation, a continuum is
subjected to cyclic loading, therefore, a new balance
of energy momentum is derived in our previous work
Khodor et al. (2021) and is called balance of cyclic
energy momentum. In the aforementioned work, the
balance of cyclic energy momentum is appropriate for
elastic-plastic materials at cyclic loading. In the study
at hand, this balance lawwill be derived for small strain
linear viscoelastic solids. This balance is a combination
of the balance of energy momentum at maximum load
and minimum load. The starting point to obtain the
balance of cyclic energy momentum is to evaluate the
cyclic free energy ψcycle that is defined as

ψcycle =ψ
eq
cycle +

n∑
i=1

ψ
neq
icycle

=
∫ εmax

εmin

(σ eq − σ
eq
min) : dε

+
n∑

i=1

∫ εeimax

εeimin

(σ
neq
i − σ

neq
imin

) : dεei ,

(4.1)

where ψ
eq
cycle and ψ

neq
icycle

are the cyclic free energies of
the equilibrium spring and the non-equilibrium spring
in the i th Maxwell element, respectively. The sub-
scripts (•)max and (•)min designate the value of a
specific parameter at maximum and minimum load,
respectively. For instance, εmax is defined as the value
of the total strain tensor atmaximum load and this nota-
tion applies for all other quantities. To better under-
stand the calculation of the cyclic energy, the reader is
referred to Appendix B. Developing the terms of Eq.
(4.1), the cyclic free energy takes the form

ψcycle = ψ
eq
max − ψ

eq
min − σ

eq
min : (εmax − εmin)

+
n∑

i=1

(ψ
neq
imax

− ψ
neq
imin

− σ
neq
imin

: (εeimax
− εeimin

))

= 1

2
(εmax − εmin) : Ceq : (εmax − εmin)

+
n∑

i=1

1

2
(εeimax

− εeimin
) : Cneq

i : (εeimax
− εeimin

)

= 1

2
(σ

eq
max − σ

eq
min) : (εmax − εmin)

+
n∑

i=1

1

2
(σ

neq
imax

− σ
neq
imin

) : (εeimax
− εeimin

).

(4.2)

The gradient of the cyclic free energy can be
expressed as

∇X ψcycle(εcycle, ε
e
1cycle , . . . , ε

e
ncycle)

= ∂ψcycle

∂εcycle
: ∇X εcycle +

n∑
i=1

∂ψcycle

∂εeicycle

: ∇X εeicycle

+ ∂ψcycle

∂X

∣∣∣
exp

,

(4.3)

where εeicycle = εeimax
− εeimin

, εcycle = εmax − εmin and
∂ψcycle

∂X

∣∣∣
exp

is the explicit dependence of the cyclic free

energy on the position X . The partial derivatives
∂ψcycle
∂εcycle

and
∂ψcycle
∂εeicycle

can be evaluated as

∂ψcycle

∂εcycle
= ∂ψ

eq
cycle

∂εmax
:

(
∂εcycle

∂εmax

)−1

= σ
eq
max − σ

eq
min = σ

eq
cycle,

(4.4)

∂ψcycle

∂εeicycle

=
∂ψ

neq
icycle

∂εeimax

:
(

∂εeicycle

∂εeimax

)−1

= σ
neq
imax

− σ
neq
imin

= σ
neq
icycle

,

(4.5)

where
∂εcycle
∂εmax

= ∂εeicycle
∂εeimax

= I and I is the fourth order

identity tensor. Neglecting inertia effects, the balance
of linear momentum atmaximum and at minimum load
is written as

∇X · σmax + bmax = 0, (4.6)

∇X · σmin + bmin = 0. (4.7)

The subtraction of Eq. (4.7) from Eq. (4.6) leads to
the modified form of linear momentum at cyclic load-
ing, that can be expressed as

∇X · σ cycle + bcycle = 0, (4.8)

where σ cycle = σmax − σmin is the cyclic Cauchy
stress tensor and bcycle = bmax − bmin are the cyclic
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body forces. The cyclic Cauchy stress tensor can be
calculated as σ cycle = σ

eq
cycle + ∑n

i=1 σ
neq
icycle

. The total
cyclic strain tensor can be additively decomposed into
εcycle = εeicycle +εv

icycle
, where εeicycle is the cyclic elastic

strain and εv
icycle

is the cyclic viscous strain. Using the
additive decomposition of the cyclic strain tensor and
inserting Eqs. (4.4) and (4.5) in Eq.(4.3) yields

∇X ψcycle = σ
eq
cycle : ∇X εcycle

+
(

n∑
i=1

σ
neq
icycle

)
: ∇X εcycle

−
n∑

i=1

σ
neq
icycle

: ∇X εv
icycle + ∂ψcycle

∂X

∣∣∣
exp

= σ cycle : ∇X εcycle

−
n∑

i=1

σ
neq
icycle

: ∇X εv
icycle

+ ∂ψcycle

∂X

∣∣∣
exp

.

(4.9)

Defining the cyclic gradient of the displacement
field ∇X ucycle = ∇X umax − ∇X umin, the total
cyclic strain tensor can be written as εcycle = 1

2(∇X ucycle + (∇X ucycle
)ᵀ)

. Analogously to σ : ∇X ε,
the term σ cycle : ∇X εcycle is computed as

σ cycle : ∇X εcycle = ∇X · ((∇X ucycle
)ᵀ

σ cycle
)

+ (∇X ucycle
)ᵀ bcycle.

(4.10)

Knowing that∇X ψcycle = ∇X ·(ψcycle I
)
and insert-

ing Eq. (4.10) into Eq.(4.9) results in

∇X · (
ψcycle I − (∇X ucycle

)ᵀ
σ cycle

)

+
n∑

i=1

σ
neq
icycle

: ∇X εv
i cycle

− (∇X ucycle
)ᵀ bcycle − ∂ψcycle

∂X

∣∣∣
exp

= 0.

(4.11)

Introducing the cyclic Eshelby stress tensor �cycle

= ψcycle I−(∇X ucycle
)ᵀ

σ cycle and the cyclic configu-
rational volume forces Bcycle = ∑n

i=1 σ
neq
icycle

: ∇X εv
icycle

−(∇X ucycle
)ᵀ bcycle− ∂ψcycle

∂X

∣∣∣
exp

, the balance of cyclic

energy momentum is defined as

∇X · �cycle + Bcycle = 0. (4.12)

It should be noted from the above equation that
�cycle �= �max − �min and Bcycle �= Bmax − Bmin.

5 Nodal material forces and cyclic nodal material
forces

Consider a cracked body B with traction free crack
surfaces, volume V and boundary ∂B, as shown in
Fig. 2. A finite element discretization over the whole
body domain results in a body denoted by Bh . Bh =⋃Ne

e=1 Be, where Be is a finite element with volume
Ve and Ne is the total number of elements in Bh . The
nodal material forces are equivalent to the internal
nodal forces, however, the only difference is that the
nodal material forces are obtained using the balance of
energy momentum.More details related to nodal mate-
rial forces can be found inMueller andMaugin (2002).
Carrying out a finite element discretization over the bal-
ance of energy momentum, shown in Eq. (3.8), yields
the nodal material force

Fmat
node = −

k∑
e=1

∫
Be

� · ∇X N I dVe+
k∑

e=1

∫
Be

BN I dVe

+
ksur∑
e=1

∫
∂Be

(� Ñ)N I d Ae, (5.1)

Fig. 2 Cracked body with domain around the crack tip
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where N I are the shape functions, k is the total number
of elements connected to the node whereas ksur is the
number of surface elements connected to the node. Let
F	
node, F

diss
node and Fsur

node be the Eshelby, dissipative
and surface parts of the nodal material force, respec-
tively. These parts can be written as

F	
node = −

k∑
e=1

∫
Be

� · ∇X N I dVe, (5.2)

Fdiss
node =

k∑
e=1

∫
Be

BN I dVe, (5.3)

Fsur
node =

ksur∑
e=1

∫
∂Be

(� Ñ)N I d Ae, (5.4)

where Ve is the volume of the element and Ae is the
area of the element’s outer surface. At small strain,
the dissipation in B according to Gurtin and Podio-
Guidugli (1996) can be written as


(B) =
∫
B

[
σ : ε̇ − ψ̇

]
dV

+ ȧ · lim
r→0

∫
∂C

[
ψ I − (∇X u)ᵀ σ

]
ÑdS,

(5.5)

where ȧ is the crack tip velocity. The second term in
Eq. (5.5) is the dissipation due to crack propagation,
which leads to the crack driving force

Fcrack = − lim
r→0

∫
∂C

[
ψ I − (∇X u)ᵀ σ

]
ÑdS. (5.6)

According to Runesson et al. (2009) and Tillberg
et al. (2010), the crack driving force, for the traction
free crack surfaces, is obtained from the weak form of
the balance of energy momentum in a cracked body
and is defined as

Fcrack · ȧ =
∫
B

[−� : ∇X δ Ẋ + B · δ Ẋ
]
dV

+
∫

∂B

[(
� Ñ

)
· δ Ẋ

]
dS, (5.7)

where δ Ẋ = ȧ. After carrying out a finite element
discretization over the whole domain, a discrete form
of Eq. (5.7) recasts into

Fcrack =
∫
Bh

−� · ∇X N I dV +
∫
Bh

BN I dV

+
∫

∂B

(
� Ñ

)
N I dS

=
NBh∑
i=1

Fmat
i , (5.8)

whereNBh is the total number of nodes inBh . Consider
the domain P around the crack tip and its discretized
form Ph , the crack driving force, in case of traction
free crack surfaces, can be obtained by carrying out a
domain integral over P and its discretized form Ph as

Fcrack · ȧ =
∫
P

[−� : ∇X δ Ẋ + B · δ Ẋ
]
dV, (5.9)

Fcrack =
∫
Ph

−� · ∇X N I dV +
∫
Ph

BN I dV

=
NP h∑
i=1

Fmat
i (5.10)

where NP h is the number of nodes in Ph . In the
subsequent sections, the crack driving force will be
called global material force. The global material force
is divided into Eshelby F	 and Fdiss dissipative con-
tributions. These contributions are obtained as

F	 =
NP h∑
i=1

F	
i =

∫
Ph

−� · ∇X N I dV, (5.11)

Fdiss =
NP h∑
i=1

Fdiss
i =

∫
Ph

BN I dV . (5.12)

Analogously to nodal material force, the cyclic
nodal material force is obtained from the discrete form
of Eq. (4.12)

Fmat
node,cycle = −

k∑
e=1

∫
Be

�cycle · ∇X N I dVe

+
k∑

e=1

∫
Be

BcycleN I dVe

+
ksur∑
e=1

∫
∂Be

(�cycle Ñ)N I d Ae. (5.13)
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Let F	
node,cycle, Fdiss

node,cycle and Fsur
node,cycle be the

Eshelby, dissipative and surface parts of the cyclic
nodal material force, respectively. The contributions of
the cyclic nodal material forces can be written as

F	
node,cycle = −

k∑
e=1

∫
Be

�cycle · ∇X N I dVe, (5.14)

Fdiss
node,cycle =

k∑
e=1

∫
Be

BcycleN I dVe, (5.15)

Fsur
node,cycle =

ksur∑
e=1

∫
∂Be

(�cycle Ñ)N I d Ae. (5.16)

In our previous work Khodor et al. (2021), the
derived cyclic crack driving force is defined as

Fcrack
cycle

= − lim
r→0

∫
∂C

[
ψcycle I − (∇X ucycle

)ᵀ
σ cycle

]
ÑdS.

(5.17)

Using the weak form of balance of cyclic energy
momentum in a cracked body, the cyclic crack driving
force is computed as

Fcrack
cycle · ȧ =

∫
B

[−�cycle : ∇X δ Ẋ + Bcycle · δ Ẋ
]
dV

+
∫

∂B

[(
�cycle Ñ

)
· δ Ẋ

]
dS, (5.18)

Fcrack
cycle =

∫
Bh

−�cycle · ∇X N I dV

+
∫
Bh

BcycleN I dV

+
∫

∂B

(
�cycle Ñ

)
N I dS =

NBh∑
i=1

Fmat
i,cycle.

(5.19)

The cyclic crack driving force is called cyclic global
material force in the subsequent sections. The cyclic
global material force can be computed in the domain
Ph as

Fcrack
cycle =

∫
Ph

−�cycle · ∇X N I dV +
∫
Ph

BcycleN I dV

=
NP h∑
i=1

Fmat
i,cycle. (5.20)

The path-independence ofmaterial forces and cyclic
material forces is proved inAppendix A. Let F	

cycle and

Fdiss
cycle be the Eshelby and dissipative components of

the cyclic material force, respectively. These contribu-
tions can be written as

F	
cycle =

NPh∑
i=1

F	
i,cycle =

∫
Ph

−�cycle · ∇X N I dV,

(5.21)

Fdiss
cycle =

NP h∑
i=1

Fdiss
i,cycle =

∫
Ph

BcycleN I dV . (5.22)

6 Numerical examples

In this section, several numerical investigations are
discussed. At first, an investigation on the path-
independency of the domain integral using the material
force approach is carried out for a specimen at mono-
tonic loading. Furthermore, the path-independency of
the domain integral obtained using cyclic material
forces is investigated for a specimen at cyclic loading.
Furthermore, the existence of the balance of energy
momentum and cyclic energy momentum is shown.
Finally, the cyclic material force approach is validated
by experimental results. It should be noted that all the
studies are carried out in pure Mode I of fracture. This
means that the component of the cyclic global mate-
rial force perpendicular to the crack vanishes. The sim-
ulations are performed using the finite element code
ANSYS.

6.1 Path-independency of material forces at
monotonic loading

In this section, a numerical study is presented to illus-
trate the path-independent behavior of material forces.
The study is carried out on a two-dimensional pre-
cracked disc at plane strain conditions. The specimen
used is similar to that inNguyen et al. (2005) andÖzenç
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Table 1 Material parameters used to describe viscoelastic
behavior

i Shear ratio τG
i [s] Bulk ratio τ K

i [s]

1 0.4 10 0.5 12

2 0.3 11 0.4 13

et al. (2014). The disc is subjected to prescribed dis-
placements at its boundaries that are consistent with
a Mode I K -field. The applied displacements at the
boundary in x- and y-direction are calculated as

ux (r, θ) =
KI

2μ∞

√
r

2π
cos

(
θ

2

)[
κ∞ − 1 + 2 sin2

(
θ

2

)]
,
(6.1)

uy(r, θ) =
KI

2μ∞

√
r

2π
sin

(
θ

2

)[
κ∞ + 1 − 2 sin2

(
θ

2

)]
,
(6.2)

where κ∞ = 3− 4ν∞, μ∞ is the shear modulus at the
relaxed state, E∞ isYoung’smodulus and ν∞ isPois-
son’s ratio at the relaxed state. The material properties
at the relaxed state are obtained as

μ∞ = Geq = αG
eqG0, (6.3)

Keq = αK
eqK0, (6.4)

E∞ = 9KeqGeq

3Keq + Geq
, (6.5)

ν∞ = 3Keq − 2Geq

2
(
3Keq + Geq

) , (6.6)

where K0 = 16666 Nmm−2 andG0 = 23076 Nmm−2.
In this numerical example, twoMaxwell elements are
used to characterize the viscoelastic behavior. The bulk
and shear relaxation times as well as the shear and bulk
ratio of each Maxwell element are shown in Table 1.

The finite element mesh of the disc is shown in
Fig. 3). The disc radius is Rdisc = 4000h, where h is
the element size of the mapped mesh surrounding the
crack tip as depicted in Fig. 3). A pre-crack is located at
y = 0 and x ≤ 0, with the crack tip located at the centre
of the disc at x = 0 and y = 0. In this example, the disc
is subjected to an energy release rate G = 10 Nmm−1,

x

y

Finite element mesh of the whole disc

Mapped mesh around the crack tip with an element size h

(a)

(b)

Fig. 3 Cracked disc having the crack located at y = 0 and x ≤ 0

where

G = K 2
I

E ′∞
and E ′∞ = E∞

1 − ν2∞
. (6.7)

Since viscoelastic solids are time-dependent, there-
fore, the load is applied in the following sequence: at
t = 0, KI = 0 and for t ≥ 10 s, KI = √

GE ′∞.
t represents the time. Let Fmat

1 , F	
1 and Fdiss be the

components in crack direction of the global material
force, theEshelby part of the globalmaterial force and
the dissipative part of the global material force, respec-
tively. The path-independent feature is illustrated by
evaluating the value of the material forces using dif-
ferent domain integrals surrounding the crack tip. The
domain integrals are shown in Fig. 4.

In this example and the subsequent examples, �1

is considered as the first contour that includes only
the crack tip node. Moreover, the global material force
evaluated on the second contour �2 is a summation of
the crack tip nodal material force and the nodal mate-
rial forces of the first set of nodes surrounding the crack
tip. Furthermore, the global material forces evaluated
at the third contour�3 are equal to the summation of the
crack tip nodal material forces and the nodal material
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Γ1

Γ2

Γ3

Γ5
Γ4

Fig. 4 Contours surrounding the crack tip

(a)

(b)

Fig. 5 Evaluation of material forces for different contours at a
t = 10 s and b t = 300 s

forces of the first and second set of nodes surrounding
the crack tip. The result obtained by the evaluation of
material force components in crack direction using dif-
ferent contours at t = 10 s and at t = 300 s are shown
in Fig. 5.

It can be seen from Fig. 5 that the material forces
are path-independent. It can be noticed that the value of
the global material forces at t = 300 s reaches a value
of 10 Nmm−1. The variations with respect to time of
the global material force and the dissipative part of
the global material force, evaluated at Contour 10, are
plotted in Fig. 6.

To better understand this behavior ofmaterial forces,
the σyy-component of the total Cauchy stress tensor
as well as the σyy-components of the σ

neq
i of each
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(b)

Fig. 6 Variation with respect to time of a the global material
force and b the dissipative part of the global material force eval-
uated at contour number 10

Maxwell element at a Gauss point next to the crack
tip are plotted versus time in Fig. 7. Stress relax-
ation occurs in the Maxwell element which leads
to σ

neq
i ≈ 0. Since σ

neq
i ≈ 0, therefore, the config-

urational volume forces in each Maxwell element
Bi = σ

neq
i : ∇X εv

i and the dissipative material force
Fdiss tend to zero.

The reason behind the material forces reaching a
value almost equal to 10 Nmm−1 is due to the fact
that the total Cauchy stress tensor after relaxation is
equal to the stress in the equilibrium spring σ eq. Since
after relaxation, stress is only in the equilibrium spring,
therefore, the model at t = 300 s acts like a linear elas-
tic material model with a Young’s modulus E∞ and
a Poisson’s ratio ν∞. To verify the previous explana-
tion, the same boundary conditions are prescribed to
the same disc but using a linear elastic material model
instead of the viscoelastic material. The linear elastic
material model exhibits E∞ and ν∞ as material prop-
erties. The global material force value obtained using
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(a)
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Fig. 7 Variation with respect to time of the σyy-component of
a the total Cauchy stress tensor and b σ

neq
i of each Maxwell

element

this model is equal to 10 Nmm−1. The nodal material
forces and the dissipative parts of nodal material forces
are depicted in Figs. 8 and 9, respectively.

6.2 Path-independency of cyclic material forces at
cyclic loading

The purpose of the cyclic material force approach is to
yield a path-independent integral, therefore, the path-
independency of cyclic material forces is illustrated by
subjecting the same crack disc with the same mate-
rial parameters represented in Sect. 6.1 to cyclic dis-
placements. The cyclic displacements are applied with
a load ratio Rload = umin

umax
= 0.4, where umax and umin

are themaximumandminimumapplied displacements,
respectively. umax is equivalent to a prescribed energy
release rate G = 10 Nmm−1 and is therefore calcu-
lated using Eqs. (6.1) and (6.2) in x- and y-direction,
respectively. In this study, the disc is subjected to 50
cycles. The cyclic global material force is evaluated at

41 N mm−1

t = 10 s

t = 300 s

Fig. 8 Nodal material forces at t = 10 s and t = 300 s

the end of each cycle. The cycles are applied for 1000
s, the application of cycles is plotted in Fig. 10.

Considering the second cycle as shown in Fig. 10,
umax is applied at t = 30 s and umin at t = 40 s. Let
Ncycle be the number of a specific cycle. In terms of
Ncycle, umax and umin are applied at t = (2Ncycle −
1) × 10 whereas umin is applied at t = (2Ncycle) × 10.
The evaluation of the cyclic global material force at
different contours at Ncycle = 2 and Ncycle = 50 is
shown in Fig. 11. In Fig. 11, the component in crack
direction of Fmat

cycle is denoted by Fmat
1cycle

.
It can be seen from Fig. 11, that the cyclic material

force approach results in a path-independent domain
integral. The cyclic nodal material forces and their dis-
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0.22 Nmm−1

t = 10 s

t = 300 s

Fig. 9 Dissipative part of nodal material forces at t = 10 s and
t = 300 s

time [s]

di
sp

la
ce

m
en

t
[m

m
]

10 20 30 40 50 60

Cycle 2

umax

umin

Fig. 10 Application of cyclic displacements and definition of
cycles according to time

(a)

(b)

Fig. 11 Evaluation of the cyclic global material force for differ-
ent contours at a Ncycle = 2 and b Ncycle = 50

sipative parts are depicted in Figs. 12 and 13, respec-
tively.

The variations with respect to cycles of Fmat
cycle, F

mat
max

and Fmat
min in crack direction are depicted in Fig. 14.

Fmat
max and Fmat

min are the values of the global material
force,which is calculated usingEq. (5.10), atmaximum
and minimum displacements, respectively. It should be
noted that the values are obtained on Contour 10.

It can be seen from Fig. 14 that the cyclic global
material force reaches almost a constant value after 5
cycles. To clarify this behavior, the variations of the
σyy-components with respect to cycles of σ cycle and
σ
neq
icycle

(of eachMaxwell element) are depicted in Fig.
15. It can be seen from Fig. 15, that beyond the fifth
cycle, σ cycle and σ

neq
icycle

do not vary and keep almost a
constant value. In thework ofOchensberger andKoled-
nik (2014), they derive a domain integral to calculate
the cyclic energy release rate using the value of the
elastic-plastic J -integral J ep at maximum and mini-
mum loads as

ΔJ ep = J epmax + J epmin − 2
√
J epmax J

ep
min. (6.8)
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Ncycle = 2

Ncycle = 50

21 Nmm−1

Fig. 12 Cyclic nodal material forces at Ncycle = 2 and Ncycle =
50

It should be noted that Eq. (6.8) cannot be used to
calculate the cyclic global material force if J epmax and
J epmin are replaced by Fmat

1max
and Fmat

1min
. The reason of

Eq. (6.8) being not appropriate to calculate Fmat
1cycle

is

that Fmat
1min

yields negative values. The cyclic material
force approach overcomes the issue of negative mate-
rial forces at unloading stages. Moreover, the cyclic
material force results in a path-independent domain
integral and, therefore, it can be used as a fatigue crack
growth criterion. In linear elastic materials, the cyclic
global material force is nothing else as the cyclic J -
integral derived in Tanaka (1983).

Ncycle = 2

Ncycle = 50

0.024 Nmm−1

Fig. 13 Dissipative part of nodal material forces at Ncycle = 2
and Ncycle = 50

6.3 Balance of energy momentum and cyclic energy
momentum

Mueller and Maugin (2002) derived the weak form of
the balance of energymomentum.Theweak form states
that the internal nodal material force within a homo-
geneous body, where no prescribed displacements or
applied forces are present, is equal to zero. Moreover,
the summation of all nodal material forces over the
body should be equal to zero. To prove the existence
of the balance of energy momentum in small strain
viscoelastic solids, a 10 mm × 10 mm block at plane
strain conditions is subjected to prescribed displace-
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with respect to cycles

ments. The material parameters used are shown in
Table 1.

The lower boundary of the block is fixed in both
x- and y-direction, whereas at the upper boundary the
x-direction is fixed and a displacement u is prescribed
in y-direction. The prescribed displacement is time-
dependent, where u(t = 0) = 0 and u(t ≥ 10) = 0.1
mm. The nodal material force distribution within the
block at t = 10 s and t = 300 s are depicted in Fig.
17. It can be seen from Fig. 17 that the nodal material
forces at internal nodes are negligible. Furthermore,
the summation of all nodal material forces is zero and,
therefore, the balance of energy momentum at mono-
tonic loading is fulfilled.

The aim now is to show the existence of the bal-
ance of cyclic of energy momentum, represented by
Eq. (4.12). The validation is carried out by subject-
ing the block to a cyclic displacement with ratio R =
umin
umax

= −1 and the same cyclic pattern as shown in
Fig. 10. The cyclic nodal material force distribution
at Ncycle = 2 and Ncycle = 50 are depicted Fig. 18.
It can be seen from the sketch, that the cyclic nodal

(a)
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Fig. 15 Variation of the σyy-component with respect to cycles
a of the cyclic Cauchy stress tensor and b of σ

neq
icycle

of each

Maxwell element

Fig. 16 Block at plane strain conditions subjected to prescribed
displacements

material forces at the internal nodes are zero. Fur-
thermore, the summation of all cyclic nodal material
forces within the block is zero. It can be therefore con-
cluded that the balance of cyclic energy momentum
exists.
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t = 10 s

t = 300 s

Fig. 17 Distribution of nodal material forces in the block at
t = 10 s and t = 300 s

Ncycle = 2

Ncycle = 50

Fig. 18 Distribution of cyclic nodal material forces in the block
at Ncycle = 2 and Ncycle = 50

6.4 Cyclic material forces as a fatigue crack growth
criterion

Paris’ pioneering lawcharacterizes fatigue crack prop-
agation. This law correlates the rate of crack length per
cycle to the cyclic stress intensity factor ΔK as

da

dNcycle
= C(ΔK )m, (6.9)

where a is the crack length, C and m are material
parameters that are obtained experimentally. ΔK is
however limited to the case of LEFM, therefore, Dowl-
ing and Begley (1976) introduced the cyclic J -integral
for gross plasticity. In viscoelastic fracture mechanics,
an analytical cyclic J -integral is derived in Kuai et al.
(2009) and Lee et al. (2015) in order to model fatigue
crack growth in asphalt concretes. The aforementioned
cyclic J -integral is denoted in this study by ΔJ visc.
ΔJ visc is the difference between the generalized J -
integral derived by Schapery (1984) at maximum and
minimum load.ΔJ visc is derived using the cyclic stress
intensity factor and the creep compliance. Moreover,
it requires in advance to have the cyclic stress inten-
sity factor as an explicit function of the crack length a.
In a complex geometry, ΔK cannot be obtained as an
explicit function of a and, therefore,ΔJ visc is not valid
for the case of complex geometries. The purpose of this
example is to illustrate that the cyclic global material
force can be used as a fatigue crack growth criterion,
leading to the new form of Paris’ law

da

dNcycle
= C ′(Fmat

1cycle)
m′

, (6.10)

where C ′ and m′ are material parameters. To validate
that Eq. (6.10) exists, a numerical study is conducted
on the same specimen as presented in the work of Kuai
et al. (2009). In the aforementioned study, a fatigue
crack growth test is carried out on an asphalt concrete
specimen. Asphalt concrete is a very complex material
that exhibits relaxation and creep. A simplified descrip-
tion of the asphalt concrete is obtained using a small
strain viscoelastic material model. The specimen has
a thickness t = 50 mm with an initial crack length
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a0 = 30 mm and width W = 110 mm. The specimen
is subjected to a periodic load P that is defined as

P(t) = P0 + P0 sin
(
2π f t − π

2

)
, (6.11)

where P0 is the load amplitude and f is the load
frequency. Numerically, only half of the specimen is
used due to symmetric boundary conditions. The spec-
imen dimensions and finite element mesh are shown in
Fig. 19. A mapped mesh with an element size of 1 mm
× 1 mm along the crack path is used. The specimen is
simulated at plane stress conditions with 50 mm thick-
ness. One volumetric Maxwell element and one iso-
choric Maxwell element with αG

1 = 0.4, τG
1 = 0.02

s, αG
1 = 0.5 and τ K

1 = 0.05 s have been assigned to
the specimen. The initial shear modulus G0 and initial
bulkmodulus K0 are obtained from the initialYoung’s
modulus E = 2000Nmm−2 and initialPoisson’s ratio
ν = 0.3. The cyclic global material forces are evalu-
ated at the end of each cycle. From Eq. (6.11), it can
be noticed that the load reaches its maximum value
Pmax and its minimum value Pmin at tmax = 2Ncycle−1

2 f

and tmin = Ncycle
f , respectively. The cycle ends at tmin,

therefore, the quantities needed to evaluate the cyclic
global material force are obtained from tmax and tmin

of each cycle.
Viscoelastic materials are time-dependent which

means that the loading frequency or rate have an impact
on the behavior of the material. Different material
behavior stands for different states of stresses and
strains and, therefore, different values of the cyclic
global material forces. Therefore, the starting point in
this study is to evaluate the effect of the load frequency
and the load amplitude on the cyclic global material
force. The behavior of the cyclic global material force
is investigated by applying the load for 50 cycles at dif-
ferent loading frequencies and at a fixed loading ampli-
tude P0 = 200 N.

The variation of Fmat
1cycle

at different frequencies is
depicted in Fig. 20. It can be seen from this figure
that the value of Fmat

1cycle
decreases with increasing the

frequencies. This means that for higher frequency the
fatigue life of the material increases. In the experi-
mental work of Lee et al. (2015), it has been shown
that the fatigue life of asphalt concrete increases with
increasing the loading frequency. Therefore, it can be
concluded that the cyclic global material force takes
into consideration the effects of loading frequency.

30 mm

110 mm

P

P

(a) Specimen geometry and dimensions

x

y

initial crack tip

(b) Finite element mesh of half of the specimen and
symmetric boundary conditions

Fig. 19 Representation of a the specimen geometry and dimen-
sions and b the finite element mesh and symmetric boundary
conditions

Moreover, the effect of the loading amplitude on the
cyclic global material force is investigated by vary-
ing the loading amplitude and fixing the loading fre-
quency to f = 10 Hz. The results of this investiga-
tion are plotted in Fig. 21. It can be seen from the
obtained results that the cyclic global material force
values increase with increasing the loading amplitude.
Higher values of Fmat

1cycle
means that the fatigue life of

the specimen is shorter. It is also observed in the work
of Lee et al. (2015), that higher loading amplitudes
resulted in shorter fatigue life. Therefore, the cyclic
global material force characterizes the effect of the
loading amplitudes.

It can be seen from Figs. 20 and 21 that the cyclic
global material force reaches a constant value after the
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Fig. 22 Crack length values at different cycles obtained from
experimental data and best-fit function

fifth cycle. An additional study is carried out in order to
review the variation of the cyclic global material force
with crack propagation. The specimen is subjected to
the same periodic load P0 = 200 N at f = 10 Hz.
The crack propagation is achieved by applying a node
release algorithm with a crack increment Δa = 1 mm.
The crack propagates at the end of the fifth cycle of each
crack tip. The reason behind releasing the node at the
end of the fifth cycle is that the cyclic global material
force reaches a constant values after 5 cycles as shown
inFig. 21. This behavior is also observed in the previous
example, see Fig. 14.Moreover, the values of the cyclic
global material force are plotted against the experimen-
tal crack growth rate da

dNcycle
. da
dNcycle

is calculated using
the crack length at different cycles obtained from the
experimental work of Kuai et al. (2009). The experi-
mental crack length increase with respect to cycles as
well as the best-fit function are plotted in Fig. 22.

Thebest-fit functionof the crack length and the crack
crack growth rate per cycle are defined as

a(Ncycle) = 10−16N 3
cycle − 6 × 10−11N 2

cycle

+ 2 × 10−5Ncycle + 29.5, (6.12)

da

dNcycle
= 3 × 10−16N 2

cycle − 12 × 10−11Ncycle

+ 2 × 10−5. (6.13)

The variation of Fmat
1cycle

is depicted in Fig. 23, it can

be seen that the value of Fmat
1cycle

increaseswhen the crack
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Fig. 23 Representation of a the dependency of Fmat
1cycle

on the

crack length as well as b the correlation between da
dNcycle

and

Fmat
1cycle

propagates. Figure 23 is a double logarithmic plot of the
values of da

dNcycle
versus the values of Fmat

1cycle
at different

crack lengths. The data of this plot are obtained by
calculating da

dNcycle
as well as Fmat

1cycle
at the same crack

length. It can be noted from Fig. 23 that the relation
between da

dNcycle
and Fmat

1cycle
is the same as Paris’ law

and can be expressed as

da

dNcycle
= 3.21 × 10−5(Fmat

1cycle)
0.55. (6.14)

UsingEq. (6.14), theParis’ parameters ofEq. (6.10)
are obtained, where C ′ = 3.21× 10−5 and m′ = 0.55.
Therefore, it can be concluded that the cyclic global
material force can be used as fatigue crack growth
parameter in Paris’ law instead of the cyclic J -integral
and cyclic stress intensity factor.

7 Conclusions

The focus of the study at hand is mainly on small strain
viscoelastic solids, that are characterized by Prony

series with n-Maxwell elements. The main aim of
this paper is to present a path-independent domain inte-
gral using cyclic material forces in viscoelastic solids
to evaluate the cyclic energy release rate. As a start-
ing point, the local balance of energy momentum for
n-Maxwell is derived using the free energy density.
Furthermore, at cyclic loading, the free energy density
is replaced by the cyclic free energy of a cycle. The
cyclic free energy is computed from the cyclic stresses
and the cyclic strains. The balance of cyclic energy
momentum is obtained using the gradient of the cyclic
free energy.

In the framework of numerical methods, a finite ele-
ment discretization is carried out leading to nodalmate-
rial forces and cyclic nodalmaterial forces in viscoelas-
tic solids. The crack driving force at monotonic load-
ing is obtained by evaluating a domain integral around
the crack tip. Numerically, the crack driving force is
computed by summing up all the nodal material forces
within a region surrounding the crack tip. Analogously
to the crack driving force at monotonic load, the cyclic
crack driving force is evaluated numerically by per-
forming a summation of cyclic nodal material forces
within a region surrounding the crack tip.

Several numerical studies are carried out in this
research. At first, it has been shown that the domain
integral obtained using material forces at monotonic
loading is path-independent, in other words the results
obtained using two different domains are equal. More-
over, it has been shown that after relaxation, the value
of the global material force in crack direction is equal
to the prescribed energy release rate on a linear elas-
tic material having the relaxed Young’s modulus E∞
and Poisson’s ratio ν∞ as material parameters. Fur-
thermore, path-independency of the domain integral
using cyclic material forces is validated. The cyclic
global material force overcomes the problem of neg-
ative values obtained using the global material force
at minimum load. Moreover, the existence of the bal-
ance of energy momentum and cyclic energy momen-
tum is shown. Furthermore, the cyclic material force
approach is validated using experimental results. It has
been shown, that the cyclic global material force char-
acterizes the effects of both the loading frequency and
the loading amplitude. Finally, the relation between
the crack growth rate per cycle and the cyclic global
material force illustrates that the cyclic material force
approach can characterize fatigue crack growth.
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Appendix A: Path-independent domain integral

In this section, the path-independence of material
forces and cyclic material forces is validated. Consider
the cracked body shown in Fig. 2, the path-independent
Ĵ -integral derived byKishimoto et al. (1980a) for small
strain elastic-plastic materials is defined as

Ĵ =
∫

∂P
�NdS +

∫
P

σ : ε p − (∇X u)ᵀ b dV, (A.1)

where ε p is the plastic strain tensor. For more details
related to the proof of path-independency of the contour
integral, the readers are referred to the work of Kishi-
moto et al. (1980a). According to Shih et al. (1986),
the surface integral in Eq. (A.1) can be transformed
into domain integral as

Ĵ = −
∫
P

∇X · �dV +
∫
P

σ : ε p − (∇X u)ᵀ b dV .

(A.2)

In visco-elastic materials, the crack driving force can
be evaluated

Fcrack = −
∫
P

∇X · �dV +
∫
P
BdV . (A.3)

Equation (A.3) is similar to Eqs. (A.1) and (A.2). The
difference is that in Eq. (A.3) the viscous strains are
used instead of the plastic strains. Moreover, in Eq.
(A.3) an additional term is accounted for the explicit
dependence of the free energy density on the position
within the body. Therefore, it can be concluded that
the crack driving force computed by the material force
method is path-independent. In the work of Kishimoto
et al. (1980b), the field quantities used to evaluate the
Ĵ -integral are considered to change only due to crack
propagation, in other words the crack length is used as
time-like variable. Due to the aforementioned assump-
tion, the Ĵ -integral is proven to be path-independent.
At cyclic loading, the cyclic crack driving force is eval-
uated at each cycle. Furthermore, the cyclic stresses,
strains and energies needed to compute the cyclic crack
driving force are considered to be constant within one
cycle, if the crack does not propagate. This statement
means that the cyclic quantities at one cycle depend
only on the crack length and, therefore, the crack length
can be used as a time-like variable for the cyclic quan-
tities. Using the crack length as a time-like variable for
the cyclic quantities, a path-independent domain inte-
gral for evaluation of the cyclic crack driving force is
derived as

Fcrack
cycle = −

∫
P

∇X · �cycledV +
∫
P
BcycledV . (A.4)

Equation (A.4) is similar to Eq. (A.3), but all the param-
eters are replaced by their cyclic counterparts. The
path-independent domain integral is also illustrated by
the numerical examples of Sect. 6.2. Moreover, the
path-independent integral can be also explained by Eq.
(5.9). Consider Fig. 2, the crack driving force is evalu-
ated using an arbitrary domainP surrounding the crack
tip. Taking another domain P ′ surrounding the crack
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time, t [s]

L
oa

d,
F

[N
]

1 2 3 4 5 6

Cycle 2

Fmax

Fmin

Fig. 24 Representation of the cyclic loadingwith respect to time

tip, the crack driving force can be evaluated as

Fcrack · ȧ =
∫
P ′

[−� : ∇X δ Ẋ + B · δ Ẋ
]
dV, (A.5)

Reducing Eq. (A.5) from Eq. (5.9) yields

0 =
∫
P−P ′

[−� : ∇X δ Ẋ + B · δ Ẋ
]
dV, (A.6)

Using Eq. (A.6), it can be concluded that the inte-
grals evaluated at any two arbitrary domains are equal.
This means, the domain integral is path-independent.
At cyclic loading, the same mathematical proof is
repeated, however, all the quantities are replaced by
their cyclic counter parts.

Appendix B: Cyclic free energy calculation

Consider the cyclic load shown inFig. 24.Each cycle
consists of loading and unloading stage. The cyclic free
energy is calculated either during loading or the unload-
ing stage. To better understand this explanation, con-
sider the unloading stage of Cycle 2 in Fig. 24. The
one-dimensional stress-strain behaviour in the equilib-
rium spring is represented in Fig. 25.

The one-dimensional cyclic free energy in the equi-
librium spring is associated with the dark area in Fig.
25. Generalizing the one-dimensional case to the three-
dimensional situation, the cyclic free energy in the equi-
librium spring can be computed as

εmaxεmin ε

σeq

σeq
max

σeq
min

ψeq
cycle

Fig. 25 Cyclic energy in the equilibrium spring

ψ
eq
cycle =

∫ εmax

εmin

(σ eq − σ
eq
min) : dε

= 1

2
(εmax − εmin) : Ceq : (εmax − εmin).

(B.1)

During the loading stage, the cyclic energy in the
equilibrium spring is evaluated analogously. However,
during loading the values of εmin are different from
those during unloading. Analogously to the equilib-
rium spring, the cyclic free energy in a non-equilibrium
spring is evaluated as

ψ
neq
icycle

=
∫ εeimax

εeimin

(σ
neq
i − σ

neq
imin

) : dεei

= 1

2
(εeimax

− εeimin
) : Cneq

i : (εeimax
− εeimin

).

(B.2)
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