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Abstract Fracture arising from cracks nucleating
and propagating along twin boundaries is commonly
observed in metals that exhibit twinning as a plastic
deformation mechanism. This phenomenon affects the
failure ofmacroscopicmechanical components, but it is
not fully understood. We present simulations in which
a continuum model for discrete twins and a cohesive
zone model are coupled to aid the understanding of
fracture at twin boundaries. The interaction between
different twin systems is modelled using a local term
that depends on the continuum twin variables. Simula-
tions reveal that the resolved shear stress necessary for
an incident twin to propagate through a barrier twin can
be up to eight times the resolved shear stress for twin
nucleation. Interface elements are used at the interfaces
between all bulk elements to simulate arbitrary intra-
granular cracks. An algorithm to detect twin interfaces
is developed and their strength has been calibrated to
give good agreement with the experimentally observed
fracture path. The elasto-plastic deformation induced
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by discrete twins is modelled using the crystal plas-
ticity finite element method and the stress induced by
twin tips is captured. The tensile stress caused by the
tip of an incident twin on a barrier twin is sufficient
to nucleate a crack. A typical staircase fracture path,
with cracks propagating along the twin interfaces, is
reproduced only if the strength of the twin interfaces
is decreased to about one-third of the strength of the
bulk material. This model can be used to help under-
stand fracture caused by the activation of multiple twin
systems in different materials.

Keywords Crystal plasticity · Cohesive zone
modelling · Fracture · Twinning · Uranium

1 Introduction

Deformation-induced twinning is an important mech-
anism, common in bcc, hcp and low symmetry crys-
tals (Christian 2002). It is observed when other plastic
deformation mechanisms become difficult, e.g. at low
temperature or high strain rate (Mahajan and Williams
1973; Christian andMahajan 1995; Kapoor et al. 2015;
Inouye and Schaffhauser 1969). Twin boundaries are
crystallographic planes separating two regions: the par-
ent crystal and the twinned crystal, which are mirror
images of each other by reflection (Hull and Bacon
2011). Twinning can increase the ductility of metals
and alloys. Twinmigration under stress also contributes
to the accommodation of plastic strain (Liu et al. 2014).
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At the same time, twin boundaries act as barriers for
dislocation motion (Wang et al. 2020); therefore, they
increase strength (Lu et al. 2004; Anderoglu et al.
2008).

There has been a growing interest in twinning
because of the recent experimental demonstration that
a high density of twin boundaries can be induced in
Al alloys by deposition onto a single crystal substrate
(Li et al. 2018). Higher twinning activity has been
revealed in additively manufactured steel (Yang et al.
2021; Grilli et al. 2021a) because of the nitrogen atmo-
sphere used in the process (Pham et al. 2017). More-
over, the density of twin boundaries can be controlled
by changing the scanning speed (Gao et al. 2020) and
laser energy input (Do and Li 2016; Hocine et al. 2020)
during selective laser melting.

To reach the twinned configuration, atoms rearrange
and produce a homogeneous shear inside a twin band,
whose characteristic thickness can range fromnanome-
tres to hundreds of micrometres (Zhang et al. 2009;
Beyerlein and Tomé 2008; Ardeljan et al. 2017; Salem
et al. 2003). If the twin intersects an obstacle, such as a
grain boundary or another twin interface (barrier twin),
a stress concentration is created (Sauzay and Moussa
2013; Koko et al. 2021). In some crystals, the shear
deformation of the incident twin can transmit through
the barrier twin (Sun et al. 1993). In this case, a sec-
ondary twin, deflectedwith respect to the incident twin,
is created inside the barrier twin (Wardle et al. 1993).
In other cases, the incident twin has a lenticular shape,
whose edge terminates near the barrier twin, without
penetrating it (Abdolvand and Wilkinson 2016). Twin
penetration requires the following criteria: direction
and magnitude of the plastic shear of the incident and
secondary twin must be identical; their traces on the
barrier twin plane must be parallel (Cahn 1953). More-
over, energy is required to reorient the crystal lattice
inside the barrier twin.

Twin intersections have been investigated as a possi-
ble site for fracture due to the local stress concentration
(Müllner et al. 1994). In many materials, fracture sur-
faces inside crystals intersect the twin planes. This has
been observed in uranium (Field et al. 2009), copper
(Boettner et al. 1964), Cu–Al (Qu et al. 2008), Cu–
Zn (Zhang et al. 2012), ferritic TWIP steel (Koyama
et al. 2013), austenitic stainless steel (Heinz and Neu-
mann 1990). This phenomenon is also called “twin
parting” by mineralogist. The intragranular fracture
path in ferritic TWIP steel has a staircase shape: part

of the crack surface lies on the twin plane and the
remaining crack surface connects neighbouring twins
(Koyama et al. 2013). The resulting macroscopic crack
is approximately perpendicular to the load direction. It
has been observed during both monotonic and cyclic
load. The intersection between shear bands and twins
can also be responsible for crack nucleation (Xiong
et al. 2017). One hypothesis is that the energy release
rate Gc (Grilli and Koslowski 2019) of the interface
between the twinned and untwinned regions is lower
than in the bulk. However, no direct measurements of
this fracture energy are available.

Other factors play an important role, such as dislo-
cation slip, the shape of the twin and the stacking fault
energy (SFE) (Zhang et al. 2012). The activation of
slip planes parallel to the twin boundary and the pres-
ence of twin boundary steps induce crack formation
at the twin boundary (Boettner et al. 1964). A lower
SFE, obtained by alloying (Murr 1975), favours twin
boundary fracture (Qu et al. 2008).

The following questions remain unanswered. What
is the interaction strength between discrete twins that
is necessary to prevent twin intersections? How strong
is the twin interface in order to explain the intracrys-
talline fracture path observed? What is the effect of
twin orientation on the fracture behaviour?

In this paper we use crystal plasticity finite element
(CPFE) simulations (Grilli 2016; Irastorza-Landa et al.
2017b), a continuum model for discrete twins (Grilli
et al. 2020b) and a cohesive zone model for intragran-
ular fracture (Grilli et al. 2021b) to answer these ques-
tions. The material of interest is α-uranium, which is
the stable phase of uranium at room temperature (Cahn
1951). The CPFE method includes the plastic defor-
mation due to all slip and twin systems (Roters et al.
2018; Irastorza-Landa et al. 2017a). Recently, con-
tinuum models have been developed to describe the
nucleation and growth of discrete twins with a spe-
cific thickness (Grilli et al. 2020b). A twin variable ϕβ

varies from 0 (untwinned region) to 1 (twinned region)
when a twin of type β forms (Liu et al. 2018, 2019).
The model includes the reorientation of the crystal lat-
tice due to twinning. Intragranular fracture is described
by a cohesive zone model using a bilinear traction-
separation law (Barenblatt 1962; Camacho and Ortiz
1996; Alfano et al. 2015). This type of model has been
previously applied to both brittle (Yang et al. 2019)
and ductile fracture (Tvergaard 2001), and even com-
pared directly with Gurson-type models (Siegmund
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Modelling the nucleation and propagation of cracks at twin boundaries 19

and Brocks 1998b, a). Therefore, it is a suitable model
to describe the brittle and semi-ductile crack growth
which is characteristic of cast α-uranium at room tem-
perature (Collins and Taplin 1978). In the present work,
cohesive elements with zero thickness are used (Segu-
rado and LLorca 2004; Segurado and Llorca 2002;
Nguyen 2014b) at the interface between all pairs of
bulk elements in the mesh, which describe the elasto-
plastic behaviour. The chosen value of the stiffness of
the interface elements leads to good simulation con-
vergence and it is higher than the stiffness of the bulk
elements, thus reducing their artificial compliance.

The interaction between different twin families is
described by a local term that depends on the twin vari-
able ϕβ . In previous homogenised models that describe
the hardening of a twin system based on the twin vol-
ume fraction of a second twin system (Roters et al.
2010; Grilli et al. 2019) discrete twins were not con-
sidered (Kalidindi 2001).We show that by changing the
interaction coefficient, a transition from amodel where
twin intersections are possible to a model where inci-
dent twins are arrested at the barrier twin is observed.

Our model also includes a coupling between the
maximum stress of the cohesive zone model and the
twin variable. An algorithm is developed to detect the
twin interface based on the value of the continuum twin
variable in two neighbouring bulk elements. The bilin-
ear traction-separation law in the cohesive element that
connects the two bulk elements is changed accordingly.

We show that by changing the coupling coefficient
between the twin variable and maximum stress, it is
possible to reproduce fracture paths similar to the ones
observed in experiments (Koyama et al. 2013). The
effect of the twin orientation with respect to the load
axis and the effect of the shear traction on damage
(Ortiz and Pandolfi 1999) are also studied. The sim-
ulations shed light on the dynamics of crack nucleation
and propagation at the twin boundary, which has not
been studied using in-situ experiments.

Section 2 describes the crystal plasticity model
for the mechanical behaviour of the bulk. Section 3
describes the cohesive zone damage model for the
mechanical behaviour of fracture interfaces. In Sect.
4 the simulation results are shown. An extensive para-
metric analysis has been carried out to understand the
effect of the interaction coefficients between twin fam-
ilies (Sect. 4.1), the effect of the normal traction (Sect.
4.2), the effect of the twin orientation (Sect. 4.3), the
effect of the coupling coefficient between the twin vari-

able and fracture stress (Sect. 4.4) and the effect of the
damage induced by shear deformation (Sect. 4.5) on
the fracture behaviour. Discussion and conclusions are
in Sects. 5 and 6.

2 Crystal plasticity finite element framework and
discrete twin model

A finite strain, CPFE framework is used. The deforma-
tion gradient F is decomposed into elastic (Fe) and
plastic (F p) parts (Lee 1969):

F = I + ∂u
∂X

= FeF p, (1)

where I is the identity matrix, u is the displacement
vector, X is the undeformed coordinates vector. The
time evolution of the plastic deformation is defined in
terms of the symmetric plastic deformation rate Dp

(Dunne and Petrinic 2006):

Dp (σ ) = 1

2

(
L p + LT

p

)

= 1

2

Nslip∑
α=1

γ̇α (σ ) (sα ⊗ nα + nα ⊗ sα)

+ 1

2

Ntwin∑
β=1

ϕ̇β (σ ) γ twin
β

(
sβ ⊗ nβ + nβ ⊗ sβ

)
.

(2)

This takes into account all the slip and twin systems
(Kalidindi 1998). L p is the plastic velocity gradient
(Asaro and Needleman 1985). sα and nα are the slip
direction and normal. sβ and nβ are the twin direction
and normal. γ̇α (σ ) is the stress-dependent plastic strain
rate on slip system α. ϕ̇β (σ ) is the rate of change of the
twin variable representing the twin system β. γ twin

β is
the constant plastic shear induced in a twinned region.
As will be discussed in the following, ϕ̇β (σ ) depends
on both the stress and the twin variable itself.

An implicit scheme is used to find the elasto-plastic
decomposition of the deformation (Dunne et al. 2007).
The approach used is hypoelastic (Kim 2016; Adzima
et al. 2017), which means a Newton–Raphson algo-
rithm solves for the increment of the Cauchy stress in
one time increment�t . First, the small strain increment
�ε is calculated as:

�ε = 1

2

(
L + LT

)
�t = 1

2

(
ḞF−1 + F−T Ḟ

T
)

�t,

(3)
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where L is the velocity gradient (Grilli et al. 2018b).
Then, the increment of the Cauchy stress �σ is calcu-
lated using:

�σ = C�εe + (W eσ 0 − σ 0W e)�t

= C
(
�ε − D p (σ )�t

) + (W eσ 0 − σ 0W e) �t,
(4)

σ 0 is the Cauchy stress at the previous increment andC
is the stiffness tensor in the sample reference frame.W e

is the elastic spin (Dunne andPetrinic 2006;Belytschko
et al. 2014), which is a function of the elastic velocity
gradient Le:

W e = 1

2

(
Le − LT

e

)
. (5)

Le is a function of the total velocity gradient, plastic
velocity gradient and elastic deformation gradient:

Le = L − FeL pF−1
e . (6)

Equation (4) takes into account the stress increment
in the corotational reference frame and the Jaumann
stress rate due to the elastic spin tensor W e (Hill and
Rice 1972; Adzima et al. 2017). The right-hand side of
Eq. (4) is a non-linear function of the stress increment
�σ through Eq. (2), therefore it can be solved by the
Newton–Raphson algorithm. L and F are fixed quanti-
ties during the iterations of the Newton–Raphson algo-
rithm. At every iteration, the stress value σ determines
the updated plastic deformation gradient F p and L p,
which in turn determine Fe. Therefore, W e is deter-
mined by Eqs. (5)–(6) and it is used in Eq. (4). In
the present formulation, W e does not contribute to the
Jacobian of the Newton–Raphson algorithm. Once the
stress increment �σ is calculated, the Cauchy stress σ

at the next time increment can be found.
This is implemented as a UMAT routine for Abaqus

(Smith 2009): at each time increment, the UMAT sub-
routine provides the deformation gradient as input and
the Cauchy stress and Jacobian are required as output.
The plastic deformation gradient is stored as an internal
variable (Das et al. 2018).

The constitutive model for the plastic strain rate on
each slip system is described by a power-law relation-
ship between γ̇α and the resolved shear stress (RSS) τα

(Asaro and Needleman 1985):

γ̇α (σ ) = γ̇0

∣∣∣∣
τα

τ cα

∣∣∣∣
n

sign (τα) , (7)

where γ̇0 and n are constants. τ cα is the critical resolved
shear stress (CRSS) of the slip systems: it is calculated
based on the Taylor hardening equation using a disloca-
tion density based model (Grilli and Koslowski 2018),
whose details are described in Grilli et al. (2020b).
Therefore, the CRSS for slip is proportional to the
square root of the dislocation density (Grilli et al. 2015).
The state variables used in the slip model are the forest
dislocation density on each slip system and the sub-
structure dislocation density. The details of the physical
interpretation of these two types of dislocation densities
are reported in (Tomé et al. 2002). Hardening of the slip
systems is included (Capolungo et al. 2009; Irastorza-
Landa et al. 2016). The CRSS for slip and hardening
coefficients have been calibrated using neutron diffrac-
tion (Grilli et al. 2020a; Earp et al. 2018) and digital
image correlation (Grilli et al. 2020c) experiments.

The rate of change of the twin variable ϕ̇β (σ ) is
modelled using two terms:

ϕ̇β

(
σ , ϕβ

) = ϕ̇S
β

(
σ , ϕβ

) + ϕ̇G
β

(
ϕβ

)
. (8)

The first term is stress-dependent and, similarly to
the slip systems, is a power-law relationship. How-
ever, twin systems are activated only by a positive RSS
(Ogata et al. 2005):

γ twin
β ϕ̇S

β

(
σ , ϕβ

) =
⎧⎨
⎩

γ̇0

∣∣∣∣
τβ

τ cβ

∣∣∣∣
n

, if τβ > 0,

0, if τβ < 0.
(9)

γ̇0 and n are constants. τβ and τ cβ are the RSS andCRSS
on the twin system β respectively.

The twinning process involves the shuffling of atoms
from their initial positions in the parent lattice to their
final positions in the twinned lattice. A potential barrier
has to be overcome for this process. When atoms reach
themaximumof theGibbs free energy barrier, a driving
force brings them to their final positions (Ishii et al.
2016). Thismechanism is described by the second term
in Eq. (8):

ϕ̇G
β

(
ϕβ

) =
{
f
(
1 − ϕβ

)
, if ϕβ > 1

2 ,

0, if ϕβ < 1
2 ,

(10)

where 1/ f is the characteristic time for complete twin
formation.

The CRSS for twinning includes different terms
describing twin nucleation and the interaction between
different twin families.
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Twin nucleation is described by the following term
(Qiao et al. 2016):

τ0
(
ϕβ

) =
{

τ0
4 + 3

4τ0
(
1 − 2ϕβ

)
, if ϕβ < 1

2 ,
τ0
4 + 3

4τ0
(
2ϕβ − 1

)
, if ϕβ > 1

2 ,

(11)

where τ0 is a constant. It is a bilinear law which has a
minimum corresponding to themaximumof the energy
barrier for twinning. It contributes to stress relaxation
during twin nucleation.

Two interaction mechanisms are considered, as
shown in Fig. 1a. The increase of the twin thickness
is due to the interaction of mobile dislocations with the
twin boundary (Chowdhury and Sehitoglu 2018). This
first mechanism is represented by the green disloca-
tions in Fig. 1a, which can move towards the direction
indicated by the corresponding arrows. The presence of
residual dislocations inside the twin can prevent these
mobile dislocations reaching the twin boundary (Ojha
et al. 2014), limiting the growth of the twin thickness.
This is modelled by a non-local interaction term:

τ twin-nlβ

(
ϕβ

) = τ 0twin-nl

	β

(∫

	β

ϕβdV

)
, (12)

where τ 0twin-nl is an interaction constant. The integral
in Eq. (12) is calculated over a cylindrical volume 	β

centred at the point of interest with the axis parallel to
the twin plane normal nβ . The axis of the integration
region 	β has length l0 and the radius is r0, as shown
in Fig. 1a. The interaction coefficient τ 0twin-nl has been
calibrated by comparing the number of twins and their
thickness as a function of the applied strain to in-situ
electron backscatter diffraction (EBSD) experiments
on α-uranium (Grilli et al. 2020d).

The second mechanism is the interaction between
two discrete twins belonging to different twin systems.
Dislocations are present at the boundary between the
twin tip and the original crystal (red dislocations in
Fig. 1a). The motion of these dislocations, called twin-
ning dislocations, leads to the propagation of the twin
tip along the twin direction sβ (Mahajan and Chin
1973). However, the motion of twinning dislocations
is hindered by twin boundaries belonging to a different
twin system (Zhao et al. 2018) because of the energy
required for dislocations to enter the twinned region
and to reorient the crystal lattice (Paramatmuni et al.
2020).

This is modelled by a local interaction term:

τ twin-locβ

(
ϕβ

) = τ 0twin-loc

∑
γ �=β

ϕγ , (13)

where τ 0twin-loc is an interaction constant. The sum inEq.
(13) is taken over all twin systems other than the one
considered,β. This represents the barrier for themotion
of twinning dislocations caused by other twin systems.
The term in Eq. (13) represents the main additional
feature of this model compared to our previous discrete
twinmodel (Grilli et al. 2020b). Finally, the total CRSS
for twinning is given by:

τ cβ = τ0
(
ϕβ

) + τ twin-nlβ

(
ϕβ

) + τ twin-locβ

(
ϕβ

)
. (14)

Reorientation of the crystal lattice due to twinning is
also considered. A weighted average using the twin
variable (Roters et al. 2018) is used to find the effective
stiffness C:

C =
⎛
⎝1 −

∑
β

ϕβ

⎞
⎠Cmat +

∑
β

ϕβC
β
twin, (15)

where Cmat is the stiffness matrix of the untwinned
crystal, whileCβ

twin is the stiffness matrix of the crystal
after a twin of type β is formed. The matrices in Eq.
(15) are expressed in the sample reference system. The
effective stiffness is then used in Eq. (4).

The rotation matrix that transforms the untwinned
crystal into the twinned crystal of type β, with normal
nβ , is (Zhang et al. 2010):

Qβ = 2nβ ⊗ nβ − I. (16)

The stiffness matrix of the twinned crystal is found by
applying the rotation matrix in Eq. (16) to the stiffness
matrix of the untwinned crystal:[
C

β
twin

]
i jkl

= [
Qβ

]
im

[
Qβ

]
jn

[
Qβ

]
kp

[
Qβ

]
lq [Cmat]mnpq ,(17)

α-uranium material parameters are used for the crys-
tal plasticity model in the following simulations. The
slip and twin systems used are reported in Table 1.
The elastic constants in the crystal reference frame are
reported in Table 2. The parameters of the crystal plas-
ticity model are reported in Table 3. The crystal plas-
ticity UMAT is available in the following repository
(Tarleton and Grilli 2020).

3 Cohesive zone damage model

The mechanical behavior of a zero thickness interface
element, also called a cohesive element, is described by
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Table 1 Slip and twin
systems used in the model
(McCabe et al. 2010)

The directions and plane
normals are expressed in
Cartesian coordinates and in
the lattice coordinate system

Slip system s0α n0α

α = 1 (wall) [1, 0, 0] [0, 1, 0]

α = 2 (floor) [1, 0, 0] [0, 0, 1]

α = 3 (chimney) [0.437,−0.899, 0] [0.899, 0.437, 0]

α = 4 (chimney) [0.437, 0.899, 0] [0.899,−0.437, 0]

α = 5 (roof) [0.241,−0.495, 0.835] [0.0, 0.860, 0.510]

α = 6 (roof) [−0.241,−0.495, 0.835] [0.0, 0.860, 0.510]

α = 7 (roof) [0.241, 0.495, 0.835] [0.0, 0.860,−0.510]

α = 8 (roof) [0.241,−0.495,−0.835] [0.0, 0.860,−0.510]

Twin system s0β n0β

β = 1 [0.825,−0.565, 0] [0.565, 0.825, 0]

β = 2 [−0.825,−0.565, 0] [−0.565, 0.825, 0]

Table 2 Elastic constants (GPa) at room temperature for the orthorhombic structure of α-uranium (Fisher and McSkimin 1958; Beeler
et al. 2013) in Voigt notation in the crystal reference frame (untwinned crystal lattice)

C11 C12 C13 C22 C23 C33 C44 C55 C66

214.74 46.49 21.77 198.57 107.91 267.11 124.44 73.42 74.33

Table 3 Parameters of the
crystal plasticity model

Slip and twin rate law parameters Eqs. (9), (10)

Plastic strain rate coefficient (γ̇0) 0.001 s−1

Plastic strain rate exponent (n) (Irastorza-Landa et al. 2017a) 20

Characteristic time (1/ f ) (Grilli et al. 2020b) 1 s

Twin law parameters Eqs. (2), (9), (11)

Constant friction stress (twinning) (τ0) (Daniel et al. 1971) 25 MPa

Magnitude of shear due to twinning (γ twin
β ) (Cahn 1953) 0.299

Non-local term to describe twin growth Eq. (12)

Radius of the cylindrical neighbourhood (r0) (Grilli et al. 2020b) 1 µm

Length of the cylindrical neighbourhood (l0) (Grilli et al. 2020b) 10 µm

Maximum twin–twin interaction stress (τ 0twin-nl) (Grilli et al. 2020b) 2 GPa

Local term to describe twin–twin interaction Eq. (13)

Twin–twin interaction coefficient (τ 0twin-loc) 200 MPa, Sect. 4.1

a bilinear traction-separation law (Grilli et al. 2021b).
In the presentmodelwe introduce the coupling between
themaximumstress that the interface canwithstand and
the twin variable jump across the interface, which is the
discontinuity of a twin variable between neighbouring
bulk elements.

Zero thickness interface elements with 8 nodes are
generated at the interfaces between all hexahedral bulk
elements (Nguyen 2014b). Four of these nodes are
sharedwith a face of thefirst neighbouringbulk element
and the other four with a face of the second neighbour-
ing bulk element.
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Modelling the nucleation and propagation of cracks at twin boundaries 23

Table 4 Reference
parameters of the cohesive
zone damage model

The effect of the variation of
individual parameters is
reported in the specified
sections

Normal stiffness (Kn) 1134 GPa/µm (Sec. 4.2)

Shear stiffness (Gs ) 440 GPa/µm (Sec. 4.2)

Maximum strength (σ 0
max) (Grilli et al. 2021b) 650 MPa

Fracture–twin coupling coefficient (cft) 400 MPa (Sec. 4.4)

Separation for full damage (� f ) 0.5 µm

Shear contribution to damage (β2) 0.1 (Sec. 4.5)

A reference system is defined on the mid-plane
between the two faces of the bulk elements that are
connected by an interface element. Details are reported
in (Grilli et al. 2021b). The separation vector � =
(�s1,�s2,�n) is defined in the mid-plane reference
system. �n represents the normal separation between
the bulk elements; �s1 and �s2 represent the compo-
nents of the relative displacement which lie parallel to
the interface plane, also called shear separation in the
following. This approach is useful to model arbitrary
crack paths, which are normally obtained using contin-
uumdamagemodels (Sistaninia andNiffenegger 2015)
or phase field fracture models (Francfort and Marigo
1998; Duarte et al. 2018; Grilli et al. 2018a).

Given an interface element and the twoneighbouring
bulk elements e1 and e2, the twin variable jump across
the interface is defined as:

�ϕ = max
β

(
ϕβ (e1) , ϕβ (e2)

)
, (18)

where ϕβ (e1) and ϕβ (e2) are the twin variables in the
bulk elements, averaged over the integration points.
The max operator in Eq. (18) is used to identify the
twin interfaces of all twin systems using the unique
scalar quantity�ϕ. The twin variable jump determines
the maximum normal stress that the cohesive element
can withstand during the load history:

σmax (�ϕ) = σ 0
max − cft�ϕ, (19)

where σ 0
max is the strength in the absence of twins and

cft is a coupling coefficient.
In the following, the bilinear traction-separation law

used to calculate the normal and shear tractions at the
interface between bulk elements is reported. The trac-
tion vector is used to calculate the contribution to the
virtual work due to the interface elements, as described
in details in (Grilli et al. 2021b; Park and Paulino 2012).
This contribution is introduced in Abaqus as a UEL
subroutine (Smith 2009).

The calculation of the normal and shear tractions
requires the definition of a damage variable D, which
is given in the following. In the present model, dam-
age can be induced by normal and shear separation.
Therefore, an effective interface separation is defined
for �n > 0:

�eff =
√

β2�2
s + �2

n, (20)

where:

�s =
√

�2
s1 + �2

s2, (21)

and β is a coefficient that determines the ratio between
the shear and normal tractions that induce damage. β

has been determined experimentally by studying the
crack path during compression tests under confinement
(Chen and Ravichandran 1994, 1996). β2 is usually
lower than 0.5 (Ortiz and Pandolfi 1999), however no
precise value is available in the literature for the mate-
rial of interest. Therefore, a parametric study is carried
out in Sect. 4.5.

As shown in Fig. 1b, an effective traction Teff is
calculated using a bilinear law. When the damage vari-
able D is zero, at the beginning of the simulation, Teff
grows linearly with�eff. A critical effective separation
is defined as:

�0 (�ϕ) = σmax (�ϕ)

Kn
, (22)

where Kn is the normal stiffness. When �eff becomes
greater than �0 (�ϕ), damage develops and Teff
decreases linearly with increasing �eff, as shown by
the part of the curve with a negative slope in Fig. 1b.
� f is the effective separation for complete damage: if
�eff ≥ � f , the effective traction Teff becomes zero.

Damage is considered an irreversible process.There-
fore, for an arbitrary history of the variable�eff, which
can increase and decrease, the maximum value of
Teff that can be reached is the value corresponding
to �eff = �p, where �p is the maximum between

123



24 N. Grilli et al.

�0 (�ϕ) and the maximum value of �eff reached dur-
ing the load history. Also, �p cannot become larger
than � f . This is shown by the black bilinear curve in
Fig. 1b.

�p can be expressed as a function of the damage
variable 0 < D < 1 and the twin variable jump �ϕ

(Grilli et al. 2021b):

�p (D,�ϕ) = � f �0 (�ϕ)

� f − D
(
� f − �0 (�ϕ)

) . (23)

Notice that, if D = 0, �p (0,�ϕ) = �0 (�ϕ), and
if D = 1,�p (1,�ϕ) = � f . Equation (23) defines the
damage variable D as a function of the history variable
�p (D,�ϕ). It is equivalent to assuming that themaxi-
mum traction that can be reached along the black bilin-
ear curve in Fig. 1b, at �eff = �p, is Kn (1 − D)�p.
Therefore, the stiffness of the cohesive interface ele-
ment degrades by a factor (1 − D) (Skamniotis et al.
2019).

The time evolution of the damage and the calcula-
tion of the normal and shear tractions are explained in
the following. Assume the damage variable and twin
variable jump are known at time t . The damage at time
t + dt is updated as:

D (t + dt)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

� f (�eff(t + dt) − �0 (�ϕ))

�eff(t + dt)
(
� f − �0 (�ϕ)

) , if �p (t) < �eff(t + dt) < � f ,

� f
(
�p(t) − �0 (�ϕ)

)

�p(t)
(
� f − �0 (�ϕ)

) , if �eff(t + dt) < �p(t),

1, if �eff(t + dt) > � f .

(24)

Therefore, damage increases only if �p (t) <

�eff(t + dt) < � f . Once the damage is updated, the
normal traction at time (t + dt) is calculated as:

Tn(t + dt)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Kn�n(t + dt), if �n(t + dt) < 0,

Kn (1 − D(t + dt)) �n(t + dt), if �n(t + dt) > 0,

0, if D(t + dt) = 1

and �n(t + dt) > 0.

(25)

The condition �n(t + dt) < 0 represents contact, in
which case the stiffness is not degraded. The shear trac-
tion is calculated as:

Ts(t + dt) = Gs (1 − D(t + dt))�s(t + dt), (26)

whereGs is the shear stiffness. The two components of
the shear traction that lie parallel to the interface plane
are given by:

Fig. 1 a Interactionmechanisms between twinning dislocations,
mobile dislocations and twin boundaries. Green dislocations rep-
resent mobile dislocations interacting with the twin interface,
while red dislocations represent twinning dislocations at the tip
of an incident twin. b Traction-separation law as a function of
�eff and of the twin variable jump �ϕ

Ts1 = Ts
�s1

�s
, (27)

Ts2 = Ts
�s2

�s
. (28)

These components correspond to the shear separa-
tion given by �s1 and �s2. The derivatives of the trac-
tion components with respect to the separation vector
components are calculated in A. They are necessary
to calculate the Jacobian matrix that ensures conver-
gence of the finite element solver. The traction vector
and Jacobian are transformed from the mid-plane ref-
erence frame to the global reference frame using rota-
tion matrices, as detailed in (Grilli et al. 2021b). The
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parameters used for the cohesive zone damage model
are reported in Table 4.

The choice of the value of the stiffness Kn is impor-
tant to avoid the artificial compliance that interface ele-
ments could introduce. Previous approaches employ
irreversible cohesive elements that are activated during
the simulation upon satisfaction of a failure criterion
(Ortiz and Pandolfi 1999). Discontinuous Galerkin for-
mulations of the shape functions of cohesive elements
have also been used (Nguyen 2014a). In the present
study, it is necessary to have all the interface elements
active during the entire simulation because their max-
imum strength is dependent on the twin variable jump
�ϕ, which is a dynamically changing quantity. There-
fore, crack nucleation is not only determined by the
stress state but also by the twin interfaces, which are
identified by the algorithm described by Eq. (18).

On the other hand, the stiffness Kn cannot be
too large because this causes numerical problems,
such as spurious traction oscillations (Schellekens and
De Borst 1993; Turon et al. 2006). The selected value
of Kn must be greater than E/ le, where E = 226 GPa
is the Young’s modulus of single crystal α-uranium
(Fisher and McSkimin 1958), averaged over all direc-
tions (Roters et al. 2018). le is a characteristic length of
the bulk material between two interface elements: ini-
tially, le is of the order of the element size (0.25 µm),
which gives E/ le ≈ 904 GPa/µm. This is less than the
value of Kn used in the simulations, given in Table 4.
Eventually, as will be shown in the following sections,
damage localises at the twin interfaces, whose spacing
is of the order of 10µm.When this happens, le becomes
the effective length between two interface elements that
accommodate a significant fraction of the crack open-
ing, i.e. the interface elements at the twin boundaries.
Therefore, after damage localisation, the selected value
of Kn becomes much greater than E/ le.

The implicit Abaqus solver is used for the sim-
ulations. Convergence of the fracture model without
any numerical damping is possible because the condi-
tion proposed by Gao and Bower is satisfied (Gao and
Bower 2004). That condition requires that the energy
dissipated during the separation of an interface is larger
than the bulk elastic energy released. If this condition
is not satisfied a snap-back instability occurs. The con-
dition can be expressed as (Gao and Bower 2004):

E� f

2leσmax
> 1, (29)

Fig. 2 a Representative volume and mesh: the size used in the
simulations are lm = 20 µm and lm = 30 µm. b Tension bound-
ary conditions

where le is used as the characteristic length because
the interface elements are present between all pairs of
neighbouring elements. The condition in equation (29)
is largely fulfilled by the parameters used in the sim-
ulations, therefore no arc-length method is needed for
convergence.
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Simulations with and without cohesive elements are
carried out to find the effect of the cohesive elements on
the mechanical response of the representative volume.
The results will be shown in Sect. 4.2.

The UEL implementation of the cohesive zone dam-
age model, coupled with the twin variable, and input
files are available in a Github repository (Tarleton and
Grilli 2020). Some utilities to generate the cohesive
elements are also available (Grilli 2020; Grilli et al.
2021c).

4 Simulation details and results

In this section single crystal simulations are carried out.
The representative volume is a parallelepiped with size
lm × lm × 0.25 µm, as shown in Fig. 2a. Two different
values for lm are used in this section: lm = 20 µm and
lm = 30 µm. The mesh is constituted of hexahedral
elements and the average element size in the x-y plane
is 0.2 µm for the smaller representative volume and
0.25 µm for the larger one. Such a small mesh size is
needed to capture the twin thickness, which is about
2 µm, and the twin interface, which spreads over one
or two elements. The effect of the ratio between l0 and
mesh size on the twin variable has been investigated
in a previous work (Grilli et al. 2020b). Moreover, the
element size cannot be much smaller than the separa-
tion for full damage � f , otherwise, the crack opening
displacementwould spread overmultiple neighbouring
cohesive elements and the crack path would not be well
defined. Therefore, 0.25 µm is a sensible choice.

Zero thickness cohesive elements are introduced at
the interfaces between all hexahedral bulk elements.
The elements have random shapes. A structured mesh,
in which all elements are cubes, is not used because it
leads to artifacts in the twin variableϕβ , and the fracture
path tends to follow the x and y directions. Therefore,
elements are generated with a random arrangement and
orientations thanks to the transfinite algorithm in the
Gmsh software (Geuzaine and Remacle 2009).

Tension boundary conditions are used in all the fol-
lowing simulations, as shown in Fig. 2b. uz = 0 is
imposed on the surface z = 0, uy = 0 is imposed
on the surface y = 0, ux = 0 is imposed on the sur-
face x = 0. A displacement ux is imposed on the sur-
face x = lm . Deformation is increased until an average
strain of about 15% is reached. Therefore themaximum
displacement applied on the x = lm surface is 3µm for

lm = 20 µm and 4.5 µm for lm = 30 µm. The strain
rate used in all the following simulations is 10−3 s−1.
For this order of magnitude, the simulation results are
approximately strain rate independent (Tabourot et al.
1997). This is because of the small strain rate sensitiv-
ity exponent 1/n in Eq. (9). The time step used in the
simulations is 0.02 s, therefore about 5000 time steps
are needed to reach 10% strain.

The single crystal orientation is determined by a
rotation matrix R, which transforms the axes of the
crystal lattice reference frame into the axes of the sam-
ple reference frame. The reference rotation matrix is:

R =
⎛
⎝

0.983 −0.1834 0
0.1834 0.983 0

0 0 1

⎞
⎠ , (30)

and an additional rotation around the Z axis is added in
Sect. 4.3 to investigate the dependence of the fracture
behaviour on the twin orientation. The rotation matrix
R reorients one twin system (β = 2) at 45◦ with respect
to the load direction. This will be called the primary
twin system. Both {130} twin systems (β = 1) and
(β = 2) are active for this crystal orientation (Grilli
et al. 2020b) and tensile load along the X axis. The
twin system β = 1 will be called the secondary twin
system in the following.

4.1 Twin–twin interaction coefficient

Simulations with different values of the local interac-
tion coefficient between different twin systems τ 0twin-loc
in Eq. (13) are carried out. This is useful to find the crit-
ical value of τ 0twin-loc for which the transmission of an
incident twin through a barrier twin is prevented.

Cohesive elements are not present in these simula-
tions, therefore fracture cannot take place.

Figure 3 shows the sum of the twin variables ϕ1+ϕ2

at 5% strain deformation. The violet colour indicates
a value, ϕ1 + ϕ2 = 2, which is a twin intersection.
This is visible inside the white dashed square in Fig.
3a. The area occupied by twin intersections decreases
if τ 0twin-loc is increased.

A value τ 0twin-loc = 200 MPa is sufficient to limit
considerably the twin interpenetration and it will be
used in all the following simulations. This is because
twin intersections are not commonly observed in α-
uranium (Zhou et al. 2016).
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Fig. 3 Sum of the twin
variables ϕ1 and ϕ2 of the
two twin families at 5%
strain. The white dashed
square indicates a twin
intersection

4.2 Twin induced fracture and normal traction

A simulation with lm = 30 µm and with cohesive
elements is carried out to understand the correlation
between discrete twins and fracture. The discrete twins
and fracture path at 8.5% strain are shown in Fig. 4.
Fracture appears mainly along the interface of the pri-
mary twin system,which is oriented at 45◦ with respect
to the X axis. Some other crack surfaces follow the
interface of the secondary twin system or are normal to
the load direction.

It turns out that the main crack nucleates at the
intersection between two intersecting discrete twins, as
shown in the magnified image in Fig. 4. The secondary
twin develops later in the simulation; therefore, it is
considered an incident twin. The primary twin acts as
a barrier twin. The crack nucleates in a position where
the twin shear induces a tensile stress on the interface of
the barrier twin because of the lower σmax in Eq. (19).

For the same reason, after nucleation, the crack propa-
gates along the interface of the barrier twin towards the
bottom of the representative volume. As shown in Fig.
4, above the nucleation site, the crack initially tends
to propagate along the interface of the incident twin
because of the lower σmax, but later deviates along a
path that is approximately perpendicular to the loading
direction.

To understand the dynamics of crack nucleation and
propagation, it is useful to correlate the twin variableϕ1

of the incident twin with the normal traction Tn along
the fracture surface indicated by the arrow in Fig. 4.
This normal traction can be found from the values in
the cohesive elements along that surface and is cal-
culated using Eq. (25). A node path is selected, which
includes nodes in the front surface (the surface with the
highest z coordinate) in Fig. 4; therefore, the selected
interface elements are determined unambiguously as
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Fig. 4 Discrete twins and fracture at 8.5% strain. The crack nucleation site is magnified and the twin shear induced by the incident
twin is shown

the interface elements parallel to the path segments and
containing the nodes in the path.

The normal traction and twin variable along the
developing fracture surface are shown in Fig. 5. Dif-
ferent strain values are shown: at 6.5% strain, the twin
variable ϕ1 has increased to almost 0.5, which is the
threshold for twin nucleation; at 7.0% strain the inci-
dent twin is almost fully nucleated on the right side of
Fig. 5b; the stress decreases in the centre of the twin
but remains high on the left side of it. This causes a
crack to nucleate on the left side of the twin, where
a tensile stress is present, as shown in Fig. 4. During
crack nucleation, at 7.5% and 8.0% strain, the traction
decreases because of the bilinear law in Eq. (25).

The same simulations are made with and without
cohesive elements to understand the effect of the com-
pliance of the cohesive elements on the simulation
results. Stress strain curves are shown in Fig. 6; the
stress is averaged over the right surface in Fig. 4, where
the load is applied. The stress strain curves with and
without the cohesive elements are very similar up to the
strain level at which cracks start to nucleate. The ini-
tial stress drop is due to the nucleation and propagation
of the twins on the primary twin system (ϕ2). Mean-
while, the stress with cohesive elements decreases up
to complete fracture at about 10% strain.

It is noteworthy that the stress does not drop sud-
denly but it decreases slowly with increasing strain.
This is caused by two factors: the first factor is the plas-
tic deformation that can accommodate a large fraction
of the applied displacement; the second factor is caused
by the small representative volume, compared with a
macroscopic sample. In a larger representative volume,
the displacement applied after crack nucleation would
be mostly accommodated by the crack propagation and
it would cause only a minor increase of the average
strain along the load direction up to complete failure.
Fracture starts when the twin growth of the primary
twin system ϕ2 is almost complete, but plastic slip con-
tinues at all strain levels. Therefore, a large fraction of
the energy dissipated is due to plasticity,while a smaller
fraction is due to fracture. The dissipated energy and
fracture energy will be discussed in Sect. 5.

Although the interface elements introduce some
compliance in the elastic regime, the value of Kn cho-
sen does not have an influence on the evolution of plas-
tic deformation, twinning and damage development in
the material. Moreover, the twinning process induces
inhomogeneous deformation and local stress concen-
tration,which are themain factors affecting the location
of damage nucleation, as shown in Fig. 4.
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Fig. 5 Normal traction Tn along the fracture surface indicated by an arrow in Fig. 4 at a 6.5%, b 7.0%, c 7.5%, d 8.0% strain

4.3 Dependence on twin orientation

Simulations with lm = 20 µm, β2 = 0.2 and with dif-
ferent orientations of the twins with respect to the load
direction are carried out to investigate the difference
between the fracture patterns. The results are shown in
Fig. 7.

In Fig. 7a the primary twin system is oriented at
45◦ with respect to the load direction. This is the same
orientation analysed in Fig. 4. Therefore, the crack pat-
tern follows a similar trend: cracks propagate along the
interface of the primary twins, but also deviate along
a path that is approximately perpendicular to the load
direction. In Fig. 7b the primary twin plane is oriented
at 22.5◦ with respect to the load direction. In this case,
the normal traction on the surface of the primary twin

is lower, therefore the crack propagates almost perpen-
dicular to the load direction. Crack propagation along
the secondary twin system is also observed. In Fig. 7c
the primary twin plane is oriented at 67.5◦ with respect
to the load direction. This orientation of the primary
twin plane is sufficient for the fracture surface to appear
exclusively on that plane.

4.4 Twin variable coupling coefficient

The parameter that affects most the crack pattern is the
fracture–twin coupling coefficient cft. Simulationswith
lm = 20 µm, β2 = 0.2 and three different values of cft
have been carried out. Only the primary twin system
is used to decouple the effect of cft from the effect of
twin intersection. The results are shown in Fig. 8.
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Fig. 6 Stress strain curves for the model with and without cohe-
sive elements

Figure 8a shows the case in which no coupling is
present (cft = 0). As expected the crack pattern is not
strongly correlated with the twin variable and fracture
surfaces form that are perpendicular to the load direc-
tion. For cft = 200 MPa the fracture surface is mostly
perpendicular to the load direction; it passes through
the central twin plane without being deviated and then

it follows the twin interface of the lower twin. For
cft = 400MPa about half of the crack length is parallel
to the twin plane while the rest is perpendicular to the
load direction. This is consistent with the simulations
in the previous sections, in which the value cft = 400
MPa has been used.

The strong sensitivity of the fracture path with
respect to the cft parameter allows an approximate value
of cft to be determined by comparing with experiments
in the literature, as discussed in Sect. 5.

The same value of � f is used for the interface ele-
ments in the bulk and at the twin interface. Physically,
this is because the elongation at failure is determined
by the plastic deformation. In α-uranium, plastic defor-
mation can take place both in the untwinned and in the
twinned crystal (Cahn 1953). Therefore, no large dif-
ference in the elongation to failure near a twin bound-
ary or in the bulk material is expected. By contrast, the
strength of the twin interface is much lower because
of the different atomic arrangement compared with
the bulk. Breaking atomic bonds at the twin interface
requires lower stress.

Fig. 7 Twin variable and
fracture pattern depending
on twin orientation a 8.4%
strain, b 10.1%, c 13.5%.
The displacement of the
mesh is multiplied by 2 to
highlight the crack pattern.
Different strain levels are
shown to make the crack
opening comparable in the
three different cases
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Fig. 8 Twin variable and
fracture pattern depending
on the fracture–twin
coupling coefficient cft. a
10%, b 8%, c 6% strain.
The displacement of the
mesh is multiplied by 2 to
highlight the crack pattern

4.5 Damage due to shear

The β2 parameter, controlling the shear contribution
to damage, is not known exactly for most metals. It is
usually in the interval between 0 and 0.5 (Ortiz and
Pandolfi 1999). To understand how the β2 parameter
affects the fracture path, simulations with lm = 20 µm
and different values of β2 have been carried out. The
simulation results are shown in Fig. 9.

The features of the crack pattern are not strongly
affected by the β2 parameter. However, it can be
noticed that higher values ofβ2 lead to fracture surfaces
that tend to propagate more along the twin interfaces.
Therefore, increasing β2 and increasing the fracture–
twin coupling coefficient cft has a similar effect on the
fracture pattern.

Despite the different values of β2 in Fig. 9a–c, the
strain necessary for the propagation of the crack inmost
of the representative volume (7.8%, 7.4% and 8.4% in
Fig. 9a–c respectively) has similar values.

These results show that the normal traction Tn
remains the most important factor for crack nucleation
and propagation.

5 Discussion

The results in Sect. 4.1 show that the interpenetration
between two twin families is strongly affected by the
interaction coefficient τ 0twin-loc. A value of 200 MPa is
sufficient to limit considerably the twin intersections.
According to Eq. (13), this value corresponds to the
increase of the CRSS required to propagate an inci-
dent twin through a barrier twin. Experiments by Zhou
et al. report evidence that the propagation of incident
twins can be completely stopped by barrier twins in α-
uranium (see for instance Fig. 7 in Zhou et al. (2016)).
But this is true only for some twin combinations. For
instance, Cahn observed intersections between (172)
and (130) twins (Cahn 1951).

The CRSS for twin nucleation used in this study
(τ0 = 25MPa)was calibrated using neutron diffraction
experiments during tensile tests (Grilli et al. 2020a).
Therefore, the present simulations suggest that the RSS
to propagate an incident twin through a barrier twin in
α-uraniumcanbe almost one order ofmagnitude higher
than the RSS for twin nucleation. This is not the case
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Fig. 9 Twin variable and
fracture pattern depending
on the shear contribution to
damage as a function of β2

a β2 = 0.1, 7.8% strain, b
β2 = 0.3, 7.4% strain, c
β2 = 0.4 8.4% strain. The
displacement of the mesh is
multiplied by 2 to highlight
the crack pattern. Note that
the case β2 = 0.2 is
reported in Fig. 7a

for other metals, such as TiAl, in which intersecting
twins are commonly observed (Sun et al. 1993).

Twin pairs that do not interpenetrate lead to stress
concentration at the interface between incident and
barrier twin, as shown in Sect. 4.2. The tensile stress
induced by the incident twin can be sufficient to initiate
fracture. This has been observed at grain boundaries in
TiAl (Bieler et al. 2005), but in α-uranium this phe-
nomenon can take place also at the twin intersections
(Taplin and Martin 1965). The present simulations are
necessary to understand the stress level that is sufficient
to nucleate and propagate cracks.

The results in Sect. 4.4 show that a decrease of 400
MPa in the strength of the twin interface, with respect
to an original value of 650 MPa in the bulk, produces a
fracture pattern with the following feature: about half
of the crack surface lies at the twin interface and the
other half is approximately perpendicular to the load
direction. The value of the fracture strength (650 MPa)
was calibrated by comparing the strain to fracture found
using polycrystal simulations (Grilli et al. 2021b) and
the onemeasured in fracture experiments onα-uranium
(Huddart et al. 1980). A similar fracture pattern with

a staircase shape has been observed in TWIP steel by
Koyama et al. (Koyama et al. 2013). Therefore, the
present simulations indicate that the strength of the
twin interfaces, in materials exhibiting cracks at twin
boundaries, can be as low as one third of the bulk value.
Atomistic simulations would be required to understand
the origin of the decrease in strength of the twin inter-
face (Yamakov et al. 2006; Sakano et al. 2020).

The value of the fracture energy of the interface
elements corresponds to the area below the traction-
separation curve in Fig. 1. It is 162.5 J/m2 with the
parameters used in the simulations. This value is lower
than characteristic values used for cohesive zone mod-
els of steel (Ortiz and Pandolfi 1999) and Ni alloys
(Citarella et al. 2018). It is typical of low ductility met-
als. The total energy dissipated in the tensile load sim-
ulations can be approximated by the area below the
stress-strain curve in Fig. 6. It turns out to be 878 J/m2,
therefore only 18% of the energy is dissipated by the
fracture surfaces and the rest is dissipated by plastic
deformation. This is the cause of the slow decrease of
the stress during displacement controlled tensile load
simulations.
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In the experiment by Koyama et al. (2013), the pri-
mary twin is oriented at about 65◦ with respect to the
tensile direction (see Fig. 9 in Koyama et al. (2013)).
The fracture path has a staircase shape; first the crack
propagates along the twin boundary, then it deviates
at about 90◦ before reaching the neighbouring twin
interface. This process repeats over and over, and the
final fracture surface is approximately perpendicular
to the tensile axis. This mechanism is well reproduced
by the present simulations. In Sect. 4.3, a simulation
with the primary twin oriented at 67.5◦ with respect
to the tensile direction is shown (Fig. 7c). The crack
surface lies mostly on the primary twin plane and it
deviates at about 90◦ to connect the different twin
planes. In this case, the role of the weak interface of
the secondary twin system is also important. Indeed,
secondary twins can intersect multiple primary twins
and represent weak links along which the crack can
propagate. Therefore, these simulations suggest that the
activation of two twin systems can favour the forma-
tion of a fracture path with a staircase shape, in which
the crack surface can propagate quickly along the two
different twin planes.

As shown in Sects. 4.2 and 4.5, the main stress com-
ponent that affects crack nucleation at the twin interface
is the normal traction. If the shear contribution to dam-
age development is increased, the fracture path remains
similar (Fig. 9). Therefore, it can be concluded that twin
intersections do not cause a large shear displacement
parallel to the twin interfaces, even if they can do so
along other planes in the bulk material.

The cohesive zone model is used in this work as
an empirical model to deduce the most likely mecha-
nism of failure, and to quantify the strength and frac-
ture energy of the twin interface. It is calibrated using
mesoscale observations, but we do not attempt to use
it to describe fracture at the nanoscale. The resolution
of our model is limited by the element size, which is
about 0.25µm and the resolution of the fracture sur-
face is limited by this characteristic length. Therefore,
the roughness of the fracture surfaces in the simulation
results in this manuscript is determined by the element
size and should not be regarded as the actual roughness.

As shown by the simulation results, the fracture path
at the length scale of the representative volume (about
30 µm) is not determined by the element size but it
depends on the load direction and on the orientation of
the twin interfaces.

6 Conclusions

In this paper, a continuum model for discrete twins is
coupled with a cohesive zone model to understand the
nucleation and propagation of cracks at twin bound-
aries. Zero thickness interface elements are placed at
the interfaces between all hexahedral bulk elements
to simulate intragranular crack surfaces with arbitrary
shapes.

The maximum stress of the cohesive zone model is
coupled with the continuum twin variable to model the
reduction of the strength of twin interfaces. Therefore,
the strength of a twin interface, when a normal trac-
tion is applied, can be determined with respect to the
strength of the bulk material by comparing the simu-
lated and observed fracture surfaces. The single crystal
simulations with two active twin systems show that the
strength of twin interfaces can be reduced by about 400
MPa with respect to the strength of the bulk. More-
over the simulations reveal that the RSS required to
propagate an incident twin through a barrier twin in α-
uranium can increase by about 200 MPa with respect
to the RSS for twin nucleation, which is only 25 MPa.

The developedmodel can help understand if the acti-
vation of multiple twin systems can lead to fracture in
different materials.
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Appendix A: Jacobian calculation

In this section, the derivatives of the traction compo-
nents in Eqs. (25), (26), (27), (28) with respect to the
separation vector components are reported.

In the following the implicit assumption that all the
derivatives are calculated at time t + dt is made. This
is because the damage and its derivatives are expressed
at the end of the time step.

Since the traction components are functions of the
damagevariable, it is convenient towrite the derivatives
of the damage variable with respect to the separation
vector components:
∂D

∂�n

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

�n (t + dt)� f �0 (�ϕ)

�3
eff(t + dt)

(
� f − �0 (�ϕ)

) , if �p (t) < �eff(t + dt) < � f ,

0, if �eff(t + dt) < �p(t) or

�eff(t + dt) > � f ,

(31)
∂D

∂�s

=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β2�s (t + dt)� f �0 (�ϕ)

�3
eff(t + dt)

(
� f − �0 (�ϕ)

) , if �p (t) < �eff(t + dt) < � f ,

0, if �eff(t + dt) < �p(t) or

�eff(t + dt) > � f .

(32)

The derivatives of the normal traction depend on the
crack opening or closure condition:

∂Tn
∂�n

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − D(t + dt)) Kn − ∂D

∂�n
Kn�n (t + dt), if �n (t + dt) > 0,

Kn , if �n (t + dt) < 0,

(33)

∂Tn
∂�s

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

− ∂D

∂�s
Kn�n (t + dt), if �n (t + dt) > 0,

0, if �n (t + dt) < 0.

(34)

The derivatives of the shear traction do not depend
on the sign of �n(t + dt):
∂Ts
∂�n

= − ∂D

∂�n
Gs�s(t + dt), (35)

∂Ts
∂�s

= (1 − D(t + dt))Gs − ∂D

∂�s
Gs�s(t + dt),(36)

The derivatives along the two shear directions are:

∂Ts1
∂�s1

= ∂Ts
∂�s1

�s1

�s
+ Ts

∂

∂�s1

(
�s1

�s

)

(37)

= ∂Ts
∂�s

�2
s1

�2
s

+ Ts

(
�2

s2

�3
s

)
,

∂Ts2
∂�s2

= ∂Ts
∂�s2

�s2

�s
+ Ts

∂

∂�s2

(
�s2

�s

)

(38)

= ∂Ts
∂�s

�2
s2

�2
s

+ Ts

(
�2

s1

�3
s

)
,

∂Ts1
∂�s2

= ∂Ts
∂�s2

�s1

�s
+ Ts

∂

∂�s2

(
�s1

�s

)

(39)

= ∂Ts
∂�s

�s1�s2

�2
s

− Ts

(
�s1�s2

�3
s

)
,

∂Ts2
∂�s1

= ∂Ts
∂�s1

�s2

�s
+ Ts

∂

∂�s1

(
�s2

�s

)

(40)

= ∂Ts
∂�s

�s1�s2

�2
s

− Ts

(
�s1�s2

�3
s

)
. (41)

The derivatives of the normal traction with respect
to shear separation and vice-versa are:

∂Tn
∂�s1

= ∂Tn
∂�s

�s1

�s
, (42)

∂Tn
∂�s2

= ∂Tn
∂�s

�s2

�s
, (43)

∂Ts1
∂�n

= ∂Ts
∂�n

�s1

�s
, (44)

∂Ts2
∂�n

= ∂Ts
∂�n

�s2

�s
. (45)
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