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Abstract Motivated by advances in flexible elec-
tronic technologies and by the endeavour to develop
non-destructive testing methods, this article analyses
the capability of computational multiscale formula-
tions to predict the influence of microscale cracks on
effective macroscopic electrical and mechanical mate-
rial properties. To this end, thin metal films under
mechanical load are experimentally analysed by using
in-situ confocal laser scanning microscopy (CLSM)
and in-situ four point probe resistance measurements.
Image processing techniques are then used to generate
representative volume elements from the laser intensity
images. These discrete representations of the crack pat-
tern at the microscale serve as the basis for the calcu-
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lation of effective macroscopic electrical conductivity
and mechanical stiffness tensors by means of compu-
tational homogenisation approaches. A comparison of
simulation results with experimental electrical resis-
tance measurements and a detailed study of fundamen-
tal numerical properties demonstrates the applicability
of the proposed approach. In particular, the (numerical)
errors that are induced by the representative volume
element size and by the finite element discretisation
are studied, and the influence of the filter that is used
in the generation process of the representative volume
element is analysed.

Keywords Computational multiscale simulations ·
Computational homogenisation · Scale-bridging ·
Electrical resistance · Microcracking · Anisotropic
conductivity · Heterogeneous microstructures

1 Introduction

Flexible electronics need to be stretchable and fold-
able. However, cyclic loading causes more mechani-
cal damage in terms of crack nucleation and growth
than monotonic stretching or flex to connect load-
ing (Glushko et al. 2017; Kreiml et al. 2019). The
mechanical damage that forms leads to electrical fail-
ure due to the formation of plastic localisation zones
(necks), extrusions, and eventually through thick-
ness cracks (TTCs). Through thickness cracks are
the leading cause of electrical failure in flexible thin
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film material systems. What is still missing in the
research community is the direct correlation between
mechanical damage and the electrical failure. Vice
versa, changes in the measured electrical resistance
can be interpreted as a fingerprint of damage inside
the body under consideration and are thus valuable
for the development of non-destructive testing meth-
ods.

From an experimental point of view, the main chal-
lenge to achieve reliability models is to properly iden-
tify TTCs and necks, especially in ductile conduc-
tive films and lines. In the experiments, monotonic
and cyclic straining methods as well as cyclic bending
tests are used to induce microscale cracks in the thin
films, and the associated changes in electrical resis-
tance are analysed by four point probe (4PP) mea-
surements (Gruber et al. 2009; Lu et al. 2010; Lam-
bricht et al. 2013; Sim et al. 2013; Glushko and Cordill
2016; Kreiml et al. 2019). In addition, characteristic
properties like the crack onset strain (COS) are deter-
mined, and the evolution of the mechanical damage
in terms of TTCs and localised necking is studied
with optical microscopy, scanning electronmicroscopy
(SEM), atomic force microscopy (AFM) or confocal
laser scanning microscopy (CLSM) methods (Renault
et al. 2003; Leterrier et al. 2004; Cordill et al. 2010;
Jin et al. 2011; Cordill et al. 2015, 2016; Etiemble
et al. 2019; Cahn et al. 2020). For brittle film sys-
tems, SEM and optical observation methods are ade-
quate because only TTCs form, and when combined
with in-situ 4PP measurements, these are quite pre-
cise at determining the COS and crack spacing or den-
sity evolution as a function of applied strain or cycle.
However, for ductile films three-dimensional surface
imaging methods, such as AFM or CLSM, are nec-
essary in order to properly identify TTCs and necks
(Cordill and Marx 2013a, b; Cordill et al. 2015; Berger
et al. 2016). More specifically speaking, TTCs can
be distinguished from localised necks, either due to
the difference in depth in the height images or due to
the difference in intensity in the CLSM laser intensity
images. A current drawback when using height and
intensity images is the time intensive, and somewhat
subjective, data analysis with low statistics. In partic-
ular, the current state-of-the-art data analysis method
only extracts cross-section or surface profiles, similar
to evaluating the linear crack density in brittle films,
and may only capture a small portion of the mechan-
ical damage in the whole image. Faster (automated)

imaging analysis techniques that can identify TTCs and
necks in a whole image are thus required. Moreover,
the combined electro-mechanical behaviour of metal
thin films is not yet understood to such an extent that
reliable lifetime predictions can be developed. Against
this background and in an attempt to bridge the gap
between materials science and computational mechan-
ics, the suitability of advanced multiscale simulation
techniques that take detailed microscale information
into account and that may contribute to an under-
standing of the complex electro-mechanically coupled
behaviour of metal thin films is studied in this contri-
bution.

Functional material properties that are observable
at the macroscale are governed by the underlying
microstructure and, possibly, crack pattern induced
for example due to mechanical (Glushko and Cordill
2016) or thermo-mechanical loads (Moser et al. 2019).
Extending classic phenomenological material models,
distinct features at the microscale are resolved in com-
putational multiscale formulations. Thesemay include,
but are not limited to, different phases, grain bound-
aries, inclusions and cracks. To this end, the eval-
uation of constitutive relations is substituted by an
additional finite element calculation of the underly-
ing microstructure. The boundary conditions are pre-
scribed based on the macroscopic material state and
effective macroscopic quantities, e.g. stresses and elec-
tric current densities, follow from the homogenisation
of their microscopic analogues. Computational mul-
tiscale formulations are meanwhile well-established
and applications of first-order FE2-based approaches
to purely mechanical problems are for example dis-
cussed in Miehe et al. (1999), Feyel and Chaboche
(2000), Kouznetsova et al. (2001), Ricker et al. (2010),
Coenen et al. (2012a, b), and Gu et al. (2017). More
elaborated, second-order computational homogenisa-
tion methods that additionally account for the gradient
of the macroscopic deformation tensor are studied in,
e.g., Kouznetsova et al. (2002, 2004). Moreover, the
extension to thermo-mechanically coupled problems is
presented in Özdemir et al. (2008), Temizer and Wrig-
gers (2011), Sengupta et al. (2012), Temizer (2016),
Berthelsen et al. (2017), Berthelsen andMenzel (2019)
and electro-mechanically coupled multiscale formula-
tions of dielectric materials are elaborated in Schröder
(2009), Khalaquzzaman et al. (2012), and Keip et al.
(2014).Based on, and as an extension of theseworks, an
electro-mechanically coupled multiscale formulation
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for electrical conductors has recently been proposed in
Kaiser and Menzel (2021). In principle, this formula-
tion allows the studying of the influence of microscale
deformation processes and of microscale cracks on the
effective electrical and mechanical material properties
at the macroscale. To the authors’ best knowledge, this
promising approachhas not been appliedbefore to anal-
yse the influence of microscale cracks (in metal thin
films) on effective electrical properties that are experi-
mentally observed at the macrosale. The present work
thus contributes to the fundamental research question:
Can the experimentally recorded changes in the electri-
cal properties of metal thin films be related to the exper-
imentally recordedmicroscale cracks by accounting for
CLSM laser intensity information in simplified two-
dimensional representative volume elements (RVEs)?
In this regard, the influence of the non-trivial RVE-
generation process and of the RVE-size on the pre-
dicted macroscopic electrical conductivity tensor will
be studied in detail. In addition, effective mechanical
material parameters will be calculated for the deforma-
tion states studied. Although a direct comparison of the
latter with experimental results is not feasible for the
metal thin films that are in the focus of the present con-
tribution, interesting differences in the evolution of the
mechanical and the electrical material parameters are
observed which are important for the development of
non-destructive electric potential-based testing meth-
ods as elaborated in, e.g., Tada et al. (1996, 1997), Tada
(2006). Furthermore, it is noted that the cracks are geo-
metrically resolved for each deformation state based on
the experimentalCLSM laser intensity images,with the
modeling of crack initiation and crack propagation not
being in the focus of the present analysis. As a proof of
concept-type contribution this work thus establishes a
basis for future developments.

The article is organised as follows: Experimental
investigations on metal thin films in terms of in-situ
CLSM and 4PP resistance measurements are discussed
in Sect. 2. These motivate the (small-deformation)
computational homogenisation scheme proposed in
Sect. 3. The latter is applied in Sect. 4 to calcu-
late effective macroscopic conductivity and stiffness
tensors for experimentally recorded micrographs that
are compared with experiments in Sect. 5. Finally,
a brief summary of the findings is presented in
Sect. 6.

1.1 Notation

In this contribution, single tensor contractions are used
in the sense [α ⊗ β] · [

γ ⊗ δ
] = [

β · γ
]
[α ⊗ δ] and

double tensor contractions are given by [α ⊗ β] :[
γ ⊗ δ

] = [
α · γ

]
[β · δ] with α, β, γ and δ denot-

ing arbitrary first-order tensors. In addition to standard
dyadic products that are indicated by ⊗, the gener-
alised tensor products [α ⊗ β]⊗ [

γ ⊗ δ
] = [

α ⊗ γ
]⊗

[β ⊗ δ] and [α ⊗ β]⊗ [
γ ⊗ δ

] = [
α ⊗ γ

] ⊗ [δ ⊗ β]
are introduced to allow for a compact notation. More-
over, the coefficient matrix of a second-order tensor
T with respect to a Cartesian basis system ei is indi-
cated by [T ]i j and frequently used to simplify the pre-
sentation of results. The respective tensor coefficients
Ti j follow from the projection of T onto the basis, i.e.
Ti j = ei · T · e j . Furthermore, gradient, divergence
and curl operators are denoted by ∇•, by ∇ · • and by
∇×•, respectively, and are applied in the sense of right-
gradient, right-divergence and right-curl operations.

2 Experiments

The present contribution is based on the experiments
documented in Cordil et al. (2017) where a bilayer
made of a 200 nm Cu film with a 10 nm Cr adhesion
layer on a 50µmUpilex Polyimide substrate was cycli-
cally strained and analysed by using in-situ resistance
measurements and CLSM imaging. The cycling was as
follows: 1 slow cycle (displacement rate 0.1 µm s−1),
10 fast cycles (displacement rate 10 µm s−1), 1 slow,
10 fast, 1 slow, 100 fast, 1 slow, 25 fast, and 1 slow.
The slow cycles were used to measure the lattice strain
in the Cu film by using in-situ X-ray diffraction where
slower displacement rates are necessary. For the in-situ
electrical measurements, the relative resistance ratio,
R/R0, is used where R0 is the initial resistance before
straining (without mechanical damage or cracks) and
where R is the instantaneous measured resistance. The
relative resistance ratio as a function of the load cycle
number is depicted in Fig. 1f.At the end of each cycle or
set of multiple cycles, CLSM imaging was performed
on the surface of the sample in the unloaded condition.
With CLSM, three images can be created, (i) an opti-
cal light image, (ii) a laser intensity image, and (iii) a
quantitative height image. In this contribution, the laser
intensity images, as exemplarily shown in Fig. 1a–e are
further evaluated. For more details about the material
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Fig. 1 a–e Laser intensity images for different deformation
states of a 200 nm Cu film with a 10 nm Cr adhesion layer on
a 50 µm thick Upilex Polyimide substrate (130 µm × 130 µm
micrographs). The tensile straining was parallel to the horizontal

direction and all scale bars are 20 µm. f Relative resistance ratio
as a function of deformation parametrised in terms of the load
cycle number

system and the experiments, the reader is referred to
Cordil et al. (2017).

3 Calculation of effective conductivity and stiffness
tensors

This section briefly recapitulates the fundamentals of
the multiscale computational homogenisation scheme
proposed inKaiser andMenzel (2021) that is used in the
present contribution to predict effective macroscopic
conductivity and elasticity tensors for the crack patterns
presented in Sect. 2. In particular, the field equations
are summarised in Sect. 3.1 and the constitutivemodels
that are used at the microscale, respectively the compu-
tational homogenisation techniques that substitute the
constitutive models at the macroscale, are presented in
Sects. 3.2 and 3.3.

3.1 Field equations

Let the region that is occupied by the body under con-
sideration at some reference time t0 ∈ R be denoted by
B ⊂ R

3 and let material points be identified by their
position in space x ∈ B. The motion of the body is
defined by the displacement field u (x, t) : B × R →
R
3 and the electric state is characterised in terms of the

electric potential field φ (x, t) : B×R → R. Based on
the primary field variables, the linearised strain tensor

ε = 1

2

[∇u + [∇u]t
]

(1)

and the electric field vector

e = −∇φ (2)

123



Electrical and mechanical behaviour 227

are defined. In general, their energetic duals, i.e. stress
tensor σ and electric current density vector j , are func-
tions of ε, e and, possibly, of temperature and some
internal variables that have to fulfil the restrictions that
are imposed by the second law of thermodynamics.
Moreover, σ and j directly enter the respective field
equations that characterise the mechanical and elec-
trical problem. Focusing on quasi-static deformation
processes and neglecting body forces f , the mechani-
cal problem is characterised by the balance equation of
linear momentum

∇ · σ = 0 (3)

and by the balance equation of angular momentum that
reduces to the symmetry condition of the stress tensor

σ = σ t . (4)

Assuming quasi-stationary electric processes, the elec-
trical problem is given in terms of the continuity equa-
tion for the electric current density

∇ · j = 0 (5)

and in terms of the Maxwell–Faraday equation with a
vanishing induction term

∇ × e = 0 . (6)

Following standard practise, the symmetry condition
of the stress tensor (4) is fulfilled by the specific choice
of the constitutive equations at the microscale and by
the scale-bridging relation that relates the microscale
stress tensor to its macroscopic analogue, cf. Sects. 3.2
and 3.3. Likewise, the Maxwell–Faraday equation (6)
can a priori be fulfilled by the introduction of an electric
potential according to (2). The set of balance equations
thus reduces to a system of two (in general) coupled
partial differential equations, i.e. (3) and (5), that is
solved for the displacement field u and for the electric
potential field φ. Assuming linearised kinematics, the
coupling may only be induced by the specific consti-
tutive equations for the stress tensor and for the elec-
tric current density vector. In contrast, a coupling due
to changes in geometry is additionally accounted for
when finite deformations are considered, (Kaiser and
Menzel 2021).

3.2 Constitutive relations at the macroscale

In computational multiscale simulations physical pro-
cesses at different material length and time scales are
considered, as schematically shown in Fig. 2. The prin-
cipal idea of these approaches is to replace the phe-
nomenological constitutive equations for the stress ten-
sor σM and for the electric current density vector jM
that are usually assumed at the macroscale by a compu-
tational homogenisation scheme that makes it possible
to take detailed information of the underlying crack
density and morphology into account. More specifi-
cally speaking, the cracks are geometrically resolved
in representative volume elements which serve as gen-
eralisedmaterialmodels andwhich are assigned to each
macroscopic material point xM. Based on the macro-
scopic deformation state εM and on the macroscopic
electric field vector eM, the RVE is subjected to elec-
trical and mechanical boundary conditions that are in
accordance with the extended Hill-Mandel conditions
of the electro-mechanical problemunder consideration.
After the solution of the microscale boundary value
problem, the macroscopic stress tensor

σM = 1

vm

∫

Bm

σm dv (7)

and the macroscopic electric current density vector

jM = 1

vm

∫

Bm

jm dv (8)

are calculated as volume averages of their microscopic
counterparts, with vm denoting the RVE-volume. In
this regard, it is remarked that (7) and (8) can equiva-
lently be expressed in terms of surface integrals which
are evaluated in the present contribution subject to the
assumption of stress-free internal boundaries that are
electrically insulated (i.e., σm · n = 0 and jm · n = 0
are assumed at internal boundaries with outward unit
normal vector n). Moreover, the effective macroscopic
mechanical tangent stiffness tensor

EM = dσM

dεM
(9)
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e1

e2

BM Bm

tM = tM iM = iM

φM = φM

fM

uM = uM

εM, eM, . . .

σM, jM, . . .

Fig. 2 First-order computational homogenisation scheme for
electro-mechanical problems. At the microscale different mate-
rial regions, representing for example different grains, are indi-

cated (middle figure). In addition, cracks that are geometrically
resolved are schematically depicted (right figure). Prescribed
quantities are denoted with an overbar

and the effective macroscopic electrical conductivity
tensor

SM = d jM
deM

(10)

are extracted, as described in detail in Kaiser and Men-
zel (2021). These serve as a basis for the analysis of the
influence ofmicrostructural defects on effectivemacro-
scopic material properties that is aspired in this contri-
bution.

3.3 Constitutive relations at the microscale

In experiments as well as in computational multi-
scale simulations, the underlying crack pattern and
microstructure evolution manifest themselves in the
effective macroscopic material behaviour. In this con-
tribution, crack patterns at the microscale are geomet-
rically resolved in representative volume elements that
are prepared from experimental data by using image
processing techniques as described in Sect. 4. More-
over, linear constitutive relations between the stresses
and strains,

σm = Em : εm , (11)

respectively between the electric field and the electric
current density

jm = Sm · em , (12)

are adopted at each material point of the microscale.
Assuming isotropic mechanical and electrical proper-
ties, the elastic stiffness tensor takes the form

Em = λ I ⊗ I + μ
[
I ⊗ I + I ⊗ I

]
(13)

and the electrical conductivity tensor is given by

Sm = κ I . (14)

The tensor I in the previous equations denotes the
second-order identity tensor, λ and μ denote the Lamé
constants and κ denotes the scalar-valued electrical
conductivity of an idealised material. The material
parameters that are used in the simulations to be dis-
cussed in Sect. 4 are summarised in Table 1 with

λ = E ν

[1 + ν] [1 − 2 ν]
, (15a)

μ = E

2 [1 + ν]
, (15b)

and with E denoting the Young’s modulus and ν denot-
ing the Poisson’s ratio.Moreover, periodic-type bound-
ary conditions are assumed and the two-dimensional
simulations are carried out subject to the simplifying
assumption of a plane strain setting. Additional simula-
tion results that are based on the assumption of a plane
stress setting are provided in Appendix A for the sake
of comparison.

Remark 1 Care needs to be taken when interpreting
the homogenised macroscale tangent stiffness tensor
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Table 1 Material parameters used in the simulations

E ν κ

130 000 N/mm2 0.35 58 100 A/[Vmm]

(9) since neither the irreversible processes at the crack
tips nor contact conditions between two opposing sides
of the cracks are accounted for in the simulations. Thus,
themacroscale tangent stiffness tensorEM is to be inter-
preted as the purely elastic unloading stiffness of the
current material state.

4 Representative simulation results

As a first step towards the multiscale analysis of metal
thin films, fundamental (numerical) properties of the
computational homogenisation scheme when applied
to experimental data are evaluated in this section. More
specifically speaking, the influence of different filter
options in the generation process of the representative
volume elements is investigated in Sect. 4.1. In a next
step, the focus lies on the influence of the RVE-size.
To this end, RVEs generated from 38 µm × 38 µm,
76 µm× 76 µm and 114 µm× 114 µm in-situ micro-
graphs are analysed and the predicted macroscopic
material properties are compared in Sect. 4.2. Finally,
the influence of the finite element discretisation is stud-
ied in Sect. 4.3.

4.1 Comparison of different filter options

The computational multiscale simulations are based on
representative volume elements that are generated from
the experimental data provided in Fig. 1. In particu-
lar, image processing techniques are applied in order
to identify individual cracks and the corresponding
crack paths, with the focus of this section being on
the influence of the filter value when processing the
CLSM laser intensity images. The non-trivial distinc-
tion betweenTTCs andnecking zones,which still allow
for a (reduced) electric current,will additionally be sub-
jected to a detailed analysis in Sect. 5.

The geometric data from the CLSM laser intensity
images is converted into finite element meshes, which
serve as the basis for the computational homogenisa-
tion scheme. Being more specific, greyscale gradients

in e1-direction of the micrographs depicted in Fig. 1
are calculated in a first step, since the cracks prefer-
ably form in e2-direction due to the loading conditions.
The e1- and e2-direction are defined in accordancewith
Fig. 2 and are not indicated in Fig. 1 for the sake of clar-
ity. In a second step, only pixelswith negative greyscale
gradient values that are higher than a factor γ times
the mean value of the negative greyscale gradients in
e1-direction are considered to represent cracks. This
condition can be stated as

−∇Gi · e1 > γ
1

npix

npix∑

j=1

max
{
0,−∇G j · e1

}
, (16)

with G• denoting the greyscale value of pixel • and
with npix denoting the number of pixels in the image.
Moreover, all geometric objects that have fewer than
15 pixels are removed from the binary image to reduce
the noise that is for example induced by the speckles
in Fig. 1a. In a third step, morphological operations are
applied in order to simplify the crack geometries and,
hence, to reduce the computational effort. In particu-
lar, the convex hull of the individual cracks is calculated
before the cracks are thinned to lines, again. The crack
paths are then approximated by straight lines connect-
ing the end points of the original crack paths. In a final
step, a representative volume element is prepared from
the data, with the individual cracks being geometrically
resolved and with 1% edge length being added to each
side of the representative volume element in order to
avoid that cracks intersect the domain boundaries.

In the following, the influence of the filter parameter
γ on the representative volume elements, and hence on
the effective macroscopic material properties, is stud-
ied. To this end, three different values of the filter
parameter γ ∈ {4.0, 6.5, 8.0} are taken into account.
The discrete microstructure representations that have
been generated for the five deformation states depicted
in Fig. 1, by using the procedure proposed at the begin-
ning of this section, are provided in Figs. 3 and 4. Since
the threshold for a pixel to be identified with a crack
increases with increasing values of γ , both the num-
ber of cracks as well as the overall length of the cracks
decreases with increasing values of γ . In order to quan-
tify the previous observations, the number of cracks
that have been identified for the three different values
of the filter parameter and the five different deformation
states are summarised in Table 2. Moreover, compar-
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(a) cycle 123, γ = 4.0 (b) cycle 123, γ = 6.5 (c) cycle 123, γ = 8.0

Fig. 3 Comparison of identified cracks using three different filter options. Depicted are 114 µm × 114 µm micrographs for
γ ∈ {4.0, 6.5, 8.0} with red lines indicating the cracks that have been identified

ing the discrete crack pattern representations of cycle
123 depicted in Fig. 3, the question arises as to whether
regions where the greyscale gradient takes values such
that they are identified with cracks for γ = 4.0 but
not for γ = 8.0 are TTCs or rather plastic localisation
zones that indicate the onset of cracking. This interest-
ing question is subjected to a detailed analysis in Sect. 5
where additional data is taken into account.

The cracks that are accounted for at the microscale
manifest themselves in the effective material proper-
ties at the macroscale. In this work, a particular focus
lies on the electrical properties in terms of the conduc-
tivity tensor SM and on the mechanical properties in
terms of the tangent stiffness tensor EM. In this regard
and with reference to the experimental (macroscopic)
load-resistance curve depicted in Fig. 1f it is instruc-
tive to regard a simple conductor. Under the assumption
of a quasi-homogeneous, uni-directional macroscopic
electric current, the electrical resistance of the latter is
given by

R = 1

κ

L

A
= Rspe Rgeo , Rspe = 1

κ
, Rgeo = L

A
(17)

with Rgeo accounting for the (macroscopic) geome-
try of the conductor in terms of length L and cross-
sectional area A, and with the electrical resistivity of
the macroscopic material point Rspe that results from a
specificmicrostructure and crack pattern. In the present
work, κ ormore generally speaking the respective coef-
ficients of the macroscopic conductivity tensor SM are

calculated by applying the computational homogeni-
sation scheme discussed in Sect. 3.2 to the experimen-
tally recorded crack patterns depicted in Fig. 1. For the
114 µm× 114 µmmicrographs and γ = 6.5 these are
given by

[SM]refi j =
[

1.0000 0.0000
0.0000 1.0000

]
κ (18a)

[SM]1i j =
[

0.9983 −0.0001
−0.0001 0.9999

]
κ (18b)

[SM]11i j =
[

0.9754 0.0000
0.0000 0.9990

]
κ (18c)

[SM]22i j =
[

0.9305 0.0007
0.0007 0.9972

]
κ (18d)

[SM]123i j =
[

0.8173 0.0015
0.0015 0.9912

]
κ (18e)

[SM]148i j =
[

0.6753 0.0102
0.0102 0.9893

]
κ (18f)

with superscript referring to the cycle number and
Sref

M indicating the conductivity tensor of an idealised
microstructure without cracks, i.e. the initial state
before deformation. With regard to (18) it is observed
that the 11-coefficient of the conductivity tensor grad-
ually decreases with increasing deformation.

Moreover, a decrease in the 22-coefficient is observ-
able which is, however, significantly smaller than
the decrease in the 11-coefficient. Thus, the resulting
effective properties at the macroscale are significantly
anisotropic. This result can be explained by the pre-
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(a) cycle 1, γ = 4.0 (b) cycle 1, γ = 6.5 (c) cycle 1, γ = 8.0

(d) cycle 11, γ = 4.0 (e) cycle 11, γ = 6.5 (f) cycle 11, γ = 8.0

(g) cycle 22, γ = 4.0 (h) cycle 22, γ = 6.5 (i) cycle 22, γ = 8.0

(j) cycle 148, γ = 4.0 (k) cycle 148, γ = 6.5 (l) cycle 148, γ = 8.0

Fig. 4 Comparison of three different filter options. Depicted are 114 µm× 114 µm micrographs for γ ∈ {4.0, 6.5, 8.0} with red lines
indicating the cracks that have been identified
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Table 2 Number of cracks that have been identified for differ-
ent deformation states by using three different filter options and
114 µm × 114 µm micrographs

Filter parameter Cycle

1 11 22 123 148

γ = 4.0 174 526 764 786 691

γ = 6.5 15 153 353 668 598

γ = 8.0 7 89 209 588 563

ferred formation of cracks orthogonal to the loading
direction such that the electric current in e2-direction
is almost not affected. In addition, small off-diagonal
coefficients in the conductivity tensor are induced by
the crack formation.

Focussing on the influence of the filter parameter γ ,
the projections of EM and of SM in e1-direction for all
deformation states and all values of the filter parameter
are provided in Fig. 5, and those in e2-direction are
provided in Fig. 6. In accordance with the presentation
of the experimental results in Fig. 1f and taking into
account that

R

R0
= κ0

κ

L

L0

A0

A
≈ Sref

M 11

S•
M11

L

L0

A0

A
(19)

holds, the simulation results are normalised with
respect to an idealised material which does not contain
cracks at themicroscale. Focusing on the 11-coefficient
of the conductivity tensor presented in Fig. 5a in terms
of its normalised inverse Sref

M 11/S•
M11 that can be inter-

preted in terms of the electrical resistivity ratio, a signif-
icant increase in Sref

M 11/S•
M11 with increasing deforma-

tion and an overall exponential behaviour is observable,
which is in good agreement with the experimental find-
ings presented in Fig. 1f. Regarding the influence of the
filter parameter γ , a significant increase inSref

M 11/S•
M11

with decreasing values of γ is found since the num-
ber of regions that are identified with cracks increases.
In addition, the load-conductivity curve deviates from
the experimentally observed exponential-type response
for small values of γ , e.g. for γ = 4.0. Analogous
to the electrical conductivity, an exponential decrease
is observable in the 1111-coefficient of the stiffness
tensor with increasing deformation that becomes more
pronounced with decreasing values of γ . The refer-
ence value for the mechanical stiffness tensorEref

M used
in Fig. 5b is defined by (13) and represents an ide-

alised material without cracks. In contrast to the 11-
coefficient of the conductivity tensor, there is no sig-
nificant influence of the cracks on S •

M22, see Fig. 6a.
However, a decrease of approximately 20% in the 2222-
coefficient of the stiffness tensor is found in Fig. 6b.
The different influence of the cracks on the electrical
and mechanical properties can be explained by their
effect on the lateral contraction, sinceEM2222 measures
changes in σM22 when perturbing εM22 while keeping
all other coefficients of εM fixed.

4.2 Comparison of different micrograph sizes

Effective macroscopic material properties are calcu-
lated in multiscale finite element simulations based on
detailed information on the underlying microstructure
and crack pattern. Against this background, the micro-
graphs must be representative for a particular material
region. To ensure that the respective micrographs con-
tain sufficient information, the convergence behaviour
of the effective macroscopic material properties on
micrograph-size-enlargement is studied in this section.
Being more specific, 38 µm×38 µm, 76 µm×76 µm
and 114µm×114µmmicrographs, measured relative
to the upper left corner, are prepared from the full-sized
micrographs depicted in Fig. 1. To allow for a good
comparability of the results, all of the micrographs are
processed with the same filter parameters, i.e. γ = 6.5
is used and geometric objects that have fewer than 15
pixels are removed. The discrete representations of the
microstructures that have been created by using this
procedure are provided in Fig. 7 and in Fig. 8.

Focussing exemplarily on the conductivity tensors
that were calculated for cycle 123 and for the three
different micrograph sizes, cf. Fig. 7,

[SM]38 µm
i j =

[
0.8447 −0.0079

−0.0079 0.9913

]
κ (20a)

[SM]76 µm
i j =

[
0.8303 0.0034
0.0034 0.9905

]
κ (20b)

[SM]114 µm
i j =

[
0.8173 0.0015
0.0015 0.9912

]
κ (20c)

only a small difference in the 11-coefficient of approx-
imately 0.0144 κ (1.70%) between the 38µm×38µm
and the 76 µm × 76 µm micrograph, and of approxi-
mately 0.0130 κ (1.56%) between the 76 µm× 76 µm
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Fig. 5 Comparison of simulation results in terms of normalised
conductivity and stiffness coefficients that result from the projec-
tion ofSM and ofEM in e1-direction. The respective coefficients

are presented for different filter options and load states according
to Figs. 3 and 4
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(a) normalised conductivity
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Fig. 6 Comparison of simulation results in terms of normalised
conductivity and stiffness coefficients that result from the projec-
tion ofSM and ofEM in e2-direction. The respective coefficients

are presented for different filter options and load states according
to Figs. 3 and 4

and the 114 µm× 114 µm micrograph is observed. In
addition, the projections of the normalised conductivity
and of the normalised stiffness tensors in e1-direction
are provided in Fig. 9, and those in e2-direction are pro-
vided in Fig. 10 for all deformation states. The coeffi-
cients of the conductivity tensor S •

M11 are provided in
Table 3 in a normalised form for all deformation states
and micrographs of different size. Overall, and in par-
ticular when compared with the influence of different
filter options, the influence of the micrograph size on
the simulation results is small.

4.3 Comparison of different mesh sizes

This section focuses on the influence of the finite ele-
ment discretisation on the macroscopic material prop-
erties that are calculated by using the computational
homogenisation scheme proposed in Sect. 3.2. To this
end, three different discretisations of the 114 µm ×
114µmmicrographs are analysed which are processed
with the same filter options, i.e. γ = 6.5 is used and
geometric objects that have fewer than 15 pixels are
removed. From a numerical point of view, quadratic
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(a) 38 µm× 38 µm (b) 76 µm × 76 µm (c) 114 µm × 114 µm

Fig. 7 Comparison of different micrograph sizes. Depicted are 38 µm× 38 µm, 76 µm× 76 µm and 114 µm× 114 µmmicrographs
of cycle 123 with γ = 6.5 and with red lines indicating cracks that haven been identified

triangular elements are used for the discretisation of
the geometry, of the displacement field u and of the
electric potential fieldφ. Integrals are evaluated numer-
ically by using a quadrature scheme with three integra-
tion points. The resulting numbers of elements of the
coarse, medium and fine discretisations for all defor-
mation states are summarised in Table 4. Moreover, it
is noted that the results presented in Sect. 4.1 and in
Sect. 4.2 are based on discretisations with a medium
mesh size.

The coefficient matrices of the electrical conductiv-
ity tensors for cycle 123 and the 114 µm × 114 µm
micrographs that were processed with γ = 6.5 are
given by

[SM]coarsei j =
[

0.8266 0.0013
0.0013 0.9917

]
κ (21a)

[SM]medium
i j =

[
0.8173 0.0015
0.0015 0.9912

]
κ (21b)

[SM]finei j =
[

0.8099 0.0016
0.0016 0.9908

]
κ (21c)

Thedifferences in the 11-coefficient between the coarse
and medium discretisation of approximately 0.0093 κ

(1.13%) as well as the one between themedium and the
fine discretisation of approximately 0.0074 κ (0.91%)
are found to be small. This observation is further under-
lined by the projections in 11-direction of the nor-
malised conductivity and of the normalised stiffness

tensors presented in Fig. 11. In addition to the graph-
ical representation, the normalised 11-coefficients of
the conductivity tensors are provided in Table 5 for the
different discretisations and deformation states.

5 Comparison of simulation results with
experimental data

This section concerns the comparison of the exper-
imentally recorded relative resistance ratio as a func-
tion of mechanical damage with multiscale simulation
results. Since the cracks that are geometrically resolved
for each individual load step, and hence also the cor-
responding representative volume elements, depend on
the filter parameter γ as has been shown in Sect. 4.1, the
laser intensity images are again subjected to a detailed
analysis. Therefore, the number of cracks crossing cer-
tain cutting planes will be taken into account to assess
the quality of the representative volume elements for
different filter values. For load cycle 123 and γ = 6.5,
the cutting planes are exemplarily indicated by blue-
coloured (horizontal) lines in Fig. 12a. Since the num-
ber of cracks crossing the cutting planes in the filtered
CLSM images is sensitive with regard to slight pertur-
bations of the line position, 12 cutting planes are taken
into account for each deformation state and each fil-
ter value—i.e. four primary cutting planes, indicated
by solid blue-coloured lines, and another 8 secondary
cutting planes at± 0.64 µm, indicated by dashed blue-

123



Electrical and mechanical behaviour 235

(a) cycle 1 (b) cycle 1 (c) cycle 1

(d) cycle 11 (e) cycle 11 (f) cycle 11

(g) cycle 22 (h) cycle 22 (i) cycle 22

(j) cycle 148 (k) cycle 148 (l) cycle 148

Fig. 8 Comparison of different micrograph sizes. Depicted are 38 µm× 38 µm, 76 µm× 76 µm and 114 µm× 114 µmmicrographs
of different deformation states with γ = 6.5 and with red lines indicating cracks that have been identified
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(a) (b)

Fig. 9 Comparison of simulation results in terms of normalised
conductivity and stiffness coefficients that result from the projec-
tion ofSM and ofEM in e1-direction. The respective coefficients

are presented for γ = 6.5, for different micrograph sizes and for
load states according to Figs. 7 and 8

(a) (b)

Fig. 10 Comparison of simulation results in terms of normalised
conductivity and stiffness coefficients that result from the projec-
tion ofSM and ofEM in e2-direction. The respective coefficients

are presented for γ = 6.5, for different micrograph sizes and for
load states according to Figs. 7 and 8

Table 3 Coefficients of the normalised conductivity tensor Sref
M 11/S•

M11 for different micrograph sizes, different deformation states
and γ = 6.5

Micrograph Cycle

1 11 22 123 148

38 µm 1.0011 1.0094 1.0562 1.1838 1.4107

76 µm 1.0012 1.0234 1.0677 1.2044 1.4394

114 µm 1.0017 1.0253 1.0747 1.2235 1.4808
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Table 4 Number of elements used in the three different discretisations of the 114 µm × 114 µm micrographs that are processed with
γ = 6.5

Mesh size Cycle

1 11 22 123 148

Coarse 24222 47260 42104 38492 28084

Medium 44194 64750 71212 75724 72054

Fine 81048 191092 238466 253292 258760

(a) (b)

Fig. 11 Comparison of simulation results in terms of normalised conductivity and normalised stiffness coefficients for different finite
element meshes according to Table 4. The calculations are based on γ = 6.5 and on 114 µm × 114 µm micrographs

Table 5 Coefficients of the normalised electrical conductivity tensor Sref
M 11/S•

M11 for 114 µm× 114 µm micrographs, different mesh
sizes, different deformation states and γ = 6.5

Mesh size Cycle

1 11 22 123 148

Coarse 1.0016 1.0240 1.0704 1.2098 1.4552

Medium 1.0017 1.0253 1.0747 1.2235 1.4808

Fine 1.0019 1.0269 1.0792 1.2348 1.4985

coloured lines. The respective mean values are pro-
vided in Table 6 and are compared against the num-
ber of cracks that stem from a detailed analysis of the
CLSM laser intensity profiles by hand corresponding
to the primary cutting planes. For cycle 123 and cutting
plane A the CLSM laser intensity profile is shown in
Fig. 12b. TTCs manifest themselves as steep gradients
(drops in intensity) in CLSM laser intensity images. In
this regard, the dashed red-coloured line in Fig. 12b
indicates the chosen tolerance—i.e. (local) minima in
the laser intensity profile that are smaller than the tol-
erance, chosen for this particular CLSM image and for

this particular cutting plane, are counted as TTCs when
the state of the art evaluation method that relies on a
manual evaluation of the crack-density is applied.Min-
ima that take higher values are associated with necks.
This procedure is in line with the calculation of the lin-
ear crack density as described in Cordil et al. (2017)
and Glushko et al. (2020). It is noted that the definition
of the crack density is not unique and that the crack den-
sity may be introduced differently as briefly outlined in
Remark 2.

A comparison of the values in Table 6 demonstrates
the applicability of the automated image analysismeth-
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(a) filtered CLSM laser intensity image
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Fig. 12 Exemplary evaluation of damage density based on a
114µm×114µmmicrograph representing cycle 123, and com-
parison of experimentswith simulation results. aCLSM intensity
image that was processed by using a filter value γ = 6.5. Red
lines indicate cracks that have been identified. Blue lines indi-
cate cross sections for which the damage density is evaluated. b

CLSM laser intensity profile along cross-section A for cycle 123.
The red line indicates the chosen tolerance for TCCs. c Experi-
mentally recorded relative resistance ratio as a function of load
cycles, and multiscale simulation results for 114 µm × 114 µm
micrographs, γ = 6.5 and a medium mesh size

ods used in the RVE generation process. For each step
the values determined manually correspond well to
the filter parameters of 6.5 and 8.0—certainly, there
is some arbitrariness in the choice of the filter parame-
ter, with the latter comparison establishing mathemat-
ical bounds for reasonable values of γ . Image anal-
ysis methods, such as the one applied here, do not
only allow for certain cutting planes, but for the entire
image to be evaluated. Up until now it has not been
possible to assess every crack in an image. Analysing
the entire image provides more and better statistics on
the mechanical damage (TTC) and its evolution with
increasing cycle number.

Based on the comparison of the mean number of
cracks crossing the cutting planes, the experimentally
recorded relative resistance ratio is comparedwith sim-
ulation results for γ = 6.5 in a first step. The experi-
mental data is provided in Fig. 12c along with the rel-
ative resistance ratio for cycles 1,11,22,123, and 148,
calculated by means of multiscale finite element simu-
lations. In general, and especially for high cycle num-
bers, experiment and simulation are in good agreement.
However, there is an interesting difference at cycle 22
which suggests that for small cycle numbers too many
regions have been associated with TTCs which leads
to an increase in the predicted relative resistance ratio.
Comparing the corresponding micrograph of cycle 22
shown in Fig. 1c with the images corresponding to
higher cycle numbers, e.g. Fig. 1d or e, it is observed
that the greyscale gradients are much less pronounced.

Accordingly, this observation underlines the need for
further experimental and simulation based analyses in
future works, in order to reliably distinguish between
TTCs and necks. In this regard, the development of
more elaborated, tailored filters is considered to be key.
Nevertheless, the comparison of simulation results and
experimental findings clearly demonstrates the useful-
nesses of the proposed multiscale formulation in relat-
ing microscale cracks to macroscopic electrical prop-
erties of metal thin films.

Remark 2 Different definitions of the crack density as a
characteristic of the microstructure may be introduced.
It is for instance proposed in Kanaun and Levin (2008)
to work with crack densities τ of the type

τ = ncra
〈
π l2

〉
, (22)

where ncra denotes the number of cracks per unit area,
l is half the crack length and 〈•〉 indicates the mean
value with regard to the crack set.

In this regard, it is noted that parameters τ and l in
(22) are intrinsically filter-dependent such that unique
values of these parameters may not be provided for the
experimental images in Fig. 1, see also the dicussion in
Sect. 5.
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Table 6 Mean number of cracks per cross section calculated for different filter parameters based on the CLSM laser intensity images.
The mean number of cracks per cross section is calculated based on the 114 µm × 114 µm micrographs

Filter parameter Cycle

1 11 22 123 148

γ = 4.0 1.25 6.41 12.75 17.58 17.25

γ = 6.5 0.33 1.50 5.25 12.00 13.75

γ = 8.0 0.16 0.83 3.00 9.58 12.00

CLSM (manually) 0.00 2.00 4.50 8.50 13.25

6 Closure

In this contribution, the influence of the crack pattern
at themicroscale on effective electrical andmechanical
properties at the macroscale was studied. To this end,
macroscopic conductivity and stiffness tensors were
calculated based on experimentally obtained micro-
graphs and compared against experimental results.

In a first step, representative volume elements with
geometrically resolved cracks were generated from
confocal laser scanning microscopy images by using
image processing techniques. Next, a computational
homogenisation approach was followed to extract
effective macroscopic conductivity and stiffness ten-
sors from the representative volume elements. It was
then shown that the filter used in the image processing
step in order to identify cracks has a significant influ-
ence on the predicted macroscopic properties. More-
over, convergence studies revealed only a small influ-
ence of the representative volume element size and
of the finite element discretisation on the simulation
results. The comparison of simulation results with
experimentally recorded load-resistance curves even-
tually demonstrated the usefulness of the proposed
multiscale formulation for studying the influence of
microscale cracks on the effective electrical material
properties of metal thin films.

Froman experimental point of view, futureworkwill
focus on further detailed analyses of micrographs con-
taining cracks by using, e.g. 3D height images (AFM
or CLSM) from uniaxial monotonic or cyclic strain-
ing as well as cyclic bending experiments, in order
to elucidate which areas in the images are cracks and
which areas are plastic localisation zones. This will
contribute to the calibration and to the development of
tailored image processing techniques for crack identi-

fication. From a simulation point of view, experiment-
based material models and formulations that allow for
predictive simulations of the crack formation on the
microscale need to be developed. Together with the
computational homogenisation scheme presented in
this contribution, these will eventually allow for the
simulation of changes in effective macroscopic mate-
rial properties based on spatially resolved microstruc-
ture and crack pattern evolutions.
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(a) (b)

Fig. 13 Projection of ẼM in e1- and e2-direction for different filter options and load states according to Figs. 3 and 4

(a) (b)

Fig. 14 Projection of ẼM in e1- and e2-direction for γ = 6.5, for different micrograph sizes and for load states according to Figs. 7
and 8

Appendix A: Plane stress deformation states

For the sake of comparison, simulation results that are
based on a plane stress assumption are additionally pro-
vided in this appendix. To this end, the fourth-order
two-dimensional plane stress elasticity tensor

Ẽm = λ̃ I ⊗ I + μ
[
I ⊗ I + I ⊗ I

]
(23)

with

λ̃ = E ν

1 − ν2
(24)

is introduced. The projections of the corresponding
homogenised macroscale tensor ẼM in e1- and e2-
direction for different values of the filter parameter

γ and for different micrograph sizes are provided in
Figs. 13 and 14.
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