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Abstract This paper presents mathematical models
of supersonic and intersonic crack propagation exhibit-
ing Mach type of shock wave patterns that closely
resemble the growing body of experimental and com-
putational evidence reported in recent years. The mod-
els are developed in the form of weak discontinuous
solutions of the equations of motion for isotropic lin-
ear elasticity in two dimensions. Instead of the classi-
cal second order elastodynamics equations in terms of
the displacement field, equivalent first order equations
in terms of the evolution of velocity and displacement
gradient fields are used together with their associated
jump conditions across solution discontinuities. The
paper postulates supersonic and intersonic steady-state
crack propagation solutions consisting of regions of
constant deformation and velocity separated by pres-
sure and shear shock waves converging at the crack
tip and obtains the necessary requirements for their
existence. It shows that such mathematical solutions
exist for significant ranges of material properties both
in plane stress and plane strain. Both mode I and mode
II fracture configurations are considered. In line with
the linear elasticity theory used, the solutions obtained
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satisfy exact energy conservation, which implies that
strain energy in the unfractured material is converted
in its entirety into kinetic energy as the crack propa-
gates. This neglects dissipation phenomena both in the
material and in the creation of the new crack surface.
This leads to the conclusion that fast crack propagation
beyond the classical limit of the Rayleigh wave speed
is a phenomenon dominated by the transfer of strain
energy into kinetic energy rather than by the transfer
into surface energy, which is the basis of Griffiths the-
ory.

Keywords Dynamic crack propagation · Supersonic
crack speed · Linear elastodynamics · Shocks ·
Hyperbolic equations

1 Introduction

Dynamic fracture mechanics is a well establish field
of research with significant relevance in many areas of
engineering (Baker 1960; Craggs 1960; Freund 1972;
Itou 1978; Ravi-Chandar and Knauss 1984a, b; Fre-
und 1990; Xu and Needleman 1994; Washabaugh and
Knauss 1994; Gao 1996; Sharon et al. 1996; Willis and
Movchan 1997; Morrissey and Rice 1998; Hauch et al.
1999; Broberg 1999; Aranson et al. 2000; Cramer et al.
2000; Belytschko et al. 2003; Cox et al. 2005; Gross
and Seelig 2011). It has been generally accepted that
in an elastic medium cracks can only grow and propa-
gate at speeds below the speed of Rayleigh waves (Fre-
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und 1990; Xu and Needleman 1994; Washabaugh and
Knauss 1994; Gao 1996; Sharon et al. 1996; Willis and
Movchan 1997; Morrissey and Rice 1998; Hauch et al.
1999; Broberg 1999). Beyond this speed linear elastic
solutions can be shown to lead to a vanishing energy
release rate (at least inMode I fracture)which is incom-
patible with the energy required to create the new crack
surface. However, recent results both experimental and
computational have shown crack propagation at signif-
icantly higher speeds both in the intersonic range and
even beyond the speed of sound (Rosakis et al. 1999;
Needleman 1999; Abraham and Gao 2000; Huang and
Gao 2001; Gao et al. 2001; Rosakis 2002; Abraham
et al. 2002; Guo et al. 2003; Buehler et al. 2003; Hao
et al. 2004). Moreover, some of the published results
exhibit features akin to shock waves of supersonic flow
where solution discontinuities are seen to emerge from
the crack tip as it travels along the material (Petersan
et al. 2004; Willmott and Field 2006; Radi and Loret
2008; Bizzarri et al. 2010; Schubnel et al. 2011; Bar-
ras et al. 2018; Yue et al. 2019; Mai et al. 2020). No
analytical models have been reported that predict such
behaviour in linear elasticity. This paper will provide
mathematicalmodelswith solutions that closely resem-
ble some of these results. These are not inconsistent
with existing analytical theories in so far as they are
based on full transfer from strain into kinetic energy
and therefore neglect the energy required to create the
new surface.

Classical mathematical analysis of dynamic crack
propagation has been based on the solution of the
governing second order equation for the displacement
field as a function of time and position (Freund 1972;
Burridge 1973; Freund 1990; Andrews 1976; Freund
1979; Burgers and Freund 1980; Broberg 1989, 1994;
Andrews 1994; Obrezanova and Willis 2003, 2008).
Freund (1972) obtained a fundamental solution for
Mode I type fracture in an infinite linear elastic domain
by considering the solution of the second order equa-
tion for a half-plane in conjunction with cohesive type
tractions on the fracture plane, leading to rupture veloc-
ities limited by the Rayleigh wave speed. Burridge
(1973), using similar methods in the case of Mode II
type fracture, showed that in the case of friction type
forces (lacking cohesion), it is possible to obtain rup-
ture velocities of the value of the dilatational wave
velocity. Andrews (1976), resorting to a finite differ-
ence type method, reconciled Freund’s and Burridge’s
solutions by considering a slip-weakening type model

which combined friction and cohesion. This was fur-
ther confirmed by Freund in Freund (1979), Burgers
and Freund (1980) and Broberg in Broberg (1989) and
Broberg (1994), the latter for the special case of a
Mode II rupture velocity equal to

√
2 the shear wave

speed. Andrews in Andrews (1994) extended his previ-
ouswork to the case ofmixed-mode shear cracks, albeit
this time employing analytic solutions and the bound-
ary element method, obtaining similar conclusions,
that is, mixed-mode ruptures can propagate faster than
the Rayleigh speed. In Obrezanova and Willis (2003),
Obrezanova and Willis (2008), the authors study the
stability of intersonic shear cracks and provide stress
fields in the vicinity of the crack, first in plane strain
and subsequently in three dimensions.

Numericalmethods and solutions enumerated above
are appropriate for smooth solutions but side-step pos-
sible solutions where the first derivatives of the dis-
placement field are discontinuous across moving sur-
faces. It is now well-accepted that this discontinuous
type solutions exist and they exhibit complex Mach
cone type profiles for velocities and strains/stresses.
Indeed, numerous references have reported these type
of solutions through either experiments or atomistic
simulations (Abraham and Gao 2000; Gao et al. 2001;
Rosakis 2002; Abraham et al. 2002; Buehler et al.
2003; Hao et al. 2004; Petersan et al. 2004; Schub-
nel et al. 2011; Yue et al. 2019; Abraham 2001). These
are known as weak solutions and satisfy certain jump
conditions across themoving discontinuities, known as
shocks (Eringen and Suhubi 1975; Gurtin et al. 2010;
Bonet et al. 2021). Motivated by improving numeri-
cal simulations, significant research has been recently
devoted to re-expressing the fundamental equations of
solid dynamics as a set of conservation laws for the lin-
ear momentum and the deformation (Lee et al. 2013,
2014; Aguirre et al. 2014; Bonet et al. 2015; Aguirre
et al. 2015; Haider et al. 2017). These conservation
laws lead to a system of first order differential equa-
tions for the velocity field and the deformation together
with associated jump conditions acrossmoving shocks.
These equations are well known in the classical liter-
ature but typically only used as a step towards a final
second order equation in terms of displacements. Using
them directly allows for weak solutions to be obtained
that could otherwise be by-passed. First order conser-
vation laws with moving discontinuities are commonly
used in the solution of fluid dynamic problems (LeV-
eque 1992; Toro 1999; Trangenstein 2009) where solu-
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tion patterns incorporating Mach shock waves are fre-
quently encountered.

The aim of the paper is to provide mathemat-
ical solutions of steady-state crack propagation in
the context of linear elastic elastodynamics, where
the governing equations are expressed as a set of
first order linear hyperbolic conservation laws with
accompanying jump conditions. The resulting solu-
tions are two-dimensional extensions of well known
so-called “local” solutions in one dimension (Bažant
and Belytschko 1985). It is not the premise of the
paper to claim that these solutions can provide an exact
description of the physical reality as they are con-
strained by the conservative nature of linear elastic-
ity; whereas, clearly, fracture is an inherently dissipa-
tive process. Energy losses through the creation of new
crack surfaces and inelastic dissipative effects near the
tip are ignored by the purely elastic solutions proposed.
Instead, the aim of the paper is to show that Mach
type of shock wave patterns as well as intersonic and
supersonic crack propagation can be explained in lin-
ear elasticity under the assumption that surface energy
is negligible in relation to the available strain energy
in the material. This represents the opposite end of the
energy balance spectrum to the classical Griffiths the-
ory, where all the available strain energy is assumed
to be used to create the new surfaces. It is clear that
real physical phenomena will be found somewhere in
between these two extremes. The contribution of this
paper is therefore to suggest that fast crack propaga-
tion leading to shock wave formation is governed by
the transfer of strain energy into kinetic energy rather
than into surface energy. An additional intended con-
tribution of the paper is to provide the outcome of the
proposed solutions as initial and boundary conditions
for computational models where dissipative effects can
then be incorporated with relative simplicity. This will
be the subject of future research.

The paper is organised as follows. As a way of moti-
vation, Section 2 provides a mathematical description
of the simple 1-D fracture of a bar in terms of first
order differential equations describing the evolution of
the velocity and strain with associated jump conditions
in linear elasticity. This leads to a simple so-called
“local” solution in which strain energy is transferred
into kinetic energy in its entirety and the physical impli-
cations of this transfer are discussed. Section 3 extends
the first order linear elastodynamics equations to 2-D
in terms of velocity vector and displacement gradient.

The speed of pressure (or dilatational) and shear (or
distortional) shock waves are derived from the jump
conditions and linear elasticity constitutive equations.
Section 4 postulates a two-shock solution for super-
sonic crack propagation in mode I fracture and deter-
mines the constitutive conditions for this solution to
exist. As in the 1-D model exact energy preservation is
shown to hold through the transfer of elastic energy into
kinetic energy. Section 5 examines supersonic mode II
crack propagation and obtains very similar solutions to
mode I, albeit with more severe restrictions in relation
to the range of material properties for which the model
is valid. Section 6 presents an intersonic solutionwhere
the pressure shock travels ahead of the crack tip and
the shear shock. Section 7 provides some concluding
remarks and recommendations for further work.

2 Motivation: the local one-dimensional fracture
solution

In order tomotivate themore complex two-dimensional
solutions developed in the following sections, consider
first the simplest possible fracture problem consist-
ing of a one-dimensional bar under uniaxial tension
as shown in Fig. 1. For simplicity, it will be assumed
that the bar is initially at rest, linearly elastic and under
the action of a constant external traction T as shown in
the Figure.

At time t = 0 fracture takes place at the centre of
the bar and the resulting motion is governed by a set of
first order hyperbolic equations given as,

∂(ρv)

∂t
= ∂σ

∂x
; (1a)

∂ε

∂t
= ∂v

∂x
, (1b)

where ρ denotes the density, v(x, t) the velocity field,
σ(ε) = Eε is the stress, ε(x, t) the strain field and E the
Young’s modulus of elasticity. Note that the above set
of equations represent a set of first order linear hyper-
bolic equations from which the standard second order
wave equation for the displacement u(x, t) can be eas-
ily derived by noting that v = ∂u/∂t and ε = ∂u/∂x .
However, in order to establish weak solutions, that is
solutions that contain discontinuities, it is preferable to
consider the first order equations directly together with
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Fig. 1 Simple 1-D fracture
model for a bar under
uniaxial tension

their associated jump conditions:

ρc�v� = −�σ �; (2a)

c�ε� = −�v�, (2b)

where the notation �a� = a+ − a− has been used to
indicate the jump of a variable across a shock or dis-
continuity travelling at speed c along the bar. Noting
that �σ � = E�ε� and substituting (2b) into (2a) gives
the speed of propagation of a discontinuity as,

c =
√

E

ρ
. (3)

Note that this corresponds to the speed of the sound
wave in the bar which can be obtained considering
smooth solutions of classical wave propagation theory.

Consider now the material fracturing at t = x = 0
as shown in Fig. 1. This creates an initial condition
where the stress at the fracture point vanishes and two
release waves travel in opposite directions along each
half of the bar as shown in the Fig. 1. The above jump
conditions can be applied between the values of the
variables ahead and behind the shock in either the left
or right halves of the broken bar to give,

ρc(0 − v) = −(σ − 0), (4)

and therefore, an instantaneous release velocity at
either side of the fracture point is generated at time
t = 0 with a value given by,

v = σ

ρc
. (5)

This represents a complete transfer of elastic energy
at the point of fracture into kinetic energy as shown by
the simple identity,

K = 1

2
ρv2 = 1

2
ρ

(
σ

ρc

)2

= 1

2

σ 2

ρc2
= 1

2E
σ 2 = 1

2
Eε2.

(6)

Essentially, fracture is modelled in the above equa-
tions as a sudden removal of the equal and opposing
internal traction forces acting on the sectionwhere frac-
ture takes place. The above model, often referred to
as the local solution (Bažant and Belytschko 1985),
neglects the amount of energy required to generate
the new surfaces at the point of fracture and there-
fore energy is exactly transferred from elastic to kinetic
energy. From the point of view of hyperbolic differen-
tial equations, this results in aRiemann problem in each
half of the broken bar with a simple analytical solution
(LeVeque 1992; Toro 1999; Trangenstein 2009). The
boundary fluxes at the point of fracture, namely stress
and velocity, must be compatible with the jump con-
ditions. In linear elasticity this compatibility leads to
exact energy balance since the shock wave travels at
the speed of sound. It is the end velocity given in equa-
tion (5) that would be responsible for a slender wire
curling in a whipping like fashion as it snaps under
tension or a rubber band snapping back after fracture.
Note that from a mathematical point of view the prob-
lem is well posed in elastodynamics without the need
to introduce dissipative or length effects, provided that
the first order conservation equations and the jump con-
ditions are used (Bažant and Belytschko 1985).
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The energy balance in the solution described above
represents the opposite end of the spectrum to the
classical Griffiths theory where all the available strain
energy is transferred to surface energy. Arguably, all
brittle fracture process would occupy a point some-
where between these two extremes, where some of the
strain energy is transferred into kinetic energy and some
into surface energy and some dissipated as heat. Of
course, if the aim is to assess the possible onset of
crack growth in a metal sheet, it is prudent to consider
the energy balance as stated in classical Griffiths the-
ory, leading to a quasi-static fracture problem. Alter-
natively, modelling the curling motion of a snapping
cable (Tjavaras et al. 1998) should be approached from
the other end. For instance, a high strength steel cable
would snap at a strain energy level in the order of mag-
nitude of 1 MJ/m3, whereas the order of magnitude of
the surface energy is 1J/m2.Hence, the energy required
to generate the new surfaces is contained in a sliver of
cable of thickness in the region of 1μm, which is neg-
ligible in comparison to the length of the cable.

From a mathematical point of view, dissipative
effects to account for the surface energy can be intro-
duced in the above hyperbolic equations by includ-
ing conductive fluxes proportional to the gradient of
the variables. This can be done through a dependency
of stress on the gradient of the velocity, leading to a
visco-elastic model (Schreyer and Chen 1986; Simo
and Ju 1987; Sluys and de Borst 1992; Etse andWillam
1999; Bažant and Jirásek 2002), or a dependency on
the gradient of ε which results in a classical weakly
non-local model (Bažant and Jirásek 2002; Belytschko
and Lasry 1989; De Borst and Muehlhaus 1992; Fleck
and Hutchinson 1993; De Borst 2001). From a com-
putational point of view, many alternative methodolo-
gies have been derived, ranging from smeared crack
theory (Pijaudier-Cabot and Bažant 1987; Jirásek and
Zimmermann 1998), strong discontinuity approaches
(Simo et al. 1993; Chen and Sulsky 1995), cohesive
zone models (Barenblatt 1962; Falk et al. 2001; Cama-
cho and Ortiz 1996), extended finite element methods
(Moës and Belytschko 2002; Dolbow et al. 2001), con-
figurational force methods (Miehe and Gürses 2007),
phase fieldmodels (Miehe et al. 2010;Hesch andWein-
berg 2014; Hesch et al. 2017) and others.

The sections that follow will essentially extend the
above local solution to 2-dimensional mode I andmode
II fracture configurations.

3 Linear elastodynamics in 2-D

The aim of this section is to review the equations of lin-
ear elasticity in the form of first order hyperbolic equa-
tions with associated jump conditions, so that concep-
tually similar solutions to the above one-dimensional
model can be derived in the case of 2-dimensional
isotropic elasticity.

3.1 First order hyperbolic governing equations

The general dynamic equilibrium in linear elasticity is
established by the momentum conservation equation
which in the absence of external body forces is given
by Eringen and Suhubi (1975), Gurtin et al. (2010),
Bonet et al. (2021),

∂(ρv)

∂t
= divσ , (7)

where div indicates the divergence operator (the con-
traction of the gradient by the last index) and σ denotes
the Cauchy stress tensor, which in linear elasticity can
be related to the displacement gradient G = ∇u via a
symmetric fourth order elasticity tensor C as,

σ = C : G; C = λI ⊗ I + μI + μĨ. (8)

In this expression λ,μ denote the Lamé coefficients,
I the second order identity tensor, I the fourth order
identity tensor and Ĩ the fourth order tensor that maps
second order tensors to their transpose, that is Ĩ : G =
GT . Equation (8) ismore commonlywritten in terms of
the symmetric strain tensorε = (G+GT )/2 rather than
the displacement gradient G but the outcome will be
the same when equation (8)b is used as the constitutive
relationship.

Note that plane stress can be obtained by simply
replacing λ in equation (8)b by its equivalent or effec-
tive value λ̄ defined as,

λ̄ = 2μλ

λ + 2μ
. (9)

No distinctionwill bemade inwhat follows between
plane strain and plane stress on the understanding that
λ is replaced by λ̄ for the latter.
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A first order hyperbolic equation for the evolution
of G similar to equation (1b) is given by,

∂G
∂t

= div(v ⊗ I). (10)

This equation simply states that the rate of change
of G is given by the gradient of the velocities. Equa-
tion (10) is the small strain counterpart of the evolu-
tion equation for the deformation gradient described in
references (Bonet et al. 2021; Lee et al. 2013, 2014;
Aguirre et al. 2014; Bonet et al. 2015; Aguirre et al.
2015; Haider et al. 2017).

Equations (7) and (10) represent a set of first order
linear hyperbolic equations for which analytical solu-
tions can be obtained under appropriate initial and
boundary conditions. However, the type of solutions
sought are weak solutions containing moving discon-
tinuities, which require the formulation of the jump
conditions associated to the conservation laws (7) and
(10). These are derived in the following sections.

3.2 Jump conditions and wave speeds

Consider a shock in the solution, that is a discontinuity
surface � with unit normal n travelling inside the solid
with normal speed c as shown in Fig. 2. Variables ahead
of the shock are denoted with a “+” sign, whereas the
value of variables behind the shock is identified with
the superscript “-”.

In the presence of discontinuous solutions, the con-
servation equations (7) and (10) have associated jump
conditions given, respectively, by Eringen and Suhubi
(1975), Gurtin et al. (2010), Bonet et al. (2021), Bonet
et al. (2015),

ρc�v� = −�σ �n; (11a)

c�G� = −�v� ⊗ n. (11b)

Using the constitutive relationship between the
stress tensor and the displacement gradient given by
equations (8) and substituting equation (11b) into equa-
tion (11a) gives, after simple algebra, an eigenvalue
equation in terms of the acoustic tensor A as,

ρc2�v� = A�v�; A = (λ + μ)n ⊗ n + μI . (12)

There are two solutions to this eigenproblem, cor-
responding to pressure shock waves (also known as
dilatation or longitudinal) and shear waves (Eringen
and Suhubi 1975; Gurtin et al. 2010; Bonet et al. 2021,
2015). In the first instance the jump in velocity is pro-
portional to the normal vector and the shock travels at
the speed of sound as,

�v� = �vn n; cp =
√

λ + 2μ

ρ
. (13)

The second solution is obtained by taking velocity
jumps parallel to the surface tangent ν leading to shear
shocks travelling at the speed of shear wave as,

�v� = �vs ν; cs =
√

μ

ρ
. (14)

The ratio between the pressure and shear shock
speedswill be a usefulmaterial parameter in the deriva-
tions that follow and can be variously expressed in
terms of the Lamé coefficients or Poisson’s ratio ν as,

Plane strain:
cp
cs

=
√

λ + 2μ

μ
=

√
2 − 2ν

1 − 2ν
; (15a)

Plane stress:
cp
cs

=
√

λ̄ + 2μ

μ
=

√
2

1 − ν
. (15b)

Note that in the incompressible limit this ratio tends
to infinity in the case of plane strain but in plane stress
the speed of the pressure wave cannot exceed twice
the speed of the shear wave. In fact, in plane stress
the pressure wave should be more correctly described
as normal or longitudinal wave as it involves changes
in the thickness and therefore transversal out of plane
distortion.

4 Mode I crack propagation

This section describes a mathematical solution for a
propagating crack under mode I fracture consisting of
a pair of shock waves, a pressure and a shear wave,
propagating from the crack tip.
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Fig. 2 Shock or solution
discontinuity travelling
inside a 2-D solid

4.1 The two-shock model

Consider the steady-state propagation of a crack under
mode I conditions in an infinite 2-dimensionalmedium.
Prior to the arrival of the crack the material is in a
state of uniform stress given by a vertical traction σ =
σ22e2 ⊗ e2 as shown in Fig. 3.

Inspired by the one-dimensional model described in
Sect. 2, a solution is postulated whereby two shock
waves, a shear and a pressure wave, separate three
regions of constant stress, strain and velocity as shown
in Fig. 3, where due to symmetry only the upper half
of the continuum is depicted. Notice that a similar
Mach cone type solution was experimentally reported
in Fig. 2 in Reference (Petersan et al. 2004) and in
Figs. 4 and 5a in Reference (Yue et al. 2019). The
regions I, II and III are formally defined as:

• Region I: unfractured body, satisfying:

σ (I ) = σ
(I )
22 e2 ⊗ e2; v(I ) = 0. (16)

• Region II: transition region with stress, strain and
velocity to be determined by the jump conditions;

• Region III: unloaded region with stress tensor sat-
isfying no traction on the crack surface:

σ (I I I )e2 = 0. (17)

These three regions are separated by straight pres-
sure and shear shocks originating from the crack tip
and travelling at angles αp and αs , respectively. At
the crack tip, the intersection of the shear and pres-

sure waves with the crack imply that the speed of the
crack is related to the pressure and shear wave speeds
as,

vc = cp
sin αp

= cs
sin αs

; sin αp

sin αs
= cp

cs
. (18)

Note that the existence of a solution as described
above entails supersonic crack propagation as equation
(18)a implies that vc ≥ cp ≥ cs . Intersonic solutions
can be found if the pressure shock wave is allowed to
travel ahead of the crack tip. These solutions will be
explored in a later section.

4.2 Velocity and stress relationships

The constant state of stresses and velocities in the three
regions described above implies that the differential
equations (7) and (10) are trivially satisfied. The key to
determine the validity of the postulated solution is the
satisfaction of the jump conditions at each shock wave
and appropriate boundary conditions at the crack sur-
face. Consider first the enforcement of the momentum
jump condition (11a) at the pressure shock wave as,

ρcp
(
v(I ) − v(I I )

)
= −

(
σ (I ) − σ (I I )

)
np. (19)

Across the pressure shock the velocity jumps, and
therefore the traction jumps, will be parallel to the nor-
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Fig. 3 Propagation of a
crack under mode I
conditions accompanied by
pressure and shear shocks
(top half only)

mal vector np and can be expressed as,

v(I ) − v(I I ) = −v(I I ) = �vn np;(
σ (I ) − σ (I I )

)
np = �tn np, (20)

where the shock condition, equation (19), implies that
the normal velocity and normal traction jumps, �vn
and �tn respectively, are related as,

�vn = −�tn
ρcp

. (21)

Consider next the enforcement of the displace-
ment gradient jump condition (11b) across the pressure
shock as,

cp
(
G(I ) − G(I I )

)
= −

(
v(I ) − v(I I )

)
⊗ np. (22)

Substituting for the jump in velocity from equations
(20)a and (21), gives the displacement gradient in the
intermediate region as,

G(I ) − G(I I ) = �tn
ρc2p

np ⊗ np. (23)

Multiplying the above equation by the elasticity ten-
sor gives the stress tensor at the intermediate region as,

σ (I I ) = σ (I ) − �tn
ρc2p

(λI + 2μ np ⊗ np). (24)

The same derivations can now be repeated across
the shear shock where the velocity and traction jumps
are parallel to the tangential unit vector as,

v(I I ) − v(I I I ) = �vs νs;
(
σ (I I ) − σ (I I I )

)
ns = �τ νs .

(25)

The jumpconditionnowgives a relationshipbetween
the jump in tangential velocity and shear stress as,

�vs = −�τ

ρcs
. (26)

The displacement gradient jump condition across
the shear shock combined with the above relationship
between jumps in tangential velocity and shear stress
gives,

G(I I ) − G(I I I ) = �τ

ρc2s
νs ⊗ ns . (27)

Finally, multiplying by the elasticity tensor and not-
ing that μ = ρc2s yields an expression for the stress
tensor in region III as,

σ (I I I ) = σ (I I ) − �τ(ns ⊗ νs + νs ⊗ ns). (28)

Combining equations across both shocks enables
direct relationships to be established between the veloc-
ity and stresses in region III and those in region I. For
instance, using equations (20)a , (21), (25)a and (26)
and noting that the velocity in region I vanishes gives
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an expression for v(I I I ) as,

v(I I I ) = �tn
ρcp

np + �τ

ρcs
νs . (29)

Similarly, combining equations (24) and (28) gives
the stress in region III as,

σ (I I I ) = σ (I ) − �tn
ρc2p

(λI + 2μ np ⊗ np)

−�τ(ns ⊗ νs + νs ⊗ ns). (30)

Note that the displacement field u(x, y, t) in the
proposed solution can be obtained by integrating in
time the velocity field at any given point as the shock
fronts go past. Since the velocity and gradient fields are
constant in each region, the resulting displacement is
inevitably linear in t , x and y. Therefore, the classical
second order equation in u(x, y, t) is trivially satisfied.
Essentially, weak solutions of the form proposed here
require the use of the first order equations and their
associated jump conditions and are missed by the sec-
ond order classical wave equations.

4.3 General solution

In order to explore the existence of solutions in the form
postulated in the sections above, the stress and veloc-
ity in region III need to satisfy appropriate boundary
conditions on the crack surface. In particular, the trac-
tion on the crack surface must vanish, giving two scalar
conditions as,

e1 · σ (I I I )e2 = 0; e2 · σ (I I I )e2 = 0. (31)

In order to derive a third condition, it is necessary to
determine whether the crack propagates symmetrically
or from a free surface as shown in Fig. 4. This section
will consider only the symmetric case, in which case
a third condition can be found by imposing that the
velocity v(I I I ) in region III should be vertical, that is,

v(I I I ) · e1 = 0. (32)

Substituting for the stress and velocity in region III
from equations (29) and (30) into equations (31) and
(32) gives a set of three equations with three unknowns,
namely �tn , �τ and either the angle αp or αs since
they are connected to the speed of crack propagation

Fig. 4 a Symmetric crack propagation and b propagation from
a free surface

via equations (18). The resulting equations are nonlin-
ear and trigonometric. Remarkably, however, simple
solutions exist for a significant range of material prop-
erties. In order to show this, note first the following
simple geometric relationships,

np,s = sin αp,s e1 + cosαp,s e2; (33a)

ν p,s = − cosαp,s e1 + sin αp,s e2. (33b)

Multiplying equation (29) by e1 and employing the
above trigonometric relationships together with the
crack propagation condition (18)b gives, after simple
algebra, a relationship between the jumps in shear stress
and normal traction as,

�τ = �tn tan αs . (34)

Enforcing condition (31)a and noting again thatμ =
ρc2s , gives after simple trigonometric algebra,

c2s�tn sin 2αp = c2p�τ cos 2αs, (35)

which, when combined with condition (34) and tak-
ing into account the angle relationship provided by
equation (18)b gives a further geometric relationship
between the angles of the shear and pressure shocks as,

cosαp = cp
2cs

cos 2αs

cosαs
. (36)

Adding the square of this equation to the square of
equation (18)b and using the fundamental trigonomet-
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ric relationship gives,

1 = cos2 αp + sin2 αp

= c2p
4c2s

cos2 2αs

cos2 αs
+ c2p

c2s
sin2 αs

= c2p
4c2s

[
cos2 2αs + 4 sin2 αs cos2 αs

cos2 αs

]

= c2p
4c2s

(cos2 αs + sin2 αs)
2

cos2 αs

= c2p
4c2s

1

cos2 αs
.

(37)

This leads to a simple equation for the shear shock
angle as,

cosαs = cp
2cs

=
√

λ + 2μ

4μ
, (38)

where only the positive solution has been considered as
the negative value of the cosine leads to the geometri-
cally obvious symmetric solution below the crack. The
above equation for αs has a valid solution provided that
cp ≤ 2cs or λ ≤ 2μ , that is the speed of the pressure
wave is not higher than twice the speed of the shear
wave. For the case of plane stress, where λ should be
replaced by λ̄ as given in equation (10), it is easy to
show that this is the case for any value of the Poisson’s
ratio in the physically meaningful range. For the plane
strain case, valid solutions will only exist for Poisson’s
ratios ν ≤ 1/3. Beyond this value the solution postu-
lated is no longer possible in isotropic linear elasticity.

Finally, combining equation (18)b with equation
(38) it is easy to show that the angle of the pressure
shock is,

αp = 2αs, (39)

and the speed of the crack propagation is,

vc = cs√
1 − c2p

4c2s

. (40)

Figure 5a displays the crack speed propagation as
a function of the Poisson’s ratio for both plane strain

and plane stress scenarios, where physically meaning-
ful solutions for the plane strain case are restricted to
values of ν ≤ 1/3. Similarly, Fig. 5b displays the angle
of the shear and pressure shocks as a function of the
Poisson’s ratio.

4.4 The unloaded and transition regions

The solution derived in the section above enables the
full evaluation of the stresses and velocity in region III.
For this purpose, consider first equation (31)b, which
after substitution for σ (I I I ) from equation (30) and for
�τ from equation (34) gives,

0 = e2 · σ (I I I )e2

= σ
(I )
22 − �tn

(
λ + 2μ(1 − sin2 αp)

ρc2p
+ 2 tan αs cosαs sin αs

)

= σ
(I )
22 − �tn

(
1 − 2μ sin2 αp

ρc2p
+ 2 sin2 αs

)

= σ
(I )
22 − �tn

(
1 − 2μ sin2 αs

ρc2s
+ 2 sin2 αs

)

= σ
(I )
22 − �tn,

(41)

leading to

�tn = σ
(I )
22 ; �τ = σ

(I )
22 tan αs . (42)

These expressions can now be used to determine the
complete velocity and stress fields in the unloaded and
transition regions. For instance, the velocity in region
III,which by constructionwill only have a vertical com-
ponent, can be derived using equations (42) and the
geometric relations (33) as,

v(I I I ) =
(

σ
(I )
22

ρcp
cosαp + σ

(I )
22 tan αs

ρcs
sin αs

)
e2

= σ
(I )
22

ρcp

(
cosαp + cp

cs

2cs
cp

sin2 αs

)
e2

= σ
(I )
22

ρcp

(
cos 2αs + 2 sin2 αs

)
e2

= σ
(I )
22

ρcp
e2.

(43)
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Fig. 5 a Crack speed propagation and b Shear and pressure shock angles

Note that this gives a velocity field identical to the
one derived in the one-dimensional case in equation
(5).

The state of stress in region III is by construction
limited to a horizontal traction as,

σ (I I I ) = σ
(I I I )
11 e1 ⊗ e1, (44)

where the horizontal stress component σ (I I I )
11 emerges

from equations (30), (33) and (34) after simple trigono-
metric algebra as,

σ
(I I I )
11 = e1 · σ (I I I )e1

= −σ
(I )
22

(
1

ρc2p
(λ + 2μ sin2 αp) − 2 tan αs cosαs sin αs

)

= −σ
(I )
22

ρc2p

(
λ + 2μ sin2 αp − 2ρc2p sin

2 αs

)

= − λ

λ + 2μ
σ

(I )
22 . (45)

The above expression can also be re-written in terms
of the Poisson’s ratio for the plane strain and plane
stress cases respectively as,

σ
(I I I )
11 = − ν

1 − ν
σ

(I )
22 ; σ̄

(I I I )
11 = −ν σ

(I )
22 . (46)

Observe that by construction the above state of stress
and velocity would be compatible with a crack propa-

gating symmetrically in the left and right directions as
shown in Fig. 4a. As the shear shock lines reach each
other on the central symmetry axis reflections would
take place into region II which would interact with the
pressure shock in a complexmanner as shown in Fig. 6.
The analysis of this interaction and reflection is beyond
the scope of the simple solution proposed here.

For completeness, it is useful to derive the velocity
and stress fields in the transition region II. This is easily
achieved using Eqs. (20)a , (21), (24) and (42) to give,

v(I I ) = σ
(I )
22

ρcp
np;

σ (I I ) = σ
(I )
22

ρc2p

[
2μ

(
e2 ⊗ e2 − np ⊗ np

) − λe1 ⊗ e1
]
.

(47)

The solution described above represents a mode I
crack propagating symmetrically at speeds equal or
higher than the speed of sounds in a manner consistent
with the equations of linear isotropic elasticity. In the
plane strain case, solutions in the simple form postu-
lated here do not exist beyond ν = 1/3 at which point
the speed of propagation becomes infinite. The same
effect takes place in plane stress at the incompressible
limit ν = 1/2. For a Poisson’s ratio different to zero,
viable solutions where the horizontal stress in region
III vanishes, which would correspond to cracks propa-
gating from a free surface as shown in Fig. 4b have not
yet been found with shocks emanating jointly from the
crack tip, ie., in the supersonic range. However, inter-
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Fig. 6 Propagation of a
symmetric crack showing
the shock reflections as
dashed lines at the
symmetry axis

sonic solutions where the pressure shock moves away
from the crack tip exist and will be described in Section
6.

4.5 Particular solutions

It is interesting to consider particular cases of the
general solution derived above. For instance the case
ν = 0, or equivalently λ = 0, leads to an interesting
particular solution where the angle of the shear shock
is 45◦ and the pressure shock travels at 90◦ as shown in
Fig. 7 (refer also to Fig. 5b). In this case the crack prop-
agates at sonic speed (refer to Fig. 5a) and region III
is fully unstressed. The pressure wave acting as a com-
pressive shock wave first transforms the initial state of
uniaxial vertical stress into a state of pure shear stress
given as,

σ (I I ) = σ
(I )
22 (e2 ⊗ e2 − e1 ⊗ e1) = σ

(I )
22 (ns ⊗νs +νs ⊗ns).

(48)

The shear shock then eliminates this state of shear
stress and leaves the material fully unstressed in region
III as shown in Fig. 7. The absence of horizontal stress
in region III makes this solution valid for both the sym-
metric crack propagation case as well as for a crack
propagating from a free surface.

As a further example of a particular case obtained
from the equations developed in the previous sections,
consider the case where λ = μ and therefore cp/cs =√
3. This corresponds to a Poisson’s ration of 0.25 in

the case of plane strain or 1/3 in plane stress. The angles

of the shear and pressure shock waves are 30◦ and 60◦
respectively and the crack propagates at a speed of,

vc = cp
sin 60◦ � 1.155 cp. (49)

The state of stresses in regions III and II is given for
this particular case as,

σ (I I I ) = −1

3
σ

(I )
22 e1⊗e1;

[
σ (I I )

]
= −1

6
σ

(I )
22

[
5

√
3√

3 1

]
,

(50)

where matrix notation has been used for simplicity in
equation (50)b.

4.6 Energy balance

In the one-dimensional case presented in Sect. 2, it is
clear that strain energy before fracture is converted into
kinetic energy fully respecting energy conservation.
It is also possible to show that this is the case in the
proposed 2-D model, given that it has been developed
using the equations of linear elastodynamics which do
not incorporate any dissipative effects. In particular, it
will be shown in this section that the elastic energy in
region I is transformed into a smaller amount of strain
energy in region III associatedwith the horizontal stress
that emerges due to Poisson’s effect and the difference
becomes kinetic energy in region III.

Consider the fixed control area shown in Fig. 8. It is
simple to show that the energy flux across the bound-
aries of this region vanish so that the total energy inside
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Fig. 7 Particular case
ν = 0

remains constant. In order to show this, note first that
energy flux per unit area (or length in the 2-D case) is
given by,

F = v · σn. (51)

The energy flow in region I is trivially zero as the
velocity vector vanishes. In region III the energy flow
across�(I I I ) also vanishes as the traction vector is hori-
zontal whereas the velocity vector is vertical. Showing
that the energy flow across the section of the control
boundary in region II also vanishes requires a more
detailed evaluation using equations (47) to give,

F (I I ) = v(I I ) · σ (I I )e2

= σ
(I )
22

ρcp
np · σ

(I )
22

ρc2p

[
2μ

(
e2 − (np · e2)np

)]
= 0.

(52)

Consequently, the energy in the control area must
be conserved as the crack advances provided that there
are no dissipative effects as the crack opens, which is
the case in linear elastodynamics. It is easy to see that
the area of region II inside the control volume remains
constant as the crack progresses whereas the areas of
regions I and III decrease and increase respectively in
equal measure. Hence the energy per unit volume in
regions I and III must coincide to ensure conservation
of energy. In order to show that this is the case, note
first that the strain energy is obtained in terms of the
stress tensor and the 2-dimensional inverse elasticity
tensor as,

E = 1

2
σ : C−1 : σ ; C−1 = 1

2μ
I− λ

4μ(λ + μ)
I⊗I .

(53)

Using this equation at regions I and II gives after
simple algebra,

E (I ) = λ + 2μ

8μ(λ + μ)

(
σ

(I )
22

)2 ;

E (I I I ) = λ2

8μ(λ + μ)(λ + 2μ)

(
σ

(I )
22

)2
. (54)

It is a simple exercise to show that the difference
between these two energy expressions coincides with
the kinetic energy per unit volume in region III as,

K(I I I ) = E (I ) − E (I I I ) = 1

2(λ + 2μ)

(
σ

(I )
22

)2

=
(
σ

(I )
22

)2
2ρc2p

= 1

2
ρ(v(I I I ))2. (55)

Hence, in the proposed linear elastic solution strain
energy is not dissipated or transformed into surface
energy but exactly transformed into kinetic energy as
the crack progresses. This represents the opposite end
of the spectrum to the Griffiths energy balance where
strain energy is transformed into surface energy.

5 Mode II crack propagation

The possibility of obtaining similar solutions to those
derived above for the case of mode II fracture is dis-
cussed in this section. The unfractured stress field will
be assumed to be a pure state of shear where the stress
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Fig. 8 Control volume for
energy balance calculation

tensor is given as,

σ (I ) = τ
(I )
12 (e1 ⊗ e2 + e2 ⊗ e1). (56)

The release conditions in the fractured region III will
now imply a horizontal velocity together with a vanish-
ing traction vector at the crack surface. The resulting
configuration is shown in Fig. 9 and leads to the fol-
lowing set of conditions,

e2 · σ (I I I )e2 = 0; e1 · σ (I I I )e2 = 0; v(I I I ) · e2 = 0.

(57)

Note that in this case there is no vertical symmetry so
the solution below the crack will need to be determined
explicitly and independently but will need to satisfy
appropriate skew-symmetry conditions.

Substituting for the velocity and stress fields into
equations (57)a,c from equations (29) and (30) gives,
after simple trigonometric algebra and use of (33), a set
of equations for the normal and shear stress jumps and
the shock angles as,

�tn cosαp + �τ sin αp = 0; (58a)

�tn cos 2αs + �τ sin 2αs = 0. (58b)

These equations lead to a relationship between the
shock angles as,

tan 2αs = tan αp, (59)

which in the 0◦ to 360◦ interval has the solutions,

2α(1)
s = α(1)

p ; 2α(2)
s = α(2)

p + 180◦. (60)

Notice that similar angular relationships can be
observed in Figs. 2 and 4 in Reference (Abraham and
Gao 2000), Figs. 5 and 8 inReference (Abraham2001),
Fig. 1 in Reference (Gao et al. 2001), Fig. 26 in Refer-
ence (Rosakis 2002), Fig. 4 in Abraham et al. (2002),
Fig. 4b in Reference (Buehler et al. 2003) and Fig. 20c
in Reference (Hao et al. 2004), where a Mach cone
type solution is obtained using an atomistic simula-
tion. In their case, for an equivalent Poisson’s ratio of
ν = 0.3, angles close to αs = 30◦ and αp = 60◦ are
shown, which match those depicted in Fig. 5b. A simi-
lar Mach cone type solution can also be found in Fig. 8
in Reference (Schubnel et al. 2011). Combining these
angle relationships with the crack propagation condi-
tion (18)b gives the same angles as those obtained for
mode I fracture plus a second solutionwhich represents
symmetric angles respect the horizontal axis as shown
in Fig. 9. In particular,

cosα(1)
s = cp

2cs
; cosα(1)

p = c2p
2c2s

− 1; (61)

cosα(2)
s = − cp

2cs
; cosα(2)

p = 1 − c2p
2c2s

. (62)

In order to complete the solution, it is necessary to
determine the normal and shear stress jump in terms of
the shear stress in region I. This can be done by using
condition (57)b, which after some algebra leads to,

�τ = −τ
(I )
12 ; �tn = τ

(I )
12 tan αp. (63)

Using these expressions, the values of the horizon-
tal velocity and stress in the unloaded top and bottom
regions emerge as,
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Fig. 9 Mode II crack
propagation model

v(I I I ) = ±v(I I I )e1; v(I I I ) = τ
(I )
12

ρcp

λ + 2μ

λ
; (64)

σ (I I I ) = ±σ
(I I I )
11 e1 ⊗ e1;

σ
(I I I )
11 = 2τ (I )

12
λ + μ

λ

√
2μ − λ

2μ + λ
, (65)

which can be re-written as,

v(I I I ) = τ
(I )
12

ρcp

1 − ν

ν
; σ

(I I I )
11 = τ

(I )
12

1

ν

√
1 − 3ν

1 − ν
,

(66)

for plane strain and

v̄(I I I ) = τ
(I )
12

ρcp

1

ν
; σ̄

(I I I )
11 = τ

(I )
12

1 + ν

ν

√
1 − 2ν,

(67)

for plane stress, respectively.
In both these Eqs. (64) and (65), the plus sign cor-

responds to the solution above the crack and the minus
to the solution below the crack. Note that these equa-
tions become singular as λ → 0 which corresponds
to ν → 0 (refer to Eqs. (66), (67) and Fig. 10). In
fact, well before reaching this value, the above state of
stresses would imply a state of shear at 45◦ greater than
the original shear in region I so the above solution has
a limited range of physical validity. For completeness,

the velocity and stress in the transition region II can be
found by using Eqs. (20)a , (21), (24) and (63) to give

v(I I ) = τ
(I )
12 tan αp

ρcp
np;

σ (I I ) = τ
(I )
12

[
e1 ⊗ e2+e2⊗e1−tan αp

(
np⊗np+ λ

λ+2μ
ν p⊗ν p

)]
.

(68)

5.1 Energy balance

A similar energy balance to that presented in Sect. 4.6
can be established for mode II fracture. In this case, the
energy balance equation is slightly more cumbersome
as the energy flow is non-zero in a part of the boundary
of the control volume. The energy flow in region I is
zero as the velocity vector vanishes. In region II, the
energy flow across �(I I ) is also zero as

F (I I ) = v(I I ) · σ (I I )e2

= (τ
(I )
12 )2 tan αp

ρcp
(e1 · np − tan αpe2 · np)

= (τ
(I )
12 )2 tan αp

ρcp
(sin αp − tan αp cosαp) = 0.

(69)

In region III, the energy flow is zero across the hori-
zontal sides of �(I I I ) as the traction vector across them
vanishes (i.e. σ (I I )e2 = 0), reducing to
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Fig. 10 a Velocity and b stress in unloaded region for Mode II fracture

F (I I I ) = −v(I I I ) · σ (I I I )e1 = −v(I I I )σ (I I I ). (70)

As the area of region II inside the control volume
remains constant as the crack progresses, the decrease
of the area of region I is balanced by the increase of
area of region III. Thus, referring to Fig. 11, the time
rate of the energy in the control area must be equal
to the energy flux as the crack advance, which can be
expressed as

F (I I I ) = vc(E (I I I ) + K(I I I ) − E (I )). (71)

It is straightforward to demonstrate that above
energy balance equation is fulfilled for the stress and
velocity states defined previously.

6 Intersonic mode I solutions

The two shock model described above can be used to
derive intersonic solutions by allowing the pressure
shock to move ahead of a shear shock which is still
attached to the crack tip. Similar intersonic shock distri-
bution has been reported in Fig. 21 Reference (Rosakis
2002) and Fig. 4a in Reference (Buehler et al. 2003).
This implies that the relationship between αp and αs

given in Eq. (18)a is no longer valid, leading to an
additional unknown in the system of equations. The
resulting configuration for mode I fracture is shown in
Fig. 12 and generalizes the particular solution depicted

in Fig. 7 to cases where the Poisson’s ratio is greater
than zero. It will be shown below that the angles of the
pressure and shear shocks will be 90◦ and 45◦ respec-
tively as shown in the figure.

The additional equation required to solve the sys-
tem in the absence of (18)a can be obtained by noting
that the symmetry condition along the horizontal axis
implies that the shear stress in region II must vanish.
With the help of Eq. (24), this gives the following con-
dition for αp as,

0 = σ (I I ) : (e1 ⊗ e2)

= σ (I ) : (e1 ⊗ e2) − �tn
ρc2p

[
λI + 2μ(np ⊗ np)

] : (e1 ⊗ e2)

= 0 − μ
�tn
ρc2p

sin 2αp

= sin 2αp.

(72)

Equation (72) implies that αp = 90◦ as shown in
Fig. 12. The angle of the shear shock can be derived by
enforcing the same condition in region III to give,

0 = σ (I I I ) : (e1 ⊗ e2)

= σ (I I ) : (e1 ⊗ e2) − �τ [ns ⊗ νs + νs ⊗ ns ] : (e1 ⊗ e2)

= 0 − �τ cos 2αs

= cos 2αs .

(73)
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Fig. 11 Control volume for
energy balance calculation
in Mode II

Fig. 12 Intersonic mode I
crack propagation model for
symmetric case

Thus leading to αs = 45◦. The resulting crack prop-
agation speed is therefore given by,

vc = √
2 cs ≤ cp, (74)

which falls in the intersonic range except for the case
where the Poisson’s ratio vanishes in which case the
crack propagates at the speed of sound.

It is now possible to find solutions for both the sym-
metric propagation case, where v(I I I ) · e1 = 0, and
the free surface case where σ (I I I ) = 0 . It is easy to
show that in the former case the shear and normal stress
jumps are related by,

�τ =
√
2 cs
cp

�tn, (75)

whereas in the latter the jumps are related by,

�τ = �tn . (76)

In both cases, the condition of vanishing vertical
stress in region III, gives a relationship between �τ ,
�tn and σ

(I )
22 as,

�τ + λ

λ + 2μ
�tn = σ

(I )
22 . (77)

This equation combined with either Eq. (75) for the
symmetric case or Eq. (76) for the case where the crack
propagates from a free surface will fully determine the
states of stress and velocity in regions II and III. Specif-
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ically, for the symmetric case, these are

v(I I ) = �tn
ρcp

e1;

σ (I I ) = −�tne1 ⊗ e1 + �τ e2 ⊗ e2; (78a)

v(I I I ) = �tn
ρcp

e2;

σ (I I I ) = (�τ − �tn)e1 ⊗ e1, (78b)

and for the free surface case, these are

v(I I ) = �tn
ρcp

e1;

σ (I I ) = −�tne1 ⊗ e1 + �tne2 ⊗ e2; (79a)

v(I I I ) =
(

�tn
ρcp

− �τ√
2ρcs

)
e1 + �τ√

2ρcs
e2;

σ (I I I ) = 0. (79b)

Regarding the energy balance, a similar analysis can
be carried out to that presented in previous sections for
supersonic modes I and II of fracture. In this case, it is
easy to notice that the energyflowacross the boundaries
of the control volume is zero for the three regions I, II
and III. However in this scenario, due to the intersonic
nature of the fracture mode analysed, the area of region
II is not preserved and the energy balance becomes

−cpE(I ) + (cp − √
2cs)(E(I I ) + K(I I )) + √

2cs(E(I I I )

+K(I I I )) = 0, (80)

which can be easily verified by substitution.

7 Conclusions

The paper has found novel local solutions to mode I
and mode II fracture in isotropic linear elasticity that
describe supersonic and intersonic crack propagation
showing remarkable similarities to experimental and
computational models previously reported in the liter-
ature (Gao et al. 2001; Rosakis 2002; Abraham et al.
2002; Guo et al. 2003; Buehler et al. 2003; Hao et al.
2004; Petersan et al. 2004; Willmott and Field 2006;
Radi and Loret 2008; Bizzarri et al. 2010; Schubnel
et al. 2011; Barras et al. 2018; Yue et al. 2019; Mai
et al. 2020). Despite these results, no theoretical predic-
tions describingMach cone solutions had been reported

in the literature before. In order to derive the solu-
tions reported here, the equations of linear isotropic
elastodynamics has been formulated in terms of first
order hyperbolic equations for velocity and displace-
ment gradients with their associated jump conditions
rather than using the more common second order equa-
tion for the displacement field. The solutions obtained
describe the steady state propagation of a crack in terms
of pressure and shear waves emanating from the crack
tip which separate states of constant velocity, strain
and stress. In line with the linear elasticity model used,
energy is exactly preserved and simply transformed
from elastic energy before fracture into a combina-
tion of a smaller amount of elastic energy and kinetic
energy. This neglects the energy required to create the
new surfaces which dominates fracture mechanics in
the Griffith theory model.

There are a number of physical limitations of the
proposed mathematical solutions. First and foremost,
the solutions developed are based on linear elasticity
and therefore do not include any form of dissipative
effects. This includes the absence of surface energy as
the crack grows as explained above. In addition, the
solutions consider only the steady state situation and
provide stress fields that are uniform both ahead and
behind the crack. It is obvious that just before the crack
begins to grow a complex stress field with high concen-
trations around the tip will exist, as predicted by classi-
cal fracturemodels based on intensity factors. The tran-
sition between these two states is complex and beyond
the scope of the analysis provided here. Finally, the
state of stresses in the regions beyond the shocks can in
some cases imply a state of stressmore demanding than
the original which would contradict the assumption of
the crack propagating along the horizontal axis unless
a prior weakness is assumed. In essence the paper has
provided a set of very simple particular solutions that
satisfy the linear elasticity equations of motion plus
far field and crack surface boundary conditions under
mode I and mode II fracture. It is likely that similar
but more complex solutions with interacting or curved
shock fronts will exist, or that through use of superpo-
sition techniques with homogenous solutions it will be
possible to overcome some of the simplifying assump-
tions contained in the present work.

Regardless of the above physical shortcomings, the
paper sheds light froman analytical point of viewon the
transfer of elastic to kinetic energy that takes place dur-
ing brittle fracture. It provides a useful counterpoint to
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quasi-static fracture models where the strain energy is
fully transformed into surface energy through the intro-
duction of a length scale effect. It is likely that brittle
fracture for most materials will include a component
of kinetic energy transfer as well as a component of
surface energy and dissipation. The balance between
these different effects will be dictated by the problem
configuration and physical considerations and obtained
through experimental observations and computational
models.

Given the growing number of experimental observa-
tions showing intersonic and supersonic crack growth
with the presence of Mach type of shock waves very
similar to those predicted by the theory above (refer
to Abraham and Gao 2000; Gao et al. 2001; Rosakis
2002; Abraham et al. 2002; Buehler et al. 2003; Hao
et al. 2004; Petersan et al. 2004; Schubnel et al. 2011;
Yue et al. 2019; Abraham 2001), it is clear that high
speed crack propagation in these regimes is governed
by the transfer of strain energy into kinetic rather than
into surface energy or dissipation.

The paper also provides a starting set of boundary
and initial conditions for computational simulations
where more complex material models and dissipative
effects can be incorporated leading to more physically
meaningful solutions. This will be explored in future
work in the context of Smooth Particle Hydrodynamics
(Lee et al. 2017, 2016, 2019; Ghavamian et al. 2021)
discretization methodologies where the introduction of
dissipative and/or length based effects to account for
surface energy, hyperelasticity and inelastic effects will
be possible.
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