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Abstract In this paper, we propose a theoretical
framework for studying mixed mode (I and II) creep
crack growth under steady state creep conditions. In
particular, we focus on the problem of creep crack
growth along an interface, whose fracture properties
are weaker than the bulk material, located either side
of the interface. The theoretical framework of creep
crack growth under mode I, previously proposed by the
authors, is extended. The bulk behaviour is described
by a power-law creep, and damage zone models that
account for mode mixity are proposed to model the
fracture process aheadof a crack tip.Thedamagemodel
is described by a traction-separation rate law that is
defined in terms of effective traction and separation
rate which couple the different fracture modes. Dif-
ferent models are introduced, namely, a simple critical
displacement model, empirical Kachanov type dam-
agemodels and amicromechanical basedmodel. Using
the path independence of the C∗-integral and dimen-
sional analysis, analytical models are developed for
mixed mode steady-state crack growth in a double can-
tilever beam specimen (DCB) subjected to combined
bending moments and tangential forces. A computa-
tional framework is then implemented using the Finite
Element method. The analytical models are calibrated
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against detailed Finite Element models and a scaling
function (Ck) is determined in terms of a dimensionless
quantity φ0 (which is the ratio of geometric and mate-
rial length scales), mode mixity χ and the deformation
and damage coupling parameters. We demonstrate that
the form of theCk-function does not change with mode
mixity; however, its value depends on the mode mix-
ity, the deformation and damage coupling parameters
and the detailed form of the damage zone. Finally, we
demonstrate how parameters within the models can be
obtained from creep deformation, creep rupture and
crack growth experiments for mode I and II loading
conditions.

Keywords Creep · Crack · Mixed mode · C*-
integral · Damage zone model · Traction-separation
rate law (TSRL) · Double cantilever beam (DCB) ·
Dimensionless analysis

Nomenclature

xi The Cartesian material and spatial coor-
dinates (i = 1, 2, 3) (m)

C∗ The rate of the J -integral (J/m2/h)
Cs The separation history function of the

simple model
Ck The separation history function of model

k
σi j The Cauchy stress tensor (MPa)
εi j The engineering strain tensor
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ε̇i j The engineering strain rate tensor (1/s)
κ The curvature of a beam (1/m)

κ̇ The curvature rate of a beam (1/(m s))
(•)el The elastic component of the quantity (·)
(•)cr The creep component of the quantity (·)
si j The deviatoric part of Cauchy stress ten-

sor (MPa)
σe The von Mises equivalent stress (MPa)
E Young’s modulus (MPa)
σ0 The reference stress (MPa)
ε̇0 The strain-rate at the reference stress σ0

(1/s)
n The rate sensitivity parameter of the bulk

material
ui The displacement vector (i = 1, 2, 3) (m)
ni The unit normal vector (i = 1, 2, 3)
Ti The traction vector (i = 1, 2, 3) (MPa)
Te The effective traction (MPa)
δi The displacement jump vector across the

damage zone (i = 1, 2, 3) (m)
δ̇i The displacement jump rate vector across

the damage zone (i = 1, 2, 3) (m/s)
δ̂ The representative separation across the

damage zone (m)
δe The effective displacement jump across

the damage zone (m)
δ̇e The effective displacement jump rate across

the damage zone (m/s)
δ̂c The representative separation at which

damage initiates in the damage zone at
the crack tip (m)

δ̂f The representative separation at failure in
the crack tip (m)

δ̇mi The maximum displacement jump rate
vector in the crack tip (i = 1, 2, 3) (m/s)

δ̇me Themaximumeffective displacement jump
rate at the crack tip (m/s)

T0 The reference traction of the damage zone
(MPa)

δ̇0 The separation rate at the reference trac-
tion T0 (m/s)

m the rate sensitivity exponent of the dam-
age zone

ω A scalar damage parameter
αt The tangential coupling parameter
αn The normal coupling parameter
gt The tangential coupling function of the

micromechanical model

gn The normal coupling function of the
micromechanical model

β A material parameter of the exponential
damage law

f The current area fraction of the pores
f0 The initial area fraction of the pores
fc The coalescence area fraction of the pores
2 l The spacing between two adjacent pores

(m)
h The current height of a pore (m)
h0 The initial height of the pores (m)
a The crack length (m)
ȧ The steady state crack velocity (m/s)
�
a Thedimensionless steady state crackveloc-

ity
φ0 The ratio of geometric to material length

scales
λ The characteristic geometric length scale

(m)

1 Introduction

In many engineering applications at elevated temper-
ature, structural components exhibit significant time-
dependent inelastic deformation, which might lead to
nucleation and/or propagation of flaws. Studying creep
crack growth (CCG) has been an active area of research
over the last four decades, with the aim of designing
structures with high integrity and safety. In this paper,
we aim to devise analytical models for steady-state
crack growth under mixed mode loading conditions
which can be calibrated against detailed Finite Element
simulations. Such models can be used to investigate
the effect of different material parameters and damage
models on the crack growth behaviour under complex
loading conditions.

The majority of early studies on creep crack growth
focused on pure mode I loading conditions, with the
aim of developing a parameter that characterises the
near crack tip fields as well as crack propagation. The
so calledC∗-integral (Landes and Begley 1976; Nikbin
et al. 1976; Ohji et al. 1976), i.e. the creep J -integral
(Rice 1978), was introduced to characterise the crack
tip fields and creep crack growth under steady state
creep conditions. In particular, it provides descriptions
of the strain-rate and stress singularities at the crack tip
and a correlation of experimental crack growth rate data
(Taira et al. 1979; Riedel andRice 1980).Moreover, the
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C∗-integral is path independent for contours in which
the material properties only vary in the direction per-
pendicular to the direction of crack growth within the
family of contours considered. Under transient condi-
tions, i.e. the transition from short-time elastic to long-
time creep, other parameters such as C(t), Ct and C∗

h
are found to characterise both stationary and propagat-
ing cracks with a variable degree of suitability (Riedel
and Rice 1980; Riedel 1981; Saxena 1986).

Under mixed mode loading and steady state condi-
tions, theC∗-integral remains a valid parameter (Cham-
bers et al. 1992). Chambers et al. (1992) assumed that
only a part of the C∗-integral, i.e. that part related to
mode I, is responsible for propagating the crack. They
defined the damage at the crack tip by a function of the
vonMises equivalent stress and then used the amplitude
of the singular von Mises stress field to determine an
effective value of C∗ by comparing mode I and mixed
mode loading conditions. Further, under transient creep
conditions, the role of mode mixity on the stress field
ahead of a crack tipwas investigated byBrockenbrough
et al. (1991) using the C(t) parameter.

The damage process ahead of a propagating crack
tip in polycrystalline materials under creep conditions
is controlled by the formation of discrete voids ormicro
cracks at grain boundaries. As these voids and/or micro
cracks grow and coalesce, they form secondary cracks
which coalesce creating the new crack surfaces, allow-
ing the primary macroscopic crack to advance along
an interface or interconnected grain-boundaries (Riedel
1987). These secondary cracks are usually not perpen-
dicular to the loading direction, which can generate
mixed mode loading conditions locally at the crack
tip. In some materials, an extensive damage zone can
develop in the vicinity of a crack tip in which many
boundaries are cavitated. The interaction between these
different cavitated and microcracked regions is impor-
tant and can lead to a significant reduction of stress
locally andmacroscopic dilation (i.e. diffuseddamage).
In other materials, damage is confined to a small region
directly ahead of the crack tip such that the dilation due
to the growth of the damage is then very localised. In
the presence of interfaces,whose fracture properties are
weaker than the bulk material, e.g. in dissimilar metal
welds (Yamazaki et al. 2008; Laha et al. 2012; Hu et al.
2019), a crack might be forced to grow along an inter-
face, which might lead to mixed mode loading at the
crack tip, regardless of the global loading conditions.
Mode mixity can influence damage development.

Themodemixity effect is usually incorporated using
effectivemeasures such as the effective stress, effective
creep strain, or accumulated creep strain at a critical
distance ahead of the crack tip. In these models the
deformation of the bulk material is assumed not to be
influenced by the presence of damage. Using empiri-
cal Kachanov type continuumdamagemechanicsmod-
els (Kachanov 1958; Rabotnov 1969), the single scalar
damage parameter is assumed to be determine by the
stress state which allows the effect ofmodemixity to be
taken into account (Nikbin et al. 1976, 1984; Yatomi
andNikbin 2014). The development of the damage pro-
cess zone at a crack tip has been modelled by Onck
and van der Giessen (Onck and van der Giessen 1998;
Van Der Giessen and Tvergaard 1994) using the Finite
Element Method, together with both mechanistic and
empirical models. The latter models fully describe the
interaction between deformation and damage develop-
ment and account for mode mixity. In these models,
the contribution of the different fracture modes (i.e. the
coupling) to the deformation and the damage in the
damage zone are assumed to be the same.

Another method of modelling crack propagation is
through the use of interface cohesive or damage zone
models. Interface damage zone models of this type
provide a coupling between the local separation rate
across an interface and bulk deformation processes.
They introduce a physically meaningful length scale
that is related to the dissipative mechanisms responsi-
ble for damage development. Damage zone models of
this type describe the fracture process in the vicinity of
the crack tip as a gradual surface separation process,
such that the normal and shear traction at the inter-
face resist separation and relative sliding. The cohe-
sive/damage zonemodelling approach has its origins in
the pioneering work of Dugdale (1960) and Barenblatt
(1962) and was later implemented in a Finite Element
environment byHillerborg et al. (1976). Severalmodels
have been proposed in the literature, wherein a variety
of materials and applications have been successfully
investigated (Camacho andOrtiz 1996;Corigliano et al.
2003; Elmukashfi and Kroon 2014; Hui et al. 1992;
Knauss 1993; Needleman 1987, 1990; Rahul-Kumar
et al. 1999; Rice and Wang 1989; Tvergaard 1990; Xu
and Needleman 1993). These first attempts focused on
studying the mode I fracture process, i.e. the relation
between the traction and separation that are normal to
the fracture surface. Later, it was extended to mode II
fracture, in which the tangential traction and sliding are
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defined. In modelling mixed mode loading conditions,
two approaches are often used to define the interaction
between different fracture modes. The first approach
is by fully coupling the normal and tangential compo-
nents of the traction and separation through introduc-
ing an effective traction and/or separation parameters
(Tvergaard and Hutchinson 1996; Pardoen et al. 2005).
The damage is evaluated using a representative sepa-
ration that determines the contribution of the different
fracture modes and yields different fracture energies
for the different modes. The second approach assumes
uncoupled behaviour between the different modes, i.e.
uncoupled normal and tangential deformation, but the
total fracture energy is taken to be the sum of the frac-
ture energy components of the different modes (Kafka-
lidis and Thouless 2002; Li et al. 2006). Experimental
studies show that the fracture process depends on the
properties of the different materials, and the coupling
between the different modes strongly depends on the
nature of the process zone.

The objective of this paper is to study a simple geom-
etry, inwhichwe project the damage onto a single plane
directly ahead of the crack tip, and a series of loading
conditions to provide fundamental information about
the effect of mode mix on crack growth. Simplifying
the model in this way allows us to undertake a rigor-
ous analysis that provides important insights that will
ultimately help us to explore and explain more com-
plicated and realistic scenarios. Therefore, we devel-
oped a theoretical and computational framework for
creep crack growth under mixed mode conditions. The
crack growth is assumed to be determined by the dam-
age in a concentrated narrow zone directly ahead of
the crack tip (i.e. the damage in not diffused in the
bulk material) in a weak interface that is parallel to the
crack. A theoretical framework is initially introduced
in which the constitutive behaviour of the bulk mate-
rial is described by a power-law creep and the dam-
age zone model constitutive relation is described by a
traction-separation rate law. The damage models are
formulated in terms of effective traction and separa-
tion parameters to account for mode mixity effects.
The damage process is assumed to be determined by
a representative separation which determines the dam-
age dependence on different modes. We propose three
different types ofmodels, i.e. a simple critical displace-
ment model, Kachanov type empirical models and a
micromechanical based interface model, as extensions
to the pure mode I models described in Elmukashfi and

Cocks (2017). We use the same approach as described
in Elmukashfi and Cocks (2017). We initially evalu-
ate the behaviour of a double cantilever beam speci-
men (DCB) of infinite length subjected to combined
bending moments and tangential forces. For this type
of specimen, C∗ remains constant as the crack grows
and the crack growth rate eventually achieves a steady
state. By exploring the steady state response, we can
establish the relationship between the steady state crack
growth rate, C∗ and characteristic material and geo-
metric length scales. The resulting models can then be
used to evaluate more complex loading conditions and
geometries. For the double cantilever beam, reasonably
straightforward analytical expressions can be obtained
forC∗. In the steady state, we can invoke the path inde-
pendence of theC∗-integral and choose contours in the
far field and surrounding the damage zone. This allows
simple analytical expressions for the crack growth rate
to be determined, which can be expressed in terms of
C∗, damage zone material parameters, a dimension-
less scaling parameter that is a function of the ratio
of characteristic geometric and material length scales,
and mode mixity. We use the Finite Element Method
to determine the magnitude of the scaling parameter.

The theoretical framework is presented inSect. 2 and
the damage zone models are developed in Sect. 3. The
analysis of creep crack growth in the double cantilever
beam specimen and the Finite Element implementation
of the damage zonemodel are described in Sect. 4, with
the crack growth results for the different interfacemod-
els presented and discussed in Sect. 5. Having estab-
lished the theoretical framework and structure of the
crack growth laws, we evaluate the behaviour of more
representative testing geometries in Sect. 5.

2 Theoretical analysis of mixed mode creep crack

In this section, we investigate the theoretical aspects
of mixed mode creep crack propagation. In partic-
ular, we adopt the theoretical framework introduced
in Elmukashfi and Cocks (2017) and consider mixed
mode crack propagation in creeping materials under
steady state conditions. A full description and eval-
uation of the nature of crack tip fields for station-
ary and growing cracks is provided in Elmukashfi and
Cocks (2017) for mode I conditions. Here the focus
is on mixed mode and mode II conditions, which has
achieved much less attention in the literature. Crack

123



A theoretical and computational investigation of mixed mode creep... 129

Fig. 1 The schematic of interface crackmodel in creeping solid.
The figure illustrates the definition of the interface surface Γint ,
inner path Γin and the outer path Γout

propagation is assumed to take place along an inter-
face whose fracture properties are weaker than the bulk
material (i.e. the crack propagates along the interface
regardless of the far field and local mode mixities).
Further, the path independence property of C∗ will be
used to obtain a direct relationship between the far field
loading and the fracture process parameters. It should
be noted that for crack growth in an elastic/creeping
material, path independence of C∗ still holds provided
the size of the zone in which elastic deformation is
important is smaller than the size of the crack tip dam-
age process zone (Hui and Riedel 1981).

Consider a body which contains a crack and is sub-
jected to a constant far field loading, see Fig. 1. A
common Cartesian coordinate system for the refer-
ence and deformed configurations xi , i = 1, 2, 3, is
assumed. Directly ahead of the crack there is an inter-
face along which the crack propagates. The bulk mate-
rial is assumed to exhibit steady-state creep behaviour
which is defined by the constitutive law

ε̇i j = ∂Φ

∂σi j
= 3

2
ε̇0

(σe

σ0

)n si j
σe

, (1)

where σi j is the Cauchy’s stress tensor, ε̇i j is the strain
rate tensor, si j = σi j − 1

3σkkδi j is the stress deviator,
σe is the von Mises equivalent stress, σ0 is a reference
stress, ε̇0 is the strain rate at the reference stress and n is

the rate sensitivity parameter. Φ is the stress potential

Φ = 1

n + 1
ε̇0σ0

(
σe

σ0

)n+1

. (2)

The energy dissipation rate per unit volume, Ḋ, is given
by

Ḋ = Φ + Ψ, (3)

where Ψ is the dual rate potential

Ψ = n

n + 1
ε̇0σ0

(
ε̇e

ε̇0

) n+1
n

, (4)

and ε̇e =
√

2
3 ε̇i j ε̇i j .

In this paper, we limit our consideration to situations
in which the creep properties in the bulk material either
side of the interface are the same. In dissimilar metal
welds different bulk materials with different properties
exist either side of the interface. The results presented
here can be readily extended to consider this more gen-
eral situation, but in order to identify the major features
of the crack growth behaviour under mixed mode load-
ing conditions we focus on the response of this simpler
configuration.

Damage grows along the interface, driven by the
local stress, and the crack advances when the damage
at a material point ahead of the crack achieves a critical
value. Hence, separation occurs along the interface to
create two surfaces as the crack advances. Therefore,
a material point along the interface is defined by the
two normal vectors n+

i and n−
i , where n+

i = n−
i , i.e.

the initially intact material point splits into two points
with unit normals acting opposite to each other and
into the material on either side of the interface. The
displacement-rate jump across the damage zone and
the corresponding traction are defined by the vectors
δ̇i = u̇+

i − u̇−
i , where u̇

+
i and u̇−

i are the displacement
rates either side of the interface, and T+

i = σi j n
+
j and

T−
i = σi j n

−
j , respectively.

The problem is analysed by equating the values of
C∗ determined on the inner and outer contours in Fig. 1.
The C∗-integral is defined as

C∗ =
∫

Γ

Ψ dx2 − Ti
∂ u̇i
∂x1

ds, (5)
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where Γ is an arbitrary contour around the tip of the
crack with unit outward normal ni , Ti = σi j n j is the
traction on ds and u̇i is the displacement rate. The C∗-
integral in the outer path, C∗

out, is determined by the
far field loading. For an interface that extends along
the x1-axis, the C∗-integral along the inner path, C∗

in,
is then evaluated as

C∗
in =

δ̇mi∫

0

Ti dδ̇i , (6)

where δ̇mi is the displacement rate at the tip of the crack
and Ti = T+

i = −T−
i . In the case of mixedmode load-

ing, the components of the traction and displacement
rates tangential and normal to the interface are con-
sidered, i.e. (Tt , δ̇t ) and (Tn, δ̇n), respectively, as illus-
trated in Fig. 2. We postulate that there is an effective
traction Te and an effective separation rate δ̇e, that can
be used to represent the constitutive relationship for the
interface. (The effective traction and effective separa-
tion rate are assumed to be functions of the traction and
separation rate components, respectively). Note also
that the effective traction and separation rate are power
conjugates. Thus, an equivalent expression to C∗

in in
Eq. (6) is

C∗
in =

δ̇me∫

0

Te dδ̇e, (7)

where δ̇me is the effective displacement rate at the tip of
the crack. The effective separation δe is then defined as
the integration of the effective rate, i.e. δe(t) = ∫ t

0 δ̇e dt .
Hence, a relationship between the far field loading

and the behaviour of the interface can be determined
using the path-independence of C∗, i.e. C∗

out = C∗
in.

3 Damage zone models for mixed mode creep
crack growth

In this section, we introduce a number of differentmod-
els to describe the response within the damage zone
undermixedmode conditions. The traction-separation-
rate law is assumed to take a direct power law relation-
ship between the effective traction Te and the effective
separation rate δ̇e. We can express the resulting consti-
tutive relationships in a similar form to that for power-

(a)

(b)

Fig. 2 The damage zone along the interface for mixed mode
crack propagation: a schematic of the damage zone and the trac-
tion and separation vectors,T and δ, respectively; andb the effec-
tive traction-separation rate (Te-δ̇e) and the effective separation
rate-separation (δ̇e-δe) distribution along the damage zone. l is
the length of the interface zone, δce is the critical effective separa-
tion, δfe is the effective separation at failure, δ̇

m
e is the maximum

effective separation rate and σ c is the interface strengthd

law creep of the bulk described in Sect. 2. Thus, the
constitutive model takes the following form

δ̇e = δ̇0

(
Te
T0

)m

and Te = T0

(
δ̇e

δ̇0

) 1
m

, (8)

where T0 is a reference traction (equivalent to σ0 of
Eq. (1)), δ̇0 is the separation rate at this traction and m
is an exponent (which can have a different value to n in
Eq. (1)). Throughout this paper, we set T0 = σ0, so that
the two reference stress like quantities are the same. A
traction potential, φ, can now be defined as

φ = 1

m + 1
δ̇0T0

(
Te
T0

)m+1

. (9)

It follows that the energy dissipation rate per unit area,
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ḋ , and dual separation rate potential, ψ , are, respec-
tively, given by

ḋ = φ + ψ, (10)

and

ψ = m

m + 1
δ̇0T0

(
δ̇e

δ̇0

)m+1
m

. (11)

The constitutive relations can alsobe expressed in terms
of the traction and separation rate components as

δ̇i = ∂φ

∂Ti
= δ̇0

(
Te
T0

)m
∂Te
∂Ti

, (12)

and

Ti = ∂ψ

∂δ̇i
= T0

(
δ̇e

δ̇0

) 1
m ∂δ̇e

∂δ̇i
, (13)

where the index notation i denotes the normal and tan-
gential directions, i.e. i ∈ [t, n], which will be used in
the subsequent descriptions.

In what follows, a range of traction-separation-rate
laws are introduced for mixed mode conditions which
generalise the models described by Elmukashfi and
Cocks (2017).

3.1 Simple critical displacement model

A simple form of the effective traction can be taken in
the form of the resultant traction, i.e. the square root of
the sumof squares of the normal and tangential traction,
Tt and Tn , respectively. Thus, the effective traction can
be written in the general form

Te =
√(

Tt
αt

)2

+
(
Tn
αn

)2

, (14)

whereαt andαn are parameters that define the coupling
between tangential and normal deformation as illus-
trated in Fig. 3. Thus, the separation rates in Eq. (12)
take the following form

δ̇i = δ̇0

(
Te
T0

)m Ti
α2
i Te

. (15)

Fig. 3 The effective traction in the traction space in the case
of the simple critical displacement model. The plots represent
constant effective traction Te for different values of αt/αn

Using this relation and the definition of effective trac-
tion in Eq. (14), the effective separation rate, δ̇e, can be
determined as

δ̇e =
√(

αt δ̇t
)2 + (

αn δ̇n
)2

. (16)

The traction in Eq. (13) is then given by

Ti = T0

(
δ̇e

δ̇0

) 1
m α2

i δ̇i

δ̇e
. (17)

The coupling between the tangential and normal defor-
mation in the interface is determined by the parameters
αt and αn as illustrated in Fig. 3 and Eqs. (14)–(17).

We assume that the damage does not influence the
separation rates and failure is achieved when a suitable
separation measure achieves a critical value. Hence,
we introduce a representative separation, δ̂, that is a
function of the tangential and normal separations, i.e.
δ̂ = δ̂(δt , δn), which can be used to define the local
failure condition as δ̂ = δ̂f where δ̂f is the represen-
tative separation at failure. It is worth mentioning that
the traction Tt , Tn and Te, become zero at the position
where local failure is achieved. The form of the rep-
resentative separation δ̂ determines the contribution of
the different fracture modes to the damage process. For
example, assuming that δ̂ = δe, the parameters αt and
αn determine the coupling between both the deforma-
tion and local failure. Moreover, other forms can also
be used to define δ̂, for example, for the cases that mode
I controls the damage process, δ̂ ≈ δn .
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3.2 Kachanov type empirical model

In this model, damage is assumed to influence the con-
stitutive response. The damage is introduced using sin-
gle or multiple scalar damage parameters, ωi , such that
each parameter is assumed to evolve monotonically
from 0 to 1, i.e. from an undamaged to a fully dam-
aged state. We assume that the effective traction takes
the quadratic form of Eq. (14) with the tangential, Tt ,
and normal, Tn , traction, replaced by T̄t and T̄n , respec-
tively,where, followingKachanov (1958) andLemaitre
and Chaboche (1994),

T̄i = Ti
1 − ωi

. (18)

Hence, the effective traction becomes

Te =
√(

Tt
αt (1 − ωt )

)2

+
(

Tn
αn (1 − ωn)

)2

, (19)

Thus, the constitutive response is then simply obtained
by replacing αi by αi (1 − ωi ) in Eqs. (15) and (17), to
give

δ̇i = δ̇0

(
Te
T0

)m Ti
[αi (1 − ωi )]2 Te

, (20)

and

Ti = T0

(
δ̇e

δ̇0

) 1
m [αi (1 − ωi )]2 δ̇i

δ̇e
. (21)

Similarly, the effective separation rate becomes

δ̇e =
√(

αt (1 − ωt ) δ̇t
)2 + (

αn (1 − ωn) δ̇n
)2

. (22)

The coupling between the tangential and normal defor-
mation in the interface is controlled by the terms
αt (1 − ωt ) and αn (1 − ωn). Thus, initially in the
absence of damage, the coupling is defined by the
parameters αt and αn . After damage onset, i.e. ωt > 0
and/or ωn > 0, the rate at which each damage parame-
ter evolves controls the coupling. It is worth noting that
in the case of isotropic damage, i.e. ωt = ωn = ω, the
damage does not affect the coupling between the tan-
gential and normal deformation which is determined
by the parameters αt and αn .

The simplest damage representation is obtained by
considering isotropic damage. Here, we assume that
the damage is related to the representative separation δ̂,
i.e. ω = ω(δ̂). Further, the damage evolution law may
take different forms depending on the damage mecha-
nism(s). General forms of the different damage models
proposed by Elmukashfi and Cocks (2017), i.e. linear
and exponential models, can be expressed as:

� A linear damage model:

ω =

⎧⎪⎨
⎪⎩

δ̂ − δ̂c

δ̂f − δ̂c
if δ̂ ≥ δ̂c,

0 if δ̂ < δ̂c.

(23)

� An exponential damage model:

ω =

⎧
⎪⎪⎨
⎪⎪⎩
1 − exp

{
β

[
δ̂ − δ̂c

δ̂f − δ̂c

]}
if δ̂ ≥ δ̂c,

0 if δ̂ < δ̂c.

(24)

where δ̂c is the representative separation at which dam-
age initiates (for separations less than this value ω = 0
and the constitutive response is given by Eqs. (15)
and (17)), δ̂f is the representative separation at failure
and β is a material parameter. It should be noted that
for the exponential damage law, the traction does not
necessarily decrease smoothly to zero at failure, but an
abrupt response may result. As discussed in Sect. 3.1,
the form of the representative separation δ̂ defines the
contributions of the different fracture modes to the
damage process. It should bementioned that, in the case
of anisotropic damage, the form of the damage evolu-
tion laws may affect these contribution. In this study,
we limit our considerations to the cases of isotropic
damage and the representative separations δ̂ = δe and
δ̂ = δn .

3.3 Micromechanical based model

This model is a generalisation of the previously pro-
posed pure mode I model employed in Elmukashfi and
Cocks (2017). In this model, the damage is modelled as
an array of pores idealised as cylinders, which grow as
the surroundingmaterial creeps, see Fig. 3.3. At a given
instant, the radius and height of the pores are denoted as
r and h, respectively, and the mean spacing is 2 l. Thus,
the pores are characterised by their area fraction in the
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(a) (b)

Fig. 4 The micromechanical representation of the creep dam-
age by pore growth: a pores of radius r and spacing 2l on a grain
boundary subjected to microscopic stress state σi j and the defor-
mation is controlled by steady-state creep andb an idealisation of

a pore as a cylinder with height h and diameter equal to the pore
to pore spacing 2l and the macroscopic tangential and normal
traction (Tt , Tn) and separation (δt , δn).

plane of the cavitated zone, i.e. by f = (a/ l)2. Fur-
ther, the representative volume element is assumed to
be fully constrained in the radial direction and thedefor-
mation occurs in the normal and tangential directions,
i.e. l = const. In the case of pure normal loading the
pores elongate in the normal direction and also extend
in the plane of the interface. Under shear loading pores
becomemore crack like and elongate in the direction of
shear. The resulting expression for the effective traction
given by Yalcinkaya and Cocks (2015) is

Te =
√(

Tt
ḡt

)2

+
(
Tn
ḡn

)2

, (25)

where ḡt = gt/g0, ḡn = gn/g0 and

gt = 1√
3

(1 − f ) ,

gn =
[
(1 − f )2 +

(
1√
3
ln

1

f

)2
] 1

2

.

(26)

The constitutive response obtained using Eqs. (8)
and (12) is

δi = δ̇0

(
Te
T0

)m Ti
ḡ2i Te

, (27)

and

Ti = T0

(
δ̇e

δ̇0

) 1
m ḡ2i δ̇i

δ̇e
, (28)

Fig. 5 The effective traction in the traction space in the case of
the micromechanical model. The plots represent constant effec-
tive traction Te for different values of pore area fraction f and
g0 = 1

The effective separation rate then becomes

δe =
√(

ḡt δ̇t
)2 + (

ḡn δ̇n
)2

. (29)

Thus, the contribution of each fracture mode to the
deformation of the interface is controlled by the func-
tions gt ( f ) and gn( f ), as illustrated in Fig. 5. Exam-
ining these functions, we find that the ratio gt/gn
increaseswith increasing value of f and reaches amax-
imum value of gt/gn ≈ 0.5 at f = 1.0.
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The evolution of the pore’s area fraction and height
during loading are given by Yalcinkaya and Cocks
(2015) as

ḟ = δ̇n

h
(1 − f ) + √

f
δ̇t

l
. (30)

and

ḣ = δ̇n − h

a
δ̇t = δ̇n − 1√

f

h

l
δ̇t . (31)

The initial pore’s area fraction and height are assumed
to be f0 and h0, respectively. Further, the pores are
assumed to coalesce when f = fc. These equations
provide a coupling between the normal and tangential
response. The area fraction of the pores grows under
both normal and tangential loading, while the height of
the pores increases under normal loading, but decreases
in shear, as the pores become more crack like.

4 Mixed mode creep crack growth in a double
cantilever beam

In this section, mixed mode creep crack growth in the
DCB specimen shown in Fig. 6 is analysed. The length
and height, of the specimen are denoted by L and 2 H ,
respectively, and the crack length is denoted by a. The
crack propagation is assumed to take place at an inter-
face at x2 = 0. Each arm of the specimen is subjected
to constant force and moment per unit depth, i.e. N and
M1 on the upper arm and−N andM2 on the lower arm,
respectively. It is convenient to express the moments
M1 and M2 in terms of a bending moment M and the
moments required to balance the moment due to the
pair of forces N and −N , such that M1 = M + N H/2
andM1 = M−N H/2. Hence, puremode I is obtained
when N = 0 andpuremode II is obtainedwhenM = 0.
We assume that the overall length L → ∞ and that the
height of each arm H 	 a. Under these conditions,
C∗ remains constant as the crack grows, thus a steady
state is eventually achieved in which the crack growth
rate is constant. We focus on this steady state response.
The objective is to obtain a mathematical description
for the relationship between the far field loading and
the local damage development within the damage zone
and the crack growth rate under both plane stress and
plane strain conditions.

Fig. 6 The schematic of the double cantilever beam specimen

Fig. 7 The definition of the inner pathΓin and the outer pathΓout
that are used to evaluate the C∗-integral in the double cantilever
beam specimen

The relationship between the loading and fracture
parameters is obtained using the path independence of
theC∗-integral as discussed in Sect. 2. TheC∗-integral
is evaluated along the outer and inner paths indicated by
the dashed lines and different colours in Fig. 7. Equat-
ing the values of C∗ determined from these two paths
provides a relationship between the crack-tip opening
rate and the applied load. As discussed in Elmukashfi
and Cocks (2017), there is a single characteristic geo-
metric length scale for this problem, which we take
as λ = H/2, and in the steady state the separation
rate within the interface can be expressed as a func-
tion of x1/λ, integrating this function as an element is
convected towards the crack tip as the crack grows at
constant velocity, allows the crack growth rate to be
determined. The form of this function is not known,
but to determine the crack growth rate we only need
to determine a single quantity—the resulting integral
can be determined from a single piece of information
from a Finite Element analysis of the problem, namely
the crack velocity. The details of this process are given
below.

4.1 The C∗-integral for the outer path Γout

C∗ for the outer path can be determined from the rate
of change of the rate analogue of the total potential
energy, Π , with crack length, where

Π =
∫

V

Ψ · dV −
∫

S

Ti u̇i · dS. (32)
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It should be noted that C∗ can also be determined by
direct evaluation of the integral of Eq. (5). For an ele-
ment of beam under combined bending and uniaxial
loading Marm and Narm, respectively, the curvature rate
κ̇ and axial strain rate ε̇ can be determined by solving
the following nonlinear equations (for the details see
Appendix A)

Narm

N0
= n

2 (n + 1)

2 ε̇0

κ̇ H

1

η
n+1
n

[(
κ̇ H

2 ε̇0
+ ε̇

ε̇0

) n+1
n

−
(

κ̇ H

2 ε̇0
− ε̇

ε̇0

) n+1
n
]

,

Marm

M0
= n

2 (n + 1)

(
2 ε̇0

κ̇ H

)2 1

η
n+1
n

{
2 n + 1

n

κ̇ H

2 ε̇0

×
[(

κ̇ H

2 ε̇0
+ ε̇

ε̇0

) n+1
n −

(
κ̇ H

2 ε̇0
− ε̇

ε̇0

) n+1
n
]

−
[(

κ̇ H

2 ε̇0
+ ε̇

ε̇0

) 2 n+1
n −

(
κ̇ H

2 ε̇0
− ε̇

ε̇0

) 2 n+1
n

]}
,

(33)

where M0 = 2n

2n + 1

σ0 H2

4
, N0 = σ0 H and η = 1

for plane stress and
√
3/2 for plane strain. For an arm

loaded with a bending moment Marm and axial force
Narm, the contribution to C∗ is determined as

C∗
arm = −∂Π

∂a

∣∣∣∣
Marm,Narm

= n

(2 n + 1) (n + 1)
σ0 ε̇0

H

2

2 ε̇0

κ̇ H

1

η
n+1
n

×
[(

κ̇ H

2 ε̇0
+ ε̇

ε̇0

) 2 n+1
n −

(
κ̇ H

2 ε̇0
− ε̇

ε̇0

) 2 n+1
n

]

−
[
M

∂θ̇

∂a
+ N

∂δ̇

∂a

]

= n

(2 n + 1) (n + 1)
σ0 ε̇0

H

2

2 ε̇0

κ̇ H

1

η
n+1
n

×
[(

κ̇ H

2 ε̇0
+ ε̇

ε̇0

) 2 n+1
n −

(
κ̇ H

2 ε̇0
− ε̇

ε̇0

) 2 n+1
n

]
,

(34)

where θ̇ and δ̇ are the rotation and displacement rates
at the end of the beam, respectively. For the DCB spec-

imen of Fig. 7, the C∗ is the summation of the upper
and lower arms contributions. Hence, C∗

out is

C∗
out = n

(2 n + 1) (n + 1)
σ0 ε̇0

H

2

1

η
n+1
n

{
2 ε̇0

κ̇1 H

×
[(

κ̇1 H

2 ε̇0
+ ε̇1

ε̇0

) 2 n+1
n −

(
κ̇1 H

2 ε̇0
− ε̇1

ε̇0

) 2 n+1
n

]

+ 2 ε̇0

κ̇2 H

[(
κ̇2 H

2 ε̇0
+ ε̇2

ε̇0

) 2 n+1
n

−
(

κ̇2 H

2 ε̇0
− ε̇2

ε̇0

) 2 n+1
n

]}
,

(35)

where the curvature and axial strain rates for the upper
arm are κ̇1 and ε̇1 that are determined by solving the
non-linear equations of (33) for Narm = −N and
Marm = M1 = M + N H/2, and the rates κ̇2 and
ε̇2, for the lower arm, are determined from Eqs. (33)
with Narm = N and Marm = M2 = M − N H/2.

4.2 The C∗-integral for the inner path Γin

Considering the definition of the C∗-integral in Eq. (7)
and the interface constitutive equation in Eq. (8), C∗

in
for the inner path Γin can be determined as

C∗
in =

δ̇me∫

0

T0

(
δ̇e

δ̇0

) 1
m

· dδ̇e = 2m

m + 1
T0 δ̇0

(
δ̇me

δ̇0

)m+1
m

.

(36)

It should be noted that the effective separation rate at the
crack tip, δ̇me , depends on the form of interface model
adopted.

4.3 The effective displacement rate at the crack tip

The effective separation rate at the tip, δ̇me , can be
expressed in terms of the applied load using the path
independence ofC∗, i.e. by equatingEqs. (35) and (36).
This gives:

δ̇me = δ̇0

(
g(m) φ0 C̄

∗) m
m+1

, (37)
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where φ0 = ε̇0 λ

δ̇0
= ε̇0 H

2δ̇0
is the ratio of geometric to

material length scales for the problem, C̄∗ = C∗

ε̇0 σ0 λ

is the dimensionless value of C∗ and g(m) = m + 1

2m
.

4.4 The Mode mixity

Themodemixity, χ , is defined as the ratio between dif-
ferent modes acting of loading. In linear elastic fracture
mechanics, the mode mixity, χel, is a function of the
ratio of the mode I and mode II stress intensity factors
(Hutchinson and Suo 1991), KI and KII, respectively.
Following Chambers et al. (1992) and Shih (1974), we
express the mode mixity for an elastic material as

χel = 2

π
arctan

(
KI

KII

)
, (38)

where 0 ≤ χel ≤ 1, with 0 corresponding to pure mode
II and 1 to puremode I. In nonlinear problems, themode
mixity, χpl, is defined by the following ratio between
the shear and normal components of stress acting on a
plane directly ahead of the crack tip (Shih 1974)

χpl = 2

π
arctan

[
lim
r→0

σθθ (r, θ = 0)

σrθ (r, θ = 0)

]
, (39)

where r and θ are the polar coordinates of a coordinate
system that is centred at the crack tip and 0 ≤ χpl ≤ 1.
Note also that the latter definition is equivalent to the
definition in Eq. (38) for linear elasticmaterials. For the
current problem, where a damage zone forms ahead of
the crack, the definition of Eq. (39) can be difficult
to employ in practice. Also, in the analysis presented
above we do not need to determine the detailed form
of the stress field ahead of the crack tip. It proves more
appropriate to express the mode mixity for the DCB in
terms of the applied loading.We employ the definition:

χ = 2

π
arctan

(
M̄

N̄

)
, (40)

where M̄ = M/Mmax, N̄ = N/Nmax, and Mmax and
Nmax denote the maximum values of the normal force
and bending moment in pure mode I and pure mode
II, respectively, for a given value of C∗. The maximum

values Mmax and Nmax can be determined by solving
Eq. (35) for a given value of C∗ in pure mode I and
mode II, respectively. In this study we primarily use the
definition of Eq. (40), but also compare it with Eq. (39)
where appropriate.

4.5 The analysis of a steadily propagating crack

Under constant combined load, the crack velocity will,
after an initial transient, achieve a steady state, dur-
ing which it grows at a constant rate ȧ. We consider
a coordinate system that moves with the crack tip. A
material element such as P in Fig. 8a then moves along
the x1-direction at a rate (Cocks and Ashby 1980)

dx1
dt

= −ȧ. (41)

There are two characteristic length scales in this
problem, the geometric length scale λ and the material
length scale δ̇0/ε̇0. We can therefore write the effective
separation rate in the form

δ̇e = δ̇me · Λk

( x1
λ

)
= δ̇me · Λk (x̄1) , (42)

where Λk is a dimensionless function that depends on
the interface model, whose detailed form also depends
on the ratio of geometric and material length scales φ0,
the degree of constraining at the crack tip and the mode
mixity, as shown in Fig. 8b. For each of the models
described in Sect. 3, failure of an element occurs when
the effective separation across the damage zone reaches
a critical value δfe, which is not necessarily a material
parameter. Integrating the effective separation rate as
an element is convected towards the crack tip gives

δfe =
tf∫

0

δ̇e · dt = −
0∫

∞
δ̇e · dx1

ȧ
= δ̇me λ

ȧ

∞∫

0

Λk (x̄1) · dx̄1

= δ̇me λ

ȧ
Ck (φ0, n,m, χ) , (43)

where we have used Eq. (41) to substitute for dt and
Eq. (42) to substitute for δ̇e. The dimensionless func-
tion Ck is only a function of φ0, n, m, χ , degree
of constraint and the detailed form of model for the
damage zone (k indicates the model, i.e. s ≡ simple,
kl ≡ Kachanov linear, ke ≡ Kachanov exponential
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(a) (b)

Fig. 8 The schematics of a steadily propagating crack in viscous solid: a a material point P at distance x1 from the moving crack tip
and b the definition of the Λk and Ck dimensionless functions for point P

and m ≡ micromechanical models). It should be men-
tioned that Ck depends on the fracture mode coupling
parameters, i.e. αt , αn and l/h0. Note also this func-
tion reduces to Ĉk employed in Elmukashfi and Cocks
(2017) for the case of pure mode I. Substituting for δ̇me
using Eq. (37) gives the steady state crack velocity

�
a = ȧ

ε̇0λ
= g (m)

m
m+1

φ
− 1

m+1
0 C̄∗ m

m+1

δ̄fe
Ck (φ0, n,m, χ)

(44)

where δ̄fe = δfe/λ. We can express this relationship in
a number of different forms. An alternative form that
can be used to provide some insight into the material
response is:

ȧ = A
1

m+1 λ

δfe

[
g (m) C∗] m

m+1
Ck (φ0, n,m, χ) (45)

where A = δ̇0/σ
m
0 is amaterial constant for the damage

zone (see Eq. (8)). The form of this equation might
suggest that the crack growth rate is a function of C∗,
for a given value of δfe. This is only true if Ck is only a
function of n and m, or φ0 and χ are constant for the
range of conditions of interest. Note that for the DCB
specimen of Fig. 7 and n = m

φ0 = B

A
λ = B

A

H

2
(46)

where B = ε̇0/σ
m
0 is a material property. Thus, for

constant value of λ, the crack velocity ȧ is proportional
to C∗ m

m+1 . Generally, λ can change as a crack grows,

which results in a change of φ0, and therefore, a change
in the crack growth rate for a given value of C∗. This is
discussed more fully in the context of mode I loading
by Elmukashfi and Cocks (2017).

In order to determine the crack growth rate, we need
to evaluate the quantityCk .We can determine this using
the Finite Element Method, which can be obtained
by equating the numerically determined crack veloc-
ity with the prediction of Eq. (45). Further, in order
to evaluate the dependence of Ck on the mode mix-
ity, the mixity parameter χpl of Eq. (39) will be deter-
mined numerically for a given loading condition in the
absence of the damage zone.

4.6 Numerical implementation of the governing
equations

The initial-boundary value problemdescribed in Sect. 4
is numerically solved using the FE (Finite Element)
code Abaqus (Abaqus 2016). A nonlinear quasi-static
analysis is used for the initial loading, and a nonlin-
ear visco analysis is used for the creep crack propaga-
tion analysis. In the visco analysis implicit time inte-
gration is used to solve the FE equations and mixed
implicit/explicit integration is used for the integration
of the creep and damage zone equations. The FE analy-
sis requires the solution for an elastic/creep constitutive
law in the bulk and an elastic rate dependent opening
model for the damage zone. Elastic constitutive compo-
nents have been added to the constitutive relationships
of Eqs. (1), (8), (15), (20) and (27), with the values of
the elastic components chosen to have limited influence
on the computed results. It is worth mentioning that the
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validity of the proposed model in the presence of elas-
tic deformation in the bulk is discussed in Appendix C
and the elastic properties of the interface are selected
such that any artificial compliance of the interface is
prevented.

The geometry of the double cantilever beam (DCB)
specimen shown in Fig. 7 is discretised, and a typical
Finite Element mesh is shown in Fig. 9. The dimen-
sions are taken as L = 100 mm, H = 10 mm,
and B = 1 mm. The initial crack is assumed to be
a0 = 40 mm, and crack propagation is studied over
a length Δa = 50 mm. The 4-node reduced integra-
tion bilinear plane stress and strain elements (CPS4R
and CPE4R) are used in the discretisation for plane
stress and strain conditions, respectively.A4-node two-
dimensional linear damage zone element was imple-
mented in Abaqus using the user-defined subroutine
UEL. The details of the Finite Element implementa-
tion are provided in Appendix B. The Finite Element
model is divided into two regions, in which the bulk
and interface elements are defined. The interface ele-
ments are inserted along the crack propagation path,
i.e. a ≤ x1 ≤ L and x2 = 0. The top and bot-
tom faces of the damage zone elements are attached
to the bulk elements, see Fig. 9b. The interface ele-
ments aremodelled with zero initial thickness such that
the nodes on the top and bottom faces coincide. The
mesh has 30215 elements, of which 29748 are bulk
elements and 467 are damage zone elements. A uni-
form refined element region is created adjacent to the
crack and its propagation for controlling the interface
element length linte. A mesh convergence study was
performed for different values of φ0 = 1 and inter-
face parameters δ̄fe = 0.004, β = 1.0, f0 = 0.01,
fc = 0.2 and h0 = l = 0.001 mm. We found that
an interface element length of linte = 0.02 mm is
necessary to obtain converged solutions for the range
φ0 = [

10−10 − 105
]
. The interface stiffness parame-

ters Kt = Kn = 106 MPa were selected such that the
elastic deformation is negligible (see Appendix C).

The numerical analysis was performed for different
combinations of the dimensionless parameters defined
above. The damage parameter (ω or f ) is computed and
recorded at each Gauss point of the interface during the
analysis. The crack tip position, xtip, is defined by ω =
1 or f = fc, and the crack tip velocity is determined

using forward differencing as

v
p
tip = dxtip

dt

∣∣∣∣
tp

= x p+1
tip − x p

tip

Δtp
(47)

where indices p and p + 1 denote variable values at
instants tp and tp+1, respectively, andΔtp = tp+1 − tp
is the time increment. Further, the steady crack velocity,
ȧ, is computed by taking the average velocity over the
steady propagation period.

5 Results and discussion

5.1 The mode mixity analysis

It proves instructive to concentrate initially on the def-
inition of mode mixity for different loading combina-
tions. In order to study the effect of mode mixity on
creep crack growth, we analyse the DCB specimen for
different combinations ofmodemixity parameterχ and
C∗. Different combinations of the loading parameters
M and N , ranging between pure mode I and pure mode
II, are obtained by solving Eq. (35) at constant C∗.
Fig. 10 shows the relation between M̄ and N̄ defined
following Eq. (40) for different values of n and a con-
stant value of C∗. These relations are similar for both
plane stress and plane strain conditions. It should be
noted that for the same value of C∗, the maximum
values of the bending moment Mmax and maximum
shear force Nmax in the plane stress and strain con-
ditions are related by Mpd

max = (
ηps/ηpd

)
Mps

max and

N pd
max = (

ηps/ηpd
)
N ps
max, where sub/superscripts ps

and pd represent plane stress and strain conditions,
respectively. In other words, for the same values of
M̄ and N̄ , the values of C∗ in plane stress and strain
conditions are related byC∗

pd = (
ηps/ηpd

)n+1
C∗
ps. The

results show that surfaces of constant C∗ for different
values of n in load space nest inside each other, with
the surface for n = 1 forming the outer surface and
n → ∞ forming the inner surface. (Note that n = 1
corresponds to linear viscous material and n → ∞
corresponds to an ideal plastic material). This type of
nesting behaviour is equivalent to the nesting surfaces
of constant energy dissipation rate originally identified
by Calladine and Drucker (1962) for structural prob-
lems and employed by Cocks (1994) in the formulation
of constitutive models for porous bodies and sintering.
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(a) (b)

Fig. 9 The Finite Element mesh of the double cantilever beam specimen: a the mesh of the whole geometry; and b mesh details along
the middle of the specimen where the damage elements are inserted along the crack propagation path

Fig. 10 The relation
between the dimensionless
loading parameters M̄ and
N̄ at different values of n
and constant C∗

The relationship between the mode mixity ratios χ

in Eq. (40) andχpl defined in Eq. (39) are obtained from
the analytical and FE calculations for different values
of n. Amesh similar to that in Fig. 10, but without inter-
face elements, and with several rings of 120 elements
around the crack tip giving paths of Gauss points of
constant radius, is used to determine the stress field and
C∗. The C∗ values are taken as the steady state value
of the contour integral C(t) which is achieved when
the changes are negligible over time (i.e. less than 1%).
The value of C∗ is obtained for 10 different contours
separated by a radial distance lcont = 0.01 mm. The
value of C∗ is found to vary with the distance from
the crack tip and approach a constant value from the
5th contour, i.e. r = 5 lcont. We therefore take C∗ as
the value determined at the 5th contour. The values

of C∗ for different mode mixities are compared with
the analytical solution given by Eq. (35) and they are
found to be in excellent agreement. The stress field is
obtained at elemental Gauss points at different polar
coordinates r and θ . The stress distribution is obtained
at a distance r = 5 lcont and 6 lcont from the tip which is
found to be in excellent agreement with Westergaard’s
solutions (Westergaard 1939) in the elastic regime, and
with Chamber’s and Webster’s (Chambers et al. 1992)
and Shih’s (Shih 1974) solutions in the creep regime.

The mixity ratio, χpl, is then determined using the
definition in Eq. (39) and the stresses at r = 5 lcont
for different combinations of the dimensionless load-
ing parameters M̄ and N̄ , i.e. different values of χ . Fig-
ure 10a and b show the relationship between the mode
mixity ratios χ and χpl for the plane stress and strain
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conditions, respectively, and different values of n. In
the plane stress case, the values of χpl are larger than
χ for the lower values of χ and greater than χ for the
higher values. In the intermediate range ofχ ,χpl takes a
constant value where the range and the value depend on
n. Further, χpl increases with increasing of n for small
values ofχ and decreases with increasing value of n for
higher values of χ . In plane strain, χpl are larger than
χ for the entire range and it increases with increas-
ing n. The plane stress results appear to be different
from the results reported by Chambers et al. (1992). In
plane strain, the results are in good agreement with the
results reported by Shih (1974). The difference in plane
stress might be attributed to the in-plane constraint that
is introduced by the far-field loading. Hence, when the
in-plane constraint is significant, the higher order terms
of the small scale yielding stress field become large,
which leads to a change in the near-field mode mixity,
i.e. the constraint changes the values of the stresses in
Eq. (39). The constraint effects in plane strain appear to
beminimal. Several approaches have been used to char-
acterise the in-plane constraint levels such as the J −Q
approachbyO’DowdandShih (O’dowdandShih 1991,
1992) and the J − A2 approach by Yang et al. (1993),
Chao et al. (1994) in elastic-plastic materials. Using
the analogy between J andC∗, Budden and Ainsworth
(1999) and Bettinson et al. (2001) have usedC∗ −Q to
characterise the crack tip fields under creep conditions,
i.e. the stress field is σi j = σHRR

i j + Q σ0 δi j where

σHRR
i j is the HRR stress field (Hutchinson 1968; Rice

and Rosengren 1968) and Q is a geometry dependent
parameter. Several studies have shown that, for a num-
ber of different specimens, the Q parameter can take
a negative value and it decreases with increase of out-
of-plane constraint (O’dowd and Shih 1991; Cravero
and Ruggieri 2003). Thus, for Q < 0, the tangential
stress σθθ decreases and therefore reduces the near-
field mixity parameter χpl as indicated in Eq. (39). The
constraint effects are not investigated further in this
study.

In the subsequent sections, we use the far-field load-
ing mode mixity χ for the given DCB specimen under
combined bending and shear force loading. These
results can be converted to a dependence on χpl by
employing the relationships plotted in Fig. 11.

(a)

(b)

Fig. 11 The relation between the local mixity ratio χpl and the
far-field loading mixity ratio χ for: a plane stress conditions; and
b plane strain conditions

5.2 Crack growth

We have performed several analyses for different com-
binations of the dimensionless parameters, mode mix-
ity and interface properties. In each analysis, the crack
tip position during transient and steady state growth
have been obtained. To illustrate the different results,
the simple interfacemodel, with the representative sep-
aration taken to be the effective separation, i.e. δ̂ = δe,
is adopted. Further, the parameters n = m = 9,
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φ0 = 1.0, αt = αn = 1.0 and δ̄fe = 0.004 are used, and
themodel is analysed assuming plane stress conditions.

Figure 12a and b show the crack tip position and
velocity as functions of time, respectively. The plots
show that the crack starts to propagate slowly and accel-
erates to a high velocity before dropping after a short
time (∼ 20 hr) to a lower steady state velocity. In this
case a steady velocity of ȧ = 0.103mm/hr is obtained.
The result shows that the transient velocity is higher
than the steady state velocity suggesting that the stress
at the crack tip is initially high due to the elastic defor-
mation. As the crack advances creep deformation even-
tually dominates and the stress fully relaxes leading to
a slower propagation rate. Additionally, the damage
zone ahead of the crack tip is fully developed during
both transient and steady propagation. The other sce-
nario is when the damage is not fully developed during
the transient stage, which may lead to a slower rate of
propagation before reaching a steady state.

5.3 The Ck-function and mode mixity

In order to evaluate Ck , the Finite Element analysis
is used to determine the steady-state crack velocity ȧ.
Thus, for a given set of input parameters and mode
mixity, Ck can be evaluated from Eq. (44):

Ck =
�
a δ̄fe φ

1
m+1
0

g (m)
m

m+1 C̄∗ m
m+1

. (48)

The appropriateness of the dimensionless analysis has
been examined using different values of material and
geometric parameters,while keeping the dimensionless
quantities and mode mixity constant. The results are
found to be independent of the choice of these param-
eters. Therefore, the dimensionless groups identified
within the mathematical formulation are appropriate
for the class of problem analysed. Further, the physical
limits, the limits of small and large φ0, and the validity
of the above approach are discussed in Appendix C.

It proves instructive to investigate initially the form
of the relation between Ck and φ0 for different values
of mode mixity χ . We explore this by considering the
simple interface model with αt = αn = 1.0 and rate
sensitivity parameters n = m = 9. Further, we limit the
investigation to the case of pure mode II loading, i.e.
χ = 1. Similar to pure mode I studied in Elmukashfi

and Cocks (2017), the relationship between Ck and φ0

is found to follow two separate power-law relations.
Thus, the relationship takes the general form

Ck = γk φ
ηk
0 , (49)

where the parameters γk and ηk depend on the range
of φ0 considered, the mode mixity χ and the defor-
mation constraint. Figure 13a and b show the rela-
tionship between Cs (i.e. recall that k = s for the
simple model) and φ0 for plane stress and strain con-
ditions, respectively. In each case, the relationship is
given for modes I and II. In the case of plane stress
(Fig. 13a), for small values of φ0 ∈ [10−10, 8× 10−2],
γs = 0.45 and 0.23, ηs = −0.06 and −0.10, for
modes I and II, respectively. The results imply that
γk and ηk depend on the mode mixity such that both
parameters increase with increasing χ . For larger val-
ues of φ0 ∈ [8 × 10−2, 103], γs = 0.09 and 0.07, and
ηs = −0.67 and −0.25, for modes I and II, respec-
tively. Hence, γk and ηk depend strongly on the mode
mixity and increase with increasing value of χ . The
transition between the two power-laws approximately
occurs over the range 10−4 ≤ φ0 ≤ 100 for modes
I and II, which implies that the value of φ0 at which
the transition takes place does not depend on the mode
mixity.Cs for modes I and II is bounded by the physical
limits of Eqs. (C.13) and (C.14), i.e. the stiff and com-
pliant limits, respectively, and asymptotes to Eq. (C.13)
at large values of φ0, see Appendix C. Further, for the
adopted value of σ0/E = 8×10−6 in the analysis, elas-
tic effects can be ignored—the chain lines in Fig. 13a
illustrate the upper limit to the validity of C∗ for dif-
ferent values of δ̄fe (i.e. Eq. (C.16)).

Now, we concentrate on the regime φ0 ≥ 1 which is
more representative of the physical behaviour of engi-
neering materials, i.e. the characteristic material length
scale is expected to be greater than the geometric length
scale. For pure mode II, for φ0 ≥ 1, the variation
of Cs with φ0 is slightly shallower than the trend in
the stiff limit and meets this limit at φ0 ≥ 102, see
Fig. 13a, which is smaller than observed for mode I,
i.e. φ0 ≥ 106. Up to these limits, the crack propagation
rate in Eq. (45) can be determined using the definition
in Eq. (49) as

ȧ = 0.94
A0.1

δ̄fe
C∗ m

m+1 γs (χ, αt , αt ) φ
ηs
0 . (50)

123



142 E. Elmukashfi, A. C. F. Cocks

(a) (b)

Fig. 12 Crack propagation results for n = m = 9, φ0 = 1.0, χ = 0.5, αt = αn = 1.0, δ̄fe = 0.004 and plane stress conditions: a crack
tip position xtip versus time t ; and b crack tip velocity vtip versus time t

This relationship shows that for a given damage zone
and constant values of the geometric length scale λ

and C∗, the crack propagation rate increases with the
increasing mode mixity, i.e. γs and φ

ηs
0 increase with

increasing value of χ . Note that for general crack
geometries, λ changes with mode mixity and crack
length, which needs to be taken into account in the
crack growth process. The dependence of ȧ on χ is
determined by the form of γs and the change of λ dur-
ing crack growth. Further discussion is provided below.

In the case of plane strain (Fig. 13b), for small values
of φ0 ∈ [10−10,×10−2], γs = 0.45 and 0.28, and ηs =
−0.06 and −0.09, for modes I and II, respectively. For
the larger values ofφ0 ∈ [10−2,×10−4],γs = 0.19 and
0.10, and ηs = −0.29, for modes I and II, respectively.
Therefore, γs and ηs increase with increasing value of
χ for small values of φ0, and only γs increases when
φ0 > 10−2, wherein the parameter ηs is independent
of the mode mixity. Hence, as determined in Sect. 5.1,
the constraint appears to control ηs in the case of plane
stress. The transition between the two power-laws is
over 10−4 ≤ φ0 ≤ 100 for both modes I and II. As in
the case of plane stress, the values ofCs formodes I and
II are bounded by the physical limits and lie in a regime

where elastic effects can be ignored, see Appendix C.
For φ0 > 1.0 the crack propagation rate in plane strain
is given by

ȧ = 0.94
A0.1

δ̄fe
C∗ m

m+1 γs (χ, αt , αt ) φ−0.29
0 . (51)

The above relations imply that a faster crack growth
rate occurs in plane strain than plane stress for given
values ofC∗ and φ0, due to the out-of-plane constraint,
i.e. higher stress levels ahead of a plane strain crack.
The difference between the Cs values for modes I and
II is larger in plane strain than plane stress, i.e. γs for
mode II is 22% lower than the mode I value for plane
stress, while it is 47% lower in the case of plane strain.

In order to investigate the effect of the mode mixity
in detail, we determined Cs (i.e. γs and ηs) for different
values of mixity. Figure 14a and b shows the relation-
ship between γs, ηs and χ for plane stress and strain
conditions. In plane stress, for smaller values ofφ0 < 1,
γs increases with increasing mode mixity χ taking a
minimumvalue of 0.23 formode II to amaximumvalue
of 1.17 for mode I. γs remains almost constant over the
range 0.1 ≤ χ ≤ 0.8, due to the almost constant near-
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(a)

(b)

Fig. 13 The relation betweenCs-function and φ0 parameter and
the physical limits in the case of n = m = 9, αt = αn = 1.0 and
mode I and II: a plane stress conditions;b plane strain conditions.
The red and blue lines represent the compliant and stiff limits,
respectively, the green dash-dot lines represent the C∗ validity
limit for different dimensionless separation at failure δ̄fe, and the
dashed lines show the power law fit

field mixity χpl of Eq. (39) over this range, as shown
in Fig.14a. Similar results are obtained for larger val-
ues of φ0 ≥ 1, with minimum and maximum values of
0.065 and 0.17 for mode II and I, respectively, and con-
stant values over the range 0.3 ≤ χ ≤ 0.8. For smaller
values of φ0 < 1, ηs remains almost constant with a
slight increase from −0.09 for mode II to −0.06 for

mode I. For larger values of φ0 ≥ 1, ηs decreases with
increasing mode mixity χ taking a maximum value of
−0.25 for mode II to a minimum value of −0.67 for
mode I which can be attributed to the constraint effects.
Similar results are obtained in the case of plane strain.
For smaller values of φ0 < 1, γs has a minimum value
of 0.27 for pure mode II and a maximum value of 2.13
for pure mode I and it remains almost constant over
the range 0.1 ≤ χ ≤ 0.8. Similarly, for larger values
of φ0 ≥ 1, minimum and maximum values of 0.027
and 0.7 for mode II and I, respectively, and constant
values over the range 0.1 ≤ χ ≤ 0.8 are obtained. ηs
remains almost constant for smaller values of φ0 < 1
with a slight increase from−0.09 for mode II to−0.05
for mode I which is similar to the plane stress case. For
larger values ofφ0 ≥ 1, ηs remains almost constant tak-
ing a value −0.28 indicating that the constraint effects
are minimal.

5.4 The role of coupling on deformation and damage
development

There are numerous ways to define the contributions
of normal and tangential loading to deformation and
damage development at the interface, as discussed ear-
lier in Sect. 3. C∗ defines the stress field in the vicinity
of the crack tip, which determines the deformation in
the interface, although the form of the field is differ-
ent for different modes of loading. For a given mode,
damage development and deformation can be directly
related to C∗. In mixed mode loading, the remote C∗
and the mode mixity χ define the singular stress field
ahead of the crack tip and the near field mode mixity.
Thus, the deformation in the interface is determined by
the coupling of the tangential and normal deformations
as well as the near field mixity. Damage development
due to this coupling can be expressed in terms of a
damage controlling parameter, such as the representa-
tive separation δ̂. Hence, the contributions of the frac-
ture modes to deformation and damage development
in the interface are determined by C∗, the mode mixity
χ and coupling of the deformation and damage con-
trolling parameter δ̂. For the phenomenological simple
and Kachanov type models of Sect. 3, the contributions
to the deformation of the interface from the different
modes of loading are determined by the parameters αt

andαn whereas their contributions to the damage devel-
opment is controlled by the representative separation
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(a)

(b)

Fig. 14 The relation between: a γs; b ηs and the mode mixity
χ for the stiff and compliant limits and plane stress and strain
conditions. Here n = m = 9 and αt = αn = 1.0

δ̂. In the micromechanical model, the contributions to
deformation and C∗ are determined by the functions
gt and gn that only depend on the pore area fraction
f , and their contributions to damage development is
controlled by the ratio l/h0.

In this section, we investigate the relationship
between the remote C∗, the deformation of the inter-
face and the choice of the damage controlling parame-
ter at different mode mixities χ . We consider the sim-
ple interface model with rate sensitivity parameters
n = m = 9 and assume plane stress and strain condi-

tions. The aim is to study the relationship betweenCs of
Eq. (48) and the mode mixity χ for different combina-
tions of the parameters αt and αn , and forms of δ̂. The
contributions of the normal and tangential modes of
loading to the deformation of the interface is explored
by studying αt/αn in the range αt/αn ∈ [0.5 − 1.5].
The interface response in Eqs. (15), (20) and (27) sug-
gests that for given interface traction, the tangential
deformation decreases with increase of the ratio αt/αn .
The measure of separation that controls damage devel-
opment is considered to be δ̂ = δe or δ̂ = δn . For
δ̂ = δe, the effect of the ratio αt/αn on interface dam-
age is similar to its effect on deformation. In the case of
δ̂ = δn , where only normal opening controls the dam-
aging process, the interface response remains depen-
dent on the parameters αt and αn , which determine the
deformation in the normal direction and therefore the
damage development. It isworthmentioning that,when
local failure is determined by δ̂ = δn , the crack growth
law of Eqs. (44) and (45) requires δfe to be determined.
This is determined numerically using the FE analysis,
i.e. δfe = ∫ tf

0 δ̇e dt , where tf is the time to failure for a
material point along the interface under steady crack
propagation conditions, i.e. when δ̂ = δfn .

The quantity γs has been obtained for different val-
ues of the ratio αt/αn and mode mixity, and for the dif-
ferent forms of representative separation δ̂. It should
be noted that ηs does not depend on the ratio αt/αn

and its values for different mode mixity are reported
in Sect. 5.3. Figure 15a and b show the relationship
between γs and χ for the twomeasures of δ̂ under plane
stress conditions, respectively. For δ̂ = δe, Fig. 15a, Cs

takes twodifferent forms forαt/αn < 1 andαt/αn ≥ 1.
The result shows that increasing the ratio αt/αn above
1 reduces Cs, with the magnitude of the reduction
decreasing with increasing mode mixity χ . Further,
reducing the ratio below 1 increases Cs, with the mag-
nitude of the increase decreasing with increasing mode
mixity. The reduction in Cs in the case of αt/αn ≥ 1
can be attributed to the decline of the role of the tangen-
tial deformation. For αt/αn < 1, Cs takes a large value
at χ = 0 and decreases with increasing mode mixity,
reaching a plateau as χ increases further. It experiences
a slight decrease as mode I (χ = 1) is approached. It
is worth mentioning that in the cases of αt/αn < 0.75,
the maximum value of Cs occurs for mode II (χ = 0).
Hence, the increase of Cs is due to the increase of the
role of tangential deformation. Moreover, the maxi-
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(a)

(b)

Fig. 15 The relationship between Cs and the mode mixity χ for
the case of φ0 = 1, n = m = 9, plane stress conditions and for
different representative separation: a δ̂ = δe; b δ̂ = δn . Here the
parameter γs = Cs as φ0 = 1

mum and minimum values of Cs and the range over
which it is constant depend on the ratio αt/αn .

Now we consider the case of δ̂ = δn , shown in
Fig. 15b. The results show that γs is zero for pure
mode II, as expected since in this limit δ̂ = δn = 0,
and increases with increasing value of mode mixity χ .
Similar forms of the Cs-function to the case δ̂ = δe
are obtained for χ ∈ [0 − 1] and αt/αn ≥ 1. Com-
paring the distributions of Cs for δ̂ = δe and δ̂ = δn
in Fig. 15a and b, respectively, demonstrates that Cs

is always lower for δ̂ = δn , which can be explained
by the fact that, in addition to the dependency of the
deformation on the ratio αt/αn , only normal deforma-
tion in the interface contributes to the damage devel-
opment, which means that only part of C∗ contributes
to damage development and crack growth. Recall the
crack growth rate in Eq. (47) and consider the different
forms of γs = Cs in Fig. 15a and b for the different
values of αt/αn and δ̂. For constant values of the geo-
metric length scale λ, δfn and C∗, and for αt/αn > 1,
the crack growth rate decreases with increasing αt/αn

as the part of C∗ that contributes to crack growth grad-
ually reduces. For αt/αn < 1, a faster growth rate is
obtained, which is due to a larger proportion of C∗
contributing to crack growth.

Similar results are obtained in the case of plane
strain, as illustrated in Fig. 16a and b,with two different
relations obtained for γs for αt/αn < 1 and αt/αn ≥ 1.
Increasing the ratio αt/αn beyond 1 reduces γs, while
decreasing it below 1 increases γs. The magnitude of
the change (i.e. decrease or increase) decreases with
increasing mode mixity χ . Comparing γs for the cases
δ̂ = δe and δ̂ = δn , indicates that it is zero for pure
mode II loading when δ̂ = δn , and then increases with
increasing mode mixity χ , approaching a similar form
to δ̂ = δe for large values of χ . As in the case of plane
stress, the dependency of γs on the ratio αt/αn can
be explained by the change in the contribution of the
tangential deformation in the case of δ̂ = δe, whereas
the additional reduction for δ̂ = δn is due to limiting
the damage development to the normal component of
displacement. It is worth mentioning, that similar con-
clusions about the crack growth rate in plane strain can
be drawn using the crack growth rate in Eq. (51) and
the different forms of γs in Fig. 16a and b. The effect of
the coupling between deformation and damage devel-
opment is similar in plane stress and plane strain.

By selecting αn = 1 for these simulations and vary-
ingαt results in the plots converging on to a single point
in Figs. 15 and 16 at χ = 1. We could have alterna-
tively set αt = 1 and varied αn to cover the same range
of ratios as in these figures. Then all the curves would
converge at the point χ = 0. By exploring this limit
it can be shown that the points of intersection of the
curves with the γs axis in Figs. 15a and 16a at χ = 0
can be determined directly from the mode II results

presented in Fig. 13, such that γs (0) = Cs

(
αm+1
t

)
,

i.e. they are determined from Fig. 13 as the value of
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(a)

(b)

Fig. 16 The relationship between Cs and the mode mixity χ for
the case of φ0 = 1, n = m = 9, plane stress conditions and for
different representative separation: a δ̂ = δe; b δ̂ = δn . Here the
parameter γs = Cs as φ0 = 1

Cs corresponding to φ0 = αm+1
t . This result applies in

both plane stress and strain.

5.5 The effect of damage model

In this section, we investigate the detailed form of
the damage zone constitutive model on crack growth
for different values of mode mixity χ , and for differ-
ent extents of coupling between tangential and nor-

mal deformation, αt/αn . Previously in Elmukashfi and
Cocks (2017), we examined the different damagemod-
els described in Sect. 3 under prescribed uniaxial stress
and for the case of pure mode I crack growth. The
results show that there is a point-wise linear relation-
ship between Ck for the Kachanov and micromechan-
ical models and its value for the simple model, i.e.
Ck = μk Cs with μk ≥ 1. In the stiff limit, the detailed
form of the damage zone is found to be important and
the largest values of Ck are obtained for the microme-
chanical model. Further, in the case of the Kachanov
models, the exponentialmodel yields larger values than
the linear model.

We consider the damagemodels presented in Sect. 3
and determine Ck in Eq. (48) (i.e. γs and ηs) for dif-
ferent mode mixities. We limit our consideration to the
response close to the stiff limit, which is ofmore practi-
cal significance. Further, the representative separation
is taken to be δ̂ = δe in the case of Kachanov type
models and plane stress conditions are assumed to pre-
vail. We investigate the role of the coupling between
the tangential and normal deformation in the interface
by investigating the effect of the ratio αt/αn in the case
of the Kachanov type models and the ratio between
the pores’ spacing and their initial height l/h0 for the
micromechanical model. The parameters employed for
these models are n = m = 9, δfe = 0.02 mm, β = 1,
h0 = 0.02 mm, f0 = 0.01, fc = 0.5 and g0 = 2.23.
Further, the ratio αt/αn is taken to be in the range
αt/αn ∈ [0.5 − 1.5] with αn = 1 and the ratio l/h0
taken to be in the range l/h0 ∈ [0.2 − 10] where l is
changed to give the specified ratio. It is worth mention-
ing that the models yield the same rapture time under a
prescribed uniaxial constant stress for the given param-
eters.

It proves instructive to express γk as a function of
the ratios αt/αn or l/h0 for different mode mixity χ .
Figs. 17, 18 and 19 show the relationship between γk
and αt/αn for the linear and exponential Kachanov
models and the micromechanical model, respectively,
for different values of χ . For the linear Kachanov
model in Fig. 17, for αt/αn < 1, Ckl decreases with
the increasing mode mixity χ for χ ≤ 0.8, and then
increases as the mixity approaches mode I (χ = 1),
with the magnitude of this increase depending on the
ratio αt/αn , i.e. the mode I value of Ckl is larger than
that for mode II for αt/αn > 0.75. For αt/αn ≥ 1,
Ckl increases with mode mixity χ and takes almost a
constant value in the range χ ∈ [0.4 − 0.6] with the
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Fig. 17 The relationship between Ckl and the mode mixity χ

for the case of φ0 = 1, n = m = 9, plane stress conditions. Here
the parameter γkl = Ckl as φ0 = 1

Fig. 18 The relationship between Cke and the mode mixity χ

for the case of φ0 = 1, n = m = 9, plane stress conditions. Here
the parameter γke = Cke as φ0 = 1

maximum value occurring for mode I. For αt/αn ≥ 1,
γkl increases with increasing mode mixity χ such that
at constant αt/αn the minimum value of γkl occurs at
χ = 0 and themaximum is atχ = 1. Hence, the results
imply that crack growth is controlled by the mode mix-
ity and the coupling between the normal and tangential
deformation, as in the case of the simple model.

Fig. 19 The relationship between Cm and the mode mixity χ

for the case of φ0 = 1, n = m = 9, plane stress conditions. Here
the parameter γm = Cm as φ0 = 1

For the exponential Kachanov model, Fig. 18, for
αt/αn < 1, γke shows similar behaviour to the linear
model. γke is larger in mode I thanmode II for αt/αn >

0.62. For αt/αn ≥ 1, γke decreases with increasing
mode mixity and experiences a small increase at χ =
0.4 that is followed by a decrease to its lowest value at
χ = 0.6. It increases again for χ > 0.6 and reaches its
maximum value for pure mode I.

For the micromechanical model, Fig. 19, for l/h0 <

4.9, Cm increases with increasing mode mixity χ for
χ < 0.4 and χ > 0.8, and decreases with increasing
χ for 0.4 ≤ χ ≤ 0.8. For l/h0 ≥ 4.9, γm initially
increases for χ ≤ 0.2, followed by a decrease with
increasing mode mixity χ for χ ≤ 0.8. An additional
increase takes place for χ > 0.8. The maximum and
minimumvalues of γm occur atχ = 0.2 for l/h0 = 0.2
and 10, respectively. Thus, the results imply that, for
l/h0 < 4.9, the tangential deformation dominates the
damage development process and themost severe com-
bination of the normal and the tangential deformation
is achieved in the case of χ = 0.2, as discussed ear-
lier in Sect. 3, which results in a reduction of γm with
an increase of mode mixity χ . For l/h0 ≥ 4.9, the
role of the normal deformation increases, and there-
fore Cm decreases significantly in the mode II limit.
Further, for higher values of l/h0, γm increases with
mode mixity χ . It is worth mentioning that the value

123



148 E. Elmukashfi, A. C. F. Cocks

Fig. 20 The relationship between ηk and the mode mixity χ for
the case of n = m = 9, αt = αn = 1, l/h0 = 1 and plane stress
conditions

of δfe in Eq. (48) is determined numerically using the
FE analysis, i.e. δfe = ∫ tf

0 δ̇e dt , where tf is the time
to failure for a material point along the interface as it
reaches the crack tip under steady crack propagation
conditions, which corresponds to when f = fc.

We now consider the results of simulations for other
values of φ0, which allows us to determine the param-
eter ηk in Eq. (49). We consider the situations where
αt = αn = 1 for the Kachanov damage models and
h0 = l = 0.02 mm for the micromechanical model.
Fig. 20 shows the relationship between ηk and χ for
the different damage models for plane stress. For the
linear Kachanov model, ηkl decreases with increasing
modemixity χ for χ ≤ 0.8, reaching a minimum value
of −0.62 at χ ≈ 0.8, followed by a slight increase,
reaching a value of −0.43 for pure mode I. ηkl takes
a maximum value of −0.22 for pure mode II. Simi-
lar behaviour is obtained for the exponential Kachanov
model with a minimum value of−0.66 at χ ≈ 0.8, and
values of −0.52 and −0.22 for modes I and II, respec-
tively. For the micromechanical model, ηm remains
almost constant over the range χ ≤ 0.7 taking the
value −0.13. The plateau region is followed by a steep
decrease, reaching the minimum value of −0.37 for
pure mode I.

5.6 Comparison with experimental data

The analysis of the idealised DCB specimen presented
above is rigorous due to C∗ not changing as the crack
grows, allowing a true steady state to be achieved.
In conventional components, whether operating in an
industrial facility or tested in the laboratory, C∗ con-
tinually changes as a crack grows. We need to make
some assumptions in order to extend the results pre-
sented above to realistic geometries. Here we assume
that as a crack grows a state equivalent to the steady
state described above is achieved rapidly, so that the
crack velocity only depends on the current value of
C∗, φ0, etc., and not on the history of loading and crack
growth. This is consistent with assumptions generally
employed in the interpretation of experimental data.

In this section, we calibrate the damage models
against available experimental data. In particular, we
extend the fitting procedure proposed in Elmukashfi
and Cocks (2017) for puremode I to II andmixedmode
cases. The main focus is to explore the relationship
between damage model and the crack growth process,
including the role of different characteristic material
and geometric length scales, coupling of deformation
in the damage zone and mode mixity. In the process
we explore where the available data lies with respect to
the general trends identified in Figs. 17, 18, 19 and 20.
We consider the high chromium steel (Jethete M 152
steel at 550 ◦C) investigated by Hyde and Chambers
(1991). They provide data for creep deformation and
creep rupture, as well as creep crack growth for differ-
ent mode mixity conditions generated using compact
tension (CT) and compact mixed-mode (CMM) speci-
mens, seeFigs. 21 and22. In the case of puremode I, the
crack growth direction was found to be predominantly
straight ahead, i.e. θ = 0◦ to the initial crack with a
significant thinning of the specimen near the crack tip
indicating large creep strains. In the case of pure mode
II, the crack propagates straight ahead parallel to the
initial crack, i.e. similar to pure mode I θ = 0◦, such
that the displacement of the surface markings near the
crack tip shows a clear evidence of the shear defor-
mation. In the mixed mode case, the crack propagated
in two directions that are θ = 0◦ and θ = −90◦ to
the initial crack, and the latter crack was considered to
be dominant because it generally led to final failure.
Therefore, in this study, we limit our consideration to
the cases of pure mode I and II.
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Fig. 21 Comparison between uniaxial creep rupture data for
Jethete M 152 steel at 550 ◦C and the interface damage models.
’◦’ represents the experimental data and the black line indicates
the model predictions

In order to determine the crack growth rate, we
need to determine the characteristic length λ for the
cracked geometries under different mode mixity χ and
the material parameters, i.e. n and ε̇0 (at a reference
stress σ0) or equivalently B and the interface model
parameters. In this paperwe limit the fitting to the linear
Kachanovmodel, andwe assume that damage develop-
ment is determined by δ̂ = δe.We also assume isotropic
damage, i.e. ωt = ωn = ω (δe). Parallel procedures
can be undertaken for the other models described in
this paper. We need to determine n, m, δfe and δ̇0 (at a
reference stress σ0) or equivalently the material param-
eter A and the mode mixity related parameters αt and
αn . For simplicity, we take αn = 1 and consider αt to
be a fitting parameter. (This assumption is consistent
with the mode I fitting procedure in Elmukashfi and
Cocks (2017).) The steady creep response under a con-
stant uniaxial stress σ is given by Hyde and Chambers
(1991) at 550 ◦C:

ε̇ = ε̇0

(
σ

σ0

)n

= B σ n, (52)

where n = 9.5 and B = 2.93 × 10−27 MPa−9.5 h−1.
Similarly, we assume that the damage zone model

can also be used to describe the damage development

on grain boundaries in a uniaxial test and the dam-
age grows primarily on the boundaries normal to the
direction of the applied loading. The integration of the
damage growth rate equation between the limits,ω = 0
at time t = 0 and ω = 1 at failure, i.e. when t = tf ,
yields

tf · σm = σm
0

m + 1

(
δfe

δ̇0

)
= 1

m + 1

(
δfe

A

)
= D. (53)

Creep rupture data given by Hyde and Chambers
(1991) is plotted in Fig. 21, which gives m ≈ 9 and
D = 1.41×1025 MPa9.5 h. Therefore, the relationship
between the material parameters is

δfe = 1.41 × 1026 A [mm] . (54)

where A is measured in units of mm/(MPa9 · h).
In the following steps, we aim to determine δfe, A and

αt by fitting the creep crack growth data (ȧ vs C∗) for
modes I and II to themodel inEq. (45). Firstly,wedeter-
mine a relationship between δfe and A by fitting mode I
data which can be used together with Eq. (54) to deter-
mine the two parameters. Secondly, knowing δfe and A,
we obtain αt by fitting mode II data. To do this, we
need to obtain the geometric length scale for the com-
pact tension (CT) and compact mixed-mode (CMM)
specimens for different mode mixities. Hence, follow-
ing the procedure in Elmukashfi and Cocks (2017), we
adopt the definition in theUKR5 assessment procedure
(Ainsworth et al. 1987)

C∗ = ε̇R σR λ, (55)

where ε̇R is the uniaxial strain rate at a reference stress
σR. The reference stress is defined by

σR = P

PL
σy, (56)

where PL is the limit load for a perfectly plasticmaterial
of yield strength σy and P is the applied load.

The characteristic length scale for a given specimen
andmodemixity is determined from the stress intensity
factor and reference stress by λ = (K/σ0)

2 where K is
the stress intensity factor at the applied load P , which

is taken as K =
√
K 2
I + K 2

II. The limit load and stress
intensity factor for the compact tension (CT) and com-
pact mixed-mode (CMM) specimens can generally be
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expressed as

PL = σy W ΥL

( a

W

)
and K = P

W
1
2

· ΥK

( a

W

)
,

(57)

where a is the crack length, W is the specimen width,
ΥL and ΥK are the limit load and stress intensity factor
shape functions, respectively, that depend on the speci-
men and mode mixity. Thus, Eqs. (56) and (57) and the
definition of λ, the characteristic length can be written
in the general form

λ

W
= Υ

( a

W

)
, (58)

where Υ = (ΥL ΥK)2.
Now consider mode I, we follow the procedure

in Elmukashfi and Cocks (2017) and use Miller and
Ainsworth’s (Miller and Ainsworth 1989) modified
definition of C∗ in Eq. (55), i.e. C∗ = ε̇R σR λ Fn+1

p

where Fn+1
p is a dimensionless parameter (load factor);

this modification gives better agreement with compu-
tational results, which effectively reduce the reference
stress by a factor of Fp. For the CT specimen tested
by Hyde and Chambers (1991), W = 32 mm and the
initial crack length is a0 = 16 mm. Thus, for n = 9.5
and a/W in the range 0.25 to 0.5, the load parameter
is in the range Fp ∈ [0.92 − 0.96]. In this investigation
we use the upper bound value of 0.96. The character-
istic length scale for the compact tension specimen is
determined by Elmukashfi and Cocks (2017), wherein
the shape function in Eq. (58) is determined from the
limit load and stress intensity factor shape functions for
the CT specimen:

ΥL =
{
(1 + κ)

[
1 + κ

( a

W

)]} 1
2 −

(
1 + a

W

)
, (59)

ΥK =
2 + a

W(
1 − a

W

) 3
2

[
0.886 + 4.64

( a

W

)
− 13.32

( a

W

)2

+14.72
( a

W

)3 − 5.60
( a

W

)4]
, (60)

where κ = 1.155. The relation between the crack
growth rate ȧ and C∗ in Fig. 22 suggests that stable
crack growth is obtained over two order of magni-
tudes of C∗, which corresponds to an increase of crack

Fig. 22 Comparison between experimental creep crack growth
data for Jethete M 152 steel at 550 ◦C and the proposed frame-
work. ’◦’ and ’·’ represents the experimental data for puremode
I and II, respectively. The black line indicates the framework pre-
dictions for the different damage models

length from a/W = 0.50 to 0.68. Hence, the change
of characteristic length over this C∗ range is estimated
from Eqs. (58), (59) and (60) to be λ/W = 0.74 to
0.42. In the evaluation of the data, we take the average
value of the characteristic length, i.e. λ/W ≈ 0.58. To
determine the crack growth rate, we need an expres-
sion for Ck . Thus, substitution of A from the definition

φ0 = B

A
λ into Eq. (54) yields φ0 = 7.67/δfe where

δfe is in mm. Therefore, for the physical range of the
critical separation in metals (i.e. it is of the order of
the mean cavity spacing δfe ∈ [

10−10 − 10−5
]
mm),

the dimensionless parameter is φ0 > 1. It follows that
we use the relationship Ckl = 0.4φ−0.494

0 for φ0 > 1
and χ = 1. In this regime, the crack growth rate is
determined from Eqs. (49) and (45) as:

ȧ = 3.88 × 10−3 C∗0.9

δfe
0.41 , (61)

where ȧ is in mm/h, δfe is in mm and C∗ is in
mJ/mm2/h. Fitting the expression in Eq. (61) to the
mode I data in Fig. 22 yields the critical separation δfe =
67.83μm.The rate parameter A can thenbedetermined
from Eq. (54) to be A = 4.81×10−28 mm/MPa9h and
φ0 = 1.13 × 102.
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Table 1 The damage models parameters

Interface
model, k

m A [mm/(MPa9 h)]b δfe [μm]a β αt h0 [μm] l [μm] f0 [-] fc

kl 9 4.81 × 10−28 67.83 – 1.14 – – – –

ke 9 1.76 × 10−28 24.82 1.0 1.30 – – – –

m 9 2.09 × 10−27 295.17 – – 9.17 160.04 0.004 0.97

aδfe is estimated from the comparison between experimental creep crack growth data for Jethete M 152 steel at 550 ◦C and the proposed
framework.
bNote, σ0 changes during the duration of a test, causing ε̇0 and δ̇0 to also change. At a given instant σ0 can be determined from Eq. (56),
multiplied by Fp = 0.96, to take into account the correction of Miller and Ainsworth (1989)

Nowwe are interested in obtaining the parameter αt .
We consider the CMM specimen tested by Hyde and
Chambers (1991) under pure mode II loading, of width
W = 33 mm and initial crack length a0 = 16.5 mm.
It should be noted that the data consists of only three
points which may affect the fitting results. However,
the comparison provides an important physical insight
into the coupling parameters (i.e. αt and l/h0). For the
mode II case, the characteristic length scale is deter-
mined using Eqs. (58) where the limit load and stress
intensity factor shape functions for a compact mixed-
mode (CMM) specimen under pure mode II are given
by Hyde and Chambers (1988) and (1991)

ΥL = 1

2

(
1 − a

W

)
, (62)

ΥK = 0.772 + 2.567
( a

W

)
− 0.799

( a

W

)2

+ 0.648
( a

W

)3
. (63)

The relation between the crack growth rate ȧ and C∗
in Fig. 22 suggests that stable crack growth is obtained
over one order ofmagnitude change inC∗, which corre-
sponds to an increase of crack length froma/W = 0.50
to 0.61. Similarly, the change of characteristic length
over the C∗ range is estimated from Eqs. (58), (59)
and (60) to be λ/W = 0.24 to 0.18. We take the aver-
age value of the characteristic length, i.e. λ/W ≈ 0.21.
Thus, the dimensionless parameter is φ0 = 4.11×102.
Therefore, we use Ckl for φ0 > 1 and χ = 0. Using
the definition in Eq. (49) and the fact that γkl depends
on χ and the parameters αt and αn , we can write
the form of Ckl for n = m = 9 and mode II as
Ckl = γkl (χ, αt , αn) φ−0.223

0 . Thus, the crack growth

rate is determined from Eqs. (49) and (45) as:

ȧ = 0.0294 γkl C
∗0.9, (64)

where ȧ is in mm/h and C∗ is in mJ/mm2/h. Fit-
ting the expression in Eq. (64) to the mode II data in
Fig. 17 yields γkl ≈ 0.062. Thus, using the relation-
ship between Ckl and the parameter αt in Fig. 17 for
αn = 1.0, gives αt ≈ 1.14.

The same fitting procedure can be employed for the
exponential Kachanov and the micromechanical mod-
els. In these models additional parameters are required,
i.e. β and αt for the exponential model (similarly
we assume αn = 1), and h0, l, f0 and fc for the
micromechanical model. We limit our consideration to
the case of β = 1 for the exponential model. Then,
for φ0 > 1, Cke = γke (χ, αt , αn) φ

ηke
0 and Cm =

γm (χ, h0, l) φ
ηm
0 with γke ≈ 0.03, ηke ≈ −0.515,

γm ≈ 0.49 and ηm ≈ −0.373 for the case of pure
mode I and ηke ≈ −0.215 and ηm ≈ −0.1 for the
case of pure mode II. Therefore, using a nonlinear least
squares method, the critical separation for both mod-
els are determined by fitting the crack growth rate of
Eqs. (45) and (49) to mode I creep data. It follows that
we obtain the parameters γke ≈ 0.031 and γm ≈ 0.127
for the case of pure mode II. Thus, using the relation-
ship between γkl and αt , and γm and l/h0 in Figs. 18
and 19, respectively, we obtain αt for the exponential
model and h0, l, f0 and fc for the micromechanical
model. It should be noted that the model predictions lie
on the same straight line and yield comparable good-
ness of fit of ≈ 93%. The fitting parameters for the
different models are given in Table 1. The parame-
ters indicate that the material data falls in the regime
φ0 ∈ [

101 − 103
]
, i.e. close to the stiff limit and the

123



152 E. Elmukashfi, A. C. F. Cocks

critical separation falls within the physical regime, i.e.
δfe ∈ [

10−10 − 10−5
]
m.

In our previous study (Elmukashfi and Cocks 2017),
we compared the proposed model with conventional
models of creep crack growth, which do not include
the effect of the ratio of geometric and material length
scales, i.e. ȧ ∝ C∗q , where q < 1. We concluded that
for large defects, as in the commonly used experimental
specimens (e.g. CT, DCB, CMM, etc.), the characteris-
tic length scale λ does not change significantly during
crack growth, i.e. by < 13% for CT specimens and by
< 5% for CMM specimens. Therefore, the proposed
model is then equivalent to conventional models in pre-
dicting a power-law dependence between crack growth
rate and C∗ and can be fit to data in a similar way to
conventional existing models. In the case of a smaller
defects, which are commonly evaluated in assessments
of real components, conventional models result in an
overestimation of the crack growth rate. Additionally, a
reduction of the characteristic length scale λ decreases
φ0, which may lead to a transition to the low φ0 regime,
resulting in a further overestimation of the crack growth
rates. Hence, the proposed framework is useful for the
cases where defects are small which are more common
in engineering components.

Comparing mode I and II, the experimental data
show that for the same value of C∗, the crack growth
rate in mode II is reduced to ≈ 25% of the growth rate
inmode I. Further, the characteristic length scale for the
CMM specimen in mode II is≈ 36% of that for the CT
specimen in mode I. Hence, the model predictions give
a crack growth rate that is proportional to λ1+ηk where
1+ ηk ≈ 0.5, therefore, the change in λ yields ≈ 40%
reduction in the crack growth rate in mode II, i.e. 53%
of the total 75% reduction in the crack growth rate. The
remaining 22% reduction comes from the decrease in
the mode mixity constraint and the coupling between
the tangential and normal deformation in the interface,
which are captured by the parameter γk .

6 Concluding remarks

In this study, we have extended the theoretical and
computational frameworkpresented byElmukashfiand
Cocks (2017) to the case of mixed mode creep crack
growth under steady state creep conditions. We have
developed a theoretical framework wherein the bulk
material is described by a power-law creep law and the

interface behaviour is assumed to be described by a
generalised traction-rate of separation law. The dam-
age zone models have been extended to the mixed
mode loading case such that the deformation and dam-
age processes are expressed in terms of effective trac-
tion and rate of separation which determine the cou-
pling between normal and tangential deformation and
a representative separation, respectively. A double can-
tilever beam specimen (DCB) subjected to a combined
force and moment is studied, allowing the path inde-
pendency of the C∗-integral to be used to relate the far
field loading to the damage growth process along the
interface during steady state crack growth. The damage
is assumed to be localised in a narrow zone ahead of the
crack tip. Analytical models are developed for mixed
mode steady-state crack growth, wherein the crack
growth rate is determined by a dimensionless func-
tion, Ck . A computational framework is then imple-
mented using the Finite Element Method. The analyti-
cal models are calibrated using the detailed Finite Ele-
mentmodel to giveCk for different combinations of the
dimensionless parameters and different loading condi-
tions. The quantityCk depends on the ratio of geometric
to material length scales φ0, the rate sensitivity expo-
nents n and m, mode mixity ratio χ , the form of the
damage law, the coupling parameters (αt , αn , h0 and
l) and the out-of-plane constraint. Similar expressions
for Ck (i.e. Eq. (49)) are obtained in the case of mode
II loading which are bounded by the physical limits. In
the case of plane stress, the parameters γs andηs depend
on the mode mixity for the entire range of φ0. In the
case of plane strain, at the stiff limit, i.e. φ0 → ∞,
ηs does not depend on the mode mixity whereas γs
depends on the mode mixity. In the compliant limit,
i.e. φ0 → 0, both γs and ηs depend on the mode
mixity. Cs is found to be strongly dependent on the
near-field mode mixity χpl, given by Eq. (39). Further,
the coupling between the tangential and normal direc-
tions, expressed in terms of the ratio αt/αn , affects the
deformation and damage development at the interface.
Damage development is also determined by the defini-
tion of the representative separation δ̂, which achieves
a critical value at the growing crack tip. Faster crack
growth rates are obtained when damage generated in
the interface influences the constitutive response, such
as in the Kachanov and micromechanical models. Sub-
stantial stress relaxation can then occur along the inter-
face ahead of the crack tip, which changes the near-
field mode mixity and therefore changes Ck . Further,
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the coupling parameters, i.e. αt and αn in the Kachanov
models, and h0 and l in the micromechanical model,
affect crack growth in a similar manner. In the final part
of this study, we have compared the model with exper-
imental data for a Jethete M 152 steel at 550 ◦C. The
results show that the different damagemodels are capa-
ble of fitting and explaining the creep crack growth data
for different modemixities using physically reasonable
parameters.
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Appendix A: Analysis of beam under steady-state
creep and combined axial load andbendingmoment

Consider the beam element in Fig. 23 below. The
length, height, and thickness of the beam are denoted
by L , H and B, respectively. The beam is subjected to
constant axial force and moment per unit thickness N
and M , respectively. Both, plane stress and strain con-
ditions, can be considered, such that the x1x2-plane is
the plane in which loading is applied and in which we
determine the stresses and strains.

The beam is assumed to exhibit steady-state creep
behaviour and is defined by the constitutive law of

Fig. 23 The schematic of a beam element subjected to constant
axial force andmoment per unit thickness N andM , respectively.
The element is of thickness B

Eq. (1). The deformation in the beam is given by the
normal strain in 1-direction ε̇c11 as

ε̇c11 = ε̇ − κ̇ x2, (A.1)

where ε̇ is the axial strain rate and κ̇ is the rate of
curvature. The axial strain and curvature rates, at given
N and M , can be determined using the variation of the
rate analogue of the total potential energy

Π =
∫

V

Ψ dV −
∫

S

Ti u̇i dS, (A.2)

where the dual potential Ψ is

Ψ = n

n + 1
ε̇0 σ0

(
ε̇e

ε̇0

) n+1
n

. (A.3)

For the given deformation in Eq. (A.1), we obtain

Ψ = n

n + 1
ε̇0 σ0

(
1

η

|ε̇ − κ̇ x2|
ε̇0

) n+1
n

, (A.4)

where η = 1 for plane stress and
√
3/2 for plane strain.

Thus, the functional Π becomes

Π =
H/2∫

−H/2

n

n + 1
ε̇0 σ0

(
1

η

|ε̇ − κ̇ x2|
ε̇0

) n+1
n

dx2

− (N ε̇ + M κ̇) ,

= 1

η
n+1
n

n2

(2 n + 1) (n + 1)
ε̇0 σ0

H

2

κ̇0

κ̇

[(
κ̇

κ̇0
+ ε̇

ε̇0

) 2 n+1
n

+
(

κ̇

κ̇0
− ε̇

ε̇0

) 2 n+1
n

]
− (N ε̇ + M κ̇) (A.5)
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The variation of Π with respect to the rates ε̇ and κ̇ ,
yields

N

N0
= n

2 (n + 1)

κ̇0

κ̇

1

η
n+1
n

[(
κ̇

κ̇0
+ ε̇

ε̇0

) n+1
n

−
(

κ̇

κ̇0
− ε̇

ε̇0

) n+1
n
]

,

M

M0
= n

2 (n + 1)

(
κ̇0

κ̇

)2 1

η
n+1
n

{
2 n + 1

n

κ̇

κ̇0
[(

κ̇

κ̇0
+ ε̇

ε̇0

) n+1
n −

(
κ̇

κ̇0
− ε̇

ε̇0

) n+1
n
]

−
[(

κ̇

κ̇0
+ ε̇

ε̇0

) 2 n+1
n −

(
κ̇

κ̇0
− ε̇

ε̇0

) 2 n+1
n

]}
,

(A.6)

Therefore, ε̇ and κ̇ can be determined for given values
of N and M by solving this set of non-linear equations.

Appendix B: Finite Element formulation of the
interface element

The interface damage models in Sect. 3 have been
implemented into the Finite Element method using a
cohesive element approach. For implementation pur-
poses, the traction-separation rate law is assumed to be
determined by elastic and creep responses, such that

δ̇i = δ̇eli + δ̇cri (B.1)

where i ∈ [t, n] , δ̇eli and δ̇cri are the elastic and creep
separation rates, respectively. The traction-separation
rate laws for the tangential and normal directions are
defined as

δ̇i = δ̇eli + δ̇cri = Ṫi
Ki

+ δ̇0

(
Te
T0

)m

Hi , (B.2)

where Ki are the elastic stiffness parameters and
Hi = ∂Te/∂Ti are the effective traction derivatives.
The effective traction and its derivatives are function
of the damage parameters, see Eqs. (14), (19) and (25).
In the following formulation, we denote the damage
parameters in the tangential and normal directions by

di , i.e. di = ωi for Kachanov models and dt = dn = f
for the micromechanical model.

The surface-like cohesive formulation is adopted in
this work by extending the formulation in Elmukashfi
and Cocks (2017). Therefore, we limit considerations
to the 4-node two-dimensional linear cohesive element
discussed in Elmukashfi and Cocks (2017) wherein the
interpolations of the middle surface and deformation
and the Finite Element formulation (i.e. using principle
of virtual work) that yields the nodal forces and consis-
tent tangent matrix. In this Appendix, we concentrate
on the determination of the traction and tangent mod-
ulus that can be used to determine the the nodal forces
and consistent tangent matrix of the cohesive element.

B.1 The cohesive element traction

The traction is determined using the incremental forms
of the total separation rates in Eqs. (B.2). Hence, a set
of equations is obtained from these incremental forms
as

Fi = Δδi − ΔTi
Ki

+ Δt δ̇0

(
Te
T0

)m

Hi = 0, (B.3)

The current traction is T ( j+1)
i = T ( j)

i + Θ ΔTi where

j denote the increment, T ( j)
i is the traction at the start

of the increment and Θ is an integration parameter. It
should be noted that Te and Hi are calculated at the
current increment.

In order to solve these equations, we encapsulate
the equations in a vector F = [Ft Fn]T and define
the unknown vector ΔT = [ΔTt ΔTn]T. Using a
Newton-Raphson algorithm, the following linearised
form of these equations is iteratively solved for the
traction increment δΔT until a convergence condition
is achieved

F (ΔT + δΔT) = F (ΔT) + ∂F
∂ΔT︸ ︷︷ ︸

J

δΔT = 0 (B.4)

where 0 is a zeros vector (2 × 1) and the Jacobian, J,
is defined as

J =
[

∂Fi
∂ΔTj

]
=

⎡
⎢⎢⎣

∂Ft
∂ΔTt

∂Ft
∂ΔTn

∂Fn
∂ΔTt

∂Fn
∂ΔTn

⎤
⎥⎥⎦ , (B.5)
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where

∂Fi∂ΔTj = − δi j

Ki
− Δt Θ

δ̇0

T0

(
Te
T0

)m−1 [
m Hi Hj

+Te
∂Fi

∂ΔTj

]
. (B.6)

B.2 The tangent modulus

The interface tangent modulus is defined by

C = ∂ΔT
∂Δδ

=

⎡
⎢⎢⎣

∂ΔTt
∂Δδt

∂ΔTt
∂Δδn

∂ΔTn
∂Δδt

∂ΔTn
∂Δδn

⎤
⎥⎥⎦ . (B.7)

The elements of the tangent modulus can be deter-
mined from the variations of the incremental forms in
Eqs. (B.3). The variation of Fi is given by

δFi = ∂Fi
∂Δδt

· δΔδt + ∂Fi
∂Δδn

· δΔδn = 0, (B.8)

where the variations of the separation increments
δΔδt and δΔδn can be chosen arbitrarily yielding
∂Fi/∂Δδt = 0 and ∂Fi/∂Δδn = 0. Hence, the varia-
tions of Eqs. (B.3) give the following set of equations

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Ft
∂ΔTt

0
∂Ft

∂ΔTt
0

0
∂Ft

∂ΔTt
0

∂Ft
∂ΔTt

∂Fn
∂ΔTt

0
∂Fn

∂ΔTn
0

0
∂Fn
∂ΔTt

0
∂Fn

∂ΔTn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂Tt
∂Δδt
∂Tt

∂Δδn
∂Tn
∂Δδt
∂Tn

∂Δδn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 − ∂Ft
∂dt

∂dt
∂Δδt

− ∂Ft
∂dn

∂dn
∂Δδt

−∂Ft
∂dt

∂dt
∂Δδn

− ∂Ft
∂dn

∂dn
∂Δδn

−1 − ∂Fn
∂dt

∂dt
∂Δδt

− ∂Fn
∂dn

∂dn
∂Δδt

−∂Fn
∂dt

∂dt
∂Δδn

− ∂Fn
∂dn

∂dn
∂Δδn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (B.9)

where

∂Fi
∂d j

= −Δt Θ
δ̇0

T0

(
Te
T0

)m−1 [
m Hi

∂Te
∂d j

+Te
∂Hi

∂Δd j

]
. (B.10)

The derivative of the damage parameters are taken as
∂di/∂Δδ j ≈ ∂di/∂Δδcrj . Therefore, solving Eq. B.9
gives the components of the Jacobian.

Appendix C: The physical limits and the validity of
the framework under mixed mode conditions

In this Appendix, we examine the response in the lim-
its of small and large values of φ0 and follow the
same steps as in Elmukashfi and Cocks (2017). The
two extremes are the stiff limit when the interface is
very stiff in comparison with the bulk material, i.e.
ε̇ � δ̇0/λ and φ0 → ∞, and the compliant limit when
the interface creeps much faster than the bulk material,
i.e. ε̇ 	 δ̇0/λ and φ0 → 0. Further, we explore the
validity of C∗ in the cases when elastic deformation
becomes significant in the vicinity of the crack tip.

When an interface is very stiff in comparison with
the bulk material the deformation along the interface
is negligible and it does not influence the stress state
in the body. The traction seen by the damage zone are
determined by the stress distribution in the bulk mate-
rial, and can be expressed in terms of the C∗-integral
(provided the damage zone is small compared to the
region in which the HRR field dominates (Hutchinson
1968; Rice andRosengren 1968)). TheHRR stress field
is defined as

σi j = σ0

[
C∗

ε̇0 σ0 In r

] 1
n+1

σ̃i j (n, θ, χ) , (C.1)

where In is an integration constant that depends on n,
and σ̃i j and σ̃e are dimensionless functions of n, θ and
χ . Thevalues of these parameters are given for the cases
of plane stress and strain conditions by Chambers et al.
(1992) and Shih (1974), respectively. It follows that the
normal and tangential traction along the interface are,
respectively, given by

Tn = σ0

[
C∗

ε̇0 σ0 In r

] 1
n+1

σ̃θθ

(
n, 0, χpl

)
, (C.2)
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and

Tt = σ0

[
C∗

ε̇0 σ0 In r

] 1
n+1

σ̃rθ
(
n, 0, χpl

)
. (C.3)

Therefore, the effective traction for the differentmodels
is evaluated from Eqs. (14), (19) and (25) as

Te = σ0

[
C∗

ε̇0 σ0 In r

] 1
n+1

T̃e
(
n, χpl

)
, (C.4)

where

T̃e =
√√√√

(
σ̃θθ

(
n, 0, χpl

)

Qn

)2

+
(

σ̃rθ
(
n, 0, χpl

)

Qt

)2

,

(C.5)

and Qi = αi or the case of the simplemodel in Eq. (14),
Qi = αi (1 − ωi ) forKachanovmodels inEq. (19), and
Qi = ḡi for the micromechanical model in Eq. (25).
As in the pure mode I case, we limit ourselves to the
case of T0 = σ0 and m = n. Therefore, the effective
separation rate for the simple model can be evaluated
from Eq. (8) as

δ̇e = δ̇0

[
C∗

ε̇0 σ0 In r

] n
n+1

T̃ n
e

(
n, χpl

)
. (C.6)

The critical effective separation is then determined by
integrating the effective separation rate, in a similar
way to Eq. (8), as

ef =
∞∫

0

δ̇e · dx1
ȧ

=
rc∫

0

δ̇e · dr
ȧ

= (n + 1)
δ̇0

ȧ

[
C∗

ε̇0 σ0 In

] n
n+1

r
1

n+1
c T̃ n

e (n, χ) ,

(C.7)

where r = x1 at θ = 0 and rc is the size of the damage
zone, i.e. the distance ahead of the crack tip over which
damage primarily accumulates. Hence, the dimension-
less velocity can be determined as

�
a = (n + 1)

r̄
1

n+1
c

φ0 δ̄fe

[
C̄∗

In

] n
n+1

T̃ n
e (n, χ) , (C.8)

where r̄c = rc/λ. Therefore, the Cs-function for the
case of a stiff interface can be determined by comparing
this equation with Eq. (44) as

Cs = (n + 1) r̄
1

n+1
c

[
1

g (n) φ0 In

] n
n+1

T̃ n
e (n, χ) .

(C.9)

For the cases of Kachanov and micromechanical mod-
els, the effective separation is determined by

δfe∫

0

1

T̃ n
e (n, χ)

dδe =
rc∫

0

δ̇0

[
C∗

ε̇0 σ0 In r

] n
n+1 dr

ȧ

= (n + 1)
δ̇0

ȧ

[
C∗

ε̇0 σ0 In r

] n
n+1

r
1

n+1
c ,

(C.10)

where T̃e (n, χ) depends on the damage parameters.
Hence, the dimensionless velocity can be determined
as

�
a = (n + 1)

r̄
1

n+1
c

φ0 Ik δ̄fe

[
C̄∗

In

] n
n+1

, (C.11)

where

Ik = 1

δfe

δfe∫

0

1

T̃ n
e (n, χ)

dδe. (C.12)

Similarly, Ck for the case of a stiff interface can be
determined by comparing this equation with Eq. (44)
as

Cs = (n + 1)
r̄

1
n+1
c

Ik

[
1

g (n) φ0 In

] n
n+1

. (C.13)

The other limit is when the interface is too compli-
ant in comparison with the bulk material which can be
regarded as rigid. We have determined that the physi-
cal domain for crack growth data is far from this limit
(Elmukashfi and Cocks 2017). Hence, we limit consid-
erations to the pure mode I and mode II cases. In the
case of pure mode I (Elmukashfi and Cocks 2017), Ck
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for the case of a compliant interface is determined as

Cs = 1

q
n

n+1
n W̄ 2n−1

[
2

η

]n
φ

− n
n+1

0 , (C.14)

where qn = 2/ (2 n − 1), W = L − a is the length of
the remaining ligament during steady state propagation
and W̄ = W/λ. In the case of pure mode II, using the
assumption that the bulk material is rigid, crack growth
takes place when the separation at the tip is equal to the
tangential deformation of the DCB arms, i.e. δft = δ.
Thus, at that instant, the interface reaches the criti-
cal value leading to unstable crack growth. Therefore,
for an infinite crack growth rate, Ck is unconditionally
bounded in the compliant limit, i.e. Ck ≤ ∞.

Another limitation comes from the validity of C∗
as a parameter for characterising the near tip field and
damage growth process. In particular, at higher crack
velocities, in the vicinity of the crack tip, the elastic
deformation becomes increasingly important. In this
case, a zone inwhich the response is determinedbyboth
elastic and creep deformation will be formed. Hence,
when the size of this zone is comparable in size to the
damage zone, C∗ can no longer be used. Following
Cocks and De Voy (1991), C∗ controls crack growth
provided the following condition is satisfied

�
a = fn (n)

1
n+1

Z (n)

σ0/E
r̄

2
n+1
c , (C.15)

where fn (n) = 4n

(2n + 1) (n + 1)
, E is Young’s mod-

ulus and Z (n) = (n − 1) In
n−1
n+1 . Using this condition

we derive a condition for Cs function by comparing
Eq. (C.15) with Eq. (44) as

Cs ≤ Z (n)

g (n)
n

n+1

r̄
2

n+1
c δ̄fe

σ0/E

φ
1

n+1
0

C̄∗ n
n+1

. (C.16)

Hence, for particular values of δ̄fe and σ0/E , there is a
maximum velocity below which C∗ is a valid measure.
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