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Abstract We introduce a beam network model for
hierarchically patterned materials. In these materials,
load-parallel gaps intercept stress transmission in the
load perpendicular direction in such a manner that
damage is confined within hierarchically nested, load-
carrying ‘modules’. We describe the morphological
characteristics of such materials in terms of deter-
ministically constructed, hierarchical beam network
(DHBN) models and randomized variants thereof.
We then use these models to analyse the process of
damage accumulation (characterized by the locations
and timings of beam breakages prior to global fail-
ures, and the concomitant avalanche statistics) and of
global failure. We demonstrate that, irrespective of
the degree of local disorder, failure of hierarchically
(micro)structured materials is characterized by diffuse
local damage nucleation which ultimately percolates
on the network, but never by stress-driven propagation
of a critical crack. Failure of non hierarchical reference
networks, on the other hand, is characterized by the
sequence of damage nucleation, crack formation and
crack propagation. These differences are apparent at
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low and intermediate degrees of material disorder but
disappear in very strongly disordered materials where
the local failure strengths exhibit extreme scatter. We
furthermore demonstrate that, independent of material
disorder, the different modes of failure lead to signifi-
cant differences in fracture surface morphology.

Keywords Fracture · Beam lattice model · Hierar-
chical microstructure · Avalanche precursors · Crack
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1 Introduction

Hierarchical materials consist of microstructural fea-
tureswhich have themselves internal (micro)structures,
forming self-similar repeating patterns at different
scales. Such microstructures are ubiquitous in biologi-
cal materials (Fratzl and Weinkamer 2007). Collagen,
for instance, exhibits a hierarchical modular organi-
zation ranging from molecules over microfibrils and
fibers to hierarchical fiber bundles. Other examples
include the hierarchical structure of bone (Launey et al.
2010) and wood (Fratzl and Weinkamer 2007).

Hierarchical modular organization can serve mul-
tiple, even conflicting goals simultaneously: in addi-
tion to higher material strength, it ensures enhanced
toughness over that of an assembly of isolated collagen
molecules (Gautieri et al. 2011), and helps to efficiently
distribute loads which improves structural resilience.
Despite their hierarchical structure, all natural mate-
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rials exhibit a certain degree of microstructural ran-
domness and material heterogeneity. Several authors
observed that hierarchical organization is a means of
mitigating effects of localized flaws and of unreli-
ability of the constituents at lowest structural level
(see e.g. Sen and Buehler (2011)). Jiao et al. (2015)
even argue that structural imperfections in hierarchi-
cal biomaterials may actually improve the mechanical
properties.

The fracture mechanics of hierarchical materials in
conjunction with recursive evaluation of their mechan-
ical properties was investigated in a series of publica-
tions by Gao and co-workers (Gao 2006; Yao and Gao
2007). They demonstrated that hierarchicalmicrostruc-
tures can mitigate against catastrophic propagation of a
localized flaw driven by stress concentrations, ensuring
enhanced damage tolerance.

The mathematical approach known as iterative
homogenization (for overview see e.g. Lukkassen and
Milton (2002)) has been employed to study linearized
effective properties of hierarchical structures such as
elasticity, wave propagation, or conductance. The reit-
erated homogenization method may be extended to
account for internal length scales on different hier-
archical levels by employing generalized continuum
mechanics frameworks (Vernerey et al. 2007). Despite
the intrinsic appeal of the method, however, evalua-
tion of material’s effective properties based on sequen-
tial homogenization is somewhat problematic in the
context of deformation and failure of strongly non-
linear materials, as these properties may be gov-
erned by localized flaws (e.g., a single critical crack)
that may be difficult to capture in a homogenized
framework.

Molecular simulations can model fracture of hierar-
chical materials on the lowest structural level. Multi-
scale modelling approaches may then use such simula-
tions to parametrize mesoscale models describing the
behavior at higher structural levels (see e.g. the work
of Nova et al. (2010) on spider silk), or to encompass
multiple structural levels into very large scale simu-
lations (see e.g. the work of Gautieri et al. (2011) on
collagenfibrils).However, since the computational cost
increases exponentially with the number of hierarchi-
cal levels considered, such approaches are ultimately
restricted to meso scales.

Hierarchical microstructures have also been add-
ressed on a more conceptual level using simplified
models which focus on the fundamental consequences

of hierarchical organization rather than onmaterial spe-
cific details. In so-called fiber bundle models where
a material is envisaged as an array of load-carrying
fibers (for a review, see Pradhan et al. (2010)). A fun-
damental model of this kind is the so-called equal load
sharing fiber bundle model (ELS-FBM) where fibers
fail according to some load-dependent criterion and,
at each moment, the applied global load is equally
shared by all still surviving fibers. Originally devel-
oped to investigate failure of disordered media, FBMs
provide a framework for studying the interplay between
local failure of microstructural elements and the con-
comitant load re-distribution. Hierarchical generaliza-
tions of such models were first proposed by Newman
and Gabrielov (1991) and Newman et al. (1994). At
order k of a hierarchical fiber bundle model (HFBM),
Nk fibers are assumed to share the load equally, and
each of them is envisaged as an ELS fiber bundle of
Nk−1 fibers. For the case Nk = m∀k, exact results
regarding the strength of such hierarchical structures
were, for the case of elastic-brittle fiber behavior, given
by Newman and Gabrielov (1991) and Newman et al.
(1994). The latter work also considers time-dependent
behavior where fibers fail at a rate that depends on
the instantaneous fiber load. In recent times, the effec-
tive strength of more general hierarchical structures of
elastic-brittle fibers was investigated by Pugno et al.
(2012), while the statistics of avalanche precursors to
failure in hierarchical elastic-brittle FBMs was studied
by Biswas and Zaiser (2019). In all these studies, an
important advantage of FBM approaches is their com-
putational efficiency which allows to simulate systems
with very many hierarchical levels and to study large
ensembles of systems, thus ensuring statistical validity
of the results. Self-similar (Nk = const.) and self-
affine (Nk ∝ ka) hierarchical FBM in addition allow
for analytical investigation using the powerful tools of
renormalization theory, see Newman et al. (1994).

By construction, ELS fiber bundle models—which
represent mean-field models of collective phenomena
in fracture—are devoid of spatial structure. In variants
with local load sharing (LLS), fibers are embedded into
aEuclidean space, and the load carried by a brokenfiber
is re-distributed on a finite neighborhood (e.g., on the
nearest-neighbors) . In variants with variable interac-
tion range (Hidalgo et al. 2002), finally, the amount of
load re-distributed from a broken fiber onto another
fiber depends on their Euclidean distance, typically
according to a power law,which allows to interpolate—
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depending on the exponent—between theLLSandELS
limits (Hidalgo et al. 2002). Such models can be used
to approximate stress re-distribution in specific geome-
tries. However, crack-tip stress concentrations which
play a crucial role in classical fracture mechanics are
only captured in an approximate and phenomenologi-
calmanner.As a consequence, important effects such as
the transition fromdiffuse damage nucleation to critical
crack growth are difficult to study in quantitative terms
in fiber bundle frameworks. We therefore seek models
which, while computationally efficient, can capture the
key effects of stress concentrations and crack propaga-
tion. First steps into this direction were undertaken by
Moretti et al. (2018) who used a so-called random fuse
model (RFM) to study the effects of hierarchical struc-
ture on precursor activity in the run-up to failure, and on
the mode of failure. Random fuse models consider the
balance of scalar currents related to scalar voltages. The
ensuing system of equations can be considered a scalar
version of the equations of force balance in mechanics.
Such models capture effects of load concentration at
crack tips, i.e., the associated stress singularity and the
long-range decay of the crack-tip stress field, and have
beenwidely used in statistical studies of fracture of dis-
ordered media (Alava et al. 2006; Nukala et al. 2005).
However, the fact that such equations use a mere scalar
caricature of the conservation equations of linear and
angular momentum, and of the constitutive equations
of continuummechanics which relate tensorial stresses
to tensorial strains, makes it hard to quantitatively link
RFM simulations to observations on real material sys-
tems: They essentially remain on the level of concept
models.

To explicitly account for linear and angular momen-
tum conservation within the framework of network
models, it is necessary to resort to networks of beams
(beam network model, BNM) connecting nodes and
transmitting both forces and torques. Unlike the previ-
ously mentioned concept models, such models, which
we consider here in the quasi-static (non-inertial) limit,
can be quantitatively parametrized to capture the key
features of fracture of real materials as a multi-scale
process: The existence of local failure thresholdswhich
reflect properties of the local material microstructure,
the existence of an internal length above which the
material can be described as a continuum, and the
coupling of different material elements by long-range
stress fields that emerge in response to local failure, and
that are related to strains by tensorial constitutive rela-

tions such that general loadings and complex geome-
tries, which in general lead to locally multi-axial stress
states, canbe adequately captured.At the same time, the
models use a simplified description of local deforma-
tion and failure processes that abstracts from the bewil-
dering detail of real material microstructures. There-
fore BNM, while preserving the fundamental structure
of continuummechanics, achieve a degree of simplicity
that makes them amenable to large-scale simulations
and systematic studies over a wide range of system
sizes, using ensembles of a size that allows for mean-
ingful statistical predictions (Manzato et al. 2012).

Here we formulate for the first time a hierarchical
version of a BNM. The beam network approach we use
is similar to a non-hierarchical BNM used by Hosseini
et al. (2020) for investigating disorder effects in non-
hierarchical structures, whereas the geometrical con-
struction of different network variants is the same as
used by Moretti et al. (2018). We use this hierarchical
BNM to explore how hierarchical organization affects
the precursor activity in the run-up to failure and ulti-
mately changes the mode of failure. The remainder of
the paper is organized as follows: In Sect. 2 (method)
we briefly introduce the BNM (technical details are
given in the appendix), in Sect. 3 we show results
of fracture simulations of this model and analyse the
results in terms of fracture precursors, fracture/failure
mode and fracture surface morphology, and in Sect. 4
we provide a general discussion of our results in the
wider context of failure of disordered media.

2 The method: beam network model

We consider a two-dimensional BNM based on a
2D cubic lattice of interconnected beams which are
clamped together at their intersections. The points
where beams are mutually connected are referred to as
nodes; a BNM of size L has L(L +1) nodes. L = 2n is
referred to as the network size, it is taken to be a power
of 2. At two opposite boundaries of the BNM (hence-
forth referred to as ‘top’ and ‘bottom’), all degrees of
freedom (DOFs) are fixed through two rigid bars which
are used to apply an axial displacement along one of
the two cubic axes of the lattice structure (henceforth
referred to as ‘vertical’ axis). Periodic boundary condi-
tions are imposed in the load perpendicular (‘horizon-
tal’) direction. Beams oriented along the loading axis
are denoted as load-carrying (LC) beams, their num-
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ber is NLC; a set of l vertically connected LC beams
is denoted as a LC fiber of length l. Beams oriented in
perpendicular direction are denoted as cross-link (CL)
beams, their number is NCL; a set of l horizontally con-
nectedCLbeams is denoted as aCLconnector of length
l. On the other hand, a set of l vertically adjacent sites
where CL beams are missing or have failed is denoted
as a gap of length l.

2.1 Construction of hierarchical and non hierarchical
BNMs

In order to construct a deterministic hierarchical beam
network (DHBN), we start out from a full beam net-
work, where NCL = L(L − 1) and NLC = L2 = 4n .
From this starting point, a hierarchical structure is
obtained by removing cross links such as to create gaps
which recursively sub-divide the structure into load-
carrying modules of decreasing order as illustrated in
Fig. 1.

This construction leads to a hierarchical pattern of
modules separated by gaps, and of CL connectors con-
necting them. The overall structure has close similar-
ities to the ‘hierarchical diamond lattice’ studied by
Griffiths and Kaufman (1982) in the context of phase
transitions in spin systems, and by Sornette (1989) and
Roux et al. (1991) in the context of size scaling of
breakdown strength. In the hierarchical DHBN pattern,
the numbers of structural features such as CL con-
nector lengths and gap lengths are connected to the
respective lengths of these features by power laws. For
instance, in a DHBN as illustrated above with n hier-
archical levels, the number of CL connectors of length
l is Nc(l) = 2(2n)/(l + 1)2 and the number of gaps of
length l is Ng(l) = 2(2n−1)/(l + 1)2.

Fig. 1 Iterative ‘top-down’ construction of a hierarchical net-
work (deterministic hierarchical beamnetwork,DHBN):we start
with full beam network; this is then divided by load-parallel cuts
into four highest-level modules. These form two groups of two
modules loaded in series, connected by a system spanning con-
nector (the row of cross links shown in red); next, each of the
four modules is again divided into four lower-level modules plus
a module-spanning lateral connector, etc

In addition to DHBN, we consider randomized vari-
ants as follows: (i) A random beam network (RBN) of
size L = 2n is constructed from the same number of
L2 LC links and NCL cross-links as the correspond-
ing DHBN, but the CL beams are distributed randomly
over the possible CL sites, leading to an exponential
gap length distribution; (ii) defining a row as a set of
CL beams that share the same vertical position, and
a column as a set of LC beams that share the same
horizontal position, a shuffled hierarchical beam net-
work (SHBN) is constructed by starting from a DHBN
and first randomly reshuffling the columns and then the
resulting rows. This results in a randomized structure
which however preserves the power-law relationship
between the numbers of connectors and gaps and their
respective lengths (Moretti et al. 2018). For illustra-
tion, fiber bundle (FB), DHBN, RBN, and SHBN of
size L = 16 (order n = 4) are shown in Fig. 2.

Fig. 2 Examples of deterministic and stochastic hierarchical
beam networks with n = 4 hierarchical levels (DHBN, SHBN),
and non hierarchical reference structures of the same size (fiber
bundle, FB, and random beam network, RBN); loading is in all
cases in tension along the vertical direction, all structures have
the same number and length of load carrying fibers and RBN,
DHBN and SHBN have equal numbers of lateral connectors; the
dangling beams on the left and right boundary of the networks
mutually connect, thus implementing periodic boundary condi-
tions perpendicular to the loading direction
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2.2 Material model

The constituents of theBNMare assumed to be straight,
identical beams of unit modulus of elasticity, unit
length and square cross section (cross-section area
A = 1), which are capable of resisting axial and shear
forces as well as bending moments. There are three
degrees of freedom (DOF) at each node including two
translational DOF (node displacements u and v along
the global x and y axes) and one rotational DOF (rota-
tion angle θ about the global z axis). The beams are
assumed to deform in a linearly elastic manner, their
deformation is described using Timoshenko beam the-
ory to relate the forces and moments acting on the
beam endpoints to the corresponding displacements.
This is done in a local coordinate system aligned with
the beam axis where displacements (axial and shear
displacements of the end nodes, rotations of the end
nodes) are assembled into a local displacement vector
ũ while axial and shear forces and moments acting on
the end surfaces are assembled into a force vector F̃
such that for all beams K̃ũ = F̃. An explicit expres-
sion for the local stiffness matrix K̃, which defines the
elastic behavior of the beam, is given in the Appendix.

We consider quasi-static deformation, i.e., inertial
forces are assumed negligible. Thus, the balance equa-
tions of linear and angular momentum reduce to the
requirement that the sums of forces and moments act-
ing on all beams connecting to each given node must
be zero. This leads to a global equation of the type

K.u = 0 (1)

where u is the global displacement and force vector
which comprises all nodal displacements and rotation
angles, transformed to the global coordinate system.
The matrix K depends in general on the individual
beam orientations in the global coordinate system (see
Appendix for explicit expressions) and thus on the
nodal displacements, which makes the problem non-
linear even when the individual beam deformations are
small. To keep the numerical effort manageable, we
make the additional assumption that the beam orien-
tations remain close to their values in the undeformed
structure, such that the system of equations becomes
linear. This assumption can be justified a posteriori for
the boundary conditions and material parameters used
in our simulations.

2.3 Failure criterion

The beams are assumed to behave in an elastic-brittle
manner, i.e., they deform in a linearly elastic manner
and then fail irreversibly once a stress-based criterion is
met. In terms of nodal forces andmoments this criterion
reads for beam i j connecting nodes i and j

σ/ti j = 1,

σ =
√( Fini

A
+ max(|Mi |, |Mj |) ymax

I

)2 + 3
(Qi

A

)2
(2)

where ni indicates the outward normal direction of the
beam end surface connecting to node i , Fi is the normal
force which can be tensile (Fini > 0) or compressive
(Fini < 0), Qi is the shear force, andMi is themoment
acting on this surface. A derivation of Eq. (2) based on
theMaximumDistortion Energy of Failure (vonMises)
criterion is given in the Appendix. A simpler criterion
often used in the literature (see e.g. Herrmann et al.
(1989), Nukala et al. (2008)) is obtained by neglecting
the shear force Q in this expression, however, this is
inconsistent with a Timoshenko model for beam defor-
mation and may seriously under-estimate the failure
likelihood of lateral connector beams, which mainly
transmit shear forces.

Mimicking material heterogeneity, beam failure
thresholds ti j are randomly assigned based on aWeibull
probability distribution function with probability den-
sity

p(ti j ) = β

η

( ti j
η

)β−1
exp

(
−

( ti j
η

)β
)

(3)

where β > 0 and η > 0 are the shape and scale param-
eters of the distribution, respectively. In this paper we
adjust the scale parameter η such as to have a fixed
mean value 〈ti j 〉 = 1.0 for the failure thresholds. The
shape parameter β, on the other hand, is varied such
as to implement different degrees of disorder, ranging
from β = 20 (low disorder) over β = 4 and β = 1.5 to
β = 0.5 (high disorder), thus covering the entire spec-
trum from very reliable to very unpredictable material
behavior.

2.4 Simulation protocol

The BNM is loaded under conditions of displace-
ment control, i.e., the external axial displacement is
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increased until the first beam breaks and then kept fixed
while load is re-distributed which may trigger further
failures (stress relaxation). This process is repeated iter-
atively in such a way that one beam is removed in every
iteration, until loss of global connectivity indicates fail-
ure of the beam network.

To this end, at each iteration a unit vertical displace-
ment is imposed on the nodes at the upper boundary of
the network while the nodes at the lower boundary are
fixed and periodic boundary conditions are imposed in
the lateral direction (see Fig. 2). Displacements of all
BNMnodes are calculated fromEq. (11) and then trans-
formed into the beams’ local coordinate system, where
the local loads on each beam are calculated using Eq.
(6). The weakest element of the structure is identified
as the beam with the highest σ/ti j ratio, (σ/ti j )max.
Under the assumptions stated above (small global and
local deformations) the beam forces andbeamdisplace-
ments are homogeneous functions of first degree of the
applied boundary displacement. Thus, the global dis-
placement (σ/ti j )−1

max satisfies the failure criterion in
Eq. (2) for the weakest beam which is then removed.
However, due to the displacement-controlled deforma-
tion regime which does not allow for global relaxation,
the actual imposed displacement is max((σ/tij)−1

max, d)

where d is the displacement of the previous step.

3 Results of fracture simulations

This section is concerned with the differences between
materials with hierarchical and non-hierarchical
microstructures in terms of nature and statistical sig-
natures of the failure process. We first focus on qual-
itative differences in the damage growth patterns and
stress–strain curves. Typical patterns of damage growth
(damage pattern at increasing global displacement) are
depicted inFig. 3 forRBNandDHBNof size L = 1024
where beam thresholds are Weibull distributed with
shape parameters β = 4.0 and β = 0.5.

In case of non-hierarchical materials at low to inter-
mediate disorder as illustrated by the failure sequence
of a RBN with β = 4 in Fig. 3a, fracture occurs by
nucleation and propagation of a crack which becomes
critical at the system’s peak load, and is then propa-
gated by crack-tip stress concentrations until it spans
the entire system. In hierarchical materials of the same
disorder as illustrated in Fig. 3b, on the other hand, the
hierarchically distributed gaps interrupt crack propa-

gation on all scales, causing widely separated flaws
which coalesce to form a super-rough crack profile.
These differences are reduced in systems with very
high disorder (β = 0.5), as illustrated in Fig. 3c
and d, where crack nucleation is facilitated and crack
propagation is impeded by the high disorder such that
the effect of crack-tip stress concentrations is greatly
diminished. As a consequence, one sees a transition to
multiple crack nucleation-and-coalescence even in the
non hierarchical system. Similar behavior is observed
inmanyother systems in the limit of high disorder, from
LLS fiber bundle models (Newman and Phoenix 2001;
Phoenix and Newman 2009) to continuum models of
plasticity and damage (Zaiser et al. 2013).

3.1 Stress–strain curves and damage patterns

Fracture surfaces and concomitant stress–strain curves
are shown in Fig. 4 for different degrees of disorder,
ranging from low disorder (β = 20, bottom row) to
very high disorder (β = 0.5, top row). For low and
intermediate disorder, the stress–strain curves of the
non-hierarchical RBN network are of essentially brit-
tle nature, with little pre-peak softening and an abrupt
load drop to zero at the point of failure. This is expected
when failure is governed by nucleation and propa-
gation of a critical crack. The hierarchical networks,
on the other hand, show a significant degree of both
pre-peak and post-peak damage accumulation: fail-
ure does not occur immediately after the peak stress
is reached but proceeds gradually by ongoing nucle-
ation and coalescence of local flaws. This qualitative
difference between hierarchical and non hierarchical
networks disappears at the highest degree of disorder
(β = 0.5) where the stress–strain curves of both hier-
archical and non hierarchical samples show a gradual
progression of failure.

In the non-hierarchical structures the fracture pro-
files exhibit self-affine shapes as found in many experi-
ments (for early investigations see e.g.Mandelbrot et al.
1984; Måløy et al. 1992) and also in many simulations
of random fuse and randombeammodels (Hansen et al.
1991; Zapperi et al. 2005; Nukala et al. 2008)). The
crack shapes in both DHBN and SHBN, by contrast,
are qualitatively different and cannot be described as
self-affine. In these networks the hierarchical structure
with a power law distribution of vertical gaps imposes
wide discontinuous jumps in the crack profile which
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Fig. 3 Typical stress distribution and damage growth patterns,
from the system’s peak load (left) to global fracture (right), for
different network variants of size L = 1024 and two different

degrees of disorder (medium disorder, β = 4, high disorder,
β = 0.5); a RBN, β = 4.0, bDHBN, β = 4.0, c RBN, β = 0.5,
d DHBN, β = 0.5

are visually reminiscent of crack profiles encountered
e.g. in bone (Moretti et al. 2018; Launey et al. 2010).
The fracture surfaces of the hierarchical networks are
super-rough with system-spanning discrete steps. This
qualitative difference persists irrespective of the degree

of disorder, though a gradual change is visible in the
sense that, for high disorder, the large steps on the frac-
ture surface in hierarchical network versions get less
frequent, an observation which corresponds to a larger
exponent of the power-law step size distribution ana-
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Fig. 4 Typical behavior of different network variants under load,
with L = 1024 and Weibull distributed beam thresholds with
shape parameter β where in subfigures a and b β = 0.5, c and
d β = 1.5, e and f β = 4, g and h β = 20. Left column:
crack shapes in a DHBN and a RBN; right column: stress–strain
curves for DHBN, SHBN and RBN. All structures have the same
initial stiffness. The label FBmarks stress–strain curves for aELS
fiber bundle consisting of the same number and arrangement of
load carrying links, hence same initial stiffness, which are also
included for comparison (for β = 0.5 the FB stress–strain curve
shows extremely low failure stress/strain as shown in the graph
inset)

lyzed in Sect. 3.3 below, while at the same time for
very high disorder the roughness exponent of the self
affine fracture surfaces of the non hierarchical systems
increases, as also observed in other studies (see e.g.
Hansen et al. (1991)).

3.2 Avalanches

As described in Sect. 2.3, the BNM are loaded in dis-
placement control where the imposed global displace-
ment is monotonically increased until at least one beam
fails. In general, subsequent to failure of one beam,
internal load re-distribution causes secondary failures,
leading to an avalanche-like dynamics. The number
of beam failures occurring at constant global dis-
placement after primary beam failure has been caused
by an external displacement increment is denoted as
avalanche size s. As can be seen from Fig. 5, avalanche
size distributions at low and intermediate disorder dif-
fer significantly between hierarchical and non hierar-
chical network variants. For non hierarchical networks,
the avalanche distribution is composed of a power-law
regime at small avalanche sizes where p(s) ∝ s−α ,
plus an outlier which represents the avalanche asso-
ciated with supercritical propagation of the final, sys-
tem spanning crack. The power law regime is associ-
ated with diffuse damage accumulation prior to super-
critical crack nucleation; it is more pronounced if the
system is strongly disordered and disappears in highly
ordered systems (β = 20) where there is only a single
avalanche associatedwith abrupt failure. The avalanche
exponent α of the initial power-law regime decreases
with increasing disorder and for very large disorder
falls below the asymptotic value α = 2.5 characteris-
tic of the mean-field (ELS) limit. In hierarchical net-
works, by contrast, the broad distribution of avalanche
sizes can in general not be well described by a single
power law. This behavior is reminiscent of hierarchical
fuse networks as studied byMoretti et al. (2018) where
it was shown that the pre-peak avalanche dynamics of
such structures differs significantly from themean field
behavior represented by ELS fiber bundles. For details
we refer the reader to Moretti et al. (2018). In the limit
of high disorder (β = 0.5), the differences in avalanche
statistics disappear as both non-hierarchical and hier-
archical systems exhibit power-law statistics with an
avalanche exponent α ≈ 2.3.
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(a) (b) (c) (d)

Fig. 5 Avalanche size distributions for different network variants of size L = 512. Each distribution is averaged over 6000 realizations.
Beam strengths are Weibull distributed with shape parameters a β = 0.5, b β = 1.5, c β = 4.0 and d β = 20.0

(a) (b) (c) (d)

Fig. 6 Roughness plots (standard deviation σl vs averaging
length l) for different network variants of size L = 512. Each dis-
tribution is averaged over N = 6000 realizations.Beamstrengths

are Weibull distributed with shape parameters a β = 0.5, b
β = 1.5, c β = 4.0 and d β = 20.0

3.3 Crack roughness

Typical fracture surface profiles of RBN and DHBN of
size L = 1024 are shown in Fig. 4, left. To character-
ize the profiles, the BNM’s global coordinate system is
used such that the x direction corresponds to the load
perpendicular direction and y to the loading direction.
The fracture surface profile can then be envisaged as
a function y(x). To analyze the scale dependent mor-
phology of this profile, we first determine the scale
dependent roughness in terms of the scale dependent
standard deviation

σl =
〈
〈(y(x) − 〈y(x)〉l)2〉1/2l

〉
L ,N

(4)

where 〈. . . 〉l denotes the average over a window of
length l and 〈. . . 〉L ,N is the average over all windows
contained in the sample cross section of length L , as
well as over all samples in an ensemble of N simula-
tions with different realizations of a given microstruc-
ture. Since the statistical properties of a self-affine pro-
file y(x) are invariant under the scaling transformation

x → λx, y → λH y where H is the Hurst exponent, we
expect for a self-affine fracture surface that σl ∝ l H .

For non hierarchical samples we consistently find
self-affine scaling with a Hurst exponent H ≈ 0.65
that does not depend strongly on the degree of material
disorder(see Fig. 6a–d). This exponent compares well
with observations on random fuse and random spring
models in the published literature, see e.g. Hansen et al.
(1991). In hierarchical networks, on the other hand,
the absolute roughness of the fracture surfaces is much
higher, and the same is true for the apparentHurst expo-
nent of the linear scaling regimes which is close to 0.9.
This is in some sense expected since for hierarchical
networks with an infinite number of hierarchical levels
an asymptotic exponent of 1 follows trivially from the
fact such networks are statistically invariant under the
transition x → 2x , y → 2y and the same must be
true for the corresponding crack profiles. For finite net-
works as studied here, the apparent exponent is slightly
less (H ≈ 0.9) and scaling is limited to small l. The
horizontal large-l asymptote corresponds to the value
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 7 Structure factors Cm for different values of m and differ-
ent networkvariants of size L = 512.Each curve is averagedover
N = 6000 realizations. Beam strengths are Weibull distributed

with shape parameter β where in subfigures a–c β = 0.5, d–f
β = 1.5, g–i β = 4.0, j-l β = 20; left column shows C1, middle
column C2, right column C4
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σl = L/
√
12 for the ELS FB model with fibers of

length L , which is obtained by considering the y(x)val-
ues to be completely random variables equi-distributed
on the interval [0...L] and uncorrelated among different
fibers.

To analyze whether or not the apparent scaling
regimes on the roughness plots represent true self-
affine behavior, we perform a multi-scaling analysis.
To this end, we denote as Δ(x, l) the height difference
|y(x)−y(x+l)| between two points on a profile that are
separated by a distance l. We then compute so-called
structure factors of order m:

Cm(l) = 〈[Δ(x, l)]m〉1/mL ,N . (5)

For self affine profiles of Hurst exponent H , the self
affine scaling invariance implies that Cm(l) ∝ l H for
all m. Thus, double-logarithmic plots of Cm vs win-
dow size l scale linearly with m-independent slope
H . Results of a multi-scaling analysis shown in Fig. 7
demonstrate that this requirement is approximately ful-
filled for crack profiles in non-hierarchical RBN mod-
els.

In hierarchical networks, on the other hand, the
scaling can not be described as self affine since the
apparent Hurst exponent for different structure factors
Cm depends on the exponent m approximately like
Hm = 1/m. This indicates that the increase of surface
fluctuations with increasing scale may reflect the self-
similar hierarchical architecture of the samples rather
than dynamic correlations in crack growth. This idea
is further borne out when we look at the statistics of
fracture surface steps, which for hierarchical networks
is strongly influenced by the power-law statistics of
load-parallel gaps separating the different modules.

3.4 Statistics of surface steps

Statistics of step heights h (i.e., height differences
between subsequent horizontal beams on the fracture
surface) are plotted inFig. 8 for differentBNMvariants.
The non hierarchical RBN network exhibits exponen-
tial step height distributions. Hierarchical networks, on
the other hand, are characterized by scale-free distribu-
tions p(h) ∝ h−Kh of surface step heights h as shown
in Fig. 8 for different degrees of threshold disorder,
ranging from high disorder (β = 0.5), Fig. 8a, to low
disorder (β = 20, Fig. 8d).

As such, a power-law scaling of step heights on sur-
face profiles is not unexpected. For DHBN and SHBN

structures as consideredhere,wefind load-parallel gaps
for which the gap height distribution in the 2D system
is given by p2D(h) ∝ h−2. For a one-dimensional sec-
tion perpendicular to the stress axis, we then expect
that the intersecting gaps have a height distribution
p1D(h) ∝ h−1. Assuming that, at each gap, the fracture
surface is deflected to one of the gap endpoints (i.e., by
an amount of the order of h) we then expect a ‘built-
in’ step height distribution p(h) ∝ h−1. An exponent
close to 1 is indeed what we find for highly reliable
materials, where stochastic influences on damage accu-
mulation are negligible. For unreliablematerials, on the
other hand, we still observe a power law statistics but
now the exponent Kh increases with increasing disor-
der (decreasing Weibull exponent) from 1.16 (β = 20)
to 1.84 (β = 1.5 and β = 0.5). This indicates that,
in the general case, the power law statistics of surface
steps is an emergent phenomenon which is controlled
by the interplay between structural morphology (built-
in modular organization with power-law gap distribu-
tion), load re-distribution on the hierarchical network,
and disorder.

4 Conclusions

We have analyzed the failure behavior of hierarchi-
cal beam networks, using non-hierarchical networks
with the same elementary beam properties as a refer-
ence. The results indicate that hierarchical organization
has a very significant influence on failure. Maybe the
most conspicuous consequence of hierarchical organi-
zation resides in the fact that, irrespective of the degree
of material disorder, hierarchically structured samples
never fail by crack nucleation and propagation. The
hierarchical modular organization thus proves efficient
in containing damage which hardly ever propagates
across modular boundaries: crack-tip stress concentra-
tions, which ultimately lead to failure by supercriti-
cal crack propagation, are thus efficiently mitigated.
Instead, failure occurs by the nucleation of damage
in the hierarchically nested modules and subsequent
coalescence of independently nucleated damage clus-
ters. The overall failure behavior resembles in several
respects the behavior of non hierarchical structures in
the limit of extremely high disorder. This similarity
concerns the asymptotic irrelevance of local stress con-
centrations, the avalanche statistics, and also the shape
of the stress strain curves. At the same time, the distinc-
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(a) (b) (c) (d)

Fig. 8 Distribution of surface step heights for different network variants of size L = 512. Each distribution is averaged over 6000
realizations. Beam strengths are Weibull distributed with shape parameters a β = 0.5, bβ = 1.5, cβ = 4.0 and d β = 20.0

tive super-rough morphology of the fracture surface,
which is in characterized by power-law distributed dis-
continuities, represents a robust featurewhich irrespec-
tive of disorder distinguishes hierarchical structures
from their non-hierarchical counterparts.

From a point of view of absolute strength, hierarchi-
cal organization is not inherently favorable. Our sim-
ulations indicate that hierarchical and non hierarchi-
cal samples consisting of the same number of beams
with the same statistical properties on the beam level
have comparable peak stresses: the more diffuse fail-
ure mode of hierarchical samples does not increase
their maximum strength. In this respect our simula-
tions, which use a more realistic load re-distribution
scheme, confirm the results of Biswas and Zaiser
(2019): Hierarchical organization into load carrying
‘modules’ impedes damage propagation acrossmodule
boundaries, but at the same time damage accumulation
within modules may be enhanced due to less efficient
load re-distribution. The main benefit of hierarchical
organization may thus not be enhancement of absolute
strength, but rather toughening and mitigation against
propagation of large flaws. An investigation of these
issues, as well as a direct experimental validation of
our findings, will be published separately.

Further investigation is also needed to establish the
size dependent failure properties of hierarchical sys-
tems. In this respect, renormalization arguments as
used by Sornette (1989), Roux et al. (1991), and New-
man et al. (1994) may be exploited to establish the
asymptotic behavior of hierarchical beam or fuse net-
works in the large-system limit, and complemented
by analytical and numerical investigations to estab-
lish how this limit is approached. Again, a more pro-
found investigation of these issues, and of the question

to which extent large-system asymptotics explain the
behavior of experimentally realizable metastructures
which of necessity have only a rather limited number
of hierarchical levels, will be a subject of further stud-
ies.
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Appendix A: numerical implementation aspects

A.1 Governing equations of the beam model

The constituents of theBNMare assumed to be straight,
identical beams of unit length, unit modulus of elastic-
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ity and square cross section which are capable of resist-
ing axial and shear forces as well as bending moments.
There are three degrees of freedom (DOF) at each node
including two translational DOF (node displacements
u and v along global axes x and y) and one rotational
DOF (rotation angle θ about global z axis).

The beams are assumed to deform in a linearly elas-
tic manner and to break irreversibly once a stress based
criterion is met which we discuss below. Stresses and
strains are evaluated using Timoshenko beam theory.
We assume small beam deformations and introduce
a local two-dimensional coordinate system for each
beamwhere the x̃ axis is alignedwith the beam axis, the
ỹ axis points in perpendicular direction, and the origin
is placed on the beam neutral axis. The corresponding
displacements are denoted by ũ and ṽ. In this coordi-
nate system, forces and end displacements are related
by a matrix equation which can be written as K̃.ũ = F̃
where the stiffness matrix K̃, generalized displacement
vector ũ and generalized force vector F̃ are given by
(Herrmann et al. 1989):

⎡
⎢⎢⎢⎢⎢⎢⎣

γ

0 ζ SY M
0 λ ψ

−γ 0 0 γ

0 −ζ −λ 0 ζ

0 λ ξ 0 −λ ψ

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

ũi
ṽi
θi
ũ j

ṽ j

θ j

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F̃i
Q̃i

Mi

F̃j

Q̃ j

M j

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(6)

where

γ = E A

l
, ζ = 12E Iz

l3(1 + Φy)
, λ = 6E Iz

l2(1 + Φy)
,

ψ = (4 + Φy)E Iz
l(1 + Φy)

, ξ = (2 − Φy)E Iz
l(1 + Φy)

.

(7)

E is the modulus of elasticity, A is the beam cross-
section area, l is the beam length, Iz is the moment of

inertia along the z axis, Φy = 12E Iz
GAl2

is the shear cor-

rection factor, and G is the shear modulus. Subscripts
i and j refer to the two end nodes of the beam. The
letters F̃ , Q̃ and M in the force vector denote axial
and shear forces and bending moments, respectively
(Note that bending moments and rotation angles are
identical in the local and global coordinate systems,
so we have dropped the tildes on M, θ ). If Φy = 0,

shear strain is being neglected and Eq. (6) reduces to
Euler–Bernoulli beam theory. However, such a simpli-
fication is not a suitable choice for a BNM because it
presumes that the beam is so slender that each cross-
section remains perpendicular to the neutral axis dur-
ing deformation, which is not in accordance with our
assumptions. Based on our preliminary simulations of
BNMsof size L = 1024, usingEuler–Bernoulli instead
of Timoshenko beam elements results in a significant
underestimation of failure stress and fracture energy.

In order to obtain the equilibrium equations of the
entire lattice, it is first required to transform K̃ into a
global coordinate system through:

Ki j = TT
i j .K̃Ti j (8)

where Ki j represents the stiffness matrix of the beam
connecting nodes i and j in the global coordinate sys-
tem, and TT

i j is the transpose of the transformation
matrix Ti j :

Ti j =

⎡
⎢⎢⎢⎢⎢⎢⎣

ci j si j 0 0 0 0
−si j ci j 0 0 0 0
0 0 1 0 0 0
0 0 0 ci j si j 0
0 0 0 −si j ci j 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(9)

where ci j and si j represent cos and sin of the angle
between the beam axis and the global x direction,
respectively. Substitution of K̃ and Ti j into Eq. (8)
gives the stiffness matrix of beam i j in the global coor-
dinate system:

Ki j =⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c2i jγ + s2i j ζ
si j ci j (γ − ζ ) s2i jγ + c2i j ζ SY M

−si jλ ci jλ ψ

−(c2i jγ + s2i j ζ ) si j ci j (ζ − γ ) si jλ c2i jγ + s2i j ζ
si j ci j (ζ − γ ) −(s2i jγ + c2i j ζ ) −ci jλ si j ci j (γ − ζ ) s2i jγ + c2i j ζ

−si jλ ci jλ ξ si jλ −ci jλ ψ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

Then, the components of the beam stiffness matrices
are assembled into the K matrix of the entire lattice
by summing up the forces and moments of the beams
which connect at each node. The resulting equilibrium
equations of the lattice in the global coordinate system
take the form

K.u = F (11)

where u and F are the global displacement and force
vectors, respectively.
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A.2 Failure criterion

Beam failure occurs depending on a stress-based crite-
rion. We use the Maximum Distortion Energy Theory
of Failure (von Mises) criterion. For a 2D geometry
with plane stress loading conditions, this criterion can
be expressed as

σ =
√

σ 2
11 + 3σ 2

12 = t, (12)

whereσ11 andσ12 are axial and shear stress of the beam,
respectively, and t is the equivalent stress at failure
(beam failure threshold). Axial stress consists of ten-
sile/compressive and bending components which are at
the beam end surface with outward normal n given by

σ11 = Fn

A
+ Mỹ

I
. (13)

where a force in direction of the outward normal of the
beam end surface (Fn > 0) yields a positive (tensile)
stress contribution and a force in opposite direction
a compressive stress contribution. Since the loads on
each beam are only applied through the end nodes and
the beam is in quasi-static equilibriumwith small defor-
mations, axial and shear forces form couples which
lead to constant axial and shear stresses, i.e., for beam

i j we have Fi = −Fj , Fini = Fjn j = σ11A and
Qi = −Q j , Qini = Q jn j = σ12A . Because of the
same reason, the bending moment varies linearly along
the beam and therefore is maximum at one of the end
nodes.We assume that beam failure initiates at the loca-
tion of maximal tensile stress. Given that the bending
moment is highest in the outer beam layer (ỹ = ymax ),
maximum axial and shear stresses follow the relation:

max(σ11) = Fini
A

+ max(|Mi |, |Mj |) ymax

I
, (14)

σ12 = Qi

A
. (15)

By substituting Eqs. (14) and (15) into Eq. (12), the
failure criterion is given by

σ/t = 1,

σ =
√( Fini

A
+ max(|Mi |, |Mj |) ymax

I

)2 + 3
(Qi

A

)2
(16)

A simpler criterion often used in the literature (see
e.g. Herrmann et al. (1989), Nukala et al. (2008).) is
obtained by neglecting the shear force Q in this expres-
sion, however, given that we consider Timoshenko

rather than Euler–Bernoulli beams, it would be incon-
sistent to neglect shear stress effects which are of par-
ticular importance for failure of the lateral connector
beams.

Mimicking material heterogeneity, beam failure
thresholds t are randomly assigned based on a Weibull
probability distribution function with probability den-
sity

p(t) = β

η

( t

η

)β−1
exp

(
−

( t

η

)β
)

. (17)

With p(t) ≥ 0, t ≥ 0, β > 0, η > 0 where β and η

are the shape and scale parameters of the distribution,
respectively. For this distribution, the mean value of
thresholds is

t̄ = η.Γ
( 1

β
+ 1

)
(18)

where Γ is the gamma function. From Eq. (18), the
scale parameter can be written as

η = t̄

Γ
( 1

β
+ 1

) (19)

The variance of failure thresholds, on the other hand,
is a function of the shape and scale parameters:

var(t) = η2
[
Γ

( 2

β
+ 1

)
− Γ 2

( 1

β
+ 1

)]
(20)

Combining Eqs. (19) and (20) gives

var(t) =
[ t̄

Γ ((1/β) + 1)

]2
.
[
Γ

( 2

β
+ 1

)

−Γ 2
( 1

β
+ 1

)]
(21)

Eq. (21) shows that for a given mean (average) thresh-
old, the variance is a function of the shape parameter
(β) only. In this paper we choose a fixed mean value of
1.0 for the failure threshold (measured in units of the
elasticmodulus). This ensures that strains are of typical
order less than 0.1, warranting a small-strain approxi-
mation to the elastic problem on the beam level. How-
ever, under general loading conditions the problem is
still geometrically non-linear since the beam angles,
which depend on the global nodal displacements, are
in general not close to their initial values even if the
deformations of the individual beams are small. For
the network sizes and loading mode considered here
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(axial loading of the networks along a statistical sym-
metry axis), but not in general, it is feasible to assume
that the beam angles remain near their initial values. In
this case, the behavior of materials with different mean
threshold can be obtained by simplemultiplicationwith
the threshold ratio.
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