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Abstract Premature failures in metals can arise from
the local reduction of the fracture toughness when brit-
tle phases precipitate. Precipitation can be enhanced
at the grain and phase boundaries and be promoted
by stress concentration causing a shift of the terminal
solid solubility. This paper provides the description of
a model to predict stress-induced precipitation along
phase interfaces in one-phase and two-phase metals.
A phase-field approach is employed to describe the
microstructural evolution. The combination between
the system expansion caused by phase transformation,
the stress field and the energy of the phase boundary
is included in the model as the driving force for pre-
cipitate growth. In this study, the stress induced by an
opening interface crack is modelled through the use of
linear elastic fracture mechanics and the phase bound-
ary energy by a single parameter in the Landau poten-
tial. The results of the simulations for a hydrogenated
(α + β) titanium alloy display the formation of a pre-
cipitate, which overall decelerates in time. Outside the
phase boundary, the precipitate mainly grows by fol-
lowing the isostress contours. In the phase boundary,
the hydride grows faster and is elongated. Between the
phase boundary and its surrounding, thematrix/hydride
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interface is smoothened. The present approach allows
capturing crack-induced precipitation at phase inter-
faces with numerical efficiency by solving one equa-
tion only. The present model can be applied to other
multi-phase metals and precipitates through the use of
their physical properties and can also contribute to the
efficiency of multi-scale crack propagation schemes.

Keywords Interface crack · Phase boundary · Phase
transformation · Phase-field method · Precipitation
kinetics · Multi-phase

1 Introduction

The loss of function and usefulness of a compo-
nent can be related to the deterioration of mechan-
ical and physical properties of structures, depending
on the environment and the stress conditions in which
it operates. This degradation of materials can be the
result of damage mechanisms, such as stress corro-
sion cracking and hydrogen embrittlement, for which
the combination of a corrosive environment and stress
can enhance the propagation of cracks (Jones 1992).
Hydrogen embrittlement typically occurs in metals
operating in hydrogen-rich environment, e.g. in nuclear
power reactors or rocket engines. Diverse damages
induced by the interaction of hydrogen with the materi-
als can be observed such as hydrogen attack, blistering
and hydride formation (Cramer 2003). The latter phe-
nomenon is characterized by the precipitation of non-
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metallic phases, hydrides, usually more brittle than the
metallic matrix. The relatively low fracture toughness
of the hydrides can contribute to the reduction of the
load bearing capacities of metals such as titanium- and
zirconium-based alloys (Coleman and Hardie 1966;
Chen et al. 2004; Coleman et al. 2009; Luo et al.
2006). The delayed hydride cracking (DHC) mech-
anism, which is observed in these materials as they
operate in hydrogen-rich environment under stress, is
characterized by a stepwise sequence of complex phe-
nomena involving diffusion of hydrogen, hydride pre-
cipitation, material deformation and crack propaga-
tion (Northwood and Kosasih 1983; Singh et al. 2004;
Coleman 2003; Puls 2012). Hydrogen diffusion in the
material is generally driven by positive stress gradi-
ents, which can be induced by the presence of stress
concentrators such as dislocations, cracks, notches or
residual stresses (Birnbaum 1976; Takano and Suzuki
1974; Grossbeck and Birnbaum 1977; Shih et al. 1988;
Cann and Sexton 1980). When the solubility limit
is exceeded hydrides can precipitate and expand—a
material swelling takes place in the reacting area result-
ing in a volume increase of the material (Coleman
2003; Varias and Massih 2002). In regions of the phase
diagram, where only single-phase solid solutions are
stable in stress-free conditions, hydride precipitation
can be triggered by the presence of stresses (Varias
and Massih 2002; Birnbaum 1984; Allen and Vander
Sande 1978), inducing a shift of the terminal solid
solubility. In fact, the solubility limit of hydrogen in
the metal depends not only on temperature but also
on the level of pressure/stress. Some titanium alloys
such as Ti–6Al–4V and Ti–0.3Mo–0.8Ni can present
two phases, α (hexagonal close-packed—HCP) and
β (body-centered cubic—BCC) and be subjected to
hydride forming (Liu et al. 2018; Sun et al. 2015).
The crystallography of the δ hydride phase, considered
in this paper, is face-centered cubic—FCC. Hydride
formation commonly occurs preferentially in phase α

because of its low solubility and diffusivity in hydrogen
compared to that of phase β (Banerjee and Arunacha-
lam 1981; Manchester 2000). Another reason for this
is the difficulty for BCC structures to transform into
FCC (Liu et al. 2018). In these materials, grain and
phase boundaries, more energetic than the rest of the
material, have been observed to be preferential sites for
hydride formation (Banerjee andMukhopadhyay 2007;
Coleman 2003; Tal-Gutelmacher and Eliezer 2004).
For instance, hydride regions are observed to precip-

itate as large lamellar at α/α interfaces and to form
as slender plates at the α/β interfaces in Ti–0.3Mo–
0.8Ni (Liu et al. 2018). In grain and phase boundaries,
the energy required for hydride precipitation is usu-
ally lower. The presence of an externally induced local
stress in proximity of a grain or phase boundary can
further facilitate hydride growth.

A number of models related to second-phase forma-
tion at a flaw tip in various crystalline materials have
been developed in the past years (Varias and Massih
2002; Deschamps and Bréchet 1998; Gómez-Ramírez
and Pound 1973; Boulbitch and Korzhenevskii 2016b;
Léonard and Desai 1998; Hin et al. 2008; Massih
2011; Bjerkén and Massih 2014; Jernkvist and Massih
2014; Jernkvist 2014; Nigro et al. 2018). The phase-
field method (Provatas and Elder 2010), based on the
Ginzburg-Landau theory and employed in some of the
cited works, has been not only extensively used within
the magnetic field (Cyrot 1973; Berger 2005; Barba-
Ortega et al. 2009; Cao et al. 2013; Gonçalves et al.
2014) but also andparticularly to predictmicrostructure
evolutions in material. Some studies can be found in
Chen (2002), Moelans et al. (2008), Steinbach (2009),
Bair et al. (2017), Hektor et al. (2016), and Tourret
et al. (2017). In the phase field theory, conserved and
non-conserved phase-field parameters, also referred
to as order parameters, are utilized to represent the
microstructure and their time variation corresponds to
the microstructure evolution (Desai and Kapral 2009).
The conserved and the non-conserved phase-field vari-
ables are employed to describe diffusional and diffu-
sionless phase transformation respectively. In phase-
field approaches, solid solution and precipitates have
different degrees of order, which can be represented
by non-conserved phase-field variables. The concen-
tration of solute is a typical conserved order param-
eter. Diffusion is commonly slower than the reorder-
ing of the microstructure and is, therefore, the limit-
ing aspect for precipitation. Thus, the phase transfor-
mation kinetics is usually mainly driven by the dif-
fusional process. However, in a material subjected to
an external load, high stress concentration can arise
in the vicinity of stress concentrators and induce a
local shift of the solubility limit for a given concen-
tration of solute as mentioned earlier. Consequently, a
diffusionless phase transformation can occur in prox-
imity of flaws. This type of situation can justify the
choice of some authors to solely employ the non-
conserved parameters to represent the microstructural
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changes. For instance, to study a quasi-static phase
transformation in the process zone of a propagating
crack, Boulbitch and Korzhenevskii (2016a) employ a
non-conserved order parameter, which interacts with
the crack-induced stress field. A parametric study of
second-phase formation in presence of a crack based
on a similar set-upwas carried out inNigro et al. (2018).

The present paper provides a phase-field approach
in order to model second- or third-phase precipita-
tion kinetics induced by a crack lying along a phase
interface. The model makes use of a two-component
and non-conserved phase field variable. The spatio-
temporal evolution of themicrostructure is driven by an
energy minimization scheme using the time-dependent
Ginzburg-Landau, TDGL, (or Allen-Cahn (Allen and
Cahn 1979) equation only. The formulation includes a
coupling between the phase-transformation swelling,
the terminal solid solubility and the applied stress, as
a driving force for phase transformation. The presence
of a interface crack is modelled by using linear elastic
fracture mechanics (LEFM) (Rice et al. 1990). In addi-
tion, the bulk free energydensity is formulated such that
the energy of the grain or phase interfaces can be con-
trolled to promote phase transformation therein. The
aforementioned model features contribute to low com-
putational costs and are discussed later in the paper.

Since a number of titanium alloys are used in indus-
try and interact with hydrogen through welding or
direct exposition to hydrogen, e.g. turbines pumping
the hydrogen from the tank to the combustion chamber
of a rocket, it is relevant to apply the model on such
metals. In this paper, a titanium alloy with α and α +β

regions and containing cracks alongα/β andα/α inter-
faces is considered. The concentration of hydrogen is
set below the nominal terminal solid solubility of phase
α. The effects of the load and the energy of the α/α and
α/β interfaces on the phase transformation kinetics are
studied. The impact of isotropic and anisotropic phase
transformation-induced swelling is also regarded. This
approach is suitable to investigate hydride formation
in Ti-alloys but is also applicable to other types of pre-
cipitation, multiphase microstructure, morphologies of
grain/phase boundaries, defects and loading modes.

The organization of the paper is as follows; first,
the approach for modelling the growth kinetics of a
precipitate in the presence of an interface crack is
described in Sect. 2. Thereafter, the numerical method-
ology employed in the simulations is presented in Sect.
4. In Sect. 5, the parameters used in the simulations are

provided and explained before presenting and interpret-
ing the results. In Sect. 6, some features of the present
model are discussed.

2 Model description

In this work, a study of the evolution of a multiphase
system of volume V is carried out. The system matrix
is considered to be initially composed of two prevail-
ing phases: a phase α and a phase β. In specific con-
ditions described later, a third phase, δ, can exist and
be stable. The present model is formulated such that
the phase evolution of the multiphase system is repre-
sented by the change of a phase field η. It is defined
as a two-component vector η = ηi with i ∈ {1, 2}
and depends on time and space. The components of ηi
are real scalar functions that are related to the order
of a crystal structure and, consequently, its morphol-
ogy. In this work, phases α, β and δ are character-
ized by (η1, η2) = (−1,−1), (η1, η2) = (−1, 1)
and (η1, η2) = (1, η2) respectively. The α/δ and β/δ

interfaces are defined by (|η1| �= 1, η2 = −1) and
(|η1| �= 1, η2 = 1) respectively. The α/β interface is
represented by (η1 = −1, |η2| �= 1). Quantities, rel-
ative to phase α and phase β are respectively denoted
with the superscript α and β. In order to keep these
quantities continuous and differentiable through the
α/β interface, an interpolation function hα β varying
in η2 is employed. In this paper, this smoothing func-
tions is chosen as,

hα β

(
η2, X

α, Xβ
) = −1

3
p η32 + p η2 + q, (1)

where Xα , Xβ are quantities related to phase α and
phase β respectively, and p = 3

4 (X
β − Xα) and q =

1
2 (Xα + Xβ). This function is formulated such that
hα β (−1, Xα, Xβ) = Xα and hα β (1, Xα, Xβ) = Xβ .
In order to represent the effect due to the presence of a
third phase, an additional interpolation function, hm δ ,
which varies in η1 and is defined such that hm δ(η1 =
−1) = 0 and hm δ(η1 = 1) = 1, is utilized and is
expressed as,

hm δ(η1) = 1

4

( − η31 + 3 η1 + 2
)
. (2)

Based on the evolution of the free energy of the
system, the model is formulated such that the system
evolves toward an energetic minimum, which corre-
sponds to a stable or meta-stable state, through the
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change of the order parameters in time. This is achieved
by using the TDGL equation expressed as

∂ηi

∂t
= −Γi j

δF

δη j
, (3)

where Γi j is a diagonal 2×2-matrix, which can also be
referred to as the mobility matrix. The diagonal terms
Γ11 andΓ22 are kinetic coefficients and are respectively
related to the phase transformation occurring between
the phases α and β, and between matrix and hydride.
The total free energy of systemF can be expressed as

F =
∫

ϕ dV, (4)

where

ϕ = fgrad + fland + fst + fint . (5)

The term fgrad stands for the gradient free energy den-
sity and accounts for the spatial variation of the order
parameters in the phase interfaces of the system (Desai
and Kapral 2009). It can be expressed as

fgrad = gmδ

2
(∇η1)

2 + gαβ

2
(∇η2)

2, (6)

where gmδ = hα β(η2, gαδ, gβδ). The quantities gαβ ,
gαδ and gβδ are material parameters related to the
interfacial energy, which resides at the α/β, α/δ and
β/δ interfaces respectively. These quantities affect the
width of the interfaces, where the gradients in η1 and
η2 vary significantly (Provatas and Elder 2010). For
simplicity, the interfacial energies associated with the
α/β, α/δ and the β/δ interfaces are assumed isotropic
by choosing gαβ , gαδ and gβδ constant. The term fland
accounts for the bulk free energy density and is also
known as the Landau potential, which was histori-
cally formulated by Landau and Lifshitz (1980) as a
phenomenological contribution to the free energy in
the form of a polynomial. In this paper, the historical
expression is modified to agree with the definitions of
the order parameters given above and is given by

fland = P0
(
fa fb + fc fd

)
, (7)

where

fa = (η21 − 1)2,

fb = hα β(η2, aαδ, aβδ),

fc = (η22 − 1)2,

fd = aαβ − s hm δ.

Fig. 1 Landau potential for aαδ = 0.4, aβδ = 0.64, aαβ = 1
and s = 0.5. The color scale goes from dark blue, representing
the minimum, to yellow, representing the maximum

An appearance of the Landau potential is presented
in Fig. 1 to have a better understanding of the differ-
ent parameters used in this function and its variation
with respect to the phase field variables. The parame-
ters aαδ , aβδ and aαβ are the respective energy barrier
coefficients of theα/δ, theβ/δ, and theα/β transitions.
The relative nucleation energy barriers are obtained by
multiplying these coefficients by the positive energy
constant P0. The term P0 fa fb stands for the Landau
potential associated to the transition between thematrix
and the hydride phases. The height of the energy barrier
relative to the α/δ and β/δ transformations is continu-
ously taken into account through the α/β interface by
using the interpolation function fb. The second term
of the bulk free energy density accounts for the pres-
ence of the interface between the matrix phases with
the height of the energy barrier P0(aαβ − s hm δ). The
positive scalar s is used to control the energy of the α/β

interface and the associated nucleation energy barrier.
Through the use of fc, the impact of the parameter s
is maximum for η2 = 0 and is progressively attenu-
ated as |η2| −→ 1. When s = 0, for an α/α or a β/β

interface configuration, the energy of a grain boundary
is the same as that of the rest of the system. This can
be understood as a situation where there is no grain
boundary. Thus, the function fc fd allows to model the
α/β interfaceswith higher energy compared to the bulk
of the material. The bulk free energy density presented
in Eq. (7) possesses minima for (η1, η2) = (−1,−1),
(−1,+1), (+1,−1) and (+1,+1) for fd > 0. When
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fd ≤ 0 and for (η1, η2) = (+1, 0), one more mini-
mum appears and becomes a global minimum as fd
decreases. The minima of the system’s free energy
correspond to the stability or metastability of specific
phases. The stability of the different phases considered
in the system is examined in Sect. 3 as s and the exter-
nal load are varied. The sum fst + fint designates the
elastic-strain free energy density fel , which includes an
external work, as described in Chen (2002). Its terms
can be expressed as

fst = 1

2
σi j ε

el
i j , (8)

and

fint = −σ A
i j εi j , (9)

where σi j , σ A
i j , εeli j and εi j denote the internal stress,

the applied stress, the elastic strain and the total strain
tensors respectively. In this paper, all material phases
are assumedhomogeneous, isotropic, linear elastic, and
are supposed to undergo small deformations in pres-
ence of stresses. This suggests that Hooke’s law is
applicable in all regions of the system. For simplic-
ity, phase δ is considered to have the same elastic con-
stants as the parentmaterial regionwhere it forms from.
The energy functionals Fst and Fint are named strain
free energy and interaction free energy respectively
in this paper. The former corresponds to the elastic-
strain energy for a linear elastic material, and the latter
is comparable to the interaction free energy in Bul-
bich (1992), Léonard and Desai (1998), and Massih
(2011) and coupling potential energy in Li and Chen
(1998). The term Fint includes a coupling between the
applied stress and the phase transformation-induced
dilatation effect. The variation of the interaction free
energy through a change of the applied stress corre-
sponds to amodification of the terminal solid solubility
(Nigro et al. 2018). The total strains εi j are expressed as

εi j = εeli j +εsi j hm δQ, where εsi j = hα β (η2, ε
s,α
i j , ε

s,β
i j )

denote the eigenstrains, stress-free strains, or phase-
transformation strains, which are induced by the lat-
tice mismatch between matrix and hydride phases, and
directly connected to the volume change of the trans-
forming material. The tensors ε

s,α
i j and ε

s,β
i j represent

the phase-transformation strain tensors in phase α and
phase β respectively.

In this model, the elastic strains εeli j are assumed
independent of η1, which implies that the total strains
are modified solely by the transformation strains as the

Fig. 2 Geometry of the crack

third phase forms and mechanical equilibrium is con-
sidered satisfied at all times. The parameter Q = C/Cs

reflects the effect of hydrogen concentrationC and sol-
ubility limit Cs = hα β (Cα

s ,Cβ
s ) for a solid solution in

stress-free conditions. The concentration of solute is
assumed constant in the whole system as diffusion is
disregarded.

The present study regards a planar problem, where
an opening crack lies in and along the interface α/β

as displayed in Fig. 2. The system can be described
through the use of a polar coordinate system (r, θ) or a
Cartesian one (x, y) = (r cos θ, r sin θ). The coordi-
nate related to the out-of-plane direction is denoted z
and the position of the origin coincides with that of the
crack tip. The crack direction is set along the x-axis,
where y = 0, and points towards the positive values
of x . In the studied configuration, the phase boundary
splits the systems in two regions, i.e. two semi-infinite
planes, which are dominated by phase α for y < 0
and by phase β for y > 0. The applied stress field σ A

i j
is chosen to be an analytical description of the stress
induced by an interface crack lying between two dis-
similar materials provided by LEFM. The near crack-
tip stress field can be expressed as Rice et al. (1990),

σ A
i j =

1√
2π r

(
�(K r Jω)Σ I

i j (θ)+	(K r Jω)Σ II
i j (θ)

)
,

(10)

where (i, j) = {x, y}, J is the complex number, i.e.
J = √−1, and Σk

i j = hα β (η2,Σ
k,α
i j ,Σ

k,β
i j ) with k =

{I, II} . The tensors Σ
k,(α)
i j and Σ

k,(β)
i j represent the

angular functions in phase α and phase β respectively
and their expressions can be found in polar coordinates
in Rice et al. (1990) and in Cartesian coordinates in
Deng (1993). The functions Σ

k,(α)
i j are obtained from

those of Σ
k,(β)
i j by replacing π by −π . The angular

functions are interpolated through the phase boundary
to ensure continuity of the stress field through the phase
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boundary. For a bi-material with an α phase and a β

phase, the oscillatory parameter ω is defined as

ω = 1

2π
ln

1 − β0

1 + β0
, (11)

where β0 is a Dundurs parameter (Dundurs 1969)
expressed as

β0 = 1

2

(1 − 2 να)/μα − (1 − 2 νβ)/μβ

(1 − να)/μα + (1 − νβ)/μβ
, (12)

whereμξ = Eξ /[2(1+νξ )] for ξ = {α, β}. Theparam-
eters να and νβ are Poisson’s coefficients relative to
phase α and phase β respectively. The parameter K
is referred to as the complex interface stress intensity
factor and is formulated as

K = (σ∞
yy + J σ∞

xy ) (1 + 2 J ω)
√

π a0 (2 a0)
−J ω,

(13)

where 2 a0 is the length of the crack and σ∞
yy and σ∞

xy
are in-plane components of the remote stress tensor.
The earlier is a tensile/compressive stress normal to
the crack direction and the latter is a shear stress in
the direction of the crack. In this paper, for practical-
ity, the structure is chosen to undergo a pure tensile
stress at infinity, i.e. σ∞

xy is set to 0. In the literature,
it is shown that the term K r Jω oscillates as r −→ 0,
predicting zones of contact or interpenetration between
the crack lips (Rice 1988; Rice et al. 1990; Hutchinson
and Suo 1991). The problem of the formulation valid-
ity was studied in Comninou (1977) andComninou and
Schmueser (1979). It has been argued that the use of
Eq. (10) can be valid for an interpenetration or con-
tact zone size rcon sufficiently small, e.g. less than an
atomic size. An estimate of rcon is given in Rice (1988)
assuming a small |ω| and that ψ = arg (σ∞

yy + i σ∞
xy ) is

taken in [−π/2, π/2]. Elaborations of the estimation
of rcon can be found in Hutchinson and Suo (1991)
and Wang and Suo (1990). When the crack lies along
a grain boundary, i.e. along an α/α interface or a β/β

interface,ω = 0 and the stress field results in being nat-
urally continuous through the interface assuming the
same material properties inside and outside the grain
boundary. Thus, for a grain boundary, the expression
of the in-plane stress field σ A

i j boils down to

σ A
i j = K√

2π r
Ψi j (θ), (14)

which is that of a classical opening crack in mode I
lying in an infinite plane made of an homogeneous and

isotropic material. In this situation, the stress intensity
factor K = σ∞

yy
√

π a0 is real and is generally denoted
KI. The angular functions Ψi j can be deduced from

Σ
k,(α)
i j andΣ

k,(β)
i j or found in the literature, e.g. in Tada

et al. (2000).
Additionally, the migration of the α/β phase bound-

ary is assumed to be much slower than the transfor-
mation of the matrix into hydride, i.e. Γ22/Γ11 ≈ 0.
Thus, it is enough to solve Eq. (3) for (i, j) = (1, 1)
only since the distribution of η2 is considered to remain
unchanged in time with respect to the evolution of η1.
In these terms, the equation describing the phase trans-
formation between the matrix phases into hydride can
be expressed as

∂η1

∂τ
= gmδ ∇2η1 −

(∂ fland
∂η1

+ ∂ fst
∂η1

+ ∂ fint
∂η1

)
, (15)

where τ ≡ Γ11 t . The derivative of the different consid-
ered energy densities are determined analytically and
can be written as
∂ fland
∂η1

= P0
4

(η21 − 1)(16 η1 fb + 3 fc s) (16)

and
∂ fel
∂η1

= −∂hmδ

η1
Q σ A

i j εsi j , (17)

with ∂hmδ/∂η1 = 3 (1 − η21)/4. By assuming the
eigenstrain tensor diagonal in the global coordinate
system and the transformation dilations isotropic, i.e.
εsxx = εsyy = εszz = ε0, Eq. (17) boils down to

∂ fel
∂η1

= −∂hmδ

η1
ε0 Q σ A

ii . (18)

3 Analysis of the model

In this section, an analytical study of model is made in
order to predict the trend of the numerical results and
give them a meaning. To this end, the form of the total
free energy of the system modified by the variation of
the grain/phase boundary energy and the stress field is
examined. Simple calculations are also made through
the use of classical nucleation theory to approximate
the critical size of a nucleus lying ahead of the interface
crack tip. This allows to predict if a simulation will
result in a growth or disappearance of the precipitate.

In order to estimate the phase situation the system is
evolving towards, it is necessary to identify the extrema
of F provided that the total free energy of the system
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evolves towards a minimum. With this in mind, the
functional derivative of the system’s total free energy
with respect to η1 is set equal to 0, as

∂ fland
∂η1

+ ∂ fel
∂η1

= 0, (19)

where the functional derivative of the gradient energy is
neglected. This simplification implies that the value of
the phase field components in a material point remains
unaffected by the surrounding points. By omitting this
term, singularities, discontinuities and sharp transi-
tions/interfaces can appear as noted in Nigro et al.
(2018). Thus, this analysis boils down to the exami-
nation of the Landau potential functional with respect
to η1 while being modified by the variation of s and
the applied stress. The minimization of the total free
energy of the system with respect to η2 is disregarded
in this study as explained in Sect. 2. Three solutions,
⎧
⎪⎨

⎪⎩

η1 = −1

η1 = −3 [ fc s + σ A
i j ε

s
i j hmδ Q/P0]/(16 fb)

η1 = 1

, (20)

are found by solving Eq. (19). By considering the roots
of F , three phase diagrams, where the applied load
and the energy of the phase/grain boundary is varied,
are drawn and presented in Fig. 3. The x-axis repre-
sents the variation of the grain/phase energy and the
y-axis represents the applied load. These quantities are
normalized and scaled such that the phase diagrams are
valid for both matrix phases, whose material properties
can be different. The regions of stability of the consid-
ered phases are characterized by a minimum of the sys-
tem’s total free energy. A global minimum and a local
minimum indicate the stability and the metastability of
a given phase respectively. In region I, the energy of the
system presents a global minimum for η1 = 1, i.e. in
this situation phase δ is stable and the phases of the solid
solution are unstable. In region II, one localminimum is
seen for η1 = −1 and a global one is found for η1 = 1.
Thismeans that the phaseα and phaseβ aremetastable,
and phase δ is stable. By reasoning in the same man-
ner, the matrix phases are found to be stable and phase
δ to be metastable in region III. In region IV, the matrix
phases are expected to be stable and phase δ unstable.
Far from the phase/grain boundary, i.e. η2 = ±1, there
is no effect of the parameter s unlike for η2 �= ±1
as formulated. Along the stability line lying between
region II and III, the total free energy of the system
presents two equal global minima with respect to η1,

Fig. 3 Phase diagrams related to the present model. The con-
tinuous black line displays the stability line, corresponding to a
material state where all present phases are stable. The blue dot-
ted/dashed and the red dashed lines are transition lines, represent-
ing the threshold between the metastability and the instability of
a phase. The appearance of the system’s free energy is sketched
with respect to η1 in each region of the phase diagram

i.e. the matrix phases and phase δ are equally stable.
This occurs, far away from the α/β interface or in the
interface for s = 0, when no load is applied. In the α/β

interface, this transition is linear and is characterized by
the equation σ A

i j εsi j Q/(P0 fb) = fc s/ fb. It is noticed
that even under compressive stresses precipitation can
occur for s �= 0 in the α/β interface. More generally,
third-phase formation can take place spontaneously in
the grain/phase boundarywhose energy density is suffi-
ciently large with respect to the interaction free energy.
The two other lines indicate the limits beyond which a
metastable phase becomes unstable. The equations for
these lines are σ A

i j εsi j Q/(P0 fb) = fc s/ fb ± 16/3.
The variation of the minimum of the modified Landau
potential for η1 = 1 corresponds to a shift in the ter-
minal solid solubility of the system, promoting or hin-
dering phase transformation accordingly to the phase
diagrams presented in Fig. 3.

Initially, if the matrix phases contain a third-phase
nucleus, which is sufficiently large such that the energy
barrier can be overcome, and is subjected to posi-
tive stresses, then the growth of the precipitate will
occur infinitely. The same reasoning can be made for a
nucleus lying in the grain/phase boundarywith a higher
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energy than the rest of the material. Consequently, the
combination of a positive stress and an energetic α/β

interface makes it easier for a nucleus to grow. Simple
calculations based on the classical nucleation theory
(Porter et al. 2009b) are performed in Appendix A to
estimate the size of nucleus needed for the phase trans-
formation to occur.

Equation (3) is such that the time change of the phase
field variable is proportional to the functional deriva-
tive of the total free energy of the system. In addition,
the larger the phase/grain boundary energy and/or the
elastic-strain energy the lower the minimum of F for
η1 = 1. Around the minimum being lowered, the curve
representing F becomes steeper, i.e. the functional
derivative of the total free energy of the system results
higher. Thus, an increase of the tensile applied stress
and energy of the grain/phase boundary is expected to
enhance the overall growth rate of the precipitate.

4 Numerical method

In this work, Eq. (15) is solved through the use of
the finite volume method within the open-source par-
tial differential equation solver package FiPy (Guyer
et al. 2009), well-suited to study phase transformation
kinetics. The solution of this equation is the spatio-
temporal description of η1, i.e. the description of the
matrix/hydride transition, within a defined comput-
ing domain. A 1.2µm × 0.6µm mesh composed of
equally-sized square elements with a side length l is
employed. The element size is chosen such that several
elements are lying along the phase interface thickness.
This choice is found in the literature as a requirement
to capture the profile and motion of the interfaces (Qin
and Bhadeshia 2010; Moelans et al. 2008). Moreover,
in order to ensure numerical stability of the solutions
during the simulations, the element size and time step
Δτ are taken such that Δτ ≤ l2/(4max{gαδ, gβδ})
(Provatas and Elder 2010). A convergence study is also
performed in order to select an optimum value for l and
Δτ as a compromise between precision of the results
and the numerically performable character of the sim-
ulations. The width (length in x) and height (length in
y) of the forming hydride are the main features, which
weremonitored to verify the convergence of the results.
Different time step values and element sizes were used
to determine that convergence had been reached by cal-
culating the relative error over a time period character-

Fig. 4 Distribution of η2, obtained with the values given in
Table 1, over a portion of the considered domain

ized by large gradients and time variation of η1. The
selected time step is Δτ = 9.58 × 10−10 J/m3 giv-
ing an average relative error minor to 1%. The selected
element size is l = 2.5 nm, which induces an average
relative error less than 4%. In this work, all simulations
are performed on a duration of 8000Δτ .

The value of η1 is set to be symmetric across the
domain boundary by applying the condition n · ∇η1 =
0, where n is a unit vector perpendicular to the domain
limits. In order to prevent boundary effects on hydride
formation in the simulations, the domain is taken to
be large enough. Thus, the minimization of the energy
within the domain and the mathematical validity of
the model are ensured by Eq. (15) associated with the
boundary conditions. The initial value of η1 is ran-
domly distributed all over the mesh within [−1,−0.9].
If no extra information is provided the same seeding
is used for the simulations. This ensures consistency
within the comparisons of the results when a given
parameter is varied. In order to model the initial system
configuration, i.e. two phase regions, α (η2 = −1) and
β (η2 = −1), separated by a smooth interface, the value
of η2 is distributed throughout the mesh satisfying the
relation η2(y) = tanh

(
y
√
2 aαβ P0/gαβ

)
. The latter is

the steady-state solution of Eq. (3) with j = 2 for an
elastically unconstrained system. The distribution of η2
is illustrated in Fig. 4.

Behind the interface crack tip, i.e. for x < 0, it
is irrelevant to model the presence of the phase/grain
boundary through a variation of its energy because of
the material discontinuity. Therefore, in this situation,
the following conditions are imposed: s = 0, for x < 0,
and s = s0, for x ≥ 0. In order to keep continuity of
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Table 1 Parameters used in the simulations

Quantity Value Unit References Quantity Value Unit References

Eα 117 GPa Fan (1993) σ∞
yy 50 MPa –

Eβ 82 GPa Fan (1993) ε
s,(α)
0 8.62 % Calculated

ν 0.27 – Fan (1993) ε
s,(β)
0 13.75 % Calculated

γαδ 0.20 J/m−2 Bair et al. (2017) ε
s,(α)
xx 7.99 % Calculated

γβδ 0.32 J/m−2 Calculated ε
s,(α)
yy , ε

s,(α)
zz 9.88 % Calculated

γαβ 0.50 J/m−2 Smallman and Ngan (2014) ε
s,(β)
xx , εs,(β)

yy ε
s,(β)
zz 13.75 % Calculated

wαδ, wβδ 1.0 · 10−8 m As in Bair et al. (2016) ε
s,(α)
xy , εs,(β)

xy wαβ 0.00 % Calculated

Δτ 9.58 · 10−10 – Convergence study Cα
s 4.7 % Manchester (2000)

l 2.5 · 10−9 m Convergence study Cβ
s 42.5 % Manchester (2000)

a0 2.0 · 10−6 m Shih et al. (1988) C 2.3 % –

the model, the parameter s is interpolated through the
y-axis as s = s0 {tanh[(x − x0)/ lsub] + 1}/2, where
x0 is the abscissa of the crack tip and lsub is set as a
sub-atomic length.

5 Results and discussions

5.1 Input parameters

The values for the parameters used in the analysis and
simulations are given in Table 1 and are commented in
this section.

This paper aims at presenting a model for inter-
face crack-induced precipitation within metals. In this
paper, the example of hydride forming in Ti-6Al-4V
(Ti64) is treated. The material properties employed in
the simulations are the elastic moduli and Poisson’s
ratios relative to the phases of the Ti64 microstruc-
ture, i.e. phase α and phase β, which are taken in Fan
(1993). In this reference, Poisson’s ratio is considered
the same for phaseα andphaseβ, i.e. να = νβ = ν. The
selected values and boundary contitions lead to |ω| ≈
0.01766 and ψ = 0o. According to Rice et al. (1990),
it leads to a rcon much smaller than an atomic size
and, therefore, interpenetration or contact zone can be
ignored.

Hydride growth at an α/α grain boundary and an
α/β interface is investigated with the present model.
A typical interface between an HCP and a BCC crys-
tal structure is characterized by the plane relationship
{110}||{0001} (Ojha and Sehitoglu 2016). This is the

Table 2 Lattice parameters considered in the present model

Phase α Phase β δ hydride

a (nm) 0.291 0.319 0.444

c (nm) 0.467 – –

Their values for phase α are taken in Pederson et al. (2003) and,
for phase β and δ, they are chosen from Shih and Birnbaum
(1986)

crystallographic configuration chosen in this paper for
anα/β interface. The expansion components due to lat-
tice mismatch at α/δ and β/δ interfaces are calculated
by using the material data provided in Table 2 (Car-
penter 1973; Singh et al. 2007). The transformation
strain in the BCC structure are considered isotropic. In
both solid-solution phases, when isotropic expansion is
considered the transformation strains ε

s,(α)
0 and ε

s,(β)
0

are such that ε
s,(α)
0 = ε

s,(α)
kk /3 and ε

s,(β)
0 = ε

s,(β)
kk /3.

The transformation strains considered in this paper are
presented in Table 1. In the next sections, results for
both isotropic and anisotropic expansions due to phase
transformation are regarded.

In phase-field modelling, the interfacial energy
between the different existing phases and the interface
thickness is represented by the gradient energy coef-
ficients and the considered energy barriers (Provatas
and Elder 2010; Chen 2002;Moelans et al. 2008; Desai
and Kapral 2009; Kim et al. 1999). Between a phase ζ

and a phase ξ , the interfacial energy and thickness are
denoted γζξ and wζξ . The expression of these quanti-
ties can be obtained from the steady-state solution of
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Eq. (15) in 1d without any elastic-strain energy contri-
butions as in Kim et al. (1999). For the present model,
they are given in Eqs. (21)–(22), as

wζξ = α0

√
gζ ξ

2 aζ ξ P0
, (21)

γζξ = 4

3

√
2 aζ ξ gζ ξ P0, (22)

where ζ ∈ {α, β} and ξ ∈ {δ, β} with ζ �= ξ . The
quantities associated with the indices ζ ξ are related to
the ζ/ξ interface. The parameter α0 is set to 2.944 such
that the interface is defined for values of η1 comprised
in [−0.90, 0.90]. This study deals with a 2d problem
where the parameters s0 and Fel have non-zero values in
most studied cases and are expected to have an impact
on γζδ and wζδ with ζ ∈ {α, β}, which can slightly
vary within the considered domain. The phase inter-
face is usually 1 − 10 nm thick (Provatas and Elder
2010) whereas the hydrides can commonly be found
between 0.1 and 1000 µm (Shih et al. 1988; Daum
et al. 2009). The quantities aζ/ξ P0 and gζ/ξ are calcu-
lated through Eqs. (21) and (22) and wζξ is set equal
to 10 nm as in Bair et al. (2016). Because of a lack
of data, the values of the different interfacial energies
are chosen as follows. In the literature, the interfacial
energy of a semi-incoherent interface like α/β inter-
face is found to approximately lie between 0.2 and 0.5
J/m2 and it increases with the reduction of dislocation
spacing (Smallman and Ngan 2014). The chosen value
is taken within this range. The value of γαδ is taken to
be the same as that for α-Zr, another hydride forming
metal, which possesses a similar crystallography as α-
Ti (Bair et al. 2017). The interfacial energy γβδ is set
such that it reflects the difference in volume mismatch
between hydride and the matrix phases by satisfying
the relation γβδ/γαδ = ε

s,(β)
0 /ε

s,(α)
0 .

The terminal solid solubilities in hydrogen for phase
α and β are taken in the Ti-H phase diagram at the
eutectoid temperature, 298◦C, (Manchester 2000). The
concentration of hydrogen, is set to be half the solid
solubility limit for phase α.

In order to focus the study on the growth of the pre-
cipitate, a nucleus whose diameter is 2 R = 25 nm is
placed at the crack tip. The nucleus size is of the order
of magnitude of those in Bair et al. (2016) and, with the
help of the relations given in Appendix A, R is chosen
to be sufficiently large so that it does not disappear in
phase α regardless of the external load and energy of
the grain boundary considered in the next sections.

Fig. 5 Isostress contours for the applied hydrostatic stress
around anα/α interface: 80MPa (blue), 110MPa (red), 150MPa
(yellow), 200MPa (cyan), 300MPa (green), 500MPa (magenta)
and 1000 MPa (black)

Furthermore, the crack size is of the same order of
magnitude as in Shih et al. (1988) and the external load,
i.e. σ∞

yy is arbitrary but is supposed to be realistic. For
simplification notations in the rest of the paper, σ∞ is
written in lieu of σ∞

yy .

5.2 Isotropic expansion of hydride

The results for an isotropic expansion of the systemdur-
ing hydride precipitation are presented in this section.
The transformation-strain tensor are presumed diago-
nal in both matrix phases. The non-zero components
for the isotropic transformation-strain tensor, denoted
ε
s,(α)
i j and ε

s,(β)
i j with i, j ∈ {x, y, z} within phase α

and phase β respectively, are equal to ε
s,(α)
0 and ε

s,(β)
0 .

5.3 Precipitation within α/α interface

The sum σ A
ii , also referred to as the applied hydrostatic

stress, present in Eq.(18) and residing around the crack
tip in the α/α interface, is illustrated in Fig. 5. Pro-
vided the parameters given in Sect. 5.1, the hydrostatic
stress increases as r decreases and is even found greater
than 1 GPa ahead and in the close vicinity of the crack
tip. Since the stress varies in cos(θ/2)/

√
r , the hydride

formation takes place in an non-uniform stress field.
First, the formation of hydride is investigated in an

homogeneousα phase, i.e. s0 = 0.0. In order to analyse
the evolution of the phase transformation, the change
in the distribution of η1, as a marker of the presence of
phase δ, is regarded and, in the present case, is depicted
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Fig. 6 Distribution of η1 at a τ = 0Δτ , b τ = 500Δτ , c
τ = 1000Δτ , and d τ = 8000Δτ for s0 = 0.0 at an α/α

interface. The crack position is indicated by a white line and the
position of the grain boundary is indicated by a yellow dotted
line

in Fig. 6. Initially, the distribution of the phase param-
eter is random in the range [−1,−0.9] and a circular
nucleus with the radius R is centred at the crack tip,
as explained in Sect. 5.1 and displayed in Fig. 6a. As
time goes, the nucleus grows with respect to the crack
direction and its changes shape. At τ = 500Δτ , it can
be seen that the shape of the precipitate, depicted in
Fig. 6b, resembles that of an isostress contour as in
Fig. 5. In the next steps and until the end of the simula-
tion, the δ-phase growth appears self-similar ahead of
the crack tip as illustrated in Fig. 6c, d. Thus, the geom-
etry of the hydride region is similar to that described
by the isostress contours except behind the crack tip.

Regarding the case for which s0 = 2.0, the nucleus
also develops symmetrically with respect of the crack
direction while changing its shape. In fact, at τ =
500Δτ , the δ-phase region looks elongated towards
the positive x as displayed in Fig. 7b. This elongation
forms a tail, which starts from the lowest and high-
est points of the second-phase region with respect of
the y-direction and converges into one point in the
grain boundary. However, a portion of the α/δ inter-
face, especially at the upper and the lower side of the
precipitate, still follows the isostress contours.Asphase
δ continues broadening symmetrically with respect of
the crack direction until the end of the simulation, the
precipitate grows faster along the grain boundary for
x > 0 than the rest of the hydride region as displayed
in Fig. 7c, d. The development of the left hand side of
the second-phase region looks the same as for the case
with s0 = 0.0.

Fig. 7 Distribution of η1 at a τ = 0Δτ , b τ = 500Δτ , c
τ = 100Δτ , and d τ = 8000Δτ for s0 = 2.0 at an α/α

interface. The crack position is indicated by a white line and the
position of the grain boundary is indicated by a yellow dotted
line

A quantitative study is now carried out by analysing
the time evolution of the height and the width of the
precipitate as the applied load and the energy of the
α/α phase boundary are varied. The hydridewidthWαα

and height Hαα are defined as the distance along the x
and the y directions respectively between the extreme
points of the precipitate as illustrated in Fig. 7d. For
practicality in this analysis, the material is considered
to be hydride from the middle of the α/δ interface,
i.e. η1 = 0. The time evolutions of Wαα and Hαα are
presented in Figs. 8 and 9 with respect the parame-
ter s0, and the applied load respectively. The informa-
tion brought from these figures is completed by the
Figs. 10, 11, 12, and 13whereWαα , Hαα , and their time
derivative Ẇαα and Ḣαα are presentedwith respect to s0
and σ∞ for τ = {1000Δτ, 8000Δτ }. The superscripts
“inter” and “end” are employed to define the instants
τ = 1000Δτ and τ = 8000Δτ respectively.

The parameters Wαα and Hαα are seen to increase
with time regardless of a change in grain boundary
energy or applied load as shown in Figs. 8, 9, 10, 11, 12,
and 13. Nevertheless, the slope of the curves in Figs. 8
and 9 decreases with time similarly to a logarithmic or
square root function. For relatively low grain boundary
energy, i.e. s0 ≤ 1.0, the hydride is larger and grows
faster vertically than horizontally. The opposite trend
is observed, for s0 > 1.0 as displayed in Figs. 8 and
10. The vertical growth of the hydride is observed to be
somewhat constant with respect to s0 in the same fig-
ures. At τ = 8000Δτ , the growth rate of the hydride
height is constantwith respect to s0. A slight increase of
Ḣαα with respect to s0 is found only at early times of the
simulations, for instance at τ = 1000Δτ as illustrated
in Fig. 12. This explains why the curves representing
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Fig. 8 Time evolution of the hydride width (continuous line)
and height (dashed line) varying the parameter s0 for an α/α

interface. The irregularities highlighted on the brown curve are
associatedwith the situations depicted on the bottom of the figure

Fig. 9 Time evolution of the hydridewidth (continuous line) and
height (dashed line) varying the applied load σ∞ while s0 = 0.0
at an α/α interface

Hαα in Fig. 8 are not exactly overlapping but have the
same slope for large τ . Thehydridewidth is seen to non-
linearly increase with s0 in Fig. 10. The same observa-
tions are made regarding Ẇαα in Fig. 12. For s0 = 3.0,
and at τ ≈ 130Δτ and τ ≈ 480Δτ , jumps in the
hydride width value are noticed in the grain boundary
as depicted in Fig. 8. These events are associated with
coalescence of two hydride regions. For larger values
of s0, the results, not shown in this paper, exhibit mul-

Fig. 10 Hydride width and height with respect to s0 at τ =
{1000Δτ, 8000Δτ } for anα/α and anα/β interfaceswithσ∞ =
50MPa. Since the hydride regions reaches the limit of the domain
for s0 > 2.0, the results for s0 = 2.5 has not been plotted

Fig. 11 Precipitate height and width versus the applied load,
taken within {50, 60, 70, 80, 90, 100} MPa, with s0 = 0.0

tiple spontaneous nucleations and growth of hydride
in and along the whole grain boundary for σ∞ = 50
MPa. The width and height of the hydride region are
observed to linearly increase with respect to σ∞ as dis-
played in Fig. 11. These two geometric quantities are
also seen to vary faster as the applied load increases as
illustrated in Fig. 13. In the same figure, Ḣαα is slightly
larger than Ẇαα with respect to σ∞. However, it seems
that this small difference tends to vanish in time since
Ḣ inter

αα −Ẇ inter
αα < Ḣ end

αα −Ẇ end
αα . For s0 = 0.0, the ratio
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Fig. 12 Time derivative of the precipitate height and width ver-
sus the parameter s0, taken within {0.0, 1.0, 1.5, 2.0, 2.5} MPa,
with σ∞ = 50 MPa

Fig. 13 Time derivative of the precipitate height and width ver-
sus the applied load, taken within {50, 60, 70, 80, 90, 100} MPa,
with s0 = 0.0

Hαα/Wαα > 1 is maintained, i.e. the hydride region
results larger in the y direction than in the x direction.
This is in agreement with the observations made earlier
regarding the results related to Fig. 6, i.e. it has been
observed that the hydride growth follows the isostress
contours, which are larger along the y-direction than
along the x-direction for s0 = 0.0. In Fig. 11, it appears
that the curves representing Hαα and Wαα do not have
the same variation at τ = 1000Δτ and τ = 8000Δτ .
The same thing can be said for Fig. 10. Thus, the results

for Hαα andWαα are not scalable in time from one load
case to another and/or from one value s0 to another with
a single linear coefficient.

Some results not shown in this paper display the
evolution of η1 towards -1 in the whole considered
domain, i.e. the nucleus disappears, for s0 = 0.0 and
σ∞ < 30 MPa approximately. This is in agreement
with the nucleation study made in Appendix A, which
predicts, for σ∞ < 30 MPa, approximate critical radii
Rc > 15.4 nm, which are larger than the radius of the
nucleus used in the simulations. The expression given
in Appendix A not only predicts that the critical radius
is smaller for larger σ∞ but also for larger s0. This is
verified by the simulations. For example, the nucleus
is numerically seen to grow for σ∞ = 20 MPa and
s0 = 0.6 with the radius used for all the simulations
presented in this paper, i.e. R = 12.5 nm. With the
same conditions, the expressions in Appendix A gives
Rc ≈ 11.8 nm whereas, for s0 = 0, Rc ≈ 35 nm.

The analysis of the results for the cases studied until
this point reflectswell the fact that, in the presentmodel,
the energy of the grain boundary and the derivative
of the elastic-strain energy with respect to η1, here
through the crack-induced stress field, are the driv-
ing forces of the precipitation. In fact, the results dis-
play a hydride region growth, which follows the crack-
induced isostress contours, and is faster as the energy
in the grain boundary and the applied load increase. In
abscence of grain boundary, i.e. s0 = 0.0, the geometry
of the second-phase region, growing self-similarly and
symmetrically with respect to the x-axis, is, by formu-
lation, directly related to the geometry of the isostress
contours, described by the applied hydrostatic stress.
This has also been shown in Nigro et al. (2018) for
a specific set of parameters. The difference between
the isostress contour geometry and the left-hand side
of the precipitate can be imputed to the presence of
the interfacial energy, which tends to reduce the inter-
faces, through the gradient free energy term. Without
the latter, singularities and sharp transition can arise
as mentioned in Sect. 3. In presence of a grain bound-
ary, i.e. s0 > 0.0, the same reasoning can be made
to explain the fact that the formation of the precipi-
tate is not confined solely in the phase boundary away
from the crack tip. Instead, the α/δ interface forms a
smooth transition between its separation point with the
isostress contour and its position ahead of the crack tip
in the grain boundary. Besides, the interfacial energy
has a major role regarding the stability of a nucleus as
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it can be responsible for the disappearance of the sec-
ond phase for too small nucleii. The deceleration of the
precipitate development canmainly be explained by the
form of the applied hydrostatic stress, which decreases
in 1/

√
r increases as seen in Eq. (14) and illustrated

in Fig. 5. As the transition front moves away from
the crack tip, the minimum of system’s the total free
energy in η1 = 1 increases as seen in Fig. 3, resulting
in a lower driving force for phase transformation and,
therefore, slower precipitation. In the analysis made in
Sect. 3, which predicts an infinite growth of the sec-
ond phase as long as the applied load is positive and
the grain boundary energy is higher than that of the
rest of the system, the Laplacian term in Eq. (15) has
been neglected, and, therefore, the effect of the inter-
facial energy has not been fully taken into account and
is believed to represent an additional contribution to
the precipitation slowing down. In addition, it is possi-
ble that, after a sufficiently long time, the broadening
of the precipitate can momentarily stop locally, i.e. in
the area of the hydride tail tip, or reach a steady state
when the interfacial energy dominates. The variation
of the grain boundary energy is comparable to a varia-
tion of interaction energy except that s0 affects only the
grain boundary and is constant with respect to x . This
explains why the height of the precipitate is affected for
small τ but is similar for larger τ as s0 varies. It also
gives an explanation to the fact that multiple nucleii
can spontaneously appear and grow along the whole
grain boundary independently of the applied load for
large s0 as observed in Liu et al. (2018). For low values
of s0, i.e. less energetic grain boundaries, the interfa-
cial energy can be responsible for the disappearance
of existing nucleii. Yet, for any value of s0 > 0.0,
hydride growth is enhanced in the grain boundary. In
the results, the case for which s0 = 3.0 is an intermedi-
ate case where the nucleii forms close to the crack tip
due to the decrease of the nucleation energy barrier in
the grain boundary and the intense crack-induced stress
field, and coalesce. This type of coalescencemay corre-
spond to that observed in (Shih et al. 1988). For an α/α

interface, the variation of σ∞ corresponds to a varia-
tion of KI and can be translated in terms of variation
in crack length 2 a0.

An attempt to estimate the results depicted in Figs.
8 and 9 has been made by collecting the phase-

transformation front speed obtained by simulation for
different constant applied loads on small domains. The
height and the the width of the isostress contours are
Hiso = 3 r0

√
3/4 and Wiso = 9 r0/8 respectively,

where r0 is the distance from the crack tip to the
isostress contours along the x-axis for x > 0. These
geometric lengths are considered to correspond to the
hydride geometry, and by incrementing r0 and, there-
fore, the hydrostatic stress, it has been possible to
reconstruct the curves for the hydride width and height
with respect to the time. The results of the simulation
and those of the reconstruction displayed overlapping
for some cases but discrepancies for others. The differ-
ences are imputed to the role of the interfacial energy in
the phase transformation. In addition, the observations
made above have demonstrated that no simple scaling
factor was found between the different studied cases.
The complex and non-linear nature of Eq. (15) and the
non-trivial manner the interfacial energy is taken into
account, through the gradient free energy and the bulk
free energy, may explain the difficulty in estimating
long simulation time results with simple functions and
the non-scalability of the results.

5.4 Precipitation within α/β interface

In this section, the interface crack-induced hydride for-
mation is investigated for a structure with dissimilar
materials, i.e. with different material properties taken
in Table 1, remotely subjected to pure tensile stress.
For such study, the β phase is set to reside in the upper
half part of the domain and α phase in the lower one.
The same cases as in the previous section are examined
here.

Some isostress contours representing the applied
hydrostatic stress residing around the interface crack
tip are presented in Fig. 14. Overall the stress varies in
1/

√
r as described by Eq. (10) and as in the previous

section. Here, there is no symmetry with respect to the
x-axis since the stress is more intense in the α phase
than in the β phase as the isostress contours surrounds
a larger region in phase α than in phase β. In the α/β

interface the interpolation described by Eq. (1) in term
of stress is visible.

First, the results obtained with isotropic transfor-
mation strains are regarded. Thereafter, the effect of
anisotropy on the eigenstrains is examined.
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Fig. 14 Isostress contours of the applied hydrostatic stress
around anα/α interface: 80MPa (blue), 110MPa (red), 150MPa
(yellow), 200MPa (cyan), 300MPa (green), 500MPa (magenta)
and 1000 MPa (black)

Fig. 15 Position of the α/δ and the β/δ interface for s0 = 0.0.
The continuous lines indicates the position of the interface at
τ/Δτ = 20, 50, 100, 200, 500, 1000, 2000, 5000, 8000 for an
α/β interface configuration with isotropic phase transformation
strains. The dotted line refers to position of the α/δ and the β/δ

interfaces at τ/Δτ = 8000 for for an α/β interface configura-
tion with anisotropic eigenstrains. The dashed line represents the
position of the α/δ interface at τ/Δτ = 8000 for an α/α con-
figuration with isotropic phase transformation strains. The crack
lies along the x-axis and points towards the positive values of x

5.4.1 Isotropic expansion of hydride at an α/β

interface

The spatio-evolution of the hydride formation at anα/β

interface is illustrated in Figs. 15 and 16 for s0 = 0.0
and s0 = 2.0 respectively. In this section, the precip-
itate is presumed to grow considering isotropic eigen-
strains.

The formation of the hydride phase region from a
pre-existing nucleus follows the same pattern in phase

Fig. 16 Position of the α/δ and the β/δ interface for s0 = 2.0.
The continuous lines indicates the position of the interface at
τ/Δτ = 20, 50, 100, 200, 500, 1000, 2000, 5000, 8000 for an
α/β interface configuration with isotropic phase transformation
strains. The dotted line refers to position of the α/δ and the β/δ

interfaces at τ/Δτ = 8000 for for an α/β interface configura-
tion with anisotropic eigenstrains. The dashed line represents the
position of the α/δ interface at τ/Δτ = 8000 for a α/α configu-
ration with isotropic phase transformation strains. The crack lies
along the x-axis and points towards the positive values of x

α as in the previous section.Overall, the hydride growth
appears to take place in both phases but is much slower
in phase β than in phase α. In the very first steps, the
area covered by the nucleus is found to recede in the
β phase until τ ≈ 350Δτ . After this time point, the
hydride phase starts growing in the α/β interface for
η1 > 0, butmuch slower than in phaseα and forη1 ≤ 0.
At the end of the simulation, on the β phase side, the
portion of the hydride height measured for y ≥ 0 is
dendβδ ≈ 5 nm. On the α phase side, the portion of the

hydride height, measured for y ≤ 0, dendαδ ≈ 160 nm.
For non-zero values of s0 and in the simulation time
span, phase δ is observed to grow in phase β while
the hydride growth in phase α along the y-direction
is not found to be significantly affected by the change
in s0. For example, for s0 = 2.0, dendβδ ≈ 30 nm and

dendαδ ≈ 170 nm. The precipitates gets elongated along
the x-direction in phase α and in the α/β interface for
s0 > 0. The results for an α/α and an α/β interface
configurations exhibit overall differences in hydride
shape in phase α depending on the type of interface at
τ = 8000Δτ . For y ≤ 0, the δ-phase region appears
broader in phase α for an α/β interface than for an
α/α one regardless of the value of s0. The lower part
of the hydride phase approximately follows the same
isostress contour for both type of matrix interface. In
the interface between matrix phases, the α/δ interface
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is found to reach a further point from the crack tip for
an α/α interface than for an α/β one. The smoothening
of the α/δ interface from its separation point with the
isostress contour to its position in the interface between
the matrix phases results larger for an α/α interface
configuration than for an α/β one.

The trend of precipitate width Wαβ and height Hαβ

and their time derivatives are observed to be similar to
those for the previous studied case. However, the values
of these parameterswith respect to time, applied remote
stress and energy of the phase boundary differ from
those related to an α/α interface. The parametersWαβ ,
Hαβ and their respective time derivatives are presented
in Figs. 8, 9, 10, 11, 12, and 13 with respect to s0 and
applied load together with the results for the α/α inter-
face cases. In those figures, it appears thatWαβ ≥ Hαβ

and Ẇαβ ≥ Ḣαβ for all studied cases. The precipitate
height Hαβ is constant with respect to s0 but appears to
be sensitive to the change of the applied load in a sim-
ilar manner as Hαα previously. When comparing the
results for the α/α interface and the α/β one, it can be
noticed that Hαα > Hαβ andWαα > Wαβ regardless of
s0 and σ∞. Nevertheless, the difference between is the
Wαα andWαβ is relatively small with respect to σ∞ and
seems to decrease with increasing σ∞. Regarding the
time derivatives, it appears that, overall, Ẇαα > Ẇαβ

at the beginning of the simulation but, after some time,
Ẇαα ≈ Ẇαβ for s0 < 1 and regardless of the remotely
applied stress. By noticing that the curves for Ẇαα and
Ẇαβ in Fig. 12 have the same appearance for s0 > 0
but are shifted from one another, it is possible to find
the values for s0 such that the hydride width rate is the
same in both types of interface at a given time of simu-
lation. In the present case, the shift between the curves
is Δs0 ≈ 0.5.

Overall, the development kinetics of the hydride
phase for a crack lying in an α/β interface follows
the same pattern as for an α/α interface. However, the
hydride growth is observed to be non-symmetric and
occurs much faster in phase α than in phase β. These
observations are expectedwhen considering the ratio of
interfacial energy γβ δ/γα δ ≈ 1.60 and the parameters
involved in the driving force for phase-transformation
related to the stress field, i.e. here, the right-hand side
term in Eq.(18). Because of a difference in solubility in
hydrogen, Q is one order of magnitude larger in phase
α than in phase β. The stresses are also larger in phase
α because of the difference in value of the Young’s
Modulus in the considered phases, i.e. Eβ/Eα ≈ 0.70.

However, the phase-transformation strain is greater in
phase β than in α, i.e. ε

s,(β)
0 /ε

s,(α)
0 ≈ 1.60. Thus, the

minimum of the system’s total free energy for η1 = 1
results higher in phase β than in phase α at a same
distance from the crack tip. This also corresponds to a
lower position in the phase diagrams in Fig. 3 for phase
β than for phase α along the y-axis.

Moreover, the interfacial energy, larger in phase β

and interpolated through the phase boundary, induces a
lower energy of the α/β interface than that of the α/α

for a same value of s0. The parameters involved in ∂ fel
∂η1

,
different in one phase from the other, are also inter-
polated through the interface. Thus, the driving force
for phase transformation results lower in the α/β inter-
face than in the α/α one. Therefore, the kinetics of the
hydride development is attenuated in the α/β interface
compared with that in the α/α interface regardless of
the value of s0 while it is somewhat similar in the rest
of the α phase. This explains why, for y ≤ 0, the pre-
cipitate results larger and more elongated for an α/α

interface configuration than for an α/β one at a given
time and for the same value of s0.

In addition, it has been observed that the nucleus ini-
tially retracts in phase β. This is believed to come from
the fact that the interfacial energy is larger in phase β

than in phase α. The critical size of the nucleus results,
therefore, to be larger in phase β than in phase α. For
example, for s = 0.0 and σ∞ = 50 MPa, and by using
the method shown in Appendix A, Rc ≈ 6 nm in phase
α and Rc ≈ 460 nm in phase β. At τ ≈ 350Δτ , since
the parameters composing the driving forces and the
interfacial energy are interpolated throught the inter-
face, the precipitate can grow in the α/β interface even
though the critical radius calculated for phase β is not
reached yet. In the cases for positive s0, the growth
of the δ phase is facilitated not only along the phase
boundary for x > 0 but also in phase β by the energy
of the α/β interface, higher than that of the rest of the
material, as illustrated in Fig. 16. Further, no coales-
cence has been observed for this type of interface and
for the different studied cases.

In the literature, it is uncommon to find hydride for-
mation forming out of phase β in an (α + β)-Ti alloy
at the hydrogen concentration considered in this paper
and is not expected for pressure P ≤ 1 MPa as seen
in the phase diagrams given in Manchester (2000) or
Sun et al. (2015). In this study, the effect of the stress on
hydride formation is studied. This alsomeans that pres-
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sure is varied. In thismanner, the binary phase diagrams
for the levels of pressure considered in the studied cases
might be different and display the possibility for phase
β to transform directly or indirectly, e.g. β → α → δ,
into phase δ at the selected hydrogen concentration.
This can be also be referred to as a stress-induced shift
of terminal solid solubility.

5.4.2 Anisotropic expansion of hydride at an α/β

interface

In this section, the results considering anisotropic
expansion due to the α/δ transition are regarded. The
growth of the hydride is similar to that for which
isotropic eigenstrains are assumed as illustrated, for
s0 = 0.0 and s0 = 2.0 in Figs. 15 and 16 respec-
tively. The only difference lies in the precipitate size,
which results slightly larger with anisotropic expan-
sion at a given time as depicted in Figs. 15 and 16 at
τ = 8000Δτ . The height and the width of the precipi-
tate increase slightly faster than for isotropic expansion.
However, the hydride height is observed to develop
more quickly than the hydride width for the cases with
anisotropic expansion compared to thosewith isotropic
expansion. In phase β, the hydride broadening is iden-
tical as in Sect. 5.4.1. The larger growth of the third-
phase region along the y direction can be explain by
the fact that εs,(α)

xx > ε
s,(α)
0 . However, in the middle of

the interface, where the width of the δ-phase region is
maximum, εxx = 10.87 in the cases with anisotropic
expansion and εxx = 11.19 in that of isotropic expan-
sion. Here, the hydride width growth is expected to be
faster in the latter than in the former. Yet, the opposite
result is observed. This comes from the fact that the
sum σ A

xx εsxx + σ A
yy εsyy , present in Eq. (17), is slightly

larger in phase α for the cases with anisotropic expan-
sion than for the cases with isotropic expansion. Over-
all, the differences between the results for isotropic and
anisotropic swelling are not significant within the time
frame used for in the simulations. However, they might
be relevant for larger time spans.

5.4.3 Summary of the results

Hydride growth takes place in proximity of the inter-
face crack tip by following the isostress contours of the
hydrostatic stress in case of isotropic expansion, but is
enhanced in the direction of the crack when the energy
of the grain/phase boundary is larger than that of the

rest of the material. Hydride formation is observed to
occur faster in phase α than in phase β. This is under-
stood to be induced by the variation of the different
considered quantities involved in the driving force for
phase transformation, ∂ fel

∂η1
, from one phase to the other

and is symmetric in case of an α/α interface. The tran-
sition front appears to non-linearly decelerate in all
directions as it moves away from the crack tip in all
studied cases reflecting the decrease of the stress field
with r and the action of the interfacial energy. Overall,
the increase of the grain/phase boundary energy and
the applied load induces faster hydride growth. The
variation of the grain/phase boundary energy effects
only the interface resulting in the aforementioned elon-
gation of the precipitate. The α/δ and β/δ interfaces
undergo a smoothening between their separation point
with the isostress contour and their position in the inter-
face between the matrix phases, understood to be due
to the presence of interfacial energy through the gra-
dient free energy. In phase α, the precipitate is found
to grow faster in the matrix interface and results more
elongated at a given time and for the same value of
s0 for an α/α interface configuration than for an α/β

one. This is explained by the fact that for a same s0,
the interfacial energy is larger in an α/β interface than
in the α/α interface, and that the stress, the terminal
solid solubility and the elastic constants are interpo-
lated through thematrix interface. The height andwidth
of the hydride region are found to be slightly larger by
assuming isotropic eigenstrains than anisotropic ones
for an α/β interface. However, in the time period of the
simulation, these differences are considered insignifi-
cant. Initially, the part of the nucleus, which lies in
phase β, disappears before growing again at a cer-
tain time. Coalescence of several hydride regions are
observed for a relatively large energy of an α/α inter-
face but has not been noticed for an α/β interface.

6 Further discussions

The approach described in this paper presents the
capacity to model stress-induced precipitation in prox-
imity of an opening interface crack lying between
two phases, e.g. a monomaterial with a polycrystalline
microstructure and bimaterials. The model is formu-
lated such as the presence of the grain/phase interface,
the anisotropic expansion due to phase transformation,
and the effect of the solute concentration and termi-

123



236 C. F. Nigro et al.

nal solid solubility are included. Thus, precipitation at
grain/phase boundary, as observed in Liu et al. 2018;
Banerjee and Mukhopadhyay 2007) and in the vicinity
of the crack tip as seen in Shih et al. (1988), is captured.
The implementation of the aforementionned features in
the present approach represents major improvements
to the previous model described in Nigro et al. (2018).
The present model is also capable to represent precip-
itation for other kind of flaws, such as dislocations, by
using analytical expressions as in Bjerkén and Massih
(2014). Crack-induced precipitation and second/third-
phase formation at grain/phase boundary can also be
captured separately.

One benefit of this approach is that most parameters
of the presentmodel are physical andmeasurable. They
can, therefore, be calibrated through experiments. The
artificial parameter s0 can also be fitted through the use
of experimental data. This parameter is a constant in
the present study but could be taken as a function of
various features of the interface such as the thickness
and degree of anisotropy (Provatas and Elder 2010). In
addition, in some cases, e.g. for δ-hydride formation
in a α-Zr matrix, the interfacial energy is found to be
strongly anisotropic (Han et al. 2019). For more real-
istic results when modeling such phase transformation
cases, it is necessary to make the gradient free energy
of the present model anisotropic by, for example, mak-
ing the parameters gαβ , gαδ and gβδ function of the
angle between the direction normal to the interface and
a reference axis (Provatas and Elder 2010).

Moreover, for knownstressfielddistributions through
an analytical expression or data, only one equation, the
TDGL one, is necessary to account for the microstruc-
ture evolution. Here, the crack-induced stress field is
implicitly represented through the use of LEFM. Thus,
the computational resources are reduced compared to a
model where a crack is explicitly represented and, con-
sequently, where the mechanical equations need to be
solved numerically. In other situations more complex
than the one treated in the paper, the mechanical equi-
librium might have to be solved partially or wholly at
all time, reducing drastically the numerical efficiency
of the present methodology.

The stress-based driving force employed in the
model includes the effet of the ratio between the con-
centration of solute and the terminal solid solubility.
The latter is believed to have an impact on nucleation
and the precipitation rate as highlighted in (Liu et al.
2018; Banerjee andMukhopadhyay 2007) for Ti-alloys

and is shifted in presence of stress allowing phase trans-
formation for lower concentration of solute than in
stress-free conditions. In this pilot project, the concen-
tration of solute is assumed constant and uniform in the
two-phase system. The results presented in this paper
provide an idea of the potentialities of the model. In
order to obtain more realistic results it might be useful
to map the distribution of the solute concentration over
the system and utilize it as an input to the simulations.
As seen in Sect. 3, the model is formulated such as the
precipitate may grow infinitely in a material subjected
to an applied load. This can happen on unreasonable
orders of magnitude compared to the lifetime of a com-
ponent, its size or even its embrittlement process,which
can occur on smaller time scales such as DHC. In the
context of DHC, the diffusionless phase transformation
studied in this paper is believed to take place as a first
step of the damaging process, i.e. from the time when
the structure is subjected to a load, phase transforma-
tion can take place in proximity of a crack for a low
hydrogen concentration. Thereafter, other processes,
acting on larger time scales, occur and are combined to
crystal reordering such as diffusion and propagation of
cracks through the hydride-rich paths. Thus, for simula-
tions on larger time scales, diffusion can be taken into
account by solving the Cahn-Hilliard equation while
coupled to the TDGL one (Provatas and Elder 2010;
Moelans et al. 2008).

The information provided from this paper aims at
studying precipitation kinetics induced by the coupling
between an external stress field, transformation strains
and terminal solid solubility regardless of the differ-
ent phases of the system. As a first approximation, the
material properties of the precipitate are assumed the
same as the matrix phase, which it develops from. Nev-
ertheless, the difference between the phases are taken
into account through their respective eigenstrains, solid
solubility and interfacial energy. Local deformations
can arise from heterogeneities (Chen 2002; Moelans
et al. 2008; Li and Chen 1998) and can be taken into
account to make the results more realistic. However,
this implies that the mechanical equilibrium is solved
numerically although the crack-induced stress field can
still be present implicitly. In the example presented in
this paper, as heterogeneities are not represented, the
hydride region arising from the crack tip can be seen as
a cluster of hydrides instead of a single second/third-
phase region. The distribution of hydride phase around
a notch in a Zr–2.5Nb cantilever found in Ma et al.
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(2006) displays a geometry,which resembles that found
with the present approach for an α/α interface with no
increase of the energy in the grain boundary. This sug-
gests that the present model can be used as a fairly good
approximation in terms of stress-induced hydride pre-
cipitation. The inhomogeneities induced by the appear-
ance of a precipitate with different material properties
can be addressed in the next steps of themodel improve-
ment.Additionally, the studywas carried out bymaking
a simplification consisting in considering all phases of
the system isotropic in terms of elastic constants. In
order to have a more realistic model, the anisotropic
stiffness tensor can be employed and treated as inNigro
et al. (2017). Thus, the anisotropy due to the crystal-
lography of an (α+β)-Ti alloys, i.e. hexagonal closed-
packed for phase α (Tromans 2011) and body-centred
cubic for the phase β, can be captured.

Plastic deformation, as a consequence of the pres-
ence of dislocations, is involved in the total free energy
of the system as it can influence precipitation (Porter
et al. 2009a). In this study, by using the expression
by Irwin, the crack tip plastic zone size is estimated
to be of the order of magnitude of the initial hydride
nucleus size considering the yield stress of Ti and
the chosen loads. Thus, as a first approximation, the
impact of the non-linear zone is considered negligible
for the subsequent second-phase broadening. Never-
theless, themodel is not limited to LEFMas other stress
fields can be superposed. For example, plasticity can be
included in the present approach by simply using the
stress fields induced by dislocations as in Bjerkén and
Massih (2014).

Interpolation functions are used for the stress field,
material properties and the transformation strains
through the interface in order to keep continuity of these
parameters in the system. These functions are such that
the value of a parameter in the middle of the interface
is the mean of its values in each matrix phases. It can
be useful to use ab-initio calculation data related to the
variation of these parameters through the phase inter-
face so that more suitable interpolation functions can
be used.

The present approach is fairly efficient on the com-
puting point of view. Nevertheless, some existing tech-
niques can be used to optimize the computing resources
further. For example, adaptivemeshing alogrithms as in
Bair et al. (2017) or the increase of the artificial inter-
face width together with the decrease of the element
size, e.g. through the use of thin-interface asymptotics

(Karma and Rappel 1998), can be employed. Never-
theless, when using adaptive meshing the algorithms
usually reduce the elements size in the region of the
interfaces where the phase variable gradients are the
largest. This suggests that the interfaces are tracked
down as in the Stefan problem (Provatas and Elder
2010) and, therefore, the numerical efficiency of the
phase field method can be cut down.

Over the years, phase fieldmodels have been applied
to crack propagation, (Kiendl et al. 2016; Schneider
et al. 2016; Shanthraj et al. 2016; Spatschek et al. 2006,
2007, 2011). A few studies have recently been made
in regard of phase-field models coupling fracture and
phase transformation aspects without using LEFM. For
instance, a PF model coupling crack propagation and
martensitic transformation has been developed byZhao
et al. (2016). In addition, Wu and Lorenzis (2016) have
presented a phase-field model fracture and its coupling
with diffusion. These works could be considered in the
further development of the present model in terms of
crack propagation.

In hydride forming metals, where DHC can occur,
crack propagation preferentially takes place through
hydride-rich paths (Puls 2012; Shih et al. 1988). The
present approach, which takes into account microstruc-
tural features such as the presence of grain and phase
boundaries, which are known to promote hydride for-
mation (Liu et al. 2018; Banerjee and Mukhopadhyay
2007), can be utilized to contribute to the efficiency of
multi-scale crack propagation prediction schemes.

7 Conclusions

In this paper, we present a phase-field approach
for modelling of stress-induced phase transforma-
tion kinetics in multi-phase microstructures including
defects. The aim of this study is to model the phe-
nomenonoccurring in proximity of stress concentrators
by taking into account the external stress, the phase
transformation-induced expansion of the system, the
terminal solid solubility in stress-free conditions, the
effect of the interfacial energy and the energy of the
grain/phase boundaries, with a numerically efficient
approach. In particular, the flexibility of the formula-
tion allows to represent isotropic and anisotropic eigen-
strains, the effect of an interface crack in a bi-material
through the use of linear elastic fracture mechanics and
the energy of the grain/phase boundary through the
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use of a single parameter. With this configuration, only
one evolution equation, the TDGL equation is solved,
which contributes to the numerical efficiency of the
present approach.

The results displaying δ hydride growth induced by
an opening interface crack in a grain/phase boundary
are obtained for an (α + β)-Ti alloy which contains a
concentration of hydrogen lying below the stress-free
terminal solid solubility. Precipitation appears to occur
in proximity of the interface crack tip, following the
isostress contours away from the grain/phase boundary.
In the latter, the total free energy is larger and, therefore,
hydride growth is enhanced inducing the elongation of
the precipitate along this interface. The difference in
material parameters in either side of the phase boundary
is reflected through the lower hydride growth rate in
phaseβ than in phaseα. Coalescence of several hydride
regions are observed for relatively large energy of the
interface. Thus, these results reflect the possibility of
the present approach to capture the dependency of the
material properties on the precipitation kinetics at a
microstructural level.

The present model can include different kinds of
defects, multi-phase microstructures, morphologies of
grain and phase boundaries and loading modes. We
believe that the approach presented in this paper can
contribute to the efficiency of multi-scale crack propa-
gation prediction schemes.
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Appendix A: Approximation of the critical size of a
nucleus

In this section, the competition between the interfa-
cial energies γαδ and γβδ , and the volumetric free

energies is investigated in order to estimate the crit-
ical size of a δ-phase nucleus. The critical size of a
nucleus defines the size above which the precipitate
grows and below which the nucleus disappears. In this
analysis, homogeneous nucleation is assumed consid-
ering a circular nucleus and isotropic material proper-
ties. The radius and critical radius of the nucleus are
designated by R and Rc. To simplify, two grains of
the same phase separated by an interface with a thick-
nesswαα orwββ are regarded. By examining Eqs. (15),
(16) and (18), it is noticed that the driving force for the
phase transformation resides in the term of the Lan-
dau potential, −P0 fc s hmδ , which controls the energy
of the phase/grain boundary, and the coupling term
−σ A

i j ε
s
i j hmδ Q of the interaction free energy density.

For hmδ = 1, the former term is active on the nucleus
portion, which lies within the phase/grain boundary,
and the latter is associated to thewhole nucleus volume.
The integral of these two terms forms the volumetric
energies, which compete with the interfacial energy,
integrated on the surface of the nucleus. To simplify
the calculations, the parameter s = s0 is taken to be
uniform in the thickness of the interface and to be zero
for x < 0, i.e. behind the crack tip. By putting the
considered energy terms in equation as in the classi-
cal nucleation theory for an homogeneous nucleation
(Porter et al. 2009b), an approximate critical radius can
be found such that Eq. (23) is satisfied for R ≤ wζζ /2
where ζ = α or ζ = β depending on the phase consid-
ered for the solid solution.

2πγζδ − P0 π Rc s0 − 8 K ε0 Q
√
Rc√

2π
= 0. (23)

For R > wζζ /2, an approximation of Rc is found
numerically by solving Eq. (24),

2πγζδ − P0 s0

[
Rc wζζ√
4 R2

c−w2
ζ ζ

+ 2 Rc arcsin wζζ

2 Rc

]

− 8 K ε0 Q
√
Rc√

2π
= 0. (24)

From these expression it results that the critical radii
are lower for larger σ∞ and for larger s0. Physically,
the increase of the parameters σ∞ and s0 helps decreas-
ing the minimum of the system’s total free energy and
reducing the nucleation energy barrier.
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