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Abstract The interplay between twinning and frac-
ture in metals under deformation is an open ques-
tion. The plastic strain concentration created by twin
bands can induce large stresses on the grain boundaries.
We present simulations in which a continuum model
describing discrete twins is coupled with a crystal plas-
ticity finite element model and a cohesive zone model
for intergranular fracture. The discrete twin model can
predict twin nucleation, propagation, growth and the
correct twin thickness. Therefore, the plastic strain
concentration in the twin band can be modelled. The
cohesive zone model is based on a bilinear traction-
separation law in which the damage is caused by the
normal stress on the grain boundary. An algorithm is
developed to generate interface elements at the grain
boundaries that satisfy the traction-separation law. The
model is calibrated by comparing polycrystal simula-
tions with the experimentally observed strain to failure
and maximum stress. The dynamics of twin and crack
nucleation have been investigated. First, twins nucleate
and propagate in a grain, then, microcracks form near
the intersection between twin tips and grain bound-
aries. Microcracks appear at multiple locations before

N. Grilli (B)· E. Tarleton · A. C. F. Cocks
Department of Engineering Science, University of Oxford,
Parks Road OX1 3PJ, UK
e-mail: nicolo.grilli@eng.ox.ac.uk

E. Tarleton
Department of Materials, University of Oxford,
Parks Road OX1 3PH, UK
e-mail: edmund.tarleton@eng.ox.ac.uk

merging. A propagating crack can nucleate additional
twins starting from the grain boundary, a fewmicrome-
tres away from the original crack nucleation site. This
model can be used to understand which type of texture
is more resistant against crack nucleation and propa-
gation in cast metals in which twinning is a deforma-
tion mechanism. The code is available online at https://
github.com/TarletonGroup/CrystalPlasticity.

Keywords Crystal plasticity · Fracture ·
Cohesive zone modelling · Twinning · Uranium

1 Introduction

Intergranular fracture is a type of brittle fracture, which
involves the nucleation and propagation of cracks along
grain boundaries. It is a dominant failure mechanism in
as-cast metals (Powell 1994), ultrafine-grained metals
(Pippan and Hohenwarter 2016), during stress corro-
sion (Birbilis and Hinton 2011) and hydrogen embrit-
tlement (Barrera et al. 2018; Elmukashfi et al. 2020). It
takes place in materials in which the stress required to
debond the grain boundary interface is lower than the
stress to debond atomic planes inside the grains (Jiang
et al. 2015) or to nucleate and grow microscopic voids
(Tvergaard 1981; Cocks and Ashby 1982).

Plastic deformation, induced by the motion of dislo-
cations and by twinning (Christian 2002), has an impor-
tant effect on fracture. The interplay between plastic-
ity and fracture is complex, because it depends on the
load condition (Sistaninia and Niffenegger 2015; Grilli
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and Koslowski 2018), on the microstructure (Qian
et al. 2018) and on the presence of pre-existing cracks
(Duarte et al. 2018). Larger plastic deformation leads
to stress relaxation and can retard the propagation of
pre-existing cracks (Grilli and Koslowski 2019). In this
case, a larger strain to failure is observed (Woelke et al.
2015). However, plasticity can also cause damage initi-
ation because its anisotropic nature leads to stress vari-
ations at the microscale (Krupp 2007).

Plastic deformation at the scale of the grain-size in
metals is an inhomogeneous phenomenon. It is con-
centrated into slip bands or twins, depending on the
stacking fault energy (Frøseth et al. 2005), and can
favour crack nucleation (Tanaka andMura 1981).How-
ever, shear bands emanating from the notch of a tensile
sample can delay fracture (Li et al. 2016). A plasti-
cally deforming band that impinges on a grain bound-
ary leads to a normal stress that decreases with the
band thickness (Sauzay andMoussa 2013). High stress
exists in the vicinity of a twin tip, which can induce
slip ahead of it when the twin tip terminates inside the
grain (Sleeswyk 1962).

There is experimental evidence of the correlation
between twinning and fracture (Christian and Maha-
jan 1995). Most metals that exhibit brittle fracture
at low temperature also deform by mechanical twin-
ning (O’Neill 1926). Microcracks in TWIP steels form
at intersecting twins and propagate both along grain
boundaries and along twin interfaces (Koyama et al.
2013). Microcracks have also been observed near the
intersection between impinging twin bands and grain
boundaries in the intermetallic TiAl (Bieler et al. 2005).
Theweaker boundaries have been identified as the ones
in which the neighbouring grains cannot accommo-
date the twin strain. Cracks have been observed near
the intersection between twins and grain boundaries in
several BCC metals at low temperatures (Cr, W, Mo)
(Marcinkowski and Lipsitt 1962; Gilbert et al. 1964).
The grain size dependence of the stress to nucleate
twins and cracks are similar. However, it is not clear
if a twin induces crack nucleation or vice-versa. The
same properties are observed in α-uranium, which is
the material of interest in the present paper (Taplin
1964; Taplin and Martin 1965). α-uranium exhibits
intergranular fracture in the temperature range from
−100 ◦C to 200 ◦C (Collins and Taplin 1978), while
ductile fracture (Taplin and Cocks 1967) and inclusion
cracking are observed at higher temperatures (Davies
and Martin 1961).

Imaging techniques such as differential aperture
X-ray microscopy (Balogh et al. 2013) and high-
resolution electron backscatter diffraction (EBSD)
(Abdolvand and Wilkinson 2016) have been used
to measure the elastic strain field near the twin tip
and at the twin interface (Hubbell and Seltzer 1995).
However, the large X-ray absorption coefficient of α-
uranium limits the applicability of the first technique
(Hubbell and Seltzer 1995), the preparation of strain-
free α-uranium surfaces for EBSD is challenging (Sut-
cliffe et al. 2019; Earp et al. 2018) and X-ray trans-
mission integrates the signal over the thickness of the
sample (Irastorza-Landa et al. 2016, 2017b), limiting
the ability to image individual twins. In-situ techniques,
which can reveal the chronological order of twin and
crack nucleation and propagation, are needed but the
characteristic time duringwhichmicrocracks and twins
nucleate is very short, as they propagate close to the
speed of sound in the material (Oberson and Ankem
2005). A unique example in the literature is the mea-
surement of the magnetic properties with microsecond
time resolution, showing that twinning takes place a
fewmicroseconds earlier than crack nucleation in iron-
silicon (Williams and Reid 1971).

Several open questions remain. What is the effect of
strain localization due to twinning on fracture? Which
combinations of grain orientations favour intergranular
fracture? How does the crack propagate once nucle-
ated? What is the chronological order of events: do
propagating cracks nucleate twins or vice-versa? What
is the role of dislocations? These questions are particu-
larly important because twinning can be inhibited using
prestrain at a higher temperature (Boucher and Chris-
tian 1972) or by introducing precipitates (Chun et al.
1969).

Crystal plasticity finite element (CPFE) and fracture
mechanics simulations are suitable to investigate these
issues. CPFE is a computational finite strain method
that takes into account the plastic deformation of slip
and twin systems (Roters et al. 2018; Grilli 2016), and
the reorientation of the crystal lattice due to twinning
(Grilli et al. 2020d). The different orientations of neigh-
bouring grains can be included and elastic strain incom-
patibility can be calculated, as well as the intergranular
stress (Petkov et al. 2019).

Intergranular fracture can be described using a
cohesive-zone model (Simonovski and Cizelj 2011).
Elements of negligible thickness are used to describe
the separationof thegrain boundary interface.Traction-
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separation relationships for interfaces were first intro-
duced by Barenblatt (Barenblatt 1962). Softening of
the interface element takes place after a critical value
of the stress is reached; this allows both crack nucle-
ation and propagation to be simulated. Camacho and
Ortiz showed that cohesive-zone modelling is compat-
ible with finite element modelling of the bulk material
and is able to reproduce arbitrary crack paths between
2D bulk elements in amesh (Camacho andOrtiz 1996).
Ortiz and Pandolfi extended the method to 3D dynamic
simulations (Ortiz and Pandolfi 1999).

The recent development of continuum models to
describe discrete twins (Liu et al. 2018) allows us
to simulate the concentration of plastic deformation
in a narrow band. Twin nucleation and growth has
been reproduced (Qiao et al. 2016). The coupling
with phase field fracture has allowed twin nucleation
induced by crack propagation from a notch to be stud-
ied (Clayton and Knap 2016; Grilli et al. 2018a).
However, no models for twin-induced fracture are
available.

It is fundamental that such a model can correctly
predict the twin thickness and the stress for twin nucle-
ation and growth. This is because the stress at the twin
tip depends on the twin thickness (Sauzay and Moussa
2013). This has been achieved using a non-local model
for the critical resolved shear stress (CRSS) for twin-
ning, which has been validated using in-situ EBSD
experiments (Grilli et al. 2020d).

In this paper, a coupled plasticity-fracture model is
developed and applied to 3D polycrystal simulations.
Themodel is calibrated using data in the literature from
experiments onα-uranium . The effect of discrete twins
on crack nucleation and propagation is investigated.
Specific combinations of the orientations of neighbour-
ing grains that favour or prevent intergranular fracture
are investigated.

Section 2 describes the cohesive-zone model and
the formulation of 3D interface elements. Section 3
describes the crystal plasticity model used for the
mechanical behaviour of the grains and the coupling
with a continuum model for twinning. In Sect. 4,
polycrystal simulations are carried out to calibrate the
parameters of the cohesive zone model. The details of
crack nucleation and propagation at the grain bound-
aries are investigated in Sect. 5. In Sect. 6, the crack
nucleation andpropagation is studied in the case of non-
columnar grains. Sections 7 and 8 contain discussion
and conclusions.

2 Cohesive zone model and interface elements

Zero thickness interface elements are assigned to grain
boundaries. An algorithm has been developed to auto-
matically generate such interface elements in an arbi-
trary polycrystal (Grilli 2020). First, the mesh is gener-
ated with 3D hexahedral elements and zero thickness
grain boundaries. Hexahedral elements are preferred
to linear tetrahedral elements in crystal plasticity finite
element simulations because they do not exhibit volu-
metric locking and a consequent stiff response during
bending (Cheng et al. 2016). Then, nodes at the grain
boundaries, which are shared by two or three grains,
are duplicated or triplicated respectively. An example
is shown in Fig. 1a. The original nodes 1, 2, 3, 4 belong
to a grain boundary between grain 1 and grain 2. Dur-
ing the duplication, nodes 5, 6, 7, 8 are created, which
have the same undeformed coordinates as nodes 1, 2,
3, 4 respectively. Grain 1 retains the original nodes 1,
2, 3, 4 while nodes 5, 6, 7, 8 are assigned to grain 2.
Therefore, nodes 1, 2, 3, 4 belong to one hexahedral
element in grain 1, while nodes 5, 6, 7, 8 belong to an
element in grain 2.

An interface element is created that includes all the
nodes from 1 to 8. This interface element connects the
two hexahedral elements in grain 1 and 2. A bilinear
traction-separation law, as shown in Fig. 1b, is used for
the interface element to represent the cohesion forces
of the grain boundaries (Barenblatt 1962). Because of
the arbitrary orientation of each interface element in
space, it is necessary to define a local reference system
inwhich the separation vectorΔ is defined. Thiswill be
called the mid-plane reference system and it is defined
as follows. x̂m is the unit vector that connects the mid-
pointm1 between node 1 and node 5with themid-point
m2 between node 2 and node 6. The unit vector normal
to the mid-plane ẑm is found by taking the cross prod-
uct of x̂m and the direction that connects the mid-points
m1 and m4. The third unit vector ŷm is calculated as:

ŷm = ẑm × x̂m . (1)

The three orthogonal unit vectors
(
x̂m, ŷm, ẑm

)
consti-

tute the mid-plane reference system; its origin is in the
middle of the quadrilateral with vertices m1, m2, m3,
m4. This choice allows the traction-separation law in
this coordinate system to be defined, which is indepen-
dent of the orientation of the interface element. In the
following, the separation vector Δ = (Δs1,Δs2,Δn)
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Fig. 1 a 3D cohesive elements with 8 nodes and b bilinear
traction-separation law

is defined in the mid-plane reference system and can be
calculated on the

(
x̂m, ŷm

)
plane using shape functions,

as reported in Appendix A.
The cohesive force vector T = (Ts1, Ts2, Tn) is also

expressed in the mid-plane reference frame. The trac-
tion/separation law is given by:

Tn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

KnΔn, if D = 0 or Δn < 0,

0, if D = 1 and Δn > 0,

Kn (1 − D) Δn, if 0 < D < 1 and 0 < Δn < Δp (D) ,

KnΔ0

(
Δ f − Δn

)

(
Δ f − Δ0

) , if 0 < D < 1 and Δn > Δp (D) ,

(2)

where 0 < D < 1 is the damage variable, describing
the degradation of the normal stiffness Kn . Δ0 is the
normal separation at which damage starts and Δ f is
the normal separation at which damage is complete, as
shown in Fig. 1b. Given a damage D, Δp(D) is the
normal separation at which the maximum normal trac-
tion is reached. IfΔn > Δp(D), damage increases and
normal traction decreases. This formulation includes
contact (Δn < 0) during which damage does not affect
the normal cohesive force.

In the present model, shear separation does not
induce damage, but shear cohesive force is degraded
by existing damage:

Ts =

⎧
⎪⎨

⎪⎩

GsΔs, if D = 0,

0, if D = 1,

Gs (1 − D)Δs, if 0 < D < 1 .

(3)

whereΔs =
√

Δ2
s1 + Δ2

s2 is themagnitude of the shear
separation. If D = 1, there is no shear traction, even in
the case of contact (Δn < 0), i.e. the contact is assumed
to be frictionless. The components of the shear traction
along the axes x̂m and ŷm are:

Ts1 = Ts
Δs1

Δs
, (4)

Ts2 = Ts
Δs2

Δs
. (5)

The damage nucleation induced by shear separation
is relevant in brittle materials (Chen and Ravichandran
1996, 1997) but has been neglected in the description of
intergranular fracture in metals (Yamakov et al. 2006;
Simonovski and Cizelj 2011).

It is of the utmost importance that the nodes of the
cohesive elements are arranged as in Fig. 1a. If the posi-
tions of nodes 2 and 4 are exchanged, and the same for
nodes 6 and 8, the unit vector ẑm would point in the
opposite direction. In that case, according to the defini-
tion of the separation vector in Appendix A, interface
opening (Δn > 0) and contact (Δn < 0) would be
inverted and not reproduced correctly. The algorithm
that generates the interface elements takes this issue
into account (Grilli 2021).

The principle of virtualwork provides theweak form
of the equilibrium equations (Park and Paulino 2012):

∫

�

δε : σ dV +
∫

�c

δΔ · T dS =
∫

�

δuG · T ext dS (6)
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where� is the representative volume,�c is the cohesive
interface and � is the boundary. The δ symbol repre-
sents the variation of a variable. ε is the strain tensor
and σ is the Cauchy stress. uG is the displacement vec-
tor, expressed in the global reference frame, and T ext

is the external force.
The second term on the left-hand side of Eq. (6)

is introduced in the commercial finite element code
Abaqus by using the UEL subroutine (Smith 2009).
This requires us to define the contribution to the inter-
nal force vector f ecoh for each cohesive element. There-
fore, the variation δΔ has to be expressed as a function
of the variation of the displacement vector δuG . This
is done by using the B matrix defined in Eq. (9. 11) of
Appendix A:

δΔ = B δU, (7)

where δU = (δu1, δu2, δu3, δu4, δu5, δu6, δu7, δu8)T

is a [24×1] vector that contains the variation of the dis-
placement components of the eight nodes of the cohe-
sive element. Since δU is expressed in the mid-plane
reference frame, a transformation matrix M is needed.
M is a [24 × 24] block diagonal matrix. It has eight
equal [3× 3] main-diagonal blocks. These blocks con-
tain the [3× 3] rotation matrix that transforms vectors
from the global reference frame to the mid-plane ref-
erence frame. Therefore:

δΔ = BM δUG, (8)

where δUG is the vector δU expressed in the global
reference frame. Therefore, the contribution of a single
cohesive element�e to the second term on the left-hand
side of Eq. (6) is given by:

∫

�e

δΔT T dS=δUT
G

(∫

�e

MT BT T dS

)
=δUT

G f ecoh,

(9)

where f ecoh is the internal [24 × 1] force vector of the
cohesive interface. The vector δUG can be taken out-
side of the integral because it depends only on the dis-
placements at the nodes. f ecoh is calculated at 4 Gauss
points, as described in Appendix A.

The Jacobian ∂ f ecoh/∂UG which is calculated in the
UEL subroutine is reported in Appendix B.

Table 1 Model parameters for the cohesive zone model

Kn Gs Δ f

226.8 GPa/µm 88.1 GPa/µm 1 µm

The cohesive zone model parameters used in the
following are reported in Table 1. The value of σmax is
calibrated in Sect. 4.

3 Crystal plasticity model

The behaviour of the grains is described using a crys-
tal plasticity model coupled with a continuum model
for discrete twins (Grilli et al. 2020b). A variable ϕ is
used to represent discrete twins. It can increase from
0 (untwinned region) to 1 (fully twinned region). The
model is introduced in Abaqus by using a UMAT sub-
routine (Smith 2009). An implicit CPFE framework is
used to calculate the increment of the Cauchy stress
σ at each time step (Dunne et al. 2007). The rate of
change of the corotational stress tensor is calculated
using Hooke’s law (Dunne and Petrinic 2006; Sakano
et al. 2020):

∇
σ = Cε̇e = C

(
ε̇ − ε̇p

)
, (10)

whereC is the fourth order elasticity tensor (Fisher and
McSkimin1958).εe,εp andε are the elastic, plastic and
total strain. C is interpolated between the untwinned
crystal lattice and the twinned crystal lattice when ϕ

grows from 0 to 1.
Plastic deformation is described using the 8 most

active slip systems of α-uranium at room temperature
(McCabe et al. 2010). The twin system [31̄0] (130) is
used in the following simulations (Zhou et al. 2016).

The plastic strain rate is calculated by summing the
contributions of the slip rates γ̇α (σ ) on the slip systems
and the contribution of the twinning rate (Kalidindi
1998):

ε̇p = 1

2

Nslip∑

α=1

γ̇α (σ ) (sα ⊗ nα + nα ⊗ sα)

+ 1

2
ϕ̇ (σ , ϕ) γ twin

β

(
sβ ⊗ nβ + nβ ⊗ sβ

)
,

(11)
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where sα and nα are the slip direction and normal of
the slip system α. sβ and nβ are the twin direction and
normal, and γ twin

β is the total shear produced by twin-
ning. Given the total strain rate ε̇ in one time step, Eqs.
(10)-(11) represent a non-linear system of equations
in which the unknown is the Cauchy stress increment.
They are solved using a Newton-Raphson algorithm
(Dunne and Petrinic 2006).

The slip rates γ̇α (σ ) are calculated using a power-
law relationship (Grilli et al. 2015; Irastorza-Landa
et al. 2017a):

γ̇α (σ ) = γ̇0

∣∣∣∣
τα

τ cα

∣∣∣∣

n

sign (τα) , (12)

where γ̇0 and n are constants. τα is the resolved shear
stress (RSS) on slip system α and τ cα is the CRSS (Rot-
ers 2011; Jafari et al. 2017). This rate-dependent law
allows us to find a unique decomposition of the plas-
tic strain increment into slip increments (Zamiri and
Pourboghrat 2010). τ cα determines the hardening of the
slip system and it is evolved in time using a disloca-
tion density-based model, whose details are reported in
(Beyerlein and Tomé 2008; McCabe et al. 2010; Grilli
and Cocks 2019; Grilli et al. 2020a). The evolution
of the dislocation densities is based on multiplication-
annihilation rate equations (Kocks and Mecking 2003;
Grilli et al. 2018b). This hardeningmodel has been able
to reproduce the elastic lattice strain in polycrystals
measured using neutron diffraction (Grilli et al. 2020a)
and the strain field inside individual grains measured
using digital image correlation (Grilli et al. 2020c).

The time evolution of ϕ determines the nucleation
and growth of discrete twins. It has two contributions:

ϕ̇ (σ , ϕ) = ϕ̇S (σ , ϕ) + ϕ̇G (ϕ) , (13)

the first term is a power-law relationship similar to the
one used for slip (McCabe et al. 2010):

γ twin
β ϕ̇S (σ , ϕ) =

⎧
⎪⎨

⎪⎩

γ̇0

∣∣∣∣∣
τβ

τ cβ (ϕ)

∣∣∣∣∣

n

, if τβ > 0,

0, if τβ < 0.

(14)

This represents stress-induced twin nucleation, which
takes place only when the RSS on the twin system is
positive. The second term inEq. (13) describes the driv-
ing force moving the atoms towards their equilibrium

position in the twinned crystal lattice, after they have
passed the energy barrier for twinning (Liu et al. 2019):

ϕ̇G (ϕ) =
{
f (1 − ϕ) , if ϕ > 1

2 ,

0, if ϕ < 1
2 .

(15)

ϕ = 0.5 corresponds to the maximum of the energy
barrier and 1/ f is a characteristic time interval during
which the twin process completes.

The CRSS for twinning τ cβ (ϕ) has two contribu-
tions:

τ cβ (ϕ) = τ0 (ϕ) + τtwin (ϕ) . (16)

The first term τ0 (ϕ) models the twin nucleation and
stress relaxation during twin propagation, as observed
experimentally (Lynch et al. 2014), using a bilinear law:

τ0 (ϕ) =

⎧
⎪⎨

⎪⎩

τ0

4
+ 3τ0

4
(1 − 2ϕ) , if ϕ < 1

2 ,

τ0

4
+ 3τ0

4
(2ϕ − 1) , if ϕ > 1

2 ,
(17)

where τ0 is a constant.
τtwin (ϕ) models the interaction between the twin

interface and mobile dislocations (Ojha et al. 2014).
When a mobile dislocation intersects a pre-existing
twin boundary, it is decomposed into a sessile resid-
ual dislocation and a twinning dislocation. New twin
layers are formed by the motion of these twinning dis-
locations, i.e. twin growth. The accumulation of resid-
ual dislocations prevents further mobile dislocations
from interacting with the twin interface, leading to a
higher CRSS for twin growth. The specific interaction
depends on the dislocations character and on the direc-
tion fromwhich they approach the twin interface (Gong
et al. 2018). In this paper, we model this process with a
non-local term that quantifies the total thickness of the
twinned region in the neighbourhood of a point, which
is also proportional to the density of residual disloca-
tions:

τtwin (ϕ) = τ 0twin

�c

∫

�c

ϕ dV, (18)

where τ 0twin is a constant. In order to quantify the thick-
ness of the twinned region, the integration region �c

is chosen as a cylinder with height l0 and radius r0,
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Fig. 2 Cylindrical integration volume used to calculate the term
τtwin (ϕ) of the CRSS for twinning

centred on the point considered, as shown in Fig. 2.
Only integration points where the twin has overcome
the energy barrier (ϕ > 1/2) are considered when eval-
uating the integral.

As shown in Fig. 2, given an axis X perpendicular
to the twin planes, the term τtwin (ϕ) can be evaluated.
If the point considered moves towards the right and the
cylindrical volume intersects the second twin on the
right, the term τtwin (ϕ) increases. This prevents the fur-
ther growth of the twin on the left. The smooth increase
of the term τtwin (ϕ) in the presence of the pre-existing
twins leads to the formation of smooth twin interfaces,
in which ϕ varies from 1 to 0 along a certain length
scale. This prevents the formation of sharp interfaces
between twinned and untwinned regions that could not
be captured properly by a finite element model.

It has been shown that this formulation can repro-
duce the nucleation and growth of discrete twins at the
correct value of stress and with thickness as observed
in EBSD experiments (Grilli et al. 2020d).

α-uranium (orthorhombic) material parameters are
used for the plasticity model in the following simula-
tions (Grilli et al. 2020a). They are reported in Table
2. The crystal plasticity code is available in the fol-
lowing repository: https://github.com/TarletonGroup/
CrystalPlasticity (Tarleton 2020).

4 Polycrystal simulation and model calibration

In this section polycrystal simulations are carried out;
the maximum stress and strain to failure are com-
pared with experiments in the literature. A calibra-
tion of the cohesive zone model parameters is pro-

Table 2 Model parameters for the crystal plasticity model

τ0 τ 0twin l0 r0 f γ̇0 n γ twin
β

25 MPa 2000 MPa 10 µm 1 µm 1 s−1 0.001 s−1 20 0.299

Fig. 3 Polycrystal simulation representative volume: a bound-
ary conditions, different colours represent different grains; b
mesh

posed. The columnar grain structure is shown in
Fig. 3a and grains are numbered from 1 to 6. The
representative volume is a parallelepiped with size
60 µm × 60 µm × 0.5 µm. The mesh, shown
in Fig. 3b, is constituted of hexahedral elements
with average size 0.5 µm. Cohesive elements are
placed along the grain boundaries, including triple
junctions.

Boundary conditions, modelling pure tension, are
shown in Fig. 3a. uz = 0 is imposed on the surface
z = 0, uy = 0 is imposed on the surface y = 0, ux = 0
is imposed on the surface x = 0. A displacement uy is
imposed on the surface y = 60 µm. This displacement
increases linearly with time, from 0 to 18µm, inducing
an average strain up to 30%. The applied macroscopic
strain rate used in all the following simulations is 0.001
s−1.

The orientation of the crystal lattice of the i-th grain
in Fig. 3a is determined by rotation matrices Ri . These
rotation matrices transform a vector from the crystal
lattice reference frame into the global reference frame,
shown in Fig. 3a. The rotation matrix for grain number
1 is:
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Table 3 Misorientation angles of the different grains in Fig. 3a

θ2 θ3 θ4 θ5 θ6

+θ −θ −2θ +2θ −θ

R1 =
⎛

⎝
−0.1834 0.983 0
0.983 0.1834 0
0 0 −1

⎞

⎠ . (19)

This matrix aligns the direction of the twin system
[31̄0] (130) at 45◦ in the (x,y) plane and so the Schmid
factor of this twin system in grain number 1 becomes
0.5. The rotation matrix for the i-th grain is found by
multiplying R1 by a rotation around the z axis:

Ri =
⎛

⎝
cos θi − sin θi 0
sin θi cos θi 0
0 0 1

⎞

⎠ · R1 . (20)

The angle θi for each grain is reported in Table 3. The
angle θ quantifies the magnitude of the misorientation
between the six grains.

The value of the separation to failure Δ f is fixed at
1 µm. Simulations are carried out with different val-
ues of σmax, the damage initiation stress shown in Fig.
1b. The stress–strain curves, obtained by averaging the
stress component σ yy on the load surface y = 60 µm
in Fig. 3a, are shown in Fig. 4.

The maximum stress and strain to failure are
strongly dependent on σmax, as shown in Fig. 4a. Ten-
sile stresses up to 310 MPa have been measured in
tensile bar experiments on coarse-grained α-uranium
without reaching failure (Grilli et al. 2020a, c, d). This
represents a lower limit for the calibration. As shown
in Fig. 4a, this lower bound is satisfied if σmax ≥ 500
MPa. Additionally, Huddart and Harding measured a
strain to failure around ε f = 20% for cast α-uranium
at low strain rate (Huddart et al. 1980). This condition
is approximately satisfied in the present simulations if
σmax = 650 MPa. Values of σmax larger than 700 MPa
leads to an unrealistically high strain to failure. There-
fore, the value σmax = 650 MPa will be used in all the
following simulations, which leads to a fracture energy
of 1

2σmaxΔ f = 325 J/m2 and opening ofΔ0 = 2.87 nm
at damage initiation.

Figure 4b shows the stress–strain curves for differ-
ent values of the misorientation angle θ . The lowest
misorientation θ = 5◦ shows the maximum stress and

Fig. 4 a Stress–strain curves for different values of σmax used
for model calibration. b Stress–strain curves for different mis-
orientation angle θ

the maximum strain to failure. However, the relation-
ship between strain to failure and misorientation angle
θ does not monotonically decrease. The strain to fail-
ure for θ = 45◦ is slightly larger than for θ = 20◦. The
dependence on the misorientation angle confirms that
the previous calibration of σmax is not strongly depen-
dent on the choice of the texture and, therefore, it is
reliable.

Fig. 5 shows the twin variable ϕ and fracture path
at 23% average strain for three different misorientation
angles θ . The discrete twins (ϕ = 1) and theirmisorien-
tations between neighbouring grains can be observed.
The fracture path is similar for the three misorienta-
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Fig. 5 Twin variable ϕ and fracture in the polycrystal at 23% strain for different grain misorientations θ

tions. The boundaries between grains 1-4 and between
grains 2-3 are the first to completely damage. These
are the boundaries with an orientation almost perpen-
dicular to the load direction. They also have several
discrete twins impinging on them from grains 1, 3, 4.
The only difference in the fracture path is visible in
Fig. 5a: a crack initiates at the grain boundary between
grains 1-6 at the triple junction between grains 1, 5, 6.
A discrete twin impinges on the triple junction from
grain 5.

5 Crack initiation and propagation

In order to investigate the effect of twin tips imping-
ing on a grain boundary, a three grains simulation is
carried out, as shown in Fig. 6. The two grain bound-
aries have the same orientation with respect to the load
direction; therefore, the effect of the twin orientation
can be decoupled from the effect of the grain boundary
orientation with respect to the load direction.

The representative volume is a parallelepiped with
size 50 µm × 80 µm × 0.5 µm. The mesh, shown in
Fig. 6b, is constituted of hexahedral elementswith aver-
age size 0.5 µm. Three crystals are present, as shown
in Fig. 6a, and cohesive elements are placed at the two
grain boundaries.

Boundary conditions are shown in Fig. 6a. uy = 0
is imposed on the surface y = 0 and a displacement uy

is imposed on the surface y = 80 µm. This displace-
ment increases linearly with time. ux = 0 is imposed

at the point (25, 0, 0) µm and uz = 0 is imposed at
the points (25, 0, 0) µm, (0, 0, 0) µm, (50, 0, 0) µm.
These boundary conditions allow the grains to rotate
during tensile loading. The effect of this rotation can
be studied in these simulations.

The orientation of the crystal lattice of the grains in
Fig. 6a is determined by the following rotationmatrices
for texture 1 (T1):

T1 : R1 =
⎛

⎝
−0.1834 0.983 0
0.983 0.1834 0
0 0 −1

⎞

⎠ ,

R2 =
⎛

⎝
−0.3513 0.9362 0
0.9362 0.3513 0

0 0 −1

⎞

⎠ ,

R3 =
⎛

⎝
−0.983 −0.1834 0
−0.1834 0.983 0

0 0 −1

⎞

⎠ , (21)

and texture 2 (T2):

T2 : R1 =
⎛

⎝
−0.1834 0.983 0
0.983 0.1834 0
0 0 −1

⎞

⎠ ,

R2 =
⎛

⎝
−0.983 −0.1834 0
−0.1834 0.983 0

0 0 −1

⎞

⎠ ,

R3 =
⎛

⎝
−0.3513 0.9362 0
0.9362 0.3513 0

0 0 −1

⎞

⎠ . (22)
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Fig. 6 Polycrystal
simulation to study crack
propagation: a grains and
boundary conditions, b
mesh and node path used to
analyse damage evolution

Fig. 7 Twin variable ϕ and
fracture at 12.5% strain

The twin variable ϕ and fracture path are shown
in Fig. 7 for the two different textures at 12.5% aver-
age strain. The largest damage is induced at the grain
boundary between a grain with twins and a grain with-
out twins. The propagation of the crack at the grain
boundary between the two grains with twins is slower.

In order to better investigate the dynamics of the
crack propagation, the damage variable D and the twin

variable ϕ are reported along the upper grain bound-
ary (between grain 1 and 2) for texture 1. These two
quantities are taken along a node path, as shown in
Fig. 6b, and reported in the same plot at different val-
ues of the strain, as shown in Fig. 8. The discrete nature
of the twinning process results in a non-uniform dis-
tribution of stress along the grain boundaries, with the
stress normal to a boundary being greatest adjacent to
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Fig. 8 Damage variable and twin variable ϕ along the node path in Fig. 6b for texture 1

a twin. Crack nucleation (Fig. 8a) takes place on the
right side of a twin tip due to the tensile stress caused by
twinning. Cracks nucleate at two points adjacent to two
neighbouring twins independently. As themacroscopic
strain is increased, and twinning intensifies, intergran-
ular damage develops to the left of one of the twins,
promoting the development of damage at the twin, lead-
ing to the formation of a crack that propagates towards
the next twin (labelled left crack tip in Fig. 8b). Other
cracks nucleate ahead of this crack tip as other twins
reach the grain boundary (Fig. 8c), which merge with
the propagating crack. The motion of the left crack tip
slows down when it meets a nucleating twin (Fig. 8d).
The interaction with a twin nucleus also speeds up the
nucleation and growth of the twin because of the stress
concentration induced.

Figure 9a shows the position of the left and right
crack tips in Fig. 8 as a function of time. Their posi-
tions are calculated as follows. The position of the crack
tip is initialised where the crack first nucleates. At each
time increment, an algorithm searches to the left and
right of the current crack tip positions. The new crack
tip positions are defined as the last node found by the
algorithm at which D > 0.5. Figure 9a reports also the
crack tip positions for texture 2.

As shown in Fig. 9a, the crack tip position does not
increase uniformly with time. As discussed previously,
the crack at the upper grain boundary in texture 1 tends
to propagate towards the left. Therefore, Fig. 9a shows
a larger motion of that left crack tip. The right crack
tip in texture 1 advances at the beginning, but then its
position remains almost stationary for the rest of the
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Fig. 9 a Crack tip propagation along the upper grain boundary
and b the velocity of the left crack tip of texture 1 in Fig. 7a

simulation. This is due to plastic relaxation due to the
presence of twins on both sides of the grain bound-
aries and to the rotation of grains 1 and 2. This rotation
accommodates the tensile load on the top surface with-
out further propagation of the crack towards the right.

The right crack tip in texture 2 propagates more uni-
formly, as shown in Fig. 9a. This is because this crack
tip does not interact with any twin during its motion,
as shown in Fig. 7b.

Figure 9b shows the left crack tip velocity in texture
1, i.e. the time derivative of the left crack tip position.
The arrows (a), (b), (c), (d) correspond to the values of
the average strain in Fig. 8. Velocity peaks are present
when the crack tip propagates between two twin tips,
while the velocity has minima whenever the crack tip
meets a twin tip or a nucleating twin.

Fig. 10 3D non-columnar bicrystal: a mesh and b boundary
conditions

6 Bicrystal simulation with non-columnar grains

All the previous simulations were carried out using
columnar grains. A bicrystal representative volume
with two non-columnar grains is investigated to under-
stand the effect of discrete twins on intergranular frac-
ture for the case in which the grain boundary surface
normal is not coplanar with both the twin direction and
twin plane normal.

The representative volume and mesh are shown in
Fig. 10a. Figure 10b shows only the edges of the two
grains and clarifies the orientation of the grain bound-
ary. The size of the representative volume is 35 µm
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Fig. 11 Bicrystal simulation with non-columnar grains: twin variable ϕ and damaged plane (blue). Only larger twins with elements in
which ϕ > 0.4 are shown. The crack is constituted of elements with D > 0.9. a 18%, b 23%, c 30%, d 38% strain

× 25 µm × 10 µm. The mesh consists of hexahedral
elements with average size 0.6 µm.

Boundary conditions for pure tension are shown in
Fig. 10b. uz = 0 is imposed on the surface z = 0,
uy = 0 is imposed on the surface y = 0, ux = 0 is
imposed on the surface x = 0. A displacement uy is
imposed on the surface y = 25 µm. This displacement
increases linearly with time.

The orientation of the crystal lattice of grains 1 and
2 in Fig. 10a is:

R1 =
⎛

⎝
−0.1834 0.983 0
0.983 0.1834 0
0 0 −1

⎞

⎠ , (23)

R2 =
⎛

⎝
−0.3513 0.9362 0
0.9362 0.3513 0

0 0 −1

⎞

⎠ . (24)

Since the grain boundary is almost perpendicular to
the load direction, the maximum stress of the interface
elements has been increased to σmax = 800 MPa in
order to observe the complete development of discrete
twins before failure.

The time evolution of the twin variable ϕ is shown in
Fig. 11. The main discrete twins, consisting of at least
50 elements with ϕ > 0.4, are shown and numbered.
The blue region represents the crack, i.e. the surface of
the grain boundary on which D > 0.9.

Twins 1 and 2 are the largest discrete twins, which
nucleate in the central part of the geometry on different
planes. They therefore impinge on the grain boundary
at two different locations. The tensile stress induced
by twins 1 and 2 on the grain boundary is maximum
between the two twin tips, and a crack first nucleates
here (Fig. 11a). The crack nucleates near the surface
z = 0. This is due to the orientation of the grain bound-
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ary: the tip of twin 1, which is the most important
in determining crack nucleation, is closer to the grain
boundary on the surface z = 0 than on the surface z =
10 µm. The fracture plane propagates first along the
direction parallel to the twin plane, then along the grain
boundary (Fig. 11b). The damage surface propagates
much faster towards the right (Fig. 11c). This is because
twin 2 is already completely formed when the crack
propagates near its tip, while the nucleation of twin 5 at
the crack tip slows down its propagation (Fig. 11c). The
stress is not high enough to propagate twin 4, because
the grain boundary above it is completely damaged.
The stress concentration induced by the left crack tip
leads to the nucleation and propagation of twin 5 before
the grain boundary is completely damaged (Fig. 11d)).

7 Discussion

The model calibration carried out in Sect. 4 shows that
the knowledge of a lower bound on themaximum stress
and the strain to failure is sufficient to precisely cali-
brate the parameter σmax of the cohesive zone model.
This is due to the strong dependence of the strain to
failure on σmax in the coupled discrete twin-fracture
model. This type of calibration has been used for mode
I tearing of plates (Woelke et al. 2015). Models includ-
ing void nucleation and growth are also calibrated using
the experimental strain to failure (Perzyna 1984).

Since intergranular fracture depends mostly on
the stress normal to the grain boundary interface
(Simonovski and Cizelj 2011), the grain boundaries
that are predicted to fail earlier are the ones perpendic-
ular to the load direction.

The texture plays an important role on crack nucle-
ation and propagation, as shown in Sect. 5. If two neigh-
bouring grains have similar orientations, the stress con-
centration at the grain boundary induced by twin tips
in one grain is relaxed by twins in the neighbour-
ing grains. If a grain boundary has one neighbouring
grain that twins and another neighbouring grain that
does not twin, stress relaxation cannot take place. In
this case, failure of the grain boundary is faster. This
behaviour is similar to brittle materials with highly ori-
ented microstructures, in which the fracture toughness
approaches that of a single crystal (Schultz et al. 1994).
It is also consistent with the experimental results on
TiAl (Bieler et al. 2005), in which the weaker grain

boundaries are the ones inwhich theneighbouringgrain
cannot accommodate the twin strain.

The present simulations reveal an additional effect
of the texture. As shown in Figs. 7b and 11, a propagat-
ing crack can prevent the growth of twins in grains that
are favourably oriented for twinning. This happens if
the deformation can be accommodated by other mech-
anisms, such as grain rotation in Fig. 7b, or if the grain
boundary is almost perpendicular to the load direction
(twin 4 in Fig. 11).

The present simulations clarify the chronological
order of twin and crack nucleation (Mahajan and
Williams 1973). Twins nucleate first. Once a twin
impinges on a grain boundary, the tensile stress that is
present on one side of the twin tip is sufficient to nucle-
ate a crack. The crack first propagates along a direction
parallel to the twin plane until the intersection between
the twin tip and the twin plane is completely damaged.
Then, the crack propagates along the grain boundary,
as shown in Sect. 6. If multiple twins impinge on the
same grain boundary, multiple microcracks can nucle-
ate in correspondence to the different twin tips and then
merge, as shown in Sect. 5. The propagating crack can
induce stress concentrations that are sufficient to nucle-
ate a twin starting from the grain boundary. Patterns of
twins extending from the grain boundaries towards the
centre of the grains are commonly observed (Gussev
et al. 2018). The stress relaxation induced by the nucle-
ation of these twins slows down the propagation of the
crack tip.

In the crystal plasticity model used, dislocation slip
is present in both the twinned and untwinned regions.
The simulations show crack nucleation near twin tips
and there is no strong correlation with slip, which is a
more uniform plastic deformation mode in the simu-
lated grains. The stored dislocation energy density has
been identified as an important factor to explain the
locations of the observed twins (Paramatmuni et al.
2020), but in the present simulations the dislocation
density does not affect the critical stress for twin nucle-
ation. Including slip bands in the present model would
be necessary to describe metals in which twin-induced
microcracks are observed, while the actual failure is
slip-induced (Reid 1981).

Twin boundary cracking (twin parting) is another
observed fracture mechanism that we have not specif-
ically investigated in this paper (Cahn 1953; McCabe
et al. 2008).
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8 Conclusions

In this paper, we have coupled a discrete twin model
and a cohesive zone model to understand the effect of
the stress induced by twins on intergranular fracture.
The dynamics of twin-induced intergranular fracture
is clarified. Microcracks nucleate near the intersection
between a twin tip and a grain boundary, in the area
where the twin tip induces a high tensile stress. The
subsequent crack propagation can nucleate more twins,
which then propagate away from the grain bound-
ary. This mechanisms slows down crack propagation.
Therefore, a grain boundary, surrounded by two grains
that are favourably oriented for twinning, is more resis-
tant against fracture.

An algorithm that can generate the interface ele-
ments along grain boundaries of arbitrary polycrystals
has been developed. This model can be used to pre-
dict the strain to failure and stress–strain curve of cast
metals, given the specific orientation of the grains.
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Appendix A: Shape functions of the cohesive ele-
ment

The separation vector Δ = (Δs1,Δs2,Δn), expressed
in the mid-plane reference frame, is a function of the
coordinates on the

(
x̂m, ŷm

)
plane. Given the deformed

coordinates of the nodes x1, x2, x3, x4, x5, x6, x7, x8
of the cohesive element in Fig. 1, the separation vectors
at the mid-points m1, m2, m3, m4 are given by:

Δm1 = x5 − x1 = u5 − u1, (9. 1)

Table 4 Coordinates of the Gauss points of the cohesive ele-
ments in the reference square element

GP1 ξ1 = −1/
√
3 η1 = −1/

√
3

GP2 ξ2 = 1/
√
3 η2 = −1/

√
3

GP3 ξ3 = 1/
√
3 η3 = 1/

√
3

GP4 ξ4 = −1/
√
3 η4 = 1/

√
3

Δm2 = x6 − x2 = u6 − u2, (9. 2)

Δm3 = x7 − x3 = u7 − u3, (9. 3)

Δm4 = x8 − x4 = u8 − u4 . (9. 4)

These separation vectors can be expressed also as a
function of the displacement vectors of the nodes u1,
u2, u3, u4, u5, u6, u7, u8 because nodes in the pairs
(1, 5), (2, 6), (3, 7), (4, 8) are coincident in the unde-
formed configuration.

Four shape functions are used to interpolate the sep-
aration vector on the

(
x̂m, ŷm

)
plane (Cook 1995):

φ1 (ξ, η) = 1

4
(1 − ξ) (1 − η) , (9. 5)

φ2 (ξ, η) = 1

4
(1 + ξ) (1 − η) , (9. 6)

φ3 (ξ, η) = 1

4
(1 + ξ) (1 + η) , (9. 7)

φ4 (ξ, η) = 1

4
(1 − ξ) (1 + η) , (9. 8)

where −1 < ξ < 1, −1 < η < 1 are the coordinate of
a reference square element. Therefore, the separation
vector can be written as:

Δ = φ1Δm1 + φ2Δm2 + φ3Δm3 + φ4Δm4 . (9. 9)

Eqs. (9. 1)–(9. 4) and (9. 9) are linear relationships
between the separation vector and the displacement
vectors of the nodes. Therefore, it is possible to build
a [24 × 1] vector:

U = (u1, u2, u3, u4, u5, u6, u7, u8) T (9. 10)

which contains the three displacement components of
the eight nodes, and to define a [3× 24] matrix B such
that (Alfano et al. 2015):
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Δ = BU . (9. 11)

The B matrix is a function of the coordinates (ξ, η).
Four Gauss points are used for the calculation of the

internal force vector in Eq. (9). Their coordinates in the
reference element are reported in Table 4.

Appendix B: Jacobian calculation

The Jacobian contribution of one cohesive element �e

is found by calculating the derivative of f ecoh in Eq. (9)
with respect to the nodal displacement vector UG :

∂ f ecoh
∂UG

=
∫

�e

MT BT ∂T
∂UG

dS . (10. 1)

The derivative of the rotation matrices in M are
neglected to increase the computational efficiency. This
Jacobian leads to good convergence if no rigid body
rotations are applied to the representative volume.
Using the relationship between the separation vector
Δ and the nodal displacement vector UG :

Δ = BMUG , (10. 2)

Eq. (10. 1) becomes:

∂ f ecoh
∂UG

=
∫

�e

MT BT ∂T
∂Δ

∂Δ

∂UG
dS =

∫

�e

MT BT ∂T
∂Δ

BM dS

(10. 3)

which is a non-symmetric [24 × 24] matrix due to the
lack of symmetry in ∂T/∂Δ. Therefore the unsym-
metric solver option is specified in the Abaqus input
file (Smith 2009). The integral is evaluated using the
four Gauss points of the cohesive element.

The Jacobian in the mid-plane reference frame
∂T/∂Δ is a [3 × 3] matrix that is obtained from the
derivatives of the traction vector components in Eqs.
(2)–(5):

∂Tn
∂Δn

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Kn , if D = 0 or Δn < 0,

0, if D = 1 and Δn > 0,

Kn (1 − D) , if 0 < D < 1 and 0 < Δn < Δp (D) ,

−Kn
Δ0(

Δ f − Δ0
) , if 0 < D < 1 and Δn > Δp (D) .

(10. 4)

∂Ts
∂Δs

=

⎧
⎪⎨

⎪⎩

Gs , if D = 0,

0, if D = 1,

Gs (1 − D) , if 0 < D < 1 .

(10. 5)

The derivatives along the two shear components can be
found as:

∂Ts1
∂Δs1

= ∂Ts
∂Δs1

Δs1

Δs
+ Ts

∂

∂Δs1

(
Δs1

Δs

)

= ∂Ts
∂Δs

Δ2
s1

Δ2
s

+ Ts

(
Δ2

s2

Δ3
s

)

, (10. 6)

∂Ts2
∂Δs2

= ∂Ts
∂Δs2

Δs2

Δs
+ Ts

∂

∂Δs2

(
Δs2

Δs

)

= ∂Ts
∂Δs

Δ2
s2

Δ2
s

+ Ts

(
Δ2

s1

Δ3
s

)

, (10. 7)

∂Ts1
∂Δs2

= ∂Ts
∂Δs2

Δs1

Δs
+ Ts

∂

∂Δs2

(
Δs1

Δs

)

= ∂Ts
∂Δs

Δs1Δs2

Δ2
s

− Ts

(
Δs1Δs2

Δ3
s

)
, (10. 8)

∂Ts2
∂Δs1

= ∂Ts
∂Δs1

Δs2

Δs
+ Ts

∂

∂Δs1

(
Δs2

Δs

)

= ∂Ts
∂Δs

Δs1Δs2

Δ2
s

− Ts

(
Δs1Δs2

Δ3
s

)
. (10. 9)

The off-diagonal derivatives, i.e. derivatives of the nor-
mal traction with respect to shear separation and vice-
versa, are not all zero because an increase of normal
displacement leads to an increase in the damage and
consequent decrease of the shear traction:

∂Tn
∂Δs1

= 0, (10. 10)

∂Tn
∂Δs2

= 0, (10. 11)

∂Ts1
∂Δn

= ∂Ts
∂Δn

Δs1

Δs
, (10. 12)

∂Ts2
∂Δn

= ∂Ts
∂Δn

Δs2

Δs
. (10. 13)

If Δn is increasing and Δn > Δp, then damage
increases, otherwise the damage variable is constant:

D (Δn) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Δ f (Δn − Δ0)

Δn
(
Δ f − Δ0

) , if Δp < Δn < Δ f ,

Δ f
(
Δp − Δ0

)

Δp
(
Δ f − Δ0

) , if Δn < Δp,

1, if Δn > Δ f .

(10. 14)

Therefore, the derivative of the shear traction with
respect to the normal displacement are found from Eq.
(3):
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∂Ts
∂Δn

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Gs
∂D (Δn)

∂Δn
Δs = −Gs

Δ f Δ0Δs

Δ2
n

(
Δ f − Δ0

) ,

if Δp < Δn < Δ f ,

0, otherwise .

(10. 15)
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