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Abstract This study presents an in-depth investiga-
tion of the critical stretch based failure criterion in
ordinary state-based peridynamics for both static and
dynamic conditions. Seven different cases are investi-
gated to determine the effect of the failure parameter on
peridynamic forces between material points and dilata-
tion. Based on crack opening displacement (COD)
results from both peridynamics and finite element anal-
ysis, it was found that one of the seven cases provides
the best agreement between the two approaches. This
particular case is further investigated by considering the
influence of the discretisation and the horizon sizes on
COD and crack propagation speeds.Moreover, PD pre-
dictions of COD for PMMA material is analysed with
the theory of dynamic fracture mechanics and com-
pared with the fracture experiments. It is shown that the
peridynamic model can correctly model, simulate and
predict the behaviour of the crack under different load-
ing conditions. Furthermore, the presented PD mod-
els capture accurate fracture phenomena, specifically
the crack path, branching angles and crack propagation
speeds,which are in good agreementwith experimental
results.
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1 Introduction

A slight overload can induce brittle fracture when a
crack initiates at the point of maximum stress and then
propagates. The crack development through the struc-
ture depends on the loading conditions, and a crack
can propagate as a single crack, change its original
trajectory, or split into two or multiple branches (Cot-
terell 1965). In the literature, several experimental stud-
ies have been performed and reported (Bowden et al.
1967; Döll 1975; Chandar and Knauss 1982; Ramulu
and Kobayashi 1985; Suzuki et al. 1997; Suzuki and
Sakaue 2004) to analyse the fracture behaviour. Very
high crack propagation speeds, approaching the speed
of sound in the material, are observed during the exper-
iments (Bowden et al. 1967). Such behaviour is named
as fast fracture when a sudden failure occurs in the
structure with a rapid crack growth after crack nucle-
ation. Theoretically, the Rayleigh wave speed is the
limiting speed for tensile failure. Moreover, the exper-
imental results (Fineberg et al. 2003) show that crack
instability occurs at speeds lower then Rayleigh wave
speed and the micro-branching occurs at critical veloc-
ity. Before branching occurs, an increase in fracture
surface roughness is observed (Döll 1975; Ramulu and
Kobayashi 1985), and after branching, the crack propa-
gation speed reduces by 5 to 10% (Bowden et al. 1967).

Significant efforts have been made to determine
the crack growth direction and the maximum energy
release rate by means of classical continuum mechan-
ics, including Finite Element Method (FEM). The
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applicability of the FEM on fracture mechanics prob-
lems showed difficulties in the treatment of singular-
ities in discontinuous stress and strain fields. Further-
more, FEM requires external crack growth criteria and
prior knowledge of crack propagation direction and
speed (Charalambides and McMeeking 1987; Ortiz
and Pandolfi 1999). Instead, Extended FEM (XFEM)
was developed to overcome problems, including mesh-
dependency (Fries and Belytschko 2010; Belytschko
et al. 2013). XFEM has been applied to various prob-
lems (Mariani and Perego 2003; Menouillard and
Belytschko 2010; Geniaut and Galenne 2012; Nicak
et al. 2015) and become a good alternative to the cohe-
sive zonemodel.However, inXFEM, localmesh refine-
ment is necessary before each propagation step, and the
branching point has to be identified from the stresses
which sometimesmakes the technique inefficient (Mar-
iani and Perego 2003; Zi and Belytschko 2003; Zhou
et al. 2005; Geniaut and Galenne 2012; Ren and Guan
2017).

As an alternative approach, peridynamics (PD) was
introduced by Silling (2000) and demonstrated success
in modelling dynamic fracture problems. For the mate-
rial failure predictions, integration, rather than differ-
entiation, is used to calculate the total force-density act-
ing on each material point and spatial derivatives are
not used in the formulation. Material points are inter-
acting with each other in a non-local manner, and each
interaction is called a peridynamic bond.Moreover, the
damage in the PDmodel is usually introduced by using
a critical stretch based failure criterion for each bond
between interacting material points. If the stretch of
a bond exceeds a critical stretch value, failure occurs
for that particular bond. The critical stretch is directly
related to thematerial’s critical energy release rate.Var-
ious peridynamic bond failure, coupled strength and
energy failure criteria are available in the literature
(Zhang and Qiao 2018a, b, 2019). PD model does not
require crack tip tracking and specification of the crack
behaviour when the crack changes its direction or crack
branching occurs.

There are currently various peridynamic formula-
tions available in the literature. Amongst these “Bond-
based” PD has been widely used for predicting crack
initiation and propagation patterns (Silling et al. 2010;
Ha and Bobaru 2011; Bobaru and Hu 2012; Huang
et al. 2015) as well as branching problems (Bobaru
et al. 2009; Ha and Bobaru 2010, 2011; Agwai et al.
2011; Bobaru and Zhang 2015) of brittle materials,

for example, PMMA, soda-lime glass and Homalite
100. Peridynamic results showed a good match of
damage maps and crack propagation speeds with the
experimental results (Bowden et al. 1967; Chandar and
Knauss 1982;Ramulu andKobayashi 1985; Suzuki and
Sakaue 2004). It was noticed that the amplitude of the
loading has a significant impact on the crack initiation
and propagation behaviour (Bobaru and Zhang 2015).
The bond-based PD model has a limitation on mate-
rial properties, especially for Poisson’s ratio being 1/3
in the 2D model and 1/4 in the 3D model for isotropic
materials. To eliminate this limitation, “Ordinary state-
based” PD was proposed by Silling et al. (2007). The
improved “Ordinary state-based” PD model provides
more realistic results when Poisson’s ratio is different
from 1/3 (2D model) and 1/4 (3D model).

In this study, the ordinary state-based PD model
is used for fracture mechanics problems under static
and dynamic loading conditions.Moreover, an in-depth
investigation of the critical stretch based failure crite-
rion is performed. Seven different cases are considered
to determine the most accurate bond force definition if
a failure occurs for a particular bond. In Sect. 3, Crack
OpeningDisplacement (COD) values for a pre-cracked
isotropic plate are obtained for sevendifferent cases and
compared against FEM results. In Sect. 4, convergence
studies are presented for different horizon and discreti-
sation sizes. Moreover, in Sect. 5, PD results are com-
pared with the experimental results (Suzuki et al. 1997)
for dynamic fracture problems (Freund 1998). Further-
more, PD results are presented for different dynamic
loading conditions and the evaluated crack propaga-
tion speeds, crack branching patterns, and branching
angles from PD model are compared with experimen-
tal results (Suzuki and Sakaue 2004). The conclusions
are given in Sect. 6.

2 Ordinary state-based peridynamics formulation

The ordinary state-based peridynamics (Silling et al.
2007) is a reformulation of the fundamental equa-
tions of classical continuum mechanics to solve prob-
lems with discontinuities. Peridynamics model uses
integro-differential equations instead of partial differ-
ential equations as in the classical continuum mechan-
ics. This widens the possibility of solving fracture
mechanics problems ranging from prediction of crack
initiation to propagation (Kilic and Madenci 2010).
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The peridynamic equation of motion can be exp-
ressed in the form of integro-differential equation as:

ρü (x, t) =
∫

H

(t (u’ − u, x’ − x, t) − t’ (u − u’, x

−x’, t)) dV ′ + b (x, t) (1)

which can be discretised as

ρ(i)ü(i) =
N∑
j=1

(
t(i)(j)

(
u(j) − u(i), x(j) − x(i), t

)

−t(j)(i)
(
u(i) − u(j), x(i) − x(j), t

))
V( j) + b(i)

(2)

from which the acceleration ü(i) of the material point
at a time t can be obtained. Each material point at x(i)

interacts with other material points at x(j) within its
horizon, Hx(i) , as shown in Fig. 1. The coordinates of
the material point i are identified as x(i) with the incre-
mental volume V(i). u(i), b(i) and ρ(i) are the displace-
ment, body load and mass density of the material point
at x(i), respectively.

In the ordinary state-based peridynamics, force den-
sity vectors of interacting material points have unequal
magnitudes (Madenci and Oterkus 2014), and for the
material point at x(i) they can be written as:

t(i)( j) = 2δ

{
d

�(i)( j)∣∣x(j) − x(i)
∣∣aθ(i) + 2δbs(i)( j)

}

× y(j) − y(i)∣∣y(j) − y(i)

∣∣ (3)

t( j)(i) = −2δ

{
d

�(i)( j)∣∣x(j) − x(i)
∣∣aθ( j) + 2δbs(i)( j)

}

× y(j) − y(i)∣∣y(j) − y(i)

∣∣ (4)

where s is the stretch between the material points, a, b,
d are the peridynamic parameters, δ is the horizon size
and the dilatation θ can be expressed as:

θ(i) = dδ
∑N

j=1
�(i)( j)s(i)( j)V( j) (5)

and the parameter �(i)( j) is defined as

�(i)( j) =
(

y(j) − y(i)∣∣y(j) − y(i)

∣∣
)

�
(

x(j) − x(i)∣∣x(j) − x(i)
∣∣
)

(6)

Fig. 1 Peridynamic material points and interaction of points
x(i) and x( j)

Fig. 2 Deformation of Peridynamicmaterial points x(i) and x( j)

After the point x(j) experiences the displacement, its
new location is specified as y(j) in the deformed con-
figuration, as shown in Fig. 2.

Peridynamic parameters a, b, d are the material
constants identified by comparing classical contin-
uum mechanics and peridynamic models for isotropic
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expansion and simple shear loading conditions
(Madenci and Oterkus 2014). These parameters can be
specified in terms of bulk modulus κ , shear modulus
μ, thickness and horizon size for a 2D problem, with
plane stress conditions:

a = 1

2
(κ − 2μ) , b = 6μ

πhδ4
, d = 2

πhδ3
(7)

The stretch between thematerial points x(i) and x(j) can
be expressed as

s(i)( j) =
(∣∣y(j) − y(i)

∣∣ − ∣∣x(j) − x(i)
∣∣)∣∣x(j) − x(i)

∣∣ (8)

The failure parameter introduced by Silling andBobaru
(2005) can be represented by the history-dependent
scalar-valued function μ for the peridynamic equation
of motion given in Eq. (2). The failure parameter μ is
defined as

μ
(
x(j) − x(i), t

) =
{
1
0

i f s(i)( j)
(
x(j) − x(i), t ′

)
< sc for all 0 < t ′

otherwise

(9)

where for a 2-D problem the critical stretch sc in con-
nection with the material fracture energy Gc is given
by (Madenci and Oterkus 2014):

sc =
√√√√ Gc(

6
π
μ + 16

9π2 (κ − 2μ)
)

δ
(10)

The introduced parameter of the critical stretch sc is
predefining the limit of the bond stretch, at which the
bonds between material points can be broken. Accord-
ing to Silling and Askari (2005) the bonds are broken
irreversably once they are stretched beyond the criti-
cal limit and the bond no longer sustains the tensile
force. With the applied tension forces on the sides of
the plate, the fracture energy Gc in peridynamic model
is required to break the bonds connected at the oppo-
site halves of the crack. In the current study, a constant
critical stretch is used and the values of the fracture
energy are obtained from the tests (Suzuki et al. 1997).
Note that some studies indicated the variation of frac-
ture energy with the propagating crack (Sharon et al.
1996), but the performed experiments (Ravi-Chandar
and Knauss 1984a) on Homalite-100 suggested that
the the increase of the fracture energy occurs due to

the voids ahead of the crack front. Nevertheless, the
relation between the crack propagating speed and the
critical energy is not taken into account in the current
study, and critical stretch is kept constant.

The constant sc in “Bond-based”peridynamicsmod-
els was used in the multiple studies of brittle frac-
ture (Bobaru et al. 2009; Ha and Bobaru 2010, 2011;
Silling et al. 2010; Agwai et al. 2011; Bobaru and Hu
2012; Bobaru and Zhang 2015; Huang et al. 2015)
and showed good agreement with experimental pro-
files. The study of Ha and Bobaru (2011) introduced
a damage-dependent peridynamic model with a cor-
rection factor for sc, which showed closer results to
experimental crack path and branching.

Ordinary state-based peridynamics has several fun-
damental differences with respect to the original bond-
based peridynamic formulation. In bond-based peridy-
namics, the peridynamic force between two material
points is calculated based on the relative displacements
between these twomaterial points. In other words, only
the motion of the interacting material points has an
effect on the peridynamic force between the interact-
ing material points. On the other hand, in ordinary state
based peridynamics, peridynamic force between two
interacting material points has two components as in
Eqs. (3) and (4). The second component is similar to
the one in bond-based peridynamics which is depend-
ing on the motion of the interacting material points
only. The first component is based on the peridynamic
dilatation term which brings into the effect of family
members of the interacting material points on the peri-
dynamic force between them.When the bond is broken,
it is logical to eliminate the second component which is
only dependant on the motion of the interacting mate-
rial points. However, it is not obvious how to deal with
the first term which is related with the motions of fam-
ily members. In addition, even if the peridynamic force
between two material points (first and second compo-
nents) is fully eliminated, it is not intuitive to decide
how the bond breakage should be taken into account
for peridynamic dilatation calculation. Therefore, it is
essential to consider all possibilities about the peridy-
namic force and dilatation calculations by considering
the failure parameter and compare peridynamic solu-
tions for a benchmark problem to determine the best
option. Such an in-depth investigation is currently not
available in the literature. In order to investigate the
effect of the failure parameter on the dilatation term
and the bond force between interacting material points,

123



An In-depth Investigation of Critical... 101

Table 1 Seven cases of damage parameter initiation

Case Force density vector Dilatation term

1 t(i)( j) = μ
(
x(j) − x(i), t

)
2δ

{
ad

�(i)( j)|x(j)−x(i)| θ(i) + bs(i)( j)
}

× y(j)−y(i)∣∣y(j)−y(i)
∣∣ θ(i) = dδ

∑N
j=1 �(i)( j)μ

(
x(j) − x(i), t

)
s(i)( j)V( j)

2 t(i)( j) = μ
(
x(j) − x(i), t

)
2δ

{
ad

�(i)( j)|x(j)−x(i)| θ(i) + bs(i)( j)
}

× y(j)−y(i)∣∣y(j)−y(i)
∣∣ θ(i) = dδ

∑N
j=1 �(i)( j)s(i)( j)V( j)

3 t(i)( j) = 2δ
{
ad

�(i)( j)|x(j)−x(i)| θ(i) + μ
(
x(j) − x(i), t

)
bs(i)( j)

}
× y(j)−y(i)∣∣y(j)−y(i)

∣∣ θ(i) = dδ
∑N

j=1 �(i)( j)μ
(
x(j) − x(i), t

)
s(i)( j)V( j)

4 t(i)( j) = 2δ
{
ad

�(i)( j)|x(j)−x(i)| θ(i) + μ
(
x(j) − x(i), t

)
bs(i)( j)

}
× y(j)−y(i)∣∣y(j)−y(i)

∣∣ θ(i) = dδ
∑N

j=1 �(i)( j)s(i)( j)V( j)

5 t(i)( j) = 2δ
{
μ

(
x(j) − x(i), t

)
ad

�(i)( j)|x(j)−x(i)| θ(i) + bs(i)( j)
}

× y(j)−y(i)∣∣y(j)−y(i)
∣∣ θ(i) = dδ

∑N
j=1 �(i)( j)μ

(
x(j) − x(i), t

)
s(i)( j)V( j)

6 t(i)( j) = 2δ
{
μ

(
x(j) − x(i), t

)
ad

�(i)( j)|x(j)−x(i)| θ(i) + bs(i)( j)
}

× y(j)−y(i)∣∣y(j)−y(i)
∣∣ θ(i) = dδ

∑N
j=1 �(i)( j)s(i)( j)V( j)

7 t(i)( j) = 2δ
{
ad

�(i)( j)|x(j)−x(i)| θ(i) + bs(i)( j)
}

× y(j)−y(i)∣∣y(j)−y(i)
∣∣ θ(i) = dδ

∑N
j=1 �(i)( j)μ

(
x(j) − x(i), t

)
s(i)( j)V( j)

seven different cases are considered as presented in
Table 1. The local damage of the material point x(i)

ranges from 0 to 1, can be identified as

ϕ
(
x(i), t

) = 1 −
∑N

j=1 μ
(
x(j) − x(i), t

)
V(j)

N∑
j=1

V(j)

. (11)

Local damage is dependent on the relationship between
the horizon size and the distance between the mate-
rial points. For an initial crack, the failure parameter
becomes zero if a bond is passing through the crack
represented by a red line. Local damage is evaluated
for three different horizon sizes, when δ = m	x , with
m = 3, 4, 5, as shown in Fig. 3. As the horizon size
increases, the material point interacts with an increased
number of points within the horizon.

The local damage ϕ at a material point on the crack
plane will converge to a value of 0.5 as m parameter
increases.

3 Determination of the best case for the critical
stretch based failure criterion

To determine the best case amongst seven cases in
Table 1 for the damage parameter implementation in
the ordinary state-based equation of motion, the failure
parameter μ is added or not in the dilatation term and
the bond force between interacting material points. To
verify the models, PD numerical results are compared
against FEA solution. A PD numerical model is con-

sidered for a square plate with a central crack under the
quasi-static loading condition as shown in Fig. 4a. The
initial length of the crack is selected as 2a = 0.1 m.
The square plate is L = 0.5 m long, W = 0.5 m
wide and h = 0.01 m thick. The following material
properties of the plate are specified: Young’s modulus
E = 200 GPa, mass density ρ = 7850 kg/m3 and
Poisson’s ratio ν = 0.25.

As shown in Fig. 4a, the plate is subjected to dis-
placement constraints of v (x, y = W/2, t) = v∗ =
5 × 10−4 m and v (x, y = −W/2, t) = v∗ = −5 ×
10−4 m. The boundary conditions are applied by intro-
ducing fictitious boundary layers R f as demonstrated
in Fig. 4b. The size of the R f region is equal to the hori-
zon size, which is δ = 3.015 	x . The displacements
in the fictitious regions are specified as (Madenci and
Oterkus 2016):

u f
(
x f , y f , t + 	t

)
= u (x, y, t) with y f ∈ R

f
(
y=W

2

) (12)

v f
(
x f , y f , t + 	t

)

= 2v∗
(
x, y = W

2
, t + 	t

)
− v (x, y, t) (13)

u f
(
x f , y f , t + 	t

)
= u (x, y, t) with y f ∈ R

f
(
y=−W

2

) (14)

v f
(
x f , y f , t + 	t

)

= 2v∗
(
x, y = −W

2
, t + 	t

)
− v (x, y, t) (15)

The peridynamic model is discretised with 250,000
material points with a uniform spacing between them
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Fig. 3 Local damage at a
material point on the crack
plane, when horizon size is
a δ = 3	x → ϕ = 0.38, b
δ = 4	x → ϕ = 0.41, c
δ = 5	x → ϕ = 0.43

Fig. 4 Sample geometry of the pre-cracked square plate a under displacement and velocity boundary conditions and b its spatial
discretisation under imposed boundary conditions

	x = 0.001 m. Adaptive dynamic relaxation method
(Kilic and Madenci 2010) with a total time step of
52,000 is used to reach the quasi-static loading condi-
tion with a time step size of 	t = 1 s.

The current study is performed to determine the best
case for the critical stretch based failure criterion by
implementing the failure parameter μ in Table 1 and
analysing the crack opening displacement (COD) of
the pre-existing crack without its further propagation.
As the pre-condition to the model, all bonds crossing

the pre-existing crack in the system as shown in Fig. 3
are considered to be brokenwhich is a similar condition
of bond stretch exceeding the critical stretch value. Due
to uniaxial tensile loading, location of the pre-existing
crack being in the middle of the plate and the allocation
of the global axis at the centre of the crack, the COD
is symmetrical along the vertical and horizontal axes.
For this reason, the presented COD results are for the
edge of the pre-existing crack located in the +x and
+y part of the coordinate system. As shown in Fig. 5,
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Fig. 5 Crack opening displacement comparison near the crack
tip when δ = 3.015 	x for Cases 1–3

although the first three case results, Case 1–3, are fol-
lowing the same pattern of the COD with FEA results,
Case 1 has the best agreement compared to FEAwhere
for all broken bonds both the force density vector and
their contribution to the dilatation term are dropping to
0. Fig. 7 presents the horizontal and vertical displace-
ments of the PD Case 1 results with respect to FEA
solution which shows a very good agreement between
PD and FEA results. On the other hand, Case 2 and
3 do not sufficiently eliminate the interaction between
the material points when the bonds are broken. Imple-
mentation of Case 4 yields large CODwith up to 0.025

m in the middle of the plate (Fig. 6a), which is not real-
istic compared to only 2 × 10−4m in FEA results. On
the other hand, Cases 5–7 result in COD values lower
than 10−6mwithin the crack area (Fig. 6b) which again
do not match well with FEA solution. This shows that
in Cases 5–7 the bonds are not properly broken in the
location of the pre-existing crack and do not accurately
represent the existence of the crack.

Based on the comparisons of PD results for seven
cases against FEA results, Case 1 is selected as the
best case for critical stretch based failure criterion in
the ordinary state-based PD model and is used in the
following sections for further studies.

4 Convergence studies

The convergence studies are performed to identify suit-
able spacing between the material points 	x and the
parameter m, defining horizon size δ, δ = m	x , for a
square plate in Fig. 4 with a central crack.

4.1 Numerical studies of convergence in COD

The geometrical and material properties are the same
as in the previous section. The plate in Fig. 4a is
loaded symmetrically by applying displacement con-
straints of v∗ = 5 × 10−4 m along y = W/2 and of
v∗ = −5 × 10−4 m along y = −W/2. The bound-
ary conditions are applied in the fictitious region R f

Fig. 6 Crack opening displacement comparison near the crack tip when δ = 3.015 	x for a Case 4 and a Cases 5–7
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Fig. 7 FEA for horizontal (left) and vertical (right) displacement. PD solution for horizontal (left) and vertical (right) displacement for
Case 1

using the equations given in Eqs. (12–15). The peridy-
namic steady-state solutions after 4000-time steps are
compared with FEA as shown in Fig. 8.

Fig. 8a shows the convergence of the solutions
for a fixed horizon size of δ = 0.003 m and vary-
ing the spacing between material points, 	x = 1 ×
10−3, 0.75× 10−3, 0.6× 10−3 m. All spacing values
provide good agreement with FEA results. Based on
	x = 1 × 10−3 m, Fig. 8b presents a convergence of
PD predictions in COD for varying m = 3, 4, 5. All
horizon sizes values yield similar results.

4.2 Numerical studies of convergence in dynamic
crack propagation speed

In this section, the plate shown in Fig. 4a is subjected to
dynamic loading and loaded symmetrically by applying
velocity boundary condition of v̇ (x, y = W/2, t) =
v̇∗ = 1.0 m/s and v̇ (x, y = −W/2, t) = v̇∗ =
−1.0 m/s. The velocity boundary conditions (BC) are
enforced in the fictitious boundary layer R f (Fig. 4b)
as (Madenci and Oterkus 2016):

u f
(
x f , y f , t + 	t

)
= u (x, y, t) with y f ∈ R

f
(
y=W

2

) (16)
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Fig. 8 Convergence of PD predictions in COD with a fixed value of horizon size δ = 0.003 m and varying 	x = 1 × 10−3, 0.75 ×
10−3, 0.6 × 10−3 m; b fixed value of 	x = 1 × 10−3 m and varying m = 3, 4, 5

v f
(
x f , y f , t + 	t

)

= 2v̇∗
(
x, y = W

2
, t + 	t

)
× 	t − v (x, y, t)

(17)

u f
(
x f , y f , t + 	t

)
= u (x, y, t) with y f ∈ R

f
(
y=−W

2

) (18)

v f
(
x f , y f , t + 	t

)

= 2v̇∗
(
x, y = −W

2
, t + 	t

)
× 	t − v (x, y, t)

(19)

The plate is made from PMMA material with the fol-
lowing material properties: Young’s modulus E =
3.24 GPa, mass density ρ = 1200 kg/m3 and Pois-
son’s ratio ν = 0.35. The dynamic stress intensity
factor and the critical energy release rate are taken as
KI = 1.35 MPa

√
m and G0 = 570 J/m2, respectively.

The crack propagation speed is calculated as (see
Fig. 9):

V = xtp − xtp−1

ttp − ttp−1
= Lext

τext
(20)

where xtp and xtp−1 are the crack tip positions at the
current time ttp and the previous time ttp−1. Lext rep-
resents the extension length of the crack propagation
during the time interval τext between ttp and ttp−1. For
the crack propagation speed calculations, the extension
length is specified as Lext = 10 mm, which means that

Fig. 9 Crack propagation speed V evaluation

data-dumps are performed every 10 mm of crack tip
progression.

A single propagating crack is obtained for all the
PD simulations of both convergence studies. Note that
the crack growth distance is evaluated from the pre-
crack tip. Figure 10 shows the convergence for crack
propagation time and speeds of the solutions for a
fixed horizon size of δ = 3 × 10−3 m with varying
	x = 1×10−3, 0.75×10−3, 0.6×10−3 m. With an
increasing number of material points within the hori-
zon, the local damage is increasing, respectively, such
as ϕ = 0.38, 0.41 and 0.43 (Fig. 3). The solutions for
selected types of	x showvery similar behaviour of the
crack propagation and 	x = 1× 10−3 m is chosen for
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Fig. 10 m-convergence of PD predictions with a fixed value of horizon size δ = 0.003 m and varying 	x = 1 × 10−3, 0.75 ×
10−3, 0.6 × 10−3 m a crack growth vs time and b crack propagation speed V vs crack growth distance

Fig. 11 (δm) - convergence of PD predictions with a fixed value of 	x = 1 × 10−3 m and varying m = 3, 4, 5 a crack growth vs
time and b crack propagation speed V vs crack growth distance

the next convergence study for varying m = 3, 4, 5.
The results for (δm)—convergence studyof crackprop-
agation time and speeds are shown in Fig. 11. It can
be noted that there is no significant difference in crack
growth distance and crack propagation speeds between
the models with different horizon sizes. Therefore,
in the following sections, PD numerical models with
m = 3 and 	x = 1 × 10−3 m will be utilised for
numerical efficiency.

4.3 Numerical studies of convergence in dynamic
crack branching

The δ and m-convergence studies are selected to
observe the dynamic crack branching. The problem set
up is the same as stated in Sect. 4.2 with the increased
velocity boundary condition of v̇(x, y = W/2, t) =
v̇∗ = 3.0 m/s and v̇(x, y = −W/2, t) = v̇∗ =
−3.0 m/s

The δ convergence study is performed for a fixed
m = 3 and three different horizon sizes δ = 3 ×
10−3, 2.3 × 10−3, 1.8 × 10−3m with corresponding
uniform grid spacing and total number of material
points of 	x = 1 × 10−3m (253, 000 nodes) ,	x =
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Fig. 12 δ-convergence of PD crack path predictions with a fixed
value of m = 3 and varying horizon size δ. a δ = 3 × 10−3 m,
b close-up for δ = 3 × 10−3 m c δ = 2.3 × 10−3 m d close-

up for δ = 2.3 × 10−3 m e δ = 1.8 × 10−3 m f close-up for
δ = 1.8 × 10−3 m

0.75 × 10−3m (447, 552 nodes), 	x = 0.6 ×
10−3m (698, 880 nodes). The critical stretch is depen-
dent on the horizon size in Eq. (10), and sc is chang-
ing with the decrease in horizon. Moreover, the same
number of material points are interacting within the
specified horizon in all the simulations and the local
damage is ϕ = 0.38. The uniform time step size of
	t = 2 × 10−7 s is applied and all three PD simula-
tions are stopped at t = 28 × 10−3 s.

The crack propagation path for δ-convergence study
is shown in Fig. 12. For all the horizons the crack
branching pattern is almost identical and the crack
branches are symmetrical along the x-axes. Evaluating
the crack branching in Fig. 12a, c, d the branching angle
of 20◦ is noted for all three studies. Moreover, look-
ing closer at crack propagation pattern in Fig. 12b, d, f
thicker damage is observed before branching, followed
by crack bifurcation with thinner damage zones of both
branches. The crack thickening can be the roughen-
ing of the crack surface noticed during the experimen-

Fig. 13 Crack propagation speed vs crack growth distance for
δ-convergence studies with a fixed value of m = 3 and varying
horizon size δ

tal studies on dynamic crack propagation (Döll 1975;
Ramulu and Kobayashi 1985; Park and Chen 2011).
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Fig. 14 m-convergence of PD crack path predictions with a
fixed value of δ = 3 × 10−3 m and varying grid spacing. a
	x = 1 × 10−3 m, (m = 3) , b close-up for 	x = 1 ×

10−3 m, (m = 3) c	x = 0.75×10−3 m, (m = 4)d close-up for
	x = 0.75× 10−3 m, (m = 4) e 	x = 0.6× 10−3 m, (m = 5)
f close-up for 	x = 0.6 × 10−3 m, (m = 5)

With the increased grid spacing the thickening damage
zone is getting wider, but overall the damage maps are
very similar. The crack propagation speeds for three
different horizon sizes are shown in Fig. 13. The crack
propagation speeds are evaluated by Eq. (20) and the
results are very close for all three studies. Moreover,
the crack thickening and bifurcation initiation (vertical
lines at the plot) are starting almost at the same distance
from the pre-crack and are independent of the horizon
size. For this reason, the horizon size of δ = 3× 10−3

and uniform grid spacing of 	x = 1× 10−3 m can be
used for further PD simulations.

The m-convergence study is carried out for a
fixed δ = 3 × 10−3 m and three different models
with 	x = 1 × 10−3 m (253, 000 nodes) ,	x =
0.75 × 10−3 m (447, 552 nodes), 	x = 0.6 ×
10−3 m (698, 880 nodes). With increasing number of
material points within the horizon, the local damage is
increasing, respectively, such as ϕ = 0.38, 0.41 and
0.43 (Fig. 3). Figure 14 shows the results of PD pre-

dicted crack path at t = 28×10−3 s and Fig. 15 shows
the crack propagation speeds for all three models. It
can be noticed that increasedmaterial points discretiza-
tion of 	x = 0.6 × 10−3 m and the horizon size per-
formed in a similarmanner compared to themodel with
	x = 1 × 10−3 m. All damage maps look very sim-
ilar, with the thickening area of the propagating crack
and its further bifurcation with the angle of 20◦. As the
crack path and the crack propagation speed at the crack
tip are similar among the different solutions,m = 3 can
be used.

As a result of all convergence studies for COD,
crack propagation speed andbifurcation, δ = 3	x with
	x = 1× 10−3 m is selected for the following studies
to reduce the computational cost, while results of the
numerical simulations are not being effected.
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Fig. 15 Crack propagation speed vs crack growth distance for
m-convergence studies with a fixed value of δ = 3×10−3 m and
varying grid spacing 	x

5 Comparison of peridynamic crack propagation
speed, crack opening displacement (COD) and
crack bifurcation with experiments

5.1 Crack propagation speed and COD

In this section, crack propagation speed and COD from
the PD simulations are compared with those from the

experiments (Suzuki et al. 1997). The pre-notched thin
rectangular poly(methyl methacrylate) PMMA plate
in Fig. 16a is chosen for this case with the follow-
ing geometric parameters: length L = 0.22 m, width
W = 0.31 m and thickness h = 0.003 m. The plate has
a pre-crack at the left side with a size of 2a = 0.07 m.
The properties of the PMMA material are specified as
Young’s modulus of E = 3.24 GPa, mass density of
ρ = 1200 kg/m3, Poisson’s ratio of ν = 0.35 (Kalthoff
1987).

Several methods are proposed to compute the
dynamic stress intensity factor (SIF) and their overview
is presented byAliabadi andRooke (1991). For the cur-
rent study two methods are selected to evaluate the SIF
for the crack opening mode. Firstly, the dynamic stress
intensity factor is evaluated by using the formulation
of Irwin (1957) which links SIF and COD presented in
Eq. (21):

KI =
√
2π

r

E

8
dr (21)

where r is the distance from the crack tip and dr
is the COD or a relative displacement between two
corresponding points on opposite sides of the crack.

Fig. 16 Pre-cracked rectangular PMMA plate a under velocity boundary conditions and b its spatial discretisation under imposed
boundary conditions
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Fig. 17 Damage maps for PMMA plate when KI = 1.6 MPa
√
m under different velocity BCs: a v̇∗ = 0.50 m/s, c v̇∗ = 0.10 m/s, e

v̇∗ = 0.02 m/s, and when KI = 1.0 MPa
√
m: b v̇∗ = 0.50 m/s, d v̇∗ = 0.10 m/s, f v̇∗ = 0.02 m/s

The values of COD and r are identified from the pre-
sented experimental data (Suzuki et al. 1997) and SIF
of KI = 1.0MPa

√
m is evaluated. The second method

is introduced by Freund (1998) where the relation
is established between the stress intensity factor and
energy release rate Gc for the dynamic crack growth:

Gc = 1 − ν2

E
AI (V ) K 2

I (22)

and the SIF can be expressed in the following form:

KI (V ) =
√

π

8r

G

1 − ν1

1

L (V )
dr (23)

where ν and E are the Poisson’s ratio and Young’s
modulus, G is the modulus of rigidity, ν1 = ν/ (1 + ν)

for the plane stress condition, AI (V ) and L (V ) are the
functions of crack speed V . Suzuki et al. (1997) used
Eq. (23) to evaluate the dynamicSIF for the propagating

crack and identified the SIF of KI = 1.6 MPa
√
m at

crack propagation speed of V = 180 m/s.
It is not easy to predict the crack behaviour since

the propagating crack can change its trajectory, branch
or curve. The crack propagation behaviour depends
on the applied BC or the test method during experi-
ments (Ramulu and Kobayashi 1985). To have a single
propagating crack, a carefully controlled BC should be
applied. If impulsive loading is applied, it can lead to an
increase of crack propagation speed as well as single or
multiple branching (Bowden et al. 1967). For the cur-
rent section, low velocities are applied as the tension
loading, and the following velocity BCs are enforced
on the boundary edges at y = W/2 and y = −W/2:
v̇∗ = 0.50 m/s, v̇∗ = 0.10 m/s and v̇∗ = 0.02 m/s. The
plate is loaded symmetrically by applying velocity con-
straints in fictitious boundary layer R f (Fig. 16b) in the
y-direction by using Eqs. (16–19).
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Fig. 18 Crack growth distance for different velocity BC and SIF

The peridynamicmodels are discretisedwith 69,520
material points with a uniform spacing between them
	x = 0.001 m and horizon size of δ = 3.015	 x . A
uniform time step size of	t = 2×10−7 s is used. The
critical stretch is evaluated by Eq. (10) for specified
SIF of KI = 1.0 MPa

√
m as sc = 0.0067 and for

KI = 1.6 MPa
√
m as sc = 0.0107. Critical elongation

sc is constant for propagating crack.
With the applied velocity BCs and both SIFs, self-

similar crack propagation patterns are observed in
Fig. 17. The lower velocities lead to delays in crack
propagation as shown in Fig. 18, but the pattern of
crack propagation is similar for different velocity BCs.
The crack propagation speeds in Fig. 19a with differ-
ent velocity BCs demonstrate that higher velocity BCs
lead to increased crack propagation speeds. For exam-
ple, for the models with KI = 1.6 MPa

√
m and the

applied v̇∗ = 0.5 m/s the maximum crack propagation
speed reaches V = 560 m/s and for v̇∗ = 0.02 m/s the
maximum crack speeds are around V = 370 m/s. This
proves that the crack propagation behaviour is force
dependant (Suzuki et al. 1997) and increase in tension
loading leads to higher crack propagation speeds. The
data is presented for every Lext = 10 mm when the
location of the crack tip is extended each 10 mm start-
ing from the pre-existing crack.

The numerical crack propagation speed is compared
to the Rayleigh wave speed in Fig. 19b. The approxi-
mate expression for the Rayleigh wave speed cR (Fre-
und 1998) is:

cR
c2

= 0.862 + 1.14ν

1 + ν
(24)

Fig. 19 Numerical results for PMMA plate under different
velocity BCs and SIF. a Crack propagation speed vs. crack
growth distance; b The ratio of numerically computed speed to
the Rayleigh wave speed

where ν is the Poisson ratio. In terms of shear modulus
G and material density ρ, the speed of shear waves is
defined as:

c2 =
√
G

ρ
(25)

The PD numerical velocities are normalised by the
Rayleigh wave speed cR of the material which is
cR ≈ 934 m/s for the PMMA material.

For the applied velocity BC less than v̇∗ = 0.50m/s,
fractions of 0.5 and lower of the Rayleigh wave speed
are observed in Fig. 19b and crack propagation is stable
in Fig. 17cf. However, with the increased velocity BC
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Table 2 Ratios of experimental fracture speeds and numerically computed at 25 mm from the pre-existing crack

Velocity BC, v̇∗, (m/s) Critical SIF, KI ,
(
MPa

√
m

)
Crack tip position,
xtp , × 10−3 (m)

Crack propagation
speed, V (m/s)

Experiments
(Suzuki
et al. 1997)

– – 25.000 + 0.410 = 25.410 186 ± 19

– – 25.410 + 0.402 = 25.812 182 ± 18

Peridynamics 0.50 1.6 25.50 330

0.10 250

0.02 185

0.50 1.0 400

0.10 270

0.02 190

of v̇∗ = 0.50 m/s and SIF of KI = 1.0 MPa
√
m, the

crack propagation speed reaches 60% of the Rayleigh
wave speed that occurs at the location of the crack tip
xtp ≥ 0.08 m , and thickening of the crack can be
noticed (Fig. 17a).

During the experiments by Suzuki et al. (1997),
PMMA specimen is under tensile loading and high-
speed holographic microscopy is used to evaluate the
results in the observation area. It was specified that
the observation area is 25 mm away from the pre-
existing crack. In the PD model, the lower velocity BC
of v̇∗ = 0.02 m/s resulted in the crack propagation
speed around V = 190 m/s in the observation area,
which is within the range of experimentally measured
value of V = 186 ± 19 m/s. The other BC showed
higher crack speeds V > 250 m/s at the crack tip posi-
tion xtp = 25.5×10−3 m, as shown in Fig. 19a. Table 2
presents the numerical crack propagation speeds in the
observation area.

The COD is analysed in Fig. 20 and compared to the
experiments (Suzuki et al. 1997) in the observation area
and within the range of 1 < r < 12 mm. According
to the theoretical results of the linear elastic fracture
mechanics (Freund 1998), the CODs are proportional
to the square root of the distance r from the crack tip.

COD = √
r (26)

Figure 20b presents the numerical results for three dif-
ferent loading conditions and twoSIF.The straight lines
are indicating the calculated relation between the COD
and r , and it can be noticed from that the PD numerical
model results are in good agreement with the theory.

The SIF evaluated from the Eq. (21) with the applied
v̇∗ = 0.02 m/s showed very good agreement with the
experimental results in the crack propagation speed and
the COD in the observation area.

The use of two different SIF showed that for the low
velocity BC with the fracture initiation starting later
then tin > 1.5 × 10−3 s the crack propagation speeds
are almost the same. On the other hand, the analysis
with the higher loading of v̇∗ = 0.50 m/s showed dif-
ferent ranges of crack propagation speeds. Moreover,
the use of non-dependent SIF on the loading rate does
not represent the COD accurately as the higher fracture
energy is required for the higher tension loads. It can be
noted fromFig. 20b that theCOD is almost the same for
different boundary conditions. The experimental data
(Ravi-Chandar andKnauss 1984b) on dynamic fracture
showed that the high loading rate significantly increases
the SIF at initiation stage. This means that critical SIF
has to be identified for dynamic fracture initiation and
as the strain rate at the crack tip is dependent on internal
load the critical crack opening displacement can be a
possible criterion for fracture initiation. To implement
the critical COD is a plan for a future work.

5.2 Crack propagation speed and crack bifurcation

In this section, a comparison between PD simulations
and experimental tests (Suzuki and Sakaue 2004) is
carried out. In particular, the crack propagation speeds,
and bifurcation angles are evaluated in order to assess
the accuracy of the numerical model with the constant
value of critical fracture energy. The other focus is on
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Fig. 20 TheCODwhen crack propagation speed isV = 190m/s
at the observation area and velocity BC is v̇∗ = 25 × 10−3 m/s:
a Deformation map of the propagating crack at xtp = 25.5 mm.
Displacements are magnified by 100. b Experimental (Suzuki
et al. 1997) and PD results of the COD

the response of the structure to the small changes in
tensile loads.

Theoretical studies (Freund 1998) have proposed
to introduce the limiting velocity of the crack (Eq.
24), where the crack accelerates until arriving to the
Rayleigh wave speed cR . Experimental studies indi-
cated variations of the critical velocities for different
brittle materials. It was observed (Yoffe 1951) that
crack instabilities occur at V ∼ 0.6 cR and simi-
lar crack branching behaviour was noticed in differ-
ent numerical (Abraham et al. 1994) and experimen-
tal studies (Fineberg et al. 1992; Sharon et al. 1995).
Cotterell (1965) observed that the branching veloci-
ties for PMMA are about V ∼ 0.78 cR . On the other
hand, Ravi-Chandar and Knauss (1984c) determined

the critical velocities of up to V ∼ 0.9 cR with non-
steady crackpropagation.Multiple experiments onbrit-
tle fracture showed the occurrence of the crack instabil-
ities with different fracture patterns. The authors (Cot-
terell 1965; Fineberg et al. 1992; Suzuki and Sakaue
2004) observedmicro-branching phenomenawith vari-
ation of branching angles of 10–15◦ whereas (Sharon
et al. 1995) showed themacro-branching angles of 30◦.
Similar microscopic branches were observed in other
brittle materials like Homalite-100 (Ravi-Chandar and
Knauss 1984a) and polystyrene (Hull 1970).

When the crack propagation speed is reaching the
critical velocity, the crack branches into two or multi-
ple micro- and macro-cracks. However, the aforemen-
tioned experiments indicated a big variation of critical
velocity criteria, which could be affected by the size of
the samples, as well as the dynamic loading. The cur-
rent study is showing the effect of the different velocity
BC on crack behaviour and the boundaries of the plate
should not have effect on fracture process.

Geometrical and material properties are the same as
in the previous case with the SIF of KI = 1.3MPa

√
m.

However, an impulsive loading is applied to obtain fast
crack propagation and further bifurcation. To inves-
tigate the crack response to the tensile loads, mul-
tiple cases of the velocity boundary conditions are
selected, starting with v̇∗ = 1.00 m/s and increased
by 0.2 m/s. The velocity is applied on the boundary
edges at y = W/2 and y = −W/2 ranging from
v̇∗ = 1.00 m/s to v̇∗ = 1.00 m/s to v̇∗ = 6.8 m/s.
The plate is loaded symmetrically by applying velocity
constraints in fictitious boundary layer R f (Fig. 16b)
in the y-direction by using Eqs. (16–19).

Theperidynamicmodels are discretisedwith 275,440
material points with a uniform spacing between them
	x = 5 × 10−4 m and horizon size of δ = 3.015	x .
A uniform time step size of 	t = 2 × 10−7 s is used.

Based on the damage plots given in Fig. 21 under
different velocity BCs, it is remarkable to see the
dependency of the crack propagation behaviour on
the applied loading conditions. As the intensity of the
loading increases the thickening of the damage zone
is observed, which is followed by further branching
(Fig. 21 , from v̇∗ = 1.4 m/s to v̇∗ = 2 m/s) or
fish-bone pattern with multiple micro-branches or/and
macro-branches (Fig. 21, from v̇∗ = 2.2 m/s). Sim-
ilar behaviour of crack propagation was observed by
Bobaru andZhang (2015) for brittlematerials for Soda-
lime glass and Homalite 100 under velocity boundary
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conditions. It was also observed that the increase of the
loading intensity speeds up the crack propagation and
branching. Figure 21 presents the damage maps of all
simulations. Note that the negative x-axis indicates the
pre-crack location.

Firstly, to evaluate the crack propagation behaviour
of a single crack bifurcation, the comparison is made
with the brittle fracture experiments on PMMA per-
formed by Suzuki and Sakaue (2004) where the frac-
ture speeds were evaluated within 5 mm before and
after bifurcation as well as the bifurcation angle. It
was mentioned that the mean crack speed before the
bifurcation is V = 688 ± 45 m/s which drops by
42 m/s after the bifurcation with the mean crack speed
of V = 647± 35 m/s and the bifurcation angle of 15◦.

Based on the crack behaviour under the applied load-
ing BC between v̇∗ = 1.40 m/s and v̇∗ = 2.0 m/s when
the crack is bifurcating, it can be noted that the crack
propagation speeds from numerical PD model are in
the range of the fracture speeds from the experimental
results (Suzuki and Sakaue 2004). The crack propa-
gation speeds under v̇∗ = 1.40 m/s and v̇∗ = 2.0 m/s
velocity loading conditions are given in Fig. 22a. Under
specified loading conditions, the thickening of the dam-
aged area is noticed before the bifurcation with the
mean crack propagation speed of V = 500 ± 5 m/s.
The bifurcation occurs when the mean crack propaga-
tion speed is V = 560± 10 m/s. The data in Fig. 22 is
presented every Lext = 5mm, when the location of the
crack tip is extended each 5 mm starting from the pre-
existing crack. The predicted crack branching angles
around 16◦–20◦ are noted for all four loading boundary
conditions between v̇∗ = 1.40 m/s and v̇∗ = 2.0 m/s.
The predicted crack speeds and crack bifurcation angle
are quite close to the experimental observations.

Based on the experimental studies, a large decrease
of crack propagation speeds relative to the single
crack speeds is observed. Döll (1975) and Ramulu
and Kobayashi (1985) stated that before the bifurcation
occurs the crack propagation speed may accelerate and
after bifurcation it drops by 5–10%. The recent exper-
iments on Soda-lime glass by Sundaram and Tippur
(2018) showed the same pattern of the crack propaga-
tion behaviour with a drop of crack propagation speed
by 30% prior to bifurcation and followed by a signifi-
cant increase at branching and a fast drop by 30% after
the bifurcation. Numerical studies, by means of peri-
dynamics (Ha and Bobaru 2010; Bobaru and Zhang
2015), showed a similar trend of the fracture speeds in

the bifurcation zone. Evaluating the crack bifurcation
of PMMA in Fig. 22 from the numerical PD model,
the crack propagation speed decreases when the thick-
ening occurs and increases rapidly before bifurcation
following by a drop of 6% after bifurcation for both
loading conditions. Moreover, two branches propagate
with higher crack speeds than a single crack. The results
for the crack propagation speed and crack growth dis-
tance after the bifurcation are analysed for the upper
crack branch.

Secondly, the dynamic stretch of the plate under
higher velocity BC in Fig. 21 showed formation of
multiple micro-branches. It can be noticed that as the
velocity of the crack is increasing, the length of the
branches as well as their number is increasing. The
branching angles are varying, and in most of the cases,
lower crack speeds result in smaller angles. For exam-
ple, the PD damage plot with the velocity BC increase
of v̇∗ = 2.4 m/s resulted in first crack branching
of around 30◦ and at V ∼ 0.57 cR (Fig. 22b), fol-
lowed by longer branch of around the same angle of
30◦, but the second branch initiated at a higher crack
speed of V ∼ 0.76 cR with the distance between two
branches is 0.03 m. On the other hand, the velocity of
v̇∗ = 3.2 m/s resulted in three branches (Fig. 22b): the
first one at the crack tip location of xtp = 0.058 mwith
branching angle of 30◦ at V ∼ 0.74 cR and the other
two branches with increasing branching angles by 5◦
at V ∼ 0.75 cR

(
xtp = 0.07 m

)
, and 10◦ at V ∼

0.77 cR
(
xtp = 0.085 m

)
. The trend of higher branch-

ing angle with the longer branches can be noticed in
all simulations as well as the occurrence of micro-
branches with 12◦ angles followed by the long crack
bifurcation as shown in Fig. 22c. All the results of crack
propagation are having the same trend of the crack
bifurcation, starting at V ∼ 0.57 cR and upper with
further drop and after the recovery. The variation in
branching patterns and angles is dependent on fluctua-
tions in crack velocity andwhen the velocity is reaching
the critical value, crack is branching.

The performed PD simulations showed the dynamic
instability of the propagating crack. It can be seen that
the branching is a function of the crack velocity and
the branching is not observed below the critical veloc-
ity. The experiments performed by Sharon et al. (1995)
analysed the effect of the crack velocity on occurrence
of branching which shows that the increase of veloc-
ity is the result of the micro-branching instability. The
following characteristic can be explained as the energy
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Fig. 21 Damage maps for PMMA plate under different velocities BC. The applied velocities are specified on top of each figure
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Fig. 22 Crack propagation
speeds and the ratios of
numerically computed
speed to the Rayleigh wave
speed for PMMA plate
under velocity BCs of: a
v̇∗ = 1.4 m/s and
v̇∗ = 2.0 m/s b
v̇∗ = 2.4 m/s and
v̇∗ = 3.2 m/s and c
v̇∗ = 5.4 m/s
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release from the potential energy with the increased
crack speed resulting in creating of new crack branches.
While the energy is distributing over the newcracks, the
crack propagation velocity is decreasing.Moreover, the
PD study showed the relation between the branch initi-
ation and the branching angles and lengths as the higher
crack propagation speeds bring wider and longer crack
bifurcations. On the other hand, the constant critical
elongation parameter was used in the presented numer-
ical simulations which is simplified and not dependent
on the loading condition and crack propagation speeds.
Having this in mind, additional studies have to be per-
formed.

6 Conclusion

This study presents an in-depth investigation of crit-
ical stretch based failure criterion in ordinary state-
based peridynamics for both static and dynamic frac-
ture problems. Seven different cases were considered
to investigate the effect of the failure parameter on
the dilatation term and force between material points.
Based on crack opening displacement (COD) results
obtained from both peridynamics and finite element
analysis under static loading conditions, it was found
that one the seven cases provide the best agreement
between the two different approaches. This conclusion
was further confirmed by performing a convergence
study in terms of horizon size and spacing between
material points. The results further demonstrated that
ordinary state based peridynamic model using a crit-
ical stretch based failure criterion captures the frac-
ture phenomena in brittle materials, such as PMMA
material, under dynamic loading conditions includ-
ing both crack propagation and crack branching. COD
achieved from PD simulations agrees with the theory
of the linear elastic fracture mechanics and a close
match was obtained with experimental results. It was
also observed that crack behaviour is loaddependent,
and crack patterns change by increasing the magni-
tude of loading. The comparison of PD simulations
with experiments showed remarkably close agreement
of the crack propagation speeds, with 6% difference,
and captured similar patterns of the crack behaviour.
PD model represents the crack propagation accurately
with the increase of crack propagation speeds which
leads to further branching. Moreover, in both exper-
imental literature and PD model, the speed of crack

propagation reduces when thickening occurs, and after
a sharp increase of the speed before bifurcation fol-
lows a drop in the crack speed after branching, and
further recovery occurs with the rise of the crack prop-
agation speeds in both branches. Finally, it can be con-
cluded that the ordinary state-based PD model using
the critical stretch based failure criterion can capture
the correct COD and crack propagation behaviour for
both static and dynamic loading conditions. For the
future work, the critical COD will be introduced in the
dynamic ordinary state-based PD model to address the
velocity dependent fracture energy.
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