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Abstract In this work, we suggest a modified phase-
field model for simulating the evolution of mixedmode
fractures and compressive driven fractures in porous
artificial rocks and Neapolitan Fine Grained Tuff. The
numerical model has been calibrated using experimen-
tal observations of rock samples with a single saw cut
under uniaxial plane strain compression. For the pur-
pose of validation, results from the numericalmodel are
compared to Meuwissen samples with different angles
of rock bridge inclination subjected to uni-axial com-
pression. The simulated results are compared to exper-
imental data, both qualitatively and quantitatively. It
is shown that the proposed model is able to capture
the emergence of shear cracks between the notches
observed in the Neapolitan Fine Grained Tuff sam-
ples as well as the propagation pattern of cracks driven
by compressive stresses observed in the artificial rock
samples. Additionally, the typical types of complex
crack patterns observed in experimental tests are suc-
cessfully reproduced, as well as the critical loads.
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1 Introduction

The ability to predict rock behaviour using numeri-
cal models is pivotal to solve many rock-engineering
problems. Numerical modelling can also be used to
improve our understanding of the complicated failure
process in rock. With models that better capture the
fundamental failure mechanisms observed in labora-
tory, our ability to generate reliable large-scale models
improves. Prediction of brittle fractures in rock and
soil is a complex problem, which is relevant for a num-
ber of active research areas, ranging from landslides
and fault mechanics to hydraulic fracturing. During the
past decades a number of different methods have been
developed for simulation of crack nucleation and prop-
agation in various types of rock and soil. Most methods
of analysing fractures stem from the pioneering work
by Griffith (1921) and Irwin (1957) on brittle fractures,
which relates crack propagation to a critical value of
the energy release rate. However, one issue with these
models is that the classical Griffith theory fails to pre-
dict crack formation even in notched specimens. One
way to overcome these issues is to introduce cohesive
zones, Hillerborg et al. (1976), in which the fractures
are modelled. The cohesive zone model does however
require the crack to follow the element boundaries of
the finite element mesh. Other methods use enrichment
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techniques such as the extended finite element method
introduced by Melenk and Babuška (1996) and Moës
et al. (1999), see e.g. Liu and Borja (2008) for a work
on fractures in rock. During recent years, the phase-
field approach has emerged as an attractive alternative
to simulate brittle fractures. The phase-field approach
is based on the variational formulation for quasi-static
brittle fracture mechanics first introduced by Francfort
and Marigo (1998) and further developed by Bourdin
(2007), who first introduced a numerical implemen-
tation of the regularised approximation of the varia-
tional formulation. Following the work of Miehe et al.
(2010b), which gave an interpretation of the phase-field
parameter in the context of a gradient damage model,
the phase-field fracture approach has extended in a
number of directions, e.g. dynamic fracture (Carlsson
and Isaksson 2018; Schlüter et al. 2014; Borden et al.
2012), thermo-mechanical-driven fracture (Hesch and
Weinberg 2014), experimental verification (Wu et al.
2017), and high-order phase-field approaches (Wein-
berg and Hesch 2017) to name a few.

One advantage of using the phase-field approach for
simulation of fractures is the ability to predict crack
nucleation in notched specimens. A number of articles
have been published on the topic of crack nucleation
using the phase-field approach. Thework ofMesgarne-
jad et al. (2015), among others, point out that for crack
nucleation, the critical load upon which a crack nucle-
ate depend significantly on the regularisation parame-
ter. Furthermore, Tanné et al. (2018) demonstrate the
capability of the phase-field model to predict crack
nucleation for Mode I cracks for geometries without
any singularities in the stress field.

However, these contributions assume that the criti-
cal energy release rate for different fracture modes are
equal, which is not the case for rock and rock-likemate-
rials, see, e.g. Shen and Stephansson (1994). In recent
times, a number of contributions have been published
dealing with crack propagation in granular materials
using the phase-field approach. In Ambati et al. (2015)
an overview of different phase-field fracture formula-
tions is given, including the approaches proposed by
Miehe et al. (2010a); Amor et al. (2009); Kuhn and
Müller (2010) among others. Furthermore, Choo and
Sun (2018) propose an alternative, where the regular-
isation length �0 and the fracture energy density Gc
are chosen such that the peak stress under uniaxial
loading matches to the Mohr-Coulomb yield criterion.
The work presented in Wu et al. (2017) demonstrates

the capability of the deviatoric and volumetric split
approach, first proposed by Amor et al. (2009), to sim-
ulate crack propagation in cement mortar. Zhang et al.
(2017) introduce a split of the critical energy release
rate to handle mixed mode cracks. However, fractures
in compression remains an issue in phase-field mod-
els. Although several approaches have been proposed
that consist in splitting the strain energy into damage
inducing and non-damage inducing terms, none of the
proposed splits are fully satisfying. In particular, it is
not clear if these models are capable of simultaneously
accounting for nucleation under compression and self-
contact.

The goal of this work is to present a modified phase-
field fracture model that can predict crack nucleation in
porous rock and rock-like material. In porous rock, the
critical release rate for tensile cracks can be orders of
magnitude smaller than the critical energy release rate
for shear cracks and compressive stresses can lead to
the formation of compaction driven cracks. To capture
these characteristic behaviours, we follow the work of
Zhang et al. (2017) and introduce a split of the fracture
energy release rate, where G+

cI represents the critical
energy release rate for Mode I, G+

cI I the critical energy
release rate for Mode II and where G−

cI and G−
cI I are

introduced to represent the critical energy release rate
for fractures driven by compressive stresses. Further-
more, to demonstrate the capability of the proposed
model to predict nucleation of fractures for notched
specimens, we compare the numerical results to digi-
tal image correlation (DIC) of experiments performed
on rock specimens subjected to uniaxial plane strain
compression (Nguyen 2011).

The outline of this article starts with a brief descrip-
tion of the phase-field fracture model first suggested by
Miehe et al. (2010b). We continue Sect. 2 by proposing
amodified phase-field fracturemodel that distinguishes
between fractures inMode I andMode II aswell as frac-
tures driven by compressive stress. In Sect. 3we discuss
the calibration of the proposed model and in Sect. 4 we
compare experimental and numerical results for differ-
ent rock specimens subjected to uniaxial compression
load. Finally, conclusions are drawn in Sect. 5.

2 Phase-field formulation

In this section we describe the fundamental theory of
phase-field fracture approach, where a fracture is indi-
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Fig. 1 a Representation of
a solid body Ω with internal
discontinuity boundary Γ . b
Approximation of internal
discontinuity boundaries by
the phase-field d(x, t)

(a) (b)

cated by a scalar order parameter coupled to the mate-
rial properties in order to model the change in stiffness
between broken and undamaged material. Undamaged
material is indicated by that the order parameter has
the value one and the material properties remain unal-
tered, whereas broken material is characterised by the
value zero of the order parameter and the stiffness of the
material is reduced accordingly. The section continues
with a presentation of a modified phase-field fracture
model that distinguishes between fractures in Mode I
andMode II as well as fractures driven by compressive
stress.

2.1 Griffith’s theory of brittle fracture

In this section we give a brief recapitulation of the Grif-
fith energy-based failure criterion. Consider an arbi-
trary body Ω ⊂ R

n , n ∈ {2, 3}, with the external
boundary ∂Ω and internal discontinuity boundary Γ ,
see Fig. 1a. Griffith’s theory of brittle failure states that
the total energy of the body is given by

Ψ = Ψe + Ψd − Ψext (1)

whereΨext is the potential energy of the external forces,
Ψd the energy needed for evolution of the internal
discontinuity Γ (t), and Ψe the elastic energy of the
undamaged body Ω . If we let ui denote the displace-
ment vector and ε the infinitesimal strain tensor, then
for the case of isotropic linear elasticity, the elastic
energy of a body Ω is given by

Ψe =
∫

Ω

ψ0
e (ε) dV (2)

where ψ0
e is the undamaged elastic energy density, i.e.

ψ0
e (u) = 1

2
λ[trε]2 + μtr[ε2] (3)

where λ and μ are the Lamé constants. Furthermore,
the energy needed for a crack to propagate can be given
from

Ψd =
∫

Γ

Gc d A (4)

where Gc is the critical strain energy release rate.

2.2 Phase-field fracture approximation

To avoid the problems associated with numerically
tracking the evolution of an internal discontinuity
boundary Γ , the phase-field method approximates the
fracture surface with an additional field parameter,
d(x, t) ∈ [0, 1]. Where the material is undamaged
the phase-field parameter d = 1, and a fracture is rep-
resented by d = 0, see Fig. 1b. The foundation of the
phase-field fracture model is the approximation of the
total energy of a fractured body Eq. (1). A number of
different methods have been suggested to approximate
the fracture energy. A widely used formulation was
suggested by Miehe et al. (2010a), where the fracture
energy is approximated as

Ψd =
∫

Γ

Gc d A ≈
∫

Ω

Gc
[ (d − 1)2

4�0
+ �0|∇d|2

]
dV

(5)

inwhich �0 is amodel parameter that controls thewidth
of the approximation of the fracture zone, see Fig. 1.
Borden et al. (2012) and Kuhn and Müller (2010) sug-
gest that the regularised length, �0, can be regarded
as a material parameter, determined as �0 = 27EGc

512σ 2
t
,

where E is theYoung’smodulus,σt the tensile strength.
Bourdin et al. (2000) noticed that the early phase-
field approximations gave unrealistic crack patterns
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during compression. To remedy this problem, Miehe
et al. (2010a) suggested a decomposition of the elas-
tic energy density ψ0

e (u, d) = ψ(ε)+e + ψ(ε)−e . To
model the decrease of material stiffness as the fracture
propagates, the elastic energy density is defined as

ψ0
e (u, d) = [(1 − η)d2 + η]ψ+

e + ψ−
e (6)

where 0 < η � 1 is a numerical parameter that limits
the residual stiffness of fully damagedmaterial to a very
small but finite value. Additionally, the elastic energy
is given by:

ψ+
e (ε) = 1

2
λ〈trε〉2 + μtr[(ε+)2] (7)

ψ−
e (ε) = 1

2
λ[trε − 〈 trε〉]2 + μtr[(ε−)2] (8)

where ψ+
e and ψ−

e are the strain energies computed
from the positive and negative principal parts of the
strain tensor defined as

ε+ =
δ∑

i=1

〈εi 〉+ni ⊗ ni

ε− =
δ∑

i=1

〈εi 〉−ni ⊗ ni
(9)

Whereby 〈x〉 = 〈x〉+ = [x + |x |]/2 are the Macaulay
brackets and 〈x〉− = [x−|x |]/2 a similar bracket oper-
ator for the negative range. Additionally, {εi }i=1...δ are
the principal strains and {ni }i=1...δ are the orthonormal
eigenvectors of the strain tensor ε.

Following Miehe et al. (2010a), we get two coupled
local equations

divσ + f = 0 (10)

ḋ + M

[
2d[1 − η]ψ+

e + Gc

2�0
[d − 1] + 2Gc�0Δd

]
= 0 .

(11)

The kinetic coefficient or mobility parameter M is
a non-negative scalar function M = M(ε, d,∇d, ḋ)

introduced to control the crack velocity. The most sim-
ple assumption, M = constant, leads to the standard
Ginzburg-Landau evolution equation, see Kuhn and
Müller (2010).

The split in the elastic strain energy suggested by
Miehe et al. (2010a) prevents propagation of fractures
in compression. Moreover, Eq. 11 implies that the crit-
ical energy release rates in Mode I and Mode II cracks
are equal, which is not the case for most rocks.

2.2.1 Modified phase-field approximation

A number of different approaches have been presented
to overcome the phase-field fracture models limita-
tion to simulate materials with different values of
critical energy release rates for fractures for Mode I
and Mode II, e.g. (Choo and Sun 2018; Wu et al.
2017). In this work we approach this limitation of the
phase-field fracture with a an approach inspired by
Zhang et al. (2017). We use a modified version of the
phase-field model to accommodate for the characteris-
tic behaviours of porous rock. To allow for fractures to
propagate in both compression and tension, we make a
modification to the elastic strain energy, by redefining
Eq. (6) into

ψe(u, d) = [(1 − η)d2 + η]H(ε) (12)

whereH is a reformulation of the elastic strain energy
introduced to control the evolution of cracks in both
tension and compression, which will be discussed fur-
ther shortly. First, we need to discuss how to separate
between Mode I and Mode II fractures, as the criti-
cal energy release rates in general are not the same for
shear and tensile cracks for rocks. One alternative is the
deviatoric-volumetric split of the elastic strain energy
suggested by Amor et al. (2009). Using the formula-
tion of Amor et al. (2009) has the benefit of presenting
a straightforward way for a pure split between the volu-
metric and deviatoric strains in contrast to the approach
proposed by Miehe et al. (2010a). On the other hand,
this formulation leads to cracking in regions where all
principal strains are negative.

To overcome this problem, whilst still having a pure
split of the volumetric and deviatoric strain tensor, we
use the volumetric-deviatoric split of the strain energy
defined as

H(ε) = Hvol(trε) + Hdev(εd)

= 1

2
K [trε] + μtr[ε2d ] (13)

where εd = ε − 1/3 trε is the deviatoric part of the
strain tensor and K the bulkmodulus. From this expres-
sion the stress for the local equilibriumconditionEq. 10
is determined as

σ = ∂εψe(ε, d)

= [(1 − η)d2 + η]∂εH(ε) (14)

thus allowing stress degradation due to evolution of the
phase-field d in tension and compression.
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Next, we suggest a modified mobility parameter,
M̃ = MGc, which, by rearranging Eq. 11, allows us
the isolation of the ratio H

Gc
that controls the evolution

of the crack, i.e.

2d[1 − η]HGc + 1

2�0
[d − 1] + 2�0Δd + ḋ

M̃
= 0,

(15)

The isolation and, therefore, the generalisation of the
ratio H

Gc
allows the final proposed formulation for the

Mode I/Mode II split. We propose a change to Eq. 15
by modifying the ratio H

Gc
as

H
Gc = H+

I

G+
cI

+ H+
I I

G+
cI I

+ H−
I I

G−
cI I

+ H−
I

G−
cI I

(16)

where H±
I and H±

I I represent parts of the volumetric-
deviatoric split of the elastic strain energy:

H+
I = 1

2
K 〈trε〉2H(trε)

H+
I I = μ tr[ε2d+]H(trε)

H−
I = 1

2
K [trε − 〈trε〉]2[1 − H(trε)]

H−
I I = μ tr[ε2d−][1 − H(trε)].

(17)

The parameters G+
cI and G+

cI I represent the critical
energy release rates for Mode I and Mode II during
tensile stresses, and G−

cI and G−
cI I represent the critical

energy release rate during compression. In Eq. 17 the
Heaviside function H(trε) is used and we introduced,
analogue to Eq. 9, a split of the deviatoric strain tensor
in a positive and negative part by

εd+ =
δ∑

i=1

〈εid〉+ni ⊗ ni

εd− =
δ∑

i=1

〈εid〉−ni ⊗ ni
(18)

with {εid}i=1...δ are the principal values of the devia-
toric strain tensor. Observe, that the strain tensor and
its deviatoric part have the same orthonormal eigenvec-
tors {ni }i=1...δ and the eigenvalues are related by εid =
εi−1/3trε. Furthermore, tr[ε2d ] = [ε1d ]2+[ε2d ]2+[ε3d ]2
as the eigenvectors are pairwise orthogonal. To sum-
marise, in our proposedmodel the expressions in Eq. 17
enter the evolution equation Eq. 15 but not the stress
computation for local equilibrium condition.

In this work the spatial discretisation is formulated
bymeans of theGalerkinmethod, usingC1-continuous
NURBS basis functions, see e.g. Cottrell et al. (2009),
as the finite dimensional approximations to the func-
tion spaces of the weak form of the coupled local equa-
tions. Moreover, we use the staggered approach, which
allows for robust solution of the incremental update of
both the displacement and phase fields, as suggested by
Miehe et al. (2010a).We solve for the field variables for
each discrete time step 0, t1, ..., tn, tn+1, ..., T , where
tn denotes the last time step for which all field vari-
ables, un, dn , are assumed to be known. In this work
we use the Newton-Raphson method with a line search
algorithm to determine the field variables in the current
time step tn+1 for the time increment Δt = tn+1 − tn .
The rate of the phase-field is considered to be con-
stant over each time increment, and is defined as ḋ =
(dn+1 − dn)/Δt .

To prevent the phase-field from healing, we make
the assumption that the current modified strain energy
expression H̃ = H+

I +H+
I I +H−

I +H+
I I assumes the

largest absolute value of the history field. If the value
of the strain energy H̃n+1 of the current time step is
lower than the history field H̃n , then H̃n+1 = H̃n .

3 Calibration

To model the nucleation and evolution of fractures
using the proposed phase-field fracture model, we need
to establish the material parameters used by the model.
In this work we have chosen to calibrate the material
parameters against the experimental results presented
inHall et al. (2006) for theNeapolitan fine-grained tuff.
According toHall et al. (2006) the failure of Neapolitan
tuff specimens with an artificial inclined cut is almost
completely controlled by the flaw, which makes them
very repeatable despite the significant heterogeneity of
thematerial. For simplicitywe have chosen tomake use
of the same geometry to calibrate the material parame-
ters for the artificial rock CPIR09 presented in Nguyen
(2011). Furthermore, we set the modified mobility
parameter M̃ = 1 based on a numerical parameter
study. I.e. in our proposed model the mobility parame-
ter is not just a viscous regularisation of a rate indepen-
dent model as introduced in Miehe et al. (2010a). The
numerical parameter defining the residual stiffness of
fully damaged material is set as η = 1 × 10−12.
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Fig. 2 a The geometry and
boundary conditions of the
FGT specimen used to
calibrate the material
parameters used in the
models. b A schematic of
the crack patterns at failure.
c A comparison between the
stress–strain curves of
experiment and simulation
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3.1 Neapolitan fine grained tuff (FGT)

The Neapolitan tuff is a very porous natural pyroclas-
tic rock, with a uniaxial compression strength ranging
from 1.2 to 25 MPa. A number of papers have been
published on the experimental work of capturing the
failure process on Neapolitan tuff using both acoustic
emissions and digital image correlation, e.g. (Nguyen
2011; Hall et al. 2006; Nguyen et al. 2011). The main
physical and mechanical properties used in this work
have been gathered from Nguyen (2011). The material
parameters needed for the phase-field model has then
been calibrated to results of a Neapolitan tuff sample
subjected to uniaxial plane strain compression load,
presented in Hall et al. (2006). The samples were sub-
jected to a displacement rate of 0.01 mm/min until fail-
ure. The geometry and boundary conditions for the rock
specimen is given in Fig. 2a). According to Nguyen
(2011) the Young’s modulus E = 2.1 GPa and we
chose to set the Poisson’s ratio to ν = 0.27.

Figure 2b illustrates the typical crack pattern from
the experimental work presented in Hall et al. (2006),
where the failuremode is through the formation ofwing
cracks from the tip of the pre-defined inclined cuts, or
sometimes through secondary tensile cracks as illus-
trated in the lower crack of Fig. 2b.

The experimental results fromNguyen (2011) do not
provide any data on the critical energy release rates. To
determine them, wemake use of the suggestion by Bor-
den et al. (2012), and Kuhn and Müller (2010), stating
that the regularisation length �0 should be regarded as a
material parameter which governs the thickness of the
damage zone, determined as �0 = 27EGc

512σ 2
t
. The relation

Table 1 Material parameters used for simulation of theNeapoli-
tan Fine Grained Tuff

E 2.1 GPa

ν 0.27

M̃ 1 m/s

G+
cI 10 N/m

G+
cI I 25 N/m

G−
cI 5000 N/m

G−
cI I 250 N/m

between the critical energy release rate Gc and the reg-
ularisation length �0 needs to be further studied exper-
imentally. In this work, the unknown material parame-
ters have be calibrated by matching the evolution of the
crack path from the numerical simulation to the exper-
imental observations and using two assumptions. First,
we make use of the work of Kuhn and Müller (2010),
stating that the effective element size, he, should be
approximately one half of the regularisation length �0
for the phase-field model to capture the accurate crack
paths. Secondly, by setting the strength of the Napoli-
tan Fine Grained Tuff to σc = 10 MPa and the critical
energy release rate to G+

cI = 10 N/m, the value of the
regularisation length is calculated to �0 = 0.10 mm.
This led to a mesh of approximately 300,000 elements,
with an almost constant size of he = 1

2�0 through-
out the entire specimen. Through a parameter study
we could then determine the material parameters for
the phase-field model for the Neapolitan Fine Grained
Tuff according to Table 1.
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Fig. 3 a The geometry of
the specimen used to
calibrate the material
parameters used in the
models. b The state of the
crack evolution at the
marked point in the graph. c
A comparison between the
stress–strain curves of
experiment and simulation
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3.2 Artificial rock CPIR09

For the calibration of the artificial rock we followed
the same procedure as for the Neapolitan Fine Grained
Tuff, using the results presented in Nguyen (2011).
According to Nguyen (2011) the artificial rock exhibits
a crack pattern with initial anti-symmetric wing cracks,
starting at the tips of the initial cut, see Fig. 3b. The
wing cracks are followed by secondary cracks which
according to Nguyen (2011) are compressive cracks,
that emerge on the opposite side from the wing cracks
at tips of the initial notches.

Using the observation recorded in Nguyen (2011)
for specimens of the artificial rock CPIR09 during uni-
axial compression in plane strain, we calibrated the
model by matching the numerical simulation to the
experimental observations. As for the Neapolitan FGT,
the parameters for the critical energy release rates,
mobility parameters and the tensile strength of the arti-
ficial rock are not reported in Nguyen (2011). For the
artificial rock we chose to set the mode I critical energy
release rate to G+

cI = 1.0 N/m and the tensile strength
selected to σt = 1.6 MPa to calibrate the phase-field
model. According to the results presented in Nguyen
(2011) the stiffness of the tested rock samples varied
within a range of approximately 30%, while both the
fracture patterns and the strength of the material are
consistent throughout the experiments. We have cho-
sen to set the Young’s modulus E = 5 GPa and Pois-
son’s ratio ν = 0.18, which is in the upper region of the
stiffness measured during the experiments. Through a
parameter study we could then set the material param-
eters for the phase-field model for the artificial rock

Table 2 Material parameters used for simulation of the artificial
rock CPIR09

E 5 GPa

ν 0.18

M̃ 1 m/s

G+
cI 1 N/m

G+
cI I 10 N/m

G−
cI 100 N/m

G−
cI I 100 N/m

CPIR09 according to Table 2. From the results of the
calibration depicted in Fig. 3, we notice that the general
stress–strain behaviour from the simulation is in good
agreement with the experimental observation until clo-
sure of the compressive cracks takes place.

3.3 Effect on the crack driving ratio H/Gc

In order to illustrate how the split of H
Gc
, see Eq. 16,

affects the evolution of a crack with regards to the prin-
cipal strains ε1 and ε2. Figure 4 plots the level set of
the crack driving ratio H

Gc
for the calibrated material

parameters shown in Tables 1 and 2. Figure 4a displays
the level set of H

Gc
for the Neapolitan Fine Grained Tuff.

From the figure we can see that by increasing the crit-
ical energy release rate G−

cI , the fracture toughness is
increased in the direction of pure compression. Fig-
ure 4b displays the level set of the crack driving ratio
for the artificial rock CPIR09. By studying the level set
of H

Gc
we can see that by increasing the critical energy
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Fig. 4 Level set plots of the
crack-driving ratio H

Gc
with

respect to strain. a
Neapolitan Fine Grained
Tuff (FGT). b Artificial rock
CPIR09

(a) (b)

Fig. 5 Geometries of the
rock specimens used

(a)

u

50

100
35◦

10

(b)

u

50

100

45◦

10

(c)

u

50

100

55◦

10

release rate G−
cI and G−

cI I we decrease the tendency for
compressive or shearing cracks to appear.

4 Comparison between experimental and
numerical results

In this section we present the results from simula-
tions of CPIR09Meuwissen and Neapolitan FGT sam-
ples with the dimensions of 100 × 50 × 35 mm3

in uniaxial compression. The numerical results are
compared to experimental observations presented in
Nguyen (2011). For the two materials, three differ-
ent angles of rock bridge inclination were examined:
35◦, 45◦ and 55◦, see Fig. 5. The experimental results
were documented using digital image correlation, DIC,
measurements of the maximum shear strains, εs−max ,
and volumetric strain, εvol . Defined as, εs−max =
1
2 (εmax−εmin) and εvol = εmax+εmin with εmax being
themaximumvalue of the principal strains and εmin the

minimum value. Furthermore, the experiments were
conducted under uniaxial compression, and the sample
was subjected to a displacement rate of 0.1 mm/min
until failure. For all the simulations the regularisation
length is chosen to �0 = 0.10 mm and to capture the
evolving crack paths we use an almost constant ele-
ment size of he = 1

2�0 throughout the entire specimen,
which leads to a mesh with approximately 320,000 ele-
ments. The material parameters used are presented in
Tables 1 and 2 respectively. Moreover, we would like
to note that by comparing the photos of the fractures
to the DIC measurements, we estimate that the DIC
measurements blur the cut thickness by approximately
a factor 5.

4.1 Uniaxial compression of artificial rock CPIR09

According to Nguyen, before the appearance of any
crack, the localisation of shear deformation was less
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Fig. 6 a Geometry. b The
volumetric strain, εvol DIC
measurements from the
uniaxial compression test of
the CPIR09 sample with 35◦
bridge angle before crack
initiation (Nguyen 2011). c
The volumetric strains, εvol ,
from the numerical
simulations before any
cracks have been formed
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(b) (c)

εvol
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Fig. 7 Comparison
between measurements of
nominal stress–strain curves
presented in Nguyen
(2011), to the numerical
results from simulations for
the CPIR09 Meuwissen
samples
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pronounced in the CPIR09 Meuwissen samples than
what was observed in the Neapolitan FGT samples.
However, the presence of the compaction zones at the
notches are clearly detectable in theDICmeasurements
of the volumetric strains, see Fig. 6b.

With an increased load, compressive cracks are
formed in these compaction zones for all three geome-
tries. An initial drop in the measured nominal stress
follows the initiation of the compressive cracks shown
in Fig. 7. By studying the nominal stress–strain curves
in Fig. 7 we observe that the nominal stresses increase
after the initial drop in the experimental results. The
increased nominal stress is likely taking place as the
internal crack surfaces come into contact. As the com-

pressive cracks close and full contact is achieved, the
rock sample carries additional load before total failure.
This increase in stress after the initial onset of the com-
pressive cracks is not observed in the numerical results,
as the implemented model does not include a method
for treating self-contact of the internal surfaces.

Even though an appropriate additional contact for-
mulation is not included in our proposed model, and
this is outside the scope of this work, the observed sta-
ble evolution of the compressive cracks towards the
opposite edge of the rock samples is observed also
in the numerical simulations. Nguyen reports that, in
the experiments presented in Nguyen (2011), the com-
pressive cracks stop when they reach the level of the
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Fig. 8 The maximum shear
strain, εs−max during the
evolution of the cracks for
the CPIR09 sample with
55◦ bridge angle. a–d
Display the DIC
measurements from the
experiments. e–h Display
the numerical results

(a) (b) (c) (d)

εs−max

10−3

0.25

2.0

(e) (f) (g) (h)

εs−max

10−3

0.25

2.0

opposite notch, approximately 10 mm from the oppo-
site edge, after which new cracks appear in the shape
of more compressive cracks as well as tensile cracks in
the vertical direction. Figure 8 displays the evolution of
the maximum shear strain εs−max as the cracks propa-
gate for the CPIR09 sample with a 55◦ bridge angle. In
Fig. 8d, h the propagation of the horizontal cracks have
stopped and new cracks are appearing. In the experi-
mental results, the DIC analysis indicates a stress con-
centration due to material imperfections which leads to
an onset of new cracks above the edge of the bottom
notch. In the simulation, the original crack is met by
a new horizontal crack from the opposite side of the
sample.

Studying the volumetric strains, εvol , after the onset
of new cracks in Fig. 9, it is possible to state that the hor-
izontal cracks displayed in the DIC analysis are com-
pressive cracks, as εvol < 0 and that the vertical cracks
are tensile fractures as εvol > 0. We also note that the
confronting cracks that appear in the simulations are
tensile cracks as εvol > 0.

Figure 10a shows a picture of the CPIR09 sample
with a 35◦ bridge angle right before the crack reaches

the level of the opposite notch. Figure 10d displays the
phase-field, with cracks represented by zero value. Fur-
thermore, comparing themaximum shear strain εs−max

and volumetric strain εvol from the DIC analysis in
Fig. 10b to the numerical results in Fig. 10e–f, it is
clear that the numerical simulation produces slightly
larger strains than measured in the DIC analysis. This
is likely an effect of the self-contact of the fracture sur-
faces restricting the deformations. Moreover, by study-
ing Fig. 10c, f it is clear that the horizontal cracks are
compressive in nature, as εvol < 0.

4.2 Uniaxial compression of Neapolitan FGT

As for the CPIR09 samples, we compare the numer-
ical results for the Neapolitan FGT with the observa-
tions and measurement documented in Nguyen (2011).
According to Nguyen (2011), before the appearance
of cracks, the localisation of shear deformation and
compaction zones were systematically observed at the
notches and in the rock bridge for all the Neapolitan
FGT samples. Figure 11 shows the maximum shear
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Fig. 9 a Geometry. b The
volumetric strain, εvol DIC
measurements from the
uniaxial compression test of
CPIR09 sample with 55◦
bridge angle after the
Nguyen (2011). c The
volumetric strains, εvol ,
from the numerical
simulations before any
cracks have been formed
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Fig. 10 a Photo of the rock
sample with a 35◦ bridge
angle with the crack
highlighted in red. b The
DIC measurements of the
maximum shear strains
εs−max . c The measured
volumetric strain εvol DIC
analysis. d The phase-field
distribution from the
numerical simulation. e, f
Displays the maximum
shear strains εs−max and
volumetric strain from the
numerical simulations,
(Nguyen 2011)
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strains εs−max , before the formation of any cracks in
the FGT sample with 45◦ bridge angle. The numerical
results are in good agreement to the obtained measure-
ments from theDIC analysis, where the observed local-
isations of the shear strains at the notches are clearly
noticeable in Fig. 11.

The deformations in the compaction and shear zones
intensify with the increase of the applied load and
the first cracks always appeared at the localisation of
εs−max . In the experiments two main types of cracks
are reported: wing cracks, W, that propagate in Mode I
in the vertical direction between the ends of the notches
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Fig. 11 a Geometry. b The
maximum shear strain,
εs−max measured using DIC
during the uniaxial
compression test of
Neapolitan FGT samples
with 45◦ bridge angle
(Nguyen 2011) before crack
initiation. c Displays the
maximum shear strains,
εs−max , from the numerical
simulations before any
cracks have been formed
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Fig. 12 a Geometry. b The
volumetric strain, εvol DIC
measurements from the
uniaxial compression test of
Neapolitan FGT sample
with 55◦ bridge angle
before crack initiation
(Nguyen 2011). c The
volumetric strains, εvol ,
from the numerical
simulations before any
cracks have been formed
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and the load bearing surfaces of the samples, andmixed
Mode I and Mode II crack, referred to as P cracks,
that appeared in the rock bridge joining the notches. In
addition to the two main types of cracks, a third crack
type was observed in the zone where concentrations of
compaction were localised at the notches, see Fig. 12.
According to Nguyen (2011), these third crack types
were always a mixed compaction and shear crack. By
studying the volumetric strains we get more informa-
tion of the crack type,where a positive volumetric strain
indicates that the crack is opening (tensile mode I) and
where a negative value indicates a closing or compres-
sive crack, shearing or any combination of mode I and
mode II.

In the simulations we observed all three types of
cracks, and the localisation of initiation for the cracks

are in good agreement with the experimental results.
However, for the sample with a 35◦ bridge angle, the
wing cracks propagates further into the centre of the
rock sample until a mixed mode crack, P appeared
in the rock bridge joining the notches, see Fig. 13c.
This behaviour was not observed in the experiment,
where thewing cracks propagated in a vertical direction
without connecting the notches, see Fig. 13b, Nguyen
(2011). For the samples with a 45◦ bridge angle, both
wing cracks and mixed mode cracks where frequently
observed, which was also the case for the numerical
results. However, we would like to point out that due
to symmetry and the lack of both material and geomet-
rical imperfections, the numerical simulation results in
two symmetric cracks, which is not observed in the
experiments. By comparing Fig. 13e, f it is clear that
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Fig. 13 The left column
displays the geometries of
the rock samples, the
middle column the εs−max
measured using DIC during
the uniaxial compression
test of Neapolitan FGT
samples at failure. The right
column displays the
maximum shear strains,
εs−max , from the numerical
simulations at the end of the
simulations
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Fig. 14 Comparison of
measurements nominal
stress–strain curves
presented in Nguyen (2011),
to the numerical results
simulations of Neapolitan
FGT Meuwissen samples
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for the 45◦ sample, the proposed modified phase-field
fracture model is in good agreement with experimen-
tal observations. In the specimen with a 55◦ bridge
angle, the observed failure mode in the experiments
was through the formation of P cracks located on the
rock bridge. According to Nguyen (2011), the forma-
tion of these cracks is often the result of the coalescence
of smaller cracks that appear before the peak stress,
Fig. 13h. From Fig. 13i it clear that the proposed phase-
field model has a difficulty to capture the P cracks.
Instead, tensile cracks are formed on the opposite side
of the notches leading to a Mode I crack propagating
in horizontal direction through the rock specimen. The
occurrence of these tensile cracks are likely due to the
interpenetration between the internal surfaces of the
cracks propagating from the notches, leading to tensile
stress concentrations opposite to the notches.An appro-
priate additional contact formulation is not included
in our proposed model, and this is outside the scope
of this work. Another interesting observation is that
the observed behaviour during the experiments is more
brittle than the numerical results. This becomes clear
by observing the nominal stress–strain behaviour after
the peak stress is reached in Fig. 14.

Figure 14 depicts the nominal stress–strain curves
from the simulation of the compression test of the
Neapolitan FGT together with the measurements per-
formed by Nguyen (2011) for the Meuwissen samples.
Even though the general stress–strain behaviour from
the simulations are in good agreement with the experi-

mental observations one should note that, as expected,
the dispersion between the peak nominal stresses are
greater for the experimental measurements than for the
numerical result.Wewould also like to point out that for
the sample with a 35◦ bridge angle the measured peak
nominal stress is a fair bit larger then the numerical
results. The reason for the difference between experi-
mental observation and numerical results can be man-
ifold, i.e. the rock samples include both material and
geometrical imperfections, which are not included in
the numerical simulations. Another aspect that might
affect the results are the boundary conditions. In the
experimental set up, friction between the loading plate
and the rock sample might affect the results, an aspect
which is not accounted for in the simulations.

5 Conclusion

In this work we have presented a modified phase-field
fracture model for simulation of crack propagation in
porous rocks. The presentedmodel introduces a split of
the fracture energy release rate to capture the charac-
teristic behaviour of fractures in porous rock. In porous
rock, the critical release rate for tensile cracks can be
orders ofmagnitude smaller than the energy release rate
for shear cracks and compressive stresses can lead to the
formation of compressive cracks. To capture these char-
acteristic behaviours we have introduced a split of the
fracture energy release rate, where G+

cI , G+
cI I represent
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the critical energy release rates for Mode I andMode II
during tensile stresses and where G−

cI and G−
cI I repre-

sent the critical energy release rate during compression.
To calibrate the numerical model we have compared
the numerical results to experimental observations per-
formed on rock samples with a sawed inclined cut sub-
jected to uni-axial plane strain compression. Further,
to demonstrate the capability of the modified phase-
field fracture model first introduced in this work, we
compared the calibrated model to Meuwissen samples
with different angles of rock bridge inclination sub-
jected to uni-axial compression. The presented com-
parison shows that the modified phase-field fracture
model gives results in good agreement with the experi-
mental observations both with respect to crack patterns
and critical stress loads. We have also shown that the
proposed phase-fieldmodel is able to reproduce the for-
mation of compressive cracks as well as complex crack
patterns without any additional algorithmic treatment.
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