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Abstract Stress rupture is a time-dependent fail-
ure mode occurring in unidirectional fiber composites
under sustained tensile loads, resulting in highly vari-
able lifetimes. Stress-rupture is of particular concern
in composite overwrapped pressure vessels (COPVs)
since it is unpredictable, and has catastrophic conse-
quences. At the micromechanical level, stress rupture
begins with the breakdown of individual fibers at ran-
dom flaws, followed by local load-transfer to intact
neighbors through shear stress in thematrix. Over time,
thematrix creeps in shear causing lengthening overload
zones around fiber breaks, resulting in even more fiber
breaks, and eventually, formation of a catastrophically
unstable break cluster. Current reliability models are
direct extensions of classic stochastic breakdownmod-
els for a single fiber, and do not reflect such microme-
chanical activity. These models are adequate for mod-
eling composite stress rupture under a constant load,
however, they may be unrealistic under more complex
loading profiles, such as a constant load that follows
a brief ‘proof test’ at a load level up to 1.5 times this
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constant load. For carbon fiber/epoxy COPVs, current
models predict a reliability, conditioned on survival of
a proof test, that is always higher than the reliability
without such a proof test. Concern exists that this is
incorrect, and that a proof test may result in reduced
reliability over time. While the failure probability dur-
ing a proof test may be very low, overwrap damage
occurs nonetheless in the form of a large number of
fibers breaks that would not occur otherwise based on
fiber Weibull strength statistics. This phenomenon of
increased fiber breakage during a proof test is captured
in the model we develop and that specifically builds on
the micromechanical failure process described above.
For typical proof-test load ratios, the model predicts
conditional reliabilities for lifetime that are typically
much lower than those calculated in the absence of a
proof test.

Keywords Failure probability · Stress rupture · Proof
test · Composite overwrapped pressure vessel · Local
load-sharing · Weibull distribution

1 Introduction

Stress rupture is a time dependent failure mode that
affects unidirectional continuous fiber composites,
such as composite overwrapped pressure vessels
(COPVs). It is catastrophic and occurswithout warning
under sustained loading at typical operating tempera-
tures and pressures. In stress-rupture failures, individ-
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ual fibers fail successively, some forming clusters of
broken fibers. The overall composite fails when one
such cluster becomes too large and is unstable.

On the micromechanical level, individual fibers
inherently have high variability in strength, with flaws
randomly spaced along their length. On initial loading
of the composite, fibers fail if they have flaws weaker
than the applied load. The load that was carried by
a now broken fiber is transferred onto its neighbors
throughmatrix shear, thus causing higher loads in these
neighboring fibers in the region near a break. These
neighbors may then break, creating a cluster of broken
fibers that further overload the fibers surrounding the
cluster, perhaps causing even more failures.

A second feature is that thematrix shear load around
a fiber break causes the matrix to creep over time, or
possibly debond progressively along the fiber-matrix
interface, thus lengthening the regions that are over-
loaded on the neighboring fibers. Ultimately the grow-
ing overload region encounters further flaws in neigh-
boring fibers, which may cause those to break, adding
to the cluster. Eventually a cluster will grow to a size
that becomes unstable.

To understand the process by which stress rupture
occurs, onemust first have a robust model for the statis-
tics of fiber strength and failure at small length scales.
Current models, as reviewed by Phoenix and Beyerlein
(2000) and Beyerlein and Phoenix (1996a), build on
a Poisson process framework to represent the occur-
rence and severity of flaws along a fiber. Assuming a
power law for the cumulative frequency of flaws having
strengths below a given stress level leads to a Weibull
distribution for fiber strength that exhibits the usual size
(length) effect. The associated Weibull parameters can
be estimated separately from tension tests on individ-
ual fibers at a suitable gage length. Such fiber strength
models indicate that, under typical load levels in com-
posite, large numbers of individual fiber failures are to
be expected.

There has been extensive research, including the-
oretical (Hedgepeth 1961; Hikami and Chou 1990;
Hedgepeth and VanDyke 1967; Beyerlein and Phoenix
1996b; Beyerlein et al. 1996), experimental (Beyerlein
and Landis 1999; Beyerlein et al. 1998a; McCarthy
et al. 2015) and with simulations (Mahesh and Phoenix
2004a; Mahesh et al. 1999; Ibnabdeljalil and Curtin
1997; Iyengar and Curtin 1997), into how the matrix
transfers the load from a broken fiber to its intact
neighbors. Matrix creep in shear has been modeled

and experimentally verified (Zhou et al. 2002, 2003,
2004), and the overall process of cluster formation has
been numerically simulated (Mahesh et al. 1999, 2002;
Mahesh and Phoenix 2004a; Ibnabdeljalil and Curtin
1997). Lacking is a coherent framework incorporat-
ing micromechanical knowledge of fiber-to-fiber stress
redistribution over time, and a statistical framework for
fiber breakage to yield a realistic and robust model
for stress rupture. Models currently used (Phoenix
1979; Coleman 1956, 1957; Coleman and Knox 1957;
Coleman 1958a, b; Tobolsky and Eyring 1943; Glas-
stone et al. 1941; Kelly and McCartney 1981; Chris-
tensen 1984; and Reeder 2012) all fit the same 1979
functional form by Phoenix (1979) and are typically
rooted in the breakdown process in a single fiber, yet
these models, when using experimentally-determined
parameter values from testing composite specimens,
often describe the stress-rupture behavior of compos-
itematerials under a given sustained load (Engelbrecht-
Wiggans and Phoenix 2018). One such model involves
a classic power-law in a Weibull framework (CPL-
W), wherein composite lifetime follows a power law
in terms of stress level, and both strength and lifetime
follow separate Weibull distributions (Coleman 1956,
1957; Coleman and Knox 1957; Coleman 1958a, b;
Tobolsky and Eyring 1943; and Glasstone et al. 1941).

There is concern, however, that thesemodels become
overly optimistic for load profiles other than a simple
sustained load. Of particular concern is ‘proof testing’,
whereby avirgin structure, such as aCOPV, is subjected
for a short ‘proof time’, to a ‘proof load’ much higher
than its later ‘service load’ in use. Such proof testing,
soon after COPV fabrication, is conceptually viewed as
a process of weeding out inferior vessels, thus improv-
ing overall reliability in service. However, a vessel is
typically weeded out because of liner leakage, rather
than failure of the composite overwrap. Nevertheless,
unlike with all metal pressure vessels, proof testing can
do considerable damage to the overwrap in terms of
breaking fibers and possibly epoxy-impregnated yarns
or tows.This is clear fromacoustic emission data gener-
ated during proof testing and should be expected based
on strength data on individual fibers and tows at fiber
stress levels comparable to that in the overwrap. Thus,
it is possible that excessive proof pressure levels above
the long-term service pressure may degrade the long-
term reliability rather than improve it.

There is anecdotal evidence of such a possibility
from proof tests on carbon fiber/epoxy COPVs where
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A stochastic model based on fiber breakage and matrix creep 3

broken strands have been found on the outer surfaces of
COPVs after proof testing. Furthermore, NASA, a key
user of COPVs, was concerned enough about the possi-
ble degradation of long-term reliability to specifically
adjust the proof testing guidelines away from higher
proof tests, and to lower pressures onCOPVs already in
service such that the fiber strains do not exceed 50% of
the original fiber strains at burst (ANSI S-081B 2018).

Despite the possibility that proof testing can degrade
the long-term reliability, current stress-rupture mod-
els cannot predict such degradation. Models, such as
the CPL-W model mentioned above, are largely phe-
nomenological. When applied to carbon fiber/epoxy
materials, their mathematical form is such that the
conditional reliability upon surviving a proof test is
virtually always predicted to be higher than the
reliability under a simple sustained load absent a proof
test.

These models more accurately describe the behav-
ior of composites where the dominant driver of stress-
rupture is fibers that degrade in time rather than amatrix
that creeps in shear. However, carbon fiber/epoxy
matrix composites have primarily time-independent
fibers of variable strength due to flaws, so matrix creep
in shear becomes important.

Thus, in this paper we develop a model that explic-
itly accounts for the micromechanical and statistical
failure processes in a unidirectional composite consist-
ing of carbon fibers in an epoxymatrix. Thismodel will
be called the stochastic fiber breakage (SFB) model. It
will build on the previously-mentioned research into
the micromechanics of stress-rupture in the context of
statistical modeling of the local failure process, which
involves local fiber load-sharing among broken and
intact fibers in the vicinity of any composite cross-
section. While actual loads in service are our main
interest in applications, throughout we will commonly
refer a ‘strength test’ or a ‘lifetime test’ with and
without a proof test so as to focus our thinking on
failure mechanisms in the model and associated prob-
abilities of failure in a composite structure such as a
COPV.

In developing the model, the following basic
assumptions have been made: The fibers are assumed
stiff, brittle and elastic, and possess randomly dis-
tributed flaws whose strengths can be characterized by
a Poisson–Weibull model; that is, fiber elements have
strengths following a Weibull distribution exhibiting
the usual size (length) effect. The fibers themselves

exhibit no time-dependent creep, and do not suffer
strength degradation. The fibers and matrix are well
bonded to each other. The matrix has an instantaneous
shear modulus that is one to two orders of magnitude
less than the tensile modulus of the fiber. Time depen-
dence in the model enters through the matrix, which
obeys power-law creep under a shear stress. This shear
creep comes into play in the vicinity of broken fibers
where the length scale of load-transfer to neighbor-
ing survivors grows over time, thus exposing increas-
ing numbers flaws to stress levels that may result in
their failure despite having survived up to that time. As
the analysis in subsequent sections develops, additional
assumptions will become necessary, and will err on the
side of being conservative.

In Sect. 5, we present results for several cases of
interest (involving wide ranging sets of parameter val-
ues) where we compare stress-rupture lifetime predic-
tions from our new SFB model versus the well-known
CPL-W model. Results are generated and compared
under conditions involving an initial proof test versus
having no true proof test, i.e., the proof stress level
over a short proof time is less than or equal to the
stress level in later service. Specifically, we compare
probabilities of failure over time under fixed load lev-
els where high reliability is desired. Despite having
very different underlying assumptions and mathemati-
cal structure, the two models predict virtually the same
behavior absent a true proof test. However, once the
stress level in a proof test significantly exceeds that in
later service, the two models diverge in their predic-
tions, wherein the SFB model reveals a loss in relia-
bility resulting from breakage of fibers that otherwise
wouldnot haveoccurred.Overall,we show that theSFB
model generates far more complex behavior following
a proof test than previous models such as the CPL-W
model, and the long-term benefits and drawbacks of a
proof test are very different for the two models.

Lastly, in a model of this type, fully investigating
the ramifications of the various assumptions on the
predicted stress-rupture lifetime of a composite is a
major topic all by itself. Over the past few years much
numerical and experimental work has appeared in the
literature that could shed light on the robustness of cer-
tain assumptions, and how they might be improved or
relaxed. The authors are presently collecting and inter-
preting this body of work for this purpose and intend
to present the findings in a future publication.
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2 Idealized composite

The model we develop is for an idealized composite
structure, consisting of an array of n parallel continu-
ous, brittle, elastic fibers embedded in a flexible poly-
mer matrix. The stiffness of the matrix is one to two
orders ofmagnitude less than that of the fibers. The role
of the matrix is not only to bind the fibers together, but
also to locally transfer load from broken to intact fibers,
through shear,when the composite is under tensile load.
Three fiber configurations are considered, as shown in
Fig. 1: a planar array mimicking tapes used in winding
COPVs, a hexagonal array that is a fair approximation
of a 3D composite, and a square array, which is used
for illustrative purposes.

2.1 The fibers

We assume that the occurrence of flaws along a fiber
is well described by a Poisson–Weibull model. In this
model the key parameter is λ (σ) = (

σ/σ�0

)ζ , where
σ is the stress level, σ�0 is a reference strength corre-
sponding to the reference length �0, and ζ is a positive
exponent (Phoenix and Beyerlein 2000). One interpre-
tation is that λ (σ) is the average number of flaws per
length �0 with strength ≤ σ . As a result, the number of
flaws in a given length � that have strength≤ σ follows
a Poisson distributionwith parameter λ (σ) (�/�0). The
Poisson distribution implies that the probability that the
number of flaws is zero in a given length, �, i.e. no flaws
occur, is given by exp (−λ (σ) (�/�0)). Then the prob-

Fig. 1 The three fiber arrays considered: a planar array, b hexag-
onal array, and c square array. The fibers nominally support a
far-field stress of σ

ability that at least one flaw with strength less than or
equal to σ occurs in length � is one minus this prob-
ability, which is also the probability that the fiber will
fail. Letting F� (σ ) be the probability of fiber failure
due to at least one flaw, we obtain:

F� (σ ) = 1 − exp

{

−
(

�

�0

)(
σ

σ�0

)ζ
}

, σ ≥ 0. (1)

This is the classicWeibull distribution forfiber strength,
whereby the strength of a fiber is equal to that of its
worst defect. Furthermore, thisWeibull distribution for
the strength of a fiber has weakest link scaling in terms
of length �/�0.

In later modeling, we are interested in the strength
distribution for a short fiber element of length δe, which
is the initial effective length for load transfer (from
a statistical point of view) around a fiber break, as is
described in Sect. 2.2. This ‘statistical’ length δe is typ-
icallymuch less than �0, which in practice is a reference
length, typically the tension test gage length for fiber
testing (e.g., 1 cm). Over time the lengths of interest
grow to exceed δe, as a result of matrix creep.

For the short length, δe, the Poisson–Weibull model
still applies, giving:

Fδe (σ ) = 1 − exp

{

−
(

δe

�0

)(
σ

σ�0

)ζ
}

= 1 − exp

{

−
(

σ

σδe

)ζ
}

, σ ≥ 0. (2)

Tension tests are used to estimate the Weibull scale
parameter, σ�0 , and shape parameter, ζ . Then σδe , the
Weibull scale parameter for the strength of a fiber ele-
ment of length δe, becomes:

σδe = σ�0

(
δe

�0

)−1/ζ

. (3)

This scaling is consistent with the fact that fibers typ-
ically follow Weibull weakest-link statistics (Phoenix
andBeyerlein 2000).Also,σδe � σ�0 as (δe/�0)

−1/ζ ≈
(1/20)−1/5 ≈ 1.82, and a ratio of 1/20 for δe/�0 is con-
servative, so that typically σδe ∼ 2σ�0 .

In a large composite approaching failure, the far field
applied stress on fiber elements, σ , is small relative to
σδe , or even, σ�0 . Thus the failure probability for each
individual fiber element is very small, and the lower
tail of Eq. (2) can be accurately approximated by:

Fδe (σ ) ≈
(

σ

σδe

)ζ

, 0 ≤ σ < σδe . (4)
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2.2 The matrix

The matrix, being much less stiff than the fibers, sup-
ports negligible tensile load. However, around fiber
breaks the matrix becomes loaded in shear as it acts
to locally transfer load from broken fibers to their near-
est intact neighbors over some effective length, propor-
tional to δe. In a planar array the load from a broken
fiber is shared mainly across its two nearest neighbors,
while in a hexagonal array the load is shared mainly
across its six nearest neighbors.

The load transfer process has been successfully
described using the classic shear-lag model devel-
oped by Hedgepeth (1961) and co-workers (Hikami
and Chou 1990; and Hedgepeth and Van Dyke 1967).
Extensions and refinements have been developed to
improve the accuracy and realism in certain circum-
stances, (Goree and Gross 1980; Rossettos and Shish-
esaz 1987; Nairn 1988a, b, 1992; Rossettos and Olia
1993; Nairn and Wagner 1996; Nairn 1997) however,
for the purposes of modeling time dependence in this
paper, we have chosen to work with the simplest ver-
sions based on the shear-lag models of Hedgepeth
(1961) in planar fiber arrays, and Hedgepeth and Van
Dyke (1967) for hexagonal fiber arrays.

Over time the matrix creeps, giving rise to an
increase in the effective length over which load transfer
occurs. To model this matrix creep within the shear lag
model, we use the power-law creep model, a common
and useful creep law, whereby the creep compliance
takes the form:

Jm (t) = Jm,e

[

1 +
(
t

tc

)θ
]

, t ≥ 0, (5)

where Jm,e is the instantaneous creep compliance
(Jm,e = 1/Gm,e, where Gm,e is the instantaneous elas-
tic shear modulus), tc is the characteristic time for
creep to occur (at which time the compliance Jm (t)
has roughly doubled), and θ is the creep exponent.
This creep compliance was used by Lagoudas et al.
(1989). Beyerlein et al. (1998b) used a slightly dif-
ferent version, which in simplified form, was used by
Mahesh and Phoenix (2004a). The creep exponent is a
crucial parameter that governs the growth of the effec-
tive length for load transfer over time and depends on
such factors as thematrix and adhesion chemistry, fiber
volume fraction, and temperature—to name perhaps
the most important influences (Beyerlein et al. 1998b).
Typically, 0.1 < θ < 0.5 for epoxies, (Brinson and

Brinson 2015) and we note that, as a reference point,
the value θ = 1 corresponds to a Maxwell viscoelas-
tic material, which has Newtonian viscous behavior at
long times, t >> tc.

One characteristic of the power-law creep model in
the shear-lag framework is that there is an initial elas-
tic characteristic length, δ̂e, for load transfer (includ-
ing regions on both sides of the break along the fiber).
This length depends on both mechanical and geomet-
ric quantities: the fiber diameter, d f ; the fiber cross
sectional area, A f , (approximately πd2f /4); the fiber
Young’s modulus, E f ; the matrix shear modulus, Gm ;
and the fiber volume fraction, V f , which is manifest in
the effective matrix width between fiber surfaces, wm ,
and the effective matrix thickness, h, (which is of order
d f ). The latter two quantities depend on the nature of
the fiber packing as for instance in Fig. 1.

For fully elastic behavior, δ̂e is given in termsof these
parameters by Phoenix and Beyerlein (2000), Hikami
and Chou (1990) and Beyerlein et al. (1996) as:

δ̂e ≈ 2

√
E f

Gm

A f wm

h
. (6)

The strongest influences on δ̂e are the fiber diameter,
d f , and the square root of the fiber to matrix stiffness
ratio,

√
E f /Gm . The remaining parameters above have

a more modest influence through the fiber volume frac-
tion.

Assuming linear viscoelastic behavior and solving
the shear lag model under the power-law creep func-
tion, Eq. (5), Lagoudas et al. (1989) found that the
characteristic load transfer length grows in time and
is accurately approximated by:

δ̂ (t) ≈ δ̂e

√

1 +
(
t

tc

)θ

, t � 0. (7)

An import aspect of the model considered in more
detail later is the overload profile and stress state for
a fiber neighboring a broken fiber (or a small cluster
of transversely aligned breaks). This overload profile
is roughly triangular in shape, as illustrated in Fig. 2,
and with a certain magnitude at its peak that is charac-
terized later. When calculating the probability of fail-
ure of such an overloaded neighbor, this profile can
be modeled with an appropriately scaled, ‘rectangular’
overload profile over a certain effective length, denoted
δ (t), which as time passes increases in proportion to
δ̂ (t) of Eq. (7). Figure 2 illustrates the assumed rectan-
gular overload profile of effective length, termed δ (t),
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6 A. Engelbrecht-Wiggans, S. L. Phoenix

Fig. 2 Overload on
adjacent fibers, in a planar
array, for three times
t1 < t2 < t3, as a function of
the distance from the break.
Lengths shown for the step
overloads are approximate
for a fiber scale parameter
ζ = 5 using the values from
Phoenix and Beyerlein
(2000). Approximately
triangular overload profiles
are replaced by
mathematically simpler,
step overload profiles

in comparison to the actual, more triangular, load pro-
file with its characteristic length δ̂ (t).

In Fig. 2, the effective length, δ (t), is specifically
chosen such that the actual triangular profile and the
rectangular approximation are essentially equivalent
with respect to fiber failure probability calculations in
themodel. Theproportionality between δ (t) and δ̂ (t) is
governed by the relationship between the initial elastic,
statistical effective length, earlier denoted as δe, and the
initial elastic, characteristic length, denoted δ̂e, which
is approximately given by:

δe = 2

ζ + 1
δ̂e. (8)

As discussed in Phoenix and Beyerlein (2000), this
modification results from the fact that the higher the
Weibull shape parameter for strength, ζ , the lower the
variability in strength. Lower variability is due to a
sparser distribution of weaker flaws, such that only the
higher stresses near the peak of the triangular overload
region are likely to cause failure, which also effec-
tively narrows the overloaded region as ζ increases,
thus also reducing the ‘staggering’ of breaks around a
cross-sectional plane.

Another important point is that while the lengths
of the overload regions grow in time, the magnitudes
of the overloads on the neighboring intact fibers do
not change, as was shown by Lagoudas et al. (1989)
and Beyerlein et al. (1998b) for the linearly viscoelas-
tic matrix we consider here. This is true for immedi-
ate neighbors to a single break or to a small cluster of
transversely aligned breaks. These authors also showed
that next-nearest and more distant neighbors, are also
overloaded but to a much lesser extent than the nearest
neighbors. For aligned break clusters the magnitudes
of these overloads also do not change. Thus, in cal-
culating probabilities for new fiber failures, only the
nearest neighbors and their overload profiles are con-
sidered. This approach has been found to work well, as
shown inMahesh et al. (2002) andMahesh andPhoenix
(2004a), some aspects of which are revisited later.

Based on these observations, and using Eqs. (7) and
(8), we then obtain the time dependent relationship for
the effective overload length:

δ (t) = 2

ζ + 1
δ̂ (t) = δe

√

1 +
(
t

tc

)θ

, t ≥ 0. (9a)
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or in normalized form as:

δ (t)/δe =
√

1 +
(
t

tc

)θ

, t > 0

≈
(
t

tc

)θ/2

, t >> tc, 0 < θ ≤ 1. (9b)

Thus, the length depends approximately as the θ/2 root
of time, and significantly, the length is independent of
stress level, assuming the stress level remains constant
over time. This approximation will be used extensively
in later analysis.

Note that in the case of a composite with a nonlinear,
power-law creeping matrix, whereby the matrix creep
rate is also dependent on shear stress to some power,
various stress profiles around a fiber break were stud-
ied by Mason et al. (1992). In this case, the growing
lengths of the overload regions on fibers next to a fiber
break are similar to those shown in Fig. 2, except they
are longer for higher composite stress levels. This leads
to time-dependency similar to that in Eq. (9b), except
there is also a modest dependence on overall compos-
ite stress level to some power. Phoenix et al. (1988)
discussed the effects of this stress dependence on the
overall composite lifetime distribution. It was argued
that the effects are minor, being similar to those result-
ing from at most a unit increase in ζ , the Weibull shape
parameter for fiber strength, and thus, the effects on
the predictions of the current model are expected to be
minimal.

2.3 Idealized failure process

In a strength test, failure is assumed to be triggered
when a large enough cluster of brokenfibers has formed
somewhere in the composite at some stress level, such
that the failure probability for overloaded neighbors
reaches of order 1/2, whereby instability then becomes
very likely. This process occurs roughly as follows:
Upon initial loading, some fibers will break, even when
the load is relatively low. These initial failures tend to
be isolated and far apart but do create some level of
stress concentration on their neighbors. Upon further
increasing of the applied load, the overloaded neigh-
bors of some of these isolated breaks can also fail, cre-
ating small clusters. Further increasing of the load leads
to additional failed neighbors to these clusters, increas-
ing their size, and thus, the stress concentration level on
newly exposed neighbors. Eventually one or more of

these clusters grows to a critical, unstable size in terms
of the number of broken fibers, triggering overall com-
posite failure.

A strength test, as just described, is quasi-static, i.e.,
the loading is presumed to take place quickly enough
that we can ignore the time component in the com-
posite failure process, resulting from matrix creep or
time dependent breakdown in the fibers themselves
or even overloading from dynamic recoil at the break
(Hedgepeth 1961), which otherwise would result in
additional failures without further increasing the load.
In our stress-rupture modeling, however, the applied
load is held fixed over time (after initial loading or proof
testing), but the overloaded region in fibers neighbor-
ing break clusters is allowed to grow over time through
matrix creep and/or time dependent debonding. This
results in changes to the failure process as described
below.

Suppose the idealized composite is loaded under a
sudden, far-field tensile stress such that each fiber has
been exposed to stress σ � σδe , and the overall tensile
load on the composite is approximately σnA f . Since
the composite strength will turn out to be a small frac-
tion of σδe , and the load under consideration smaller
still, the probability of failure of a given fiber element
is small, and thus the breaks, though numerous, tend to
be widely separated.

When such a fiber element breaks, its load is redis-
tributed locally onto its nearest neighbors over an ini-
tial effective length for load transfer, δe. In lifetime
testing the effective load transfer length grows from
δe to become δ (t), following Eq. (9). In either case,
this local load redistribution is modeled as an equiva-
lent uniform overload, over the effective load transfer
length, on each of the neighboring fibers, as illustrated
in Fig. 2.

If all such overloaded fiber elements have strength
greater than the overload stress, then no additional
fibers fail, and the composite is temporarily stable. In
strength testing a stable cluster ismade unstable only by
increasing the load, whereas in lifetime testing under a
constant load, an increase in the effective load transfer
length can expose new flaws, causing additional fiber
breaks.

When additional fiber breaks occur around isolated
breaks, whether by an increase in applied composite
load or growth over time of overload lengths, small
clusters of broken fibers form, and all fibers adjacent to
these clusters now become more severely overloaded.
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8 A. Engelbrecht-Wiggans, S. L. Phoenix

Once again, if all these newly overloaded fiber ele-
ments happen to be strong enough, the composite is
stable. Otherwise even more fibers break, thus causing
even more severe overloads on previously surviving
neighbors. If these neighbors withstand the overloads,
then further fiber breakage will occur either due to an
increase in load (as in a strength test) or further pas-
sage of time (in a lifetime test), and the process repeats
itself.

Eventually, catastrophic failure of the composite
will occur if at least one cluster reaches a certain critical
size, k̂, for instability, which we define more precisely
later. Except in special circumstances, the same critical
size, k̂, can be applied for both quasi-static strength and
for time dependent lifetime behaviors. The process of
cluster growth is illustrated in Fig. 3.

Initial fiber failures, upon first loading a composite,
will occur at stress levels far below σδe , the Weibull
scale parameter for the strength of a fiber element of
length, δe. For instance, even if σ is just one tenth of σδe

and ζ ≈ 5, the probability of an arbitrary fiber element
failing is about 10−5, meaning that one in a hundred
thousand fiber elements fails. However, the volume of

Fig. 3 A possible sequence of fiber failures in a a tape (left
column), b a hexagonal array (middle column), and c a square
array (right column)

the composite, V , expressed as the number of fiber ele-
ments of length, δe, is easily on the order of 1012 for
COPVs. Thus, there can be around 101210−5 = 107

initial fiber breaks. Once again, these initial breaks are
typically widely spaced, and for δe = 0.1mm as is typ-
ical in carbon/epoxy systems, the distance along a fiber
between breaks would be around 10meters on average.
If, on the other hand, the stress level σ is doubled to
one fifth of σδe and if ζ ≈ 5, then the probability of an
arbitrary fiber element failing is considerably larger at
about 3 × 10−4, and fiber breaks are now much more
closely spaced at 30 cm apart, or 3000 fiber elements
apart, which is still a wide spacing compared to δe.

While there are large numbers of single fiber breaks
at stresses far less than the characteristic element
strength σδe , there are far fewer clusters of two breaks,
and even fewer clusters of three breaks and so on, as
we shortly show. To fail the composite at some combi-
nation of stress level and loading time, only one such
cluster needs to reach critical size, k̂, at which point the
cluster becomes unstable and failure is sudden. Para-
doxically, failure of the composite fromacritical cluster
that starts with failure of a given fiber element under
stress σ , is by nature an extremely rare event, even
when failure of the entire composite under σ is likely,
as there are an extremely large number of possible trig-
gering fiber elements. At the same time, failure of the
composite due to two smaller joining clusters to form
a cluster larger than k̂ at the point of instability is also
a rare event compared to failure from just one reaching
criticality.

In determining the probability of overall composite
failure in the case of a quasi-static strength test, we first
focus on a quantityWk (σ ), which is the probability of a
cluster of k fiber breaks forming at a particular location
in the composite, and at arbitrary stress σ , and where
k is arbitrary. These results are used later in connec-
tion with a specific value of k = k̂, the critical cluster
size. Any group of k adjacent fiber elements has the
potential to become a cluster of k breaks, despite being
a rare event for a given group of size k. However, the
probability of obtaining at least one cluster of size k
somewhere in the composite is much larger, and takes
the weakest-link form:

HV,k (σ ) = 1 − [1 − Wk (σ )]V , σ ≥ 0, (10)

where again V is the volume, i.e. the number of fiber
elements of length δe in the composite. This is true
even though two nearby groups of k fiber elements can
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A stochastic model based on fiber breakage and matrix creep 9

overlap each other and might ostensibly be viewed as
statistically dependent. In reality, they satisfy the con-
cept of k-dependence and essentially act independently
[see Smith et al. (1983) for theorems on the concept of
k-dependence associated with rare events].

A useful fact is:

exp (x) = lim
V→∞

(
1 + x

V

)V
, (11)

and letting x = −VWk (σ ) we get:

exp (−VWk (σ )) = lim
V→∞

(
1 + −VWk (σ )

V

)V

. (12)

Since V is large we have:

exp (−VWk (σ )) ≈
(
1 − VWk (σ )

V

)V

= (1 − Wk (σ ))V , (13)

and Eq. (10) is well approximated by:

HV,k (σ ) ≈ 1 − exp [−VWk (σ )] , (14)

reminiscent of theWeibull form (see Smith et al. 1983).

3 Model for strength and lifetime testing

In developing our model for stress rupture, it is instruc-
tive to first focus on strength testing, where the loading
increases relatively rapidly until failure, e.g., in 30 s.
Thus, we first consider the process of failure, ignoring
time dependence, as was described in Sect. 2.3. After
developing a model for strength, we will continue with
modeling stress-rupture lifetime behavior.

3.1 Strength testing

As a first step towards calculating the failure proba-
bility for the overall composite in a strength test, we
calculate the probability, Wk (σ ), that a given group of
k fiber elements fails. In so doing we treat the neigh-
bors of this final group of k fiber elements as having
infinite strength, as shown in the various illustrations of
configurations in the Online Resource, and thus do not
participate in the failure progression, other than accept-
ing the load of failed fibers at the edge of the resulting
cluster, as would occur in the actual composite having
exactly k such failed elements in a cluster.

In general, for small clusters of size k,Wk (σ ) can be
written down exactly. For example, if k = 1, we simply

have W1 (σ ) = Fδe (σ ). In the case where k = 2, and
assuming a planar array of fibers such as in Fig. 3a, we
obtain:

W2 (σ ) = Fδe (σ )2 + 2Fδe (σ )
(
Fδe (K1σ) − Fδe (σ )

)

= 2Fδe (K1σ) Fδe (σ ) − Fδe (σ )2 , (15)

where Fδe (σ ), σ ≥ 0 is the probability of failure of
a fiber with effective length, δe, as given in Eq. (2) or
Eq. (4), and where Ki is the stress concentration on a
fiber element caused by a cluster of i adjacent broken
fibers. In Eq. (15) the first term is the probability that
both fibers fail under their applied load, σ . The second
term is the probability that only one fiber fails under
load σ , and the second fiber, while surviving load σ ,
fails subsequently under the overload K1σ , there being
two ways this can happen as shown in the illustration
of configurations for k = 2 in the Online Resource.
Otherwise, the bundle of two fibers survives.

In the case k = 3, and again assuming a planar array
of fibers such as in Fig. 3a, a more elaborate sequential
fiber failure analysis can be carried out as shown in the
illustration of configurations for k = 3 in the Online
Resource. Summing all probabilities for specific fail-
ure sequences, expanding various products and then
collapsing by summing similar terms, we obtain:

W3 (σ ) = 4Fδe (K2σ) Fδe (K1σ) Fδe (σ )

− Fδe (K2σ) Fδe (σ )2

− Fδe (K1σ)2 Fδe (σ )

− 2Fδe (K1σ) Fδe (σ )2 + Fδe (σ )3 . (16)

In the case k = 4, and again assuming the planar
fiber array in Fig. 3a, a failure sequence analysis can
be performed, as shown in the illustration of configura-
tions for k = 4 in the Online Resource. Summing and
collapsing all associated probability terms results in:

W4 (σ ) = 8Fδe (K3σ) Fδe (K2σ) Fδe (K1σ) Fδe (σ )

− 2Fδe (K3σ) Fδe (K2σ) Fδe (σ )2

− 2Fδe (K3σ) Fδe (K1σ)2 Fδe (σ )

− 2Fδe (K2σ)2 Fδe (K1σ) Fδe (σ )

+ Fδe (K2σ)2 Fδe (σ )2

− 6Fδe (K2σ) Fδe (K1σ) Fδe (σ )2

+ 2Fδe (K2σ) Fδe (σ )3

+ Fδe (K1σ)2 Fδe (σ )2

+ 2Fδe (K1σ) Fδe (σ )3 − Fδe (σ )4 . (17)

Finally, in the case k = 5, and again assuming a pla-
nar array of fibers as in Fig. 3a, a similar analysis for all
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10 A. Engelbrecht-Wiggans, S. L. Phoenix

possible failure sequences is shown in the illustration
of configurations for k = 5 in the Online Resource.
Summing and collapsing all the associated probability
terms results in:

W5 (σ ) = 16Fδe (K4σ) Fδe (K3σ) Fδe (K2σ)

×Fδe (K1σ) Fδe (σ )

− 4Fδe (K4σ) Fδe (K3σ) Fδe (K2σ) Fδe (σ )2

− 4Fδe (K4σ) Fδe (K3σ) Fδe (K1σ)2 Fδe (σ )

− 4Fδe (K4σ) Fδe (K2σ)2 Fδe (K1σ) Fδe (σ )

+ 2Fδe (K4σ) Fδe (K2σ)2 Fδe (σ )2

− 4Fδe (K4σ) Fδe (K2σ) Fδe (K1σ) Fδe (σ )2

+ 2Fδe (K4σ) Fδe (K2σ) Fδe (σ )3

+ 4Fδe (K4σ) Fδe (K1σ)2 Fδe (σ )2

− 4Fδe (K4σ) Fδe (K1σ) Fδe (σ )3

+ Fδe (K4σ) Fδe (σ )4

− 4Fδe (K3σ)2 Fδe (K2σ) Fδe (K1σ) Fδe (σ )

+ Fδe (K3σ)2 Fδe (K2σ) Fδe (σ )2

+ Fδe (K3σ)2 Fδe (K1σ)2 Fδe (σ )

+ 2Fδe (K3σ)2 Fδe (K1σ) Fδe (σ )2

− Fδe (K3σ)2 Fδe (σ )3

− 10Fδe (K3σ) Fδe (K2σ) Fδe (K1σ) Fδe (σ )2

+ 2Fδe (K3σ) Fδe (K2σ) Fδe (σ )3

− 4Fδe (K3σ) Fδe (K1σ)2 Fδe (σ )2

+ 8Fδe (K3σ) Fδe (K1σ) Fδe (σ )3

− 2Fδe (K3σ) Fδe (σ )4

+ 4Fδe (K2σ)2 Fδe (K1σ) Fδe (σ )2

− 3Fδe (K2σ)2 Fδe (σ )3

− 5Fδe (K2σ) Fδe (K1σ)2 Fδe (σ )2

+ 10Fδe (K2σ) Fδe (K1σ) Fδe (σ )3

− 2Fδe (K2σ) Fδe (σ )4

+ 4Fδe (K1σ)3 Fδe (σ )2

− 4Fδe (K1σ)2 Fδe (σ )3

− 2Fδe (K1σ) Fδe (σ )4

+ Fδe (σ )5 . (18)

Clearly as k increases, the complexity of the cal-
culation and the number of resulting terms increases
drastically, but fortunately we are able to establish an
accurate approximation for Wk (σ ). Before doing so,
we give an intuitive explanation of the structure of the
results.

In the case where k = 4, Eq. (17) is the result of
expanding and adding together the failure probabilities
for all 31 distinct sequences in which a given contigu-

ous group of four fibers can break, as shown in the
illustration of configurations for k = 4 in the Online
Resource. Only the first term in Eq. (17) involves a
sequence whereby one fiber fails according to applied
stress, σ , a second fiber fails under the first overload,
K1σ , a third fails due to the second overload, K2σ ,
and the final fiber fails due to the third overload, K3σ .
Note however, that the actual probabilities for such fail-
ure sequences are more complicated than simply this
first term of Eq. (17). The constant 8 in front of the
first term of Eq. (17) arises because for a given group
of k = 4 adjacent failures in a planar array, there are
2k−1 = 23 = 8 different ways in which a progressive
sequence involving K1, K2, and K3 can occur, as seen
in lines 5 and 6 of the illustration of configurations for
k = 4 in the Online Resource.

An important feature of the various product terms
that occur in Eq. (17) is the magnitude progression
Fδe (K3σ) > Fδe (K2σ) > Fδe (K1σ) > Fδe (σ ), typ-
ically by more than a factor of two in each overload
step. Thus, any sequence where two or more fibers fail
at once, such as depicted in all lines in the illustration
of configurations for k = 4 in the Online Resource
other than lines 5 and 6, involves duplicating one of
the lower stress concentrations thus reducing the mag-
nitude of the product.

This sequential argument has a further implication.
As was alluded to earlier, a cluster of more than k adja-
cent failed fibers in the composite can result from two
(ormore) clusters growing independently and then join-
ing at the end to create a cluster of more than k breaks.
However, this requires (i) at least twofibers to fail under
the applied load, σ , (ii) more than k fibers to fail, and
(iii) that the clusters are close enough together that they
can join.

Two fibers failing under the applied load, as dis-
cussed above, results in a lower probability than when
the fibers fail sequentially in a single cluster. Further-
more, the initial fiber failure is a low probability event,
and for each additional broken fiber in a cluster beyond
size k, the failure probability becomes much smaller.
Thus, the probability of two smaller clusters forming
and joining to form a cluster of size larger than k, is
much less than that of forming a cluster of exactly size
k.

Returning to Eq. (17), the first term turns out to be
the dominant term due to the combination of the higher
stress concentrations and the large combinatorial factor.
Thus, the first term can be used to approximateWk (σ )
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A stochastic model based on fiber breakage and matrix creep 11

very accurately, as we will show, and Eq. (17) can be
approximated by:

W4 (σ ) ≈ 8Fδe (K3σ) Fδe (K2σ) Fδe (K1σ) Fδe (σ ) .

(19)

The remaining terms in Eq. (17) have positive and neg-
ative signs, resulting in cancellation effects.

To illustrate, if we substitute Eq. (4) into Eq. (17),
letting K1 = 3/2, K2 = 2, and K3 = 5/2, as well as
choosing ζ = 5, as might be the case in an average
quality carbon fiber, we get:

Wk(σ ) ≈
(
1.819σ

σδe

)20

≈
(

σ

0.550σδe

)20

, σ < 0.550σδe . (20)

In comparison, our approximation in Eq. (19) gives:

Wk(σ ) ≈
(
1.836σ

σδe

)20

≈
(

σ

0.545σδe

)20

, σ < 0.545 σδe . (21)

A comparison of 0.550 from Eq. (20) to 0.545 from
Eq. (21) shows that there is less than 1% difference in
load required to achieve the same probability of failure.
Comparing these two numbers is apt, as any inaccura-
cies in the approximation are comparable in magnitude
to small changes or inaccuracies in the scale parameter
σδe . This comparison is also shown in Fig. 4, where the
ratio of the predicted failure probabilities is about 1.2,
however on the scaling of Fig. 4, in the lower tail this
is barely more than the thickness of the plotted lines.

As stated earlier, as k gets larger the exact expression
forWk (x) becomes increasingly complex. Fortunately,
for the same reasons that Eq. (17) is well approximated
by Eq. (19), the general expression for the strength of a
cluster of k fibers, namelyWk (x), is well approximated
by:

Wk (σ ) ≈ ck Fδe (σ )

[
k∏

i=2

Fδe (Ki−1σ)

]

≈ ck Fδe (σ ) Fδe (K1σ) Fδe (K2σ)

· · · Fδe (Kk−1σ) , k > 1, (22)

where ck is a combinatorial factor capturing all the pos-
sible configurations (in terms of a growing sequence of
fiber breaks) that a cluster can have, and Ki is the stress
concentration on a fiber caused by a cluster of i broken
fibers.

Fig. 4 Weibull plot comparison of the exact result for W4 (σ ),
Eq. (17), with the approximation, Eq. (19), with K1 = 3/2,
K2 = 2, K3 = 5/2, and ζ = 5, and using the exact form of
Fδe (σ ), i.e., Eq. (2)

Fig. 5 Weibull plot comparison of the exact expression for
Wk (σ ), Eqs. (15) through Eq. (18), with the approximation used
in this paper, Eq. (22), where K1 = 3/2, K2 = 2, K3 = 5/2
and K4 = 3, and where ζ = 5, using the exact expression for
Fδe (σ ), i.e., Eq. (2)

Figure 5 compares approximation Eq. (22) with the
exact expressions forWk (σ ) for k = 1, 2, 3, 4 and 5, as
given by Eqs. (15–18) and noting again that W1 (σ ) =
Fδe (σ ). Of special importance is the behavior of the
respective lower tails, which tend to fold down on a sin-
gle limiting characteristic distribution function curve as
k increases, as is important later. Note, however, that
the upper tails for σ > 2σδe/3 will not superimpose
onto a single curve, namely Fδe (σ ) for a single fiber,
but will lie above it. This is because in the group of
k fibers the first fiber to fail essentially fails the group
since K1 = 3/2 and there are k possible first fiber
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12 A. Engelbrecht-Wiggans, S. L. Phoenix

failures rather than one. At such high stress levels, we
see that Wk (σ ) ≈ 1 − [

1 − Fδe (σ )
]k = Fkδe (σ ), the

distribution function for strength of a chain of k fiber
elements, i.e., of a fiber k times as long.

The form of Eq. (22) reflects the fact that, for a clus-
ter to grow, a neighboring fiber elementmust fail. There
are Nk neighboring fibers around a cluster of k breaks.
Each of these fiber elements is exposed to the overload
Kkσ , which increases as k grows. For planar arrays of
fibers:

Nk = 2, (23)

but for other arrays Nk also increases as k grows. In
particular, for a hexagonal fiber array (Mahesh et al.
2002) find that

Nk ≈ ηkγ , (24)

where η and γ are parameters with ranges 2.5 ≤ η ≤ 6
and 0 ≤ γ ≤ 1/2. Taking η = √

4π ≈ 3.54 and
γ = 1/2 has the interpretation that Nk is the number of
neighbors around a circular cluster of diameter, D, and
containing k ≈ πD2/4 breaks. However, this effec-
tively over counts the number of severely overloaded
neighbors, as some of the actual neighbors tend to be
shielded and loaded significantly less than others as dis-
cussed in Mahesh et al. (2002) and Smith et al. (1983).
For 1 ≤ ζ ≤ 5, it appears that η = 6 and γ = 0 work
well, which indicates that the number of significantly
overloaded fibers around a cluster is about six irrespec-
tive of cluster size. For larger 5 < ζ , smaller values in
the vicinity of η ≈ 4 work better along with γ ≈ 0.25.
In using the model, we leave these two parameters as
free, though suggest thatwhen applying themodel, they
should have values approximately as suggested.

Generally, the expression:

ck =

⎧
⎪⎨

⎪⎩

1, k = 1
k−1∏

j=1
N j , k > 1,

(25)

captures the fact that, except for the failure of the first
fiber element, there are Nk overloaded neighbors next
to the growing cluster at any growth step. Since the first
failure is the trigger, it is excluded from that count, i.e.,
there are k − 1 additional growth steps to get a cluster
of size, k.

Thus, for a planar array of fibers where Nk = 2, we
get that:

ck = 2k−1, k > 1. (26)

In a hexagonal array ck will grow more rapidly than in
the planar case and will involve products of increasing
numbers of fibers. In light of the discussion following
Eq. (24) we have:

ck ≈ ηk−1
k−1∏

j=1

jγ , k > 1, (27)

where again, j ≈ πD2/4 is approximately the number
of fiber breaks in a cluster of diameter, D, measured in
number of fibers.

The stress concentrations also depend on the fiber
arrangement. Henceforth we use the Hedgepeth ver-
sions described in Hedgepeth (1961), Hedgepeth and
Van Dyke (1967) and Phoenix and Beyerlein (2000).
For planar fiber array in Fig. 1a, it can be shown that:

K j ≈ √
1 + π j/4, j = 0, 1, 2, . . . (28)

In contrast to the planar case, for the hexagonal case the
values of K1, K2, . . . , Kk, . . . grow more slowly. In
fact, it has been shown that (Mahesh et al. 1999, 2002):

K j ≈ √
1 + D/π, D ≈ √

4 j/π, j = 0, 1, 2, . . . ,

(29)

again where D is approximately the cluster diameter
measured in number of fibers.

By assuming the lower tail approximation, Eq. (4),
for fiber failure probability, Eq. (22) becomes:

Wk(σ )

≈
{

(σ/σδe )
kζ , k = 1

ck(K1K2 · · · Kk−1)
ζ (σ/σδe )

kζ , k = 2, 3, 4, . . . .

(30)

For the approximation in Eq. (4) to be accurate, we
must be in the lower tail of the strength distribution.
This may not be the case when the stress concentration
factor is occasionally high, however any error induced
in this approximation turns out to have a negligible
impact on the overall value of Wk (σ ) in Eq. (30) (this
behavior of Eq. (30) is manifest as straight lines in the
lower tails in Fig. 5).

Combining Eqs. (14) and (30), and taking k = k̂,
results in an approximation for the failure probability
of the composite at a stress level σ , i.e., the strength dis-
tribution, which can be written in Weibull distribution
form as:

HV (σ ) ≈ 1 − exp
[
− (σ/σ̂V

)α̂]
, (31)
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where HV (σ ) ≡ HV,k (σ )
∣∣
k=k̂ , and where:

σ̂V

=
⎧
⎨

⎩

σδe V
−1/ζ , k̂ = 1

σδe

(
Vck̂

)−1/(k̂ζ )
(
K1K2 · · · Kk̂−1

)−1/k̂
, k̂ > 1,

(32)

is the effective Weibull scale parameter for strength
and:

α̂ = k̂ζ, k̂ ≥ 1, (33)

is the corresponding effectiveWeibull shape parameter.
In these expressions, k̂ is again the critical cluster size,
at a particular applied stress, σ , but also in the stress
region where composite specimens are likely to fail (in
a strength test). Thus, this k̂ value satisfies:

Kk̂−1σ̂V < σδe ≤ Kk̂ σ̂V . (34)

Using Eq. (34) with Eq. (28) for the planar case, we
find that k̂ satisfies:

k̂ =
⌈
4

π

[(
σδe

σ̂V

)2

− 1

]⌉

, (35)

and with Eq. (29) for the hexagonal array, k̂ satisfies:

k̂ =
⎡

⎢⎢⎢

π3

4

[(
σδe

σ̂V

)2

− 1

]2⎤

⎥⎥⎥
, (36)

where ‘�•’ corresponds to the ceiling function, i.e.,
rounding up the argument to the next integer, since
instability requires going to the next highest cluster
size.

It is important to note that at applied stress levels,
σ , considerably lower than the effective Weibull scale
parameter for composite strength, σ̂V , which is the set-
ting in stress-rupture lifetime discussed next, the cluster
size needed to fail the composite initially is actually a
considerably larger value, kσ , than k̂ and satisfying:

Kkσ −1σ < σδe ≤ Kkσ σ. (37)

However, the probability of forming this signifi-
cantly larger cluster at σ < σ̂V is even smaller than
forming one of size k̂, defined by Eq. (34) in terms
of the Weibull scale parameter for composite strength.
Our approach of defining a single k̂ value for all stress
levels σ < σ̂V yields a Weibull distribution for com-
posite strength, which is both convenient and conserva-
tive since the true distribution for composite strength,
HV (σ ), tends to curve downward in the lower tail com-
pared to theWeibull approximations. This is clear from

studying the behavior of the governing lower tails of the
distribution functions Wk (σ ) in Fig. 5, as k increases
with decreasing σ . Picking a reference stress value, say
σ̃ , and reference kσ̃ where a particular characteristic
distribution function, Wkσ̃

(σ ), is tangent to the limit-
ing characteristic curve (as k grows large), one can see
that lowering σ requires a higher kσ , and hence a dif-
ferent Wkσ (σ ) corresponding to a lower probability of
failure than implied by the previous Weibull lower tail.

It is important to appreciate that the mathematical
characterization and calculation of Wk̂ , as well as the

appropriate k̂ value for a given material volume and
probability of failure, is a mathematically deep and dif-
ficult topic. The approachwe have used above is largely
qualitative and strictly valid only for large Weibull
strength shape parameter, ζ , (i.e., greater than 15). Sur-
prisingly, it has worked very well in many instances for
much smaller ζ , (i.e. for 5 and less) as supported using
numerical analysis and Monte Carlo simulations (see
for instance: Mahesh et al. 2002; Phoenix and Beyer-
lein 2000). A more rigorous version of this argument
for the case of ζ → ∞ can be found in Sec. 5 of
Smith (1980), and for all values of ζ in Mahesh and
Phoenix (2004b). Also, Kuo and Phoenix (1987) pro-
vide a characterization of the problem in terms of a
recursive system of equations where Wk̂ has an eigen-
value interpretation.

In the setting of a stress-rupture lifetime test, while
early on, a larger value kσ , would be needed to fail
the composite at stress σ , significantly less than σ̂V ,
(say 1/3 to 2/3 of σ̂V ) the probability of the occurrence
of even one such cluster of size kσ larger than k̂ is
extremely small (orders of magnitude less than unity)
and even more remote than forming one of exactly size
k̂, which is already extremely small. However, as time
goes on, the situation changes as the smaller, more
likely forming clusters begin to grow, as is discussed
next. Nevertheless, in the model, failure is defined as
occurring once a cluster of size k̂ has formed irrespec-
tive of stress level.

3.2 Lifetime testing

Lifetime testing consists of loading the composite to a
specified load or stress level, and then sustaining that
load until the composite fails, presuming that the com-
posite did not already fail during initial loading (an
unlikely event, as the lifetime load level is typically
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14 A. Engelbrecht-Wiggans, S. L. Phoenix

a modest fraction of the mean strength of a typical
specimen). Stress rupture, the dominating failuremode,
arises in the model due to the matrix creeping and/or
progressive debonding in shear around fiber breaks,
thus increasing the length of the overloaded region on
neighboring fibers (in this paper we do not explicitly
model debonding through the effects are similar). Ear-
lier we assumed the classic power-law creep model
Eq. (5), in a shear-lag framework (Mason et al. 1992),
and obtained the characteristic load transfer length,
Eq. (9a), which increases with time. Below we use the
normalized version Eq. (9b), and where applicable, its
approximate power-law form.

Materials with high variability in fiber strength, as
indicated by low values for the Weibull shape param-
eter, ζ , (i.e., ζ � 1) are particularly susceptible to
such stress-rupture failures. This is because, as the over-
loaded region increases in length, the probability that
it will encounter a very weak flaw also increases due
to the high variability in both the strengths of flaws
and their locations. Carbonfibers particularly have high
variability in strength from one segment of length δe to
the next, meaning that an unusually strong portion of
a fiber is unlikely to be followed by an equally strong
portion (this is not the situation with Kevlar fibers, for
instance). Thismeans thatWeibull weakest flaw behav-
ior tends to persist down to the length scale of load
transfer. Even though the individual fibers themselves
are virtually immune to stress rupture, i.e. single car-
bon fibers under constant stress essentially fail on load-
ing or never fail, carbon/epoxy composites are much
more sensitive in comparison. As mentioned, the driv-
ing mechanism in the stress rupture of carbon/epoxy
composites is the increasing overload length around
individual fiber breaks and clusters, thus promoting
cluster growth.

To model stress rupture at a fixed stress level, σ̄ <

σ̂V , assuming exactly σ̄ is applied for all t ≥ 0 (i.e.,
no proof test occurs at some σp > σ̄) the lifetime dis-
tribution function can be derived as a modification of
the strength distribution Eq. (31) above. Using simi-
lar arguments, the distribution function for composite
lifetime follows:

HV (t; σ̄ ) ≈ 1 − exp
[−VWk̂ (t; σ̄ )

]
, t > 0, (38)

analogous to Eq. (14), whereWk̂ (t; σ̄ ) is a characteris-
tic distribution function analogous to Eq. (22), but with
an added time component:

Wk̂ (t; σ̄ ) ≈ ck̂ Fδe (σ̄ )

⎡

⎣
k̂−1∏

i=1

Fδe (Ki σ̄ , t)

⎤

⎦

≈ ck̂ Fδe (σ̄ ) Fδe (K1σ̄ , t) Fδe (K2σ̄ , t)

· · · Fδe

(
Kk̂−1σ̄ , t

)
, (39)

where k̂ is again defined by Eq. (34), and Fδe (σ̄ ) is
defined by Eq. (2) yielding:

Fδe (σ̄ , t) = 1 − exp

{

−δ (t)

δe

(
σ̄

σδe

)ζ
}

, (40)

which in the lower tail is approximated following
Eq. (4) as:

Fδe (σ̄ , t) ≈ δ (t)

δe

(
σ̄

σδe

)ζ

. (41)

Substituting Eq. (9) into Eq. (41) gives:

Fδe (σ̄ , t) ≈
√
1 + (t/tc)θ

(
σ̄

σδe

)ζ

. (42)

Using Eq. (42), the characteristic distribution function
for stress rupture, Eq. (39), becomes:

Wk̂ (t; σ̄ ) ≈ ck̂

(
σ̄

σδe

)ζ
[

δ (t)

δe

(
K1σ̄

σδe

)ζ
]

×
[

δ (t)

δe

(
K2σ̄

σδe

)ζ
]

· · ·
[

δ (t)

δe

(
Kk̂−1σ̄

σδe

)ζ
]

≈ ck̂

(
K1K2 · · · Kk̂−1

)ς (
σ̄ /σδe

)k̂ζ

×
(√

1 + (t/tc)θ
)k̂−1

. (43)

For sufficiently large times, i.e. when t � tc, Eq. (43)
can be further simplified using Eq. (9) to become:

Wk̂ (t; σ̄ ) ≈ ck̂

(
K1K2 · · · Kk̂−1

)ς

×
(

σ̄

σδe

)k̂ζ ( t

tc

) θ(k̂−1)
2

. (44)

Throughout these results, from Eqs. (38) to (44), we
assume that k̂ > 1, since otherwise, the problem is
trivial; that is, if k̂ = 1, the composite would either fail
on loading should anyfiber fail, or last indefinitely since
no initial fiber breaks would mean no further failures
could occur in time.

Note also that k̂ for lifetime is taken to be the same as
the k̂ used in modeling the strength, and thus is given
by either Eq. (35) in the planar case, or Eq. (36) for
a hexagonal fiber array. The reasonableness of using
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A stochastic model based on fiber breakage and matrix creep 15

the same k̂ value in lifetime settings has been demon-
strated in some detailed analysis in related earlier work
(Phoenix et al. 1988). The basic idea is that early on in
time under stress level σ̄ < σ̂V , being say 1/3 to 2/3 of
σ̂V , the probability of formation of at least one cluster
of size k̂ is initially extremely small (and one of larger
initial size kσ is even more remote), so the composite
survives with high probability. This situation changes,
however, as time passes and initially formed small clus-
ters grow as δ (t) expands relative to the initial value δe
following Eq. (9).

The form of Eq. (44) again reflects the fact that, for
the cluster to grow, a neighboring fiber element must
fail. As in the strength distribution, there are again Nk

neighboring fiber elements to a cluster of size k, but
unlike for the strength distribution, these elements are
now nominally of length δ (t) > δe. As before, each of
these longer fiber elements is exposed to the overload
Kk σ̄ , which increases as k grows. But now, additional
flaws are exposed, and additional fiber breaks occur to
add to the existing cluster. Ultimately the length over
which the search for flaws occurs grows to the point
where k̂ breaks are critical (more breaks are less likely
and having fewer breaks is insufficient since an even
longer δ (t) would be necessary).

An assumption implicit in this description is that
when a fiber breaks, the overloaded region on the
next fiber is not δe but instead jumps quickly to

δe

√
1 + (t/tc)θ . In reality, fiber breaks occur sequen-

tially, and thus, there is typically time between breaks,
and certainly much time between when the initial fiber,
k = 1, broke and when the final fiber, k = k̂, breaks.
Because of this difference in failure times there is actu-
ally some time lag for growth of the new overload
length at each new fiber failure site, but this is not
reflected in the above formula where the time over
which the overload length grows is taken as the original
time, t , thus artificially speeding up exposure to new
flaws. Simulations show, however, that the effect of
this assumption is small in light of the long timescales
involved (Beyerlein et al. 1998b). This is in large mea-
sure the result of the fact that the power law exponent
θ is typically much less than 1, such that, in relative
terms, there is rapid growth in δ (t) right after failure,
as is clear from Eq. (9). By comparison, the effect of
this assumption is also smaller than the effect of small
changes in stress level, σ̄ , or small errors in σδe . These
have a larger effect on lifetime and failure probabilities,

which are usually viewed using log scales. In practice,
stress level is the key driver and the quantity easiest to
control.

The resulting Weibull approximation for longer
times, t � tc, is:

HV (t; σ̄ ) ≈ 1 − exp

⎡

⎣−
((

σ̄

σ̂V

)ρ̂ t

tc

)β̂
⎤

⎦ , t � tc,

(45)

where σ̂V is as given in Eq. (32), where:

β̂ =
(
k̂ − 1

)
θ/2 = α̂

ρ̂
, (46)

is the Weibull shape parameter, and where:

ρ̂ = 2ζ k̂

θ
(
k̂ − 1

) , (47)

is the power-law exponent for lifetime versus stress
level, and where typically ρ̂ >> 10. Equation Eq. (45)
can be re-written in the Weibull form:

HV (t; σ̄ ) ≈ 1 − exp

[
− (t/t̂V (σ̄ )

)β̂
]

, t >> tc,

(48)

where:

t̂V = tc
(
σ̄ /σ̂V

)−ρ̂
, (49)

is the effectiveWeibull scale parameter for lifetime, and
once again β̂ is the associatedWeibull shape parameter,
where typically β̂ < 1, and often β̂ << 1.

To summarize, in lifetime testing the failure prob-
ability on loading is very small, as the applied stress,
σ̄ , is much smaller than the scale parameter for ten-
sile strength, σ̂V (this, of course, assumes there are no
‘manufacturing defects’ not reflected by the model).
Instead the concern is for failure at long times, t � tc,
even though the fibers themselves may not suffer time
dependent degradation. This is because there are ini-
tial fiber failures on loading, causing immediate over-
loads onto neighboring fiber elements of elastic length
δ = δe. Over time these overloaded regions increase in
length, and thus, the remaining k̂ − 1 fibers (required
to create a critical cluster of size k̂) eventually fail due
to time dependency through matrix creep.

Three assumptions are implicit in the above discus-
sion: The first is that any other initial fiber failures are
automatically accounted for in the time dependent fail-
ures. The second is that k̂ for stress rupture at long times
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16 A. Engelbrecht-Wiggans, S. L. Phoenix

is virtually the same as k̂ for strength at times near zero
(of course requiring amuch higher stress level), and the
associated stress concentrating K j values themselves
are also preserved, as a result of assuming linear vis-
coelastic creep behavior. Lastly k̂ > 1 since otherwise
the composite would fail on loading with the first fiber
to break or survive indefinitely if no such fiber breaks
occurred.

Finally, in deriving Eqs. (43) and (44), we have
assumed that fiber breaks form a common transverse
plane. Thus, we have ignored the potential conse-
quences of staggering of breaks in significantly reduc-
ing the stress concentrations on intact neighbors, and
thus, their probabilities of subsequent failure. How-
ever, as mentioned earlier, the degree to which signif-
icant staggering takes place decreases with increasing
fiber Weibull shape parameter for strength, ζ . Also, as
time goes on, the increase in the overload length, δ (t),
effectively reduces the effect of staggering so that fiber
breaks increasingly act as though they are aligned. This
effect can be seen in Figure 8 of Mahesh and Phoenix
(2004a), and was shown to be an important factor in
achieving agreement between theoretical and Monte
Carlo simulated lifetime distributions.

4 Modeling effect of proof testing on the
probability of composite failure

Proof testing consists of loading the composite to some
proofing stress, σp, before reducing the stress to a life-
time maintenance level, σ̄ . For the purposes of this
paper we will assume the simplified load profile:

σ (t) =
{

σp, 0 ≤ t < tp
σ̄ , t ≥ tp

, (50)

where tp is the proof hold time; that is, the effects of
the short times spent ramping the load level up to σp
and then back down to σ̄ are assumed negligible in
comparison to tp.

Proof tests are often applied to COPVs with the
implicit goal of filtering out weak vessels. For metal
pressure vessels, and many homogeneous materials in
general, this process can be argued to be all beneficial
with no drawbacks, i.e., the lifetime failure probabil-
ity conditional on surviving the proof test is reduced
compared to the lifetime failure probability without
the proof test. In ductile materials this can be due to
crack blunting, and in brittle materials this can be due

toweeding out all specimenswith flaws or cracks above
a critical length, without introducing new ones. In com-
posites, however, the benefits are far less clear.

In reality, proof testing of a COPV may serve the
purpose of exposing andweeding out vesselswithman-
ufacturing defects such as flawed liners or some gross
manufacturing irregularity in the overwrap, such as
missing tows or even awrap, or the use of carbon/epoxy
prepreg beyond its expiration date for proper resin flow
and curing. These important aspects of proof testing
are not reflected in our modeling, and by ignoring such
possibly defective tanks in a manufacturing setting, the
probability of failure of a freshly manufactured COPV,
during the proof test, may actually be much higher than
our models would initially suggest. That said, our anal-
ysis is more focused onwhether proof testing of an oth-
erwise ‘good tank’, i.e., one with no such gross manu-
facturing defects, induces unintentional damage to the
composite.

From the point of view of our modeling, it is clear
that, because of the proof test, many fiber elements will
fail at the higher proof stress level, σp, that would not
have failed under the lower lifetime stress level, σ̄ , as
used in service. These additional fiber failures from
the proof test provide many additional locations for
subsequent time dependent cluster growth, potentially
accelerating the stress-rupture process.

For instance, the number, n
(
σp
)
, of fiber breaks at

the proof stress level σp, divided by the number, n (σ̄ ),
at the lifetime load level, σ̄ , is given by:

n(σp)/n(σ̄ ) = (σp/σ̂V )ζ /(σ̄ /σ̂V )ζ = (σp/σ̄ )ζ . (51)

For the carbon fiber value, ζ = 5, and for σp/σ̄ = 1.5,
we obtain n (1.5σ̄ )/n (σ̄ ) = 7.6. Thus, there are 7.6
times as many single fiber breaks or ‘singlets’ due to
the proof test than without the proof test. These addi-
tional singlets provide many more seeds for stress rup-
ture than would have occurred without the proof test.
The situation is made worse, however, as the proof
test will not only cause singlets, but could also form
clusters of two or more broken fibers, according to
Eqs. (15) through (18). In this way the proof test cre-
ates a larger number of broken fiber clusters of all sizes
that would not have otherwise occurred on loading (nor
later on unless eventually subsumed by another nearby
cluster), potentially making later stress-rupture failure
more likely.

At the same time, a proof test to stress level σp would
eliminate any vessels in the lower tail of the strength
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A stochastic model based on fiber breakage and matrix creep 17

distribution, which is beneficial, at least in the short
run (certainly in potentially eliminating tanks with
defective liners, or missing tows, etc.). This raises the
potential for trade-offs whereby there are time regimes
where proof testing is beneficial and other time regimes
(shorter or longer) where it is not. With the appropriate
proof level this feature could be exploited.

Note that the fiber itself benefits in some respects
from the proof test. This is because any fiber flaws
weaker than σp, irrespective of their location, will fail
in the proof test, and possibly be involved in various
clusters. However, the remaining unbroken fiber flaws
will then have strength greater than σp. Furthermore,
for a stable cluster to grow after the proof test, i.e.,
after time tp, the overloaded region must expand along
the adjacent fibers. This is because the overloaded fiber
elements directly adjacent to the cluster already have
strength greater than K jσp where j is the cluster size
(otherwise they would have also failed in the proof
test), and under the subsequent lower, lifetime service
stress, σ̄ < σp, the overload has been lowered to K j σ̄ .
When this overload expansion along neighboring fiber
regions occurs, one of two situations may happen as
follows:

Situation one This situation occurs when the clus-
ter formed in proof testing is large enough such that the
overload, K j σ̄ , created on the neighboringfiber regions
expanding longitudinally over time after time, tp, is
greater than the proof stress level, σp, to which all fiber
elements were previously exposed. These expanded
regions were not themselves exposed to overloads from
the cluster during the proof test, and therefore, have
only been exposed thus far to a stress level of σp. Thus,
new failures after the proof hold are caused by the over-
load K j σ̄ > σp in these newly expanded regions along
neighboring fibers to the cluster.

Situation two This situation occurs when the cluster
is small enough after proof testing such that over-load
stresses after time tp are less than or equal to the proof
stress, that is, K j σ̄ ≤ σp. Thus, as the overload length
increases, cluster growth can continue only by encoun-
tering previous fiber breaks resulting from flaws that
already failed under σp, rather than by creating new
failures from flaws of strength of K j σ̄ or less, since
these would have already failed under the applied load
σp. Note that when K j σ̄ is significantly less than σp, it
may take several previously broken flaws, say i , to be
encountered in succession in order to grow the cluster
to where we eventually have K j+i σ̄ > σp.

For situationone to occur, there is aminimumcluster
size, denoted kp = kp(σ̄ /σp), satisfying:

Kkp−1σ̄ < σp ≤ Kkp σ̄ . (52)

For a planar array, where K j is given in Eq. (28) as
K j ≈ √

1 + π j/4, this minimum cluster size is:

kp =
⌈
4

π

[(σp

σ̄

)2 − 1

]⌉
, (53)

while for a hexagonal array,with K j given inEq. (29) as

K j ≈
√
1 +√

4 j/π3, the minimum size is determined
to be:

kp =
⌈

π3

4

[(σp

σ̄

)2 − 1

]2⌉

. (54)

Depending on the ratio σp/σ̄ , and the values of var-
ious model parameters, it is theoretically possible to
obtain a minimum size, kp, satisfying Eq. (52), that
actually exceeds k̂, the critical cluster size satisfying
Eq. (34), i.e. Kk̂−1 < σδe/σ̂V < Kk̂ . This threshold
in the model would be exceeded if the ratio of the
proof test stress to the long-term service stress level
exceeds the ratio of the fiber element strength to the
Weibull scale parameter for composite strength, that
is, σp/σ̄ > σδe/σ̂V .

The probabilities for the various cluster formation
paths resulting from a proof test must be assessed and
summed systematically, and any potential sequences
only ruled out when it is clear they are dominated by
probabilities of occurrence of other, far more likely
sequences. In the current case we have conservatively
defined the occurrence of a cluster of k̂ breaks as equiv-
alent to failure.

The following analysis is subdivided into consider-
ing two cases and associated probabilities of failure.
Overall, we seek the cumulative distribution function
for failure, denoted, HV

(
t; σ̄ , σp

)
covering all times

t > 0, both during the proof hold time up to time tp,
and afterwards. The first is where failure occurs during
the proof test itself, specifically during time 0 < t < tp.
For this case the analysis is straightforward, and it is
easy to arrive at this portion of the cumulative distri-
bution function for failure. The second case is where
failure occurs at some longer time, t ≥ tp, when the
composite is now under lower service load, σ (t) = σ̄ .
This analysis is more complicated, requiring consider-
ation of many possible events for both 0 < t < tp and
t ≥ tp, and related quantities, Wk̂,kp

. Determining the
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18 A. Engelbrecht-Wiggans, S. L. Phoenix

distribution function for failure requires summing the
probabilities for all such events.

The first step in investigating what happens for t ≥
tp is to consider the state of the composite at time tp.
Again, we assume k̂ ≥ 2 since otherwise the composite
would fail on loading with the first fiber to break or
survive indefinitely if no such fiber break occurred.

4.1 Probability of forming a cluster of size k̂ ≥ 2
during proof hold time, tp, causing failure

We now consider failure probabilities under an initial
proof test to stress σp over 0 < t < tp, where tp is
termed the ‘proof holding time’, and after which the
stress is lowered to σ̄ for t ≥ tp. This is the stress
profile σ (t) described by Eq. (50). For failure to occur
during the proof test, 0 < t < tp, a critical cluster of
size at least k̂must form (which is failure by definition),
and in that event we have:

HV
(
t; σ̄ , σp

)

≈ 1 − exp
[−VWk̂

(
t; σp

)]
, 0 < t < tp, (55)

analogous to Eq. (38), where:

Wk̂

(
t; σp

) ≈ ck̂ Fδe

(
σp
)
⎡

⎣
k̂−1∏

i=1

Fδe

(
Kiσp, t

)
⎤

⎦

≈ ck̂

⎛

⎝
k̂−1∏

i=1

Ki

⎞

⎠

ζ (
σp

σδe

)k̂ζ

×
⎛

⎝

√

1 +
(
t

tc

)θ
⎞

⎠

k̂−1

, 0 < t < tp and k̂ ≥ 2.

(56)

The right hand side of Eq. (56) is simply Eq. (43) upon
taking σ = σp.

4.2 Probability of forming a cluster of exactly size
k̂ − 1 during proof hold time, tp, but eventually
growing to critical size, k̂ ≥ 2

Next we consider times, t ≥ tp, and suppose that an
initial cluster of exactly k̂ − 1 breaks occurs under the
proof hold to tp, that is, the cluster size is one short
of that required to fail the composite, (since by defi-
nition, the occurrence of a cluster of k̂ breaks implies

failure). To reach a cluster of critical size k̂ at some
later time, t ≥ tp, requires failure of at least one near-
est neighbor. In the degenerate case where σp = σ̄ ,
(i.e., not a true proof test), then for failure to occur
after t � tp, the overload length need only grow until
Fδe

(
Kk̂ σ̄ , t

) ≈ 1/2. However, when σ̄ < σp, the anal-
ysis is more complicated, and we must look closely at
the two situations described above regarding the cluster
size after the proof test, and specifically its relation to
the critical proof threshold size, kp. Thuswe investigate
first the case where a cluster of exactly k̂ − 1 breaks
forms during 0 < t < tp, and where kp ≤ k̂ − 1. We
then consider other possibilities for kp relative to k̂.

4.2.1 Cluster of size k̂ − 1 forms during proof hold
time, tp, where 1 ≤ kp ≤ k̂ − 1 and k̂ ≥ 2

In considering the formation of a cluster of k̂ − 1
breaks during the proof test, we first consider situa-
tion one above, whereby the cluster size must satisfy
1 ≤ kp ≤ k̂ − 1, the critical proof threshold size. In
this case, the overloads caused by the cluster after time
tp are larger than the previously applied load σp, and
new flaws are encountered once the neighboring fiber
regions lengthen in time following δ (t). The character-
istic distribution function for this event takes the form:

Wk̂,kp< k̂

(
t; σ̄ , σp

)

≈ ck̂−1Fδe

(
σp
)
⎡

⎣
k̂−2∏

i=1

Fδe

(
Kiσp, tp

)
⎤

⎦

×
(
1 − Fδe

(
Kk̂−1σp, tp

))Nk̂−1

×Nk̂−1

(
Fδe

(
Kk̂−1σ̄ , t

)
− Fδe

(
Kk̂−1σ̄ , tp

))
,

t ≥ tp, 2 ≤ kp ≤ k̂ − 1 and k̂ > 2, (57)

where, as before, Nk̂−1 is the number of nearest neigh-

bors around a cluster of k̂ − 1 breaks. As written,
Eq. (57) assumes k̂ > 2, however, if the product term
in square parentheses is omitted (i.e., only one break
occurs during proof up to time tp) then the formula
applies also to k̂ ≥ 2.

To understand the structure of Eq. (57) we note that
exactly k̂ − 1 breaks occur over time tp, and afterwards
one of the Nk̂−1 nearest neighbors fails, causing com-
posite failure, since the cluster is now of critical size,
k̂. Since this additional fiber did not fail by time tp, the
portion of the fiber exposed to this overload is stronger
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than Kk̂−1σp > Kk̂−1σ̄ . Thus, when calculating the
probability for the fiber’s subsequent failure, we need
only consider lengths that are newly exposed. For each
of the Nk̂−1 overloaded fibers, this is captured by the
incremental probability:

Fδe

(
Kk̂−1σ̄ , t

)
− Fδe

(
Kk̂−1σ̄ , tp

)
, (58)

a quantity easier to appreciate when Eq. (41) is substi-
tuted into Eq. (58), resulting in:

Fδe

(
Kk̂−1σ̄ , t

)
− Fδe

(
Kk̂−1σ̄ , tp

)

≈
(
Kk̂−1σ̄

σδe

)ζ
(

δ (t) − δ
(
tp
)

δe

)

. (59)

Finally, the term in the second line of Eq. (57) accounts
for the probability of survival of all the neighboring
fiber elements up to the end of the proof hold time, tp,
over overload length δ

(
tp
)
:

(
1 − Fδe

(
Kk̂−1σp, tp

))Nk̂−1

≈ exp

{

−Nk̂−1

(
Kk̂−1σp

σδe

)ζ
δ
(
tp
)

δe

}

, (60)

since only k̂−1 breaks occur during the proof test itself,
thus no neighbors failed during tp.

From Eqs. (59) and (60), and using Eq. (41) on the
remaining terms in Eq. (57), we reduce Eq. (57) to:

Wk̂,kp< k̂

(
t; σ̄ , σp

)

≈ ck̂

(
K1K2 · · · Kk̂−2

)ζ
(

σp

σδe

)(k̂−1
)
ζ

×
(

δ
(
tp
)

δe

)(k̂−2
)

× exp

{

−Nk̂−1

(
Kk̂−1σp

σδe

)ζ
δ
(
tp
)

δe

}

×
(
Kk̂−1σ̄

σδe

)ζ
[

δ (t) − δ
(
tp
)

δe

]

, t ≥ tp, (61)

where, recalling Eq. (25), we have c1 = 1, and ck̂ =
Nk̂−1ck̂−1, k̂ > 1.

Taking δ (t)/δe =
√
1 + (t/tc)θ , as in Eq. (9), and

rearranging the result, we can rewrite Eq. (61) as:

Wk̂,kp< k̂

(
t; σ̄ , σp

)

≈ ck̂

⎛

⎝
k̂−1∏

i=1

Ki

⎞

⎠

ζ (
σp

σδe

)k̂ζ
⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k̂−1

×
⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

−1

× exp

⎧
⎨

⎩
−Nk̂−1

(
Kk̂−1σp

σδe

)ζ
√

1 +
(
tp
tc

)θ

⎫
⎬

⎭

×
⎛

⎝

√

1 +
(
t

tc

)θ

−
√

1 +
(
tp
tc

)θ
⎞

⎠

×
(

σ̄

σp

)ζ

, t ≥ tp, 1 ≤ kp ≤ k̂ − 1 and k̂ ≥ 2.

(62)

As mentioned, Eq. (61) required k̂ > 2, however, in
light of the associated comment, Eq. (62) is also valid
for k̂ ≥ 2 and 1 ≤ kp ≤ k̂ − 1 as indicated, whereupon
the term in the second line is unity.

4.2.2 Cluster of size k̂ − 1 forms during proof hold
time, tp, where 1 ≤ kp − 1 = k̂ − 1 and k̂ ≥ 2

Equations (55) through (62) assumed that kp ≤ k̂ −
1, i.e. the overloads, caused by the cluster after time
tp, were larger than the previously applied load σp. If,
instead, we have kp = k̂, and a cluster of size k̂ − 1 has
already resulted from the proof test, we have situation
two described above whereby all overloads during the
subsequent sustained loading, σ̄ , will now be less than
σp, and thus no new fiber breaks can occur due to the
expanding overload length. However, the proof load σp
will still have resulted in broken fibers, so we simply
must wait for the overload region to grow in length
until it engulfs a previously broken fiber at a flaw that
was weaker than σp in order to finally grow the cluster
to size k̂, the failure size. As such, the characteristic
distribution function for this event takes the form:

Wk̂,k̂≤kp

(
t; σ̄ , σp

)

≈ ck̂−1Fδe

(
σp
)
⎡

⎣
k̂−2∏

i=1

Fδe

(
Kiσp, tp

)
⎤

⎦

×
(
1 − Fδe

(
Kk̂−1σp, tp

))Nk̂−1

×Nk̂−1

(
Fδe

(
σp, t

)− Fδe

(
σp, tp

))
,

t ≥ tp, and 2 < k̂ = kp. (63)

As written, Eq. (63) assumes k̂ > 2. However, as with
Eq. (57), if the product term in square parentheses is
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omitted (since only one break occurs up to time tp)
then the formula applies also to k̂ ≥ 2. The key dif-
ference between Eqs. (57) and (63) is that instead of
searching for newly exposed flaws that are weaker than
Kk̂−1σ̄ , and calculating the associated probability of
finding them, we instead search for flaws weaker than
σp, i.e. flaws that already failed during the proof test.
Thus only the last term in Eq. (57) changes, becoming
Fδe

(
σp, t

)− Fδe

(
σp, tp

)
.

Substituting Eq. (41) into Eq. (63) and again using
Eq. (9), we manipulate Eq. (63) into the convenient
form:

Wk̂,k̂≤kp

(
t; σ̄ , σp

)

≈ ck̂

⎛

⎝
k̂−1∏

i=1

Ki

⎞

⎠

ζ (
σp

σδe

)k̂ζ

×
⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k̂−1⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

−1

× exp

⎧
⎨

⎩
−Nk̂−1

(
Kk̂−1σp

σδe

)ζ
√

1 +
(
tp
tc

)θ

⎫
⎬

⎭

×
⎛

⎝

√

1 +
(
t

tc

)θ

−
√

1 +
(
tp
tc

)θ
⎞

⎠

×
(

1

Kk̂−1

)ζ

, t ≥ tp, 2 ≤ kp = k̂ and k̂ ≥ 2.

(64)

Note that Eq. (64) is also valid for 2 ≤ kp = k̂ and
k̂ ≥ 2 since the last factor in the second line vanishes
when k̂ − 1 = 1. Also Eq. (64) no longer involves kp
as a parameter but only σp itself.

4.2.3 Cluster of size k̂ − 1 forms during proof hold
time, tp, where 2 ≤ k̂ < kp

Having considered cases kp ≤ k̂ after having k̂ − 1
breaks formup to time tp,we alsomayhave2 ≤ k̂ < kp.
This occurs if one has an excessively high proof ratio,
σp/σ̄ , and a value of k̂ such that Kk̂−1σp/σδe is of order

unity or larger whereby Fδe

(
Kk̂−1σp, tp

)
→ 1. This

case also happens to be covered by Eqs. (63) and (64),
which again no longer involves kp as a parameter.

4.3 Cluster of size k forms during proof hold time, tp,
where 1 ≤ k < k̂ − 1 and k̂ ≥ 2

Suppose that during time 1 < t < tp a cluster of k
fiber breaks forms, but this time k < k̂ − 1, i.e., two
or more additional breaks are needed to reach critical
size k̂ occurring during t ≥ tp. In Sect. 4.3.1 we study
situation onewhere kp ≤ k, and in Sect. 4.3.2 we study
situation two, where k < kp ≤ k̂. Lastly, in Sect. 4.3.3
we address the case where k̂ < kp.

4.3.1 Cluster of size k forms during proof hold time,
tp, with 1 ≤ kp ≤ k ≤ k̂ − 2 and k̂ ≥ 2

When a cluster of k < k̂ − 1 fiber breaks forms by
time tp, then composite failure by some time, t , after
the proof test (which requires a cluster of k̂ breaks) is
caused by a sequence of at least k̂ − k > 1 additional
failures, beginning with the failure of a fiber flanking
the stalled k cluster. Since kp ≤ k, the overloads, for
tp ≤ t , are larger than the previously applied load σp.
In the case, 1 < kp ≤ k ≤ k̂ − 2 and k̂ > 3, the
characteristic distribution function thus takes the form:

Wk̂,kp ≤k< k̂−1

(
t; σ̄ , σp

)

≈ ck Fδe

(
σp
)
[
k−1∏

i=1

Fδe

(
Kiσp, tp

)
]

× (1 − Fδe

(
Kkσp, tp

))Nk

×Nk
(
Fδe (Kk σ̄ , t) − Fδe

(
Kk σ̄ , tp

))

×
⎡

⎣
k̂−1∏

i=k+1

Ni Fδe

(
Ki σ̄ , t − tp

)
⎤

⎦ ,

t ≥ tp, 1 < kp ≤ k ≤ k̂ − 2 and k̂ > 3. (65)

As written, this equation assumes k̂ > 3. However, as
with (57), if the first product term in square parentheses
is omitted (i.e., only one break occurs up to time tp) then
the formula applies also to k̂ ≥ 3 (further reductions to
allow k̂ ≥ 2 are discussed below).

The first two lines in Eq. (65) results from arguments
similar to those made in connection with Eqs. (57)
and (63) but with k less than k̂ − 1, while the third
line in Eq. (65) results from similar arguments associ-

ated with Eq. (58). The quantity, ck Fδe

(
σp
) [∏k−1

i=1 Fδe
(
Kiσp, tp

) ]
, in the first line is the probability that
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exactly k fibers failed during the proof time, tp. The

term,
(
1 − Fδe

(
Kkσp, tp

))Nk , is the probability that,
by assumption, none of the Nk neighboring fibers
failed during time up to tp as a result of the over-
load of the k broken fibers to that point. The term,
Nk
(
Fδe (Kk σ̄ , t) − Fδe

(
Kk σ̄ , tp

))
, is the approximate

probability of failure of at least one of the newly
exposed portions of the Nk neighboring fibers.

Once such a neighboring fiber has failed, new fiber
lengths become exposed to Kk+1σ̄ , whose previous
maximum load was simply σp. Since σp < Kk+1σ̄ , we
must search the whole overloaded region for flaws to
fail and calculate the associated probability. The final
product term in Eq. (65) reflects this, though it does
not differentiate between the remaining fibers that were
neighbors to the stalled cluster versus neighbors newly
created by the k + 1, k + 2… k̂ − 1 breaking fibers.
Thus, this term corresponds to the failure probability of
the remaining k+2 through k̂ fibers, with the growth of
the overload length starting at time tp. Thus, this final
term approximates the desired quantity.

Taking Eq. (65) and substituting in Eq. (41) to
approximate the failure probability of a fiber element,
and using Eq. (9) for δ (t), we can manipulate Eq. (65)
into the form:

Wk̂,kp ≤k< k̂−1

(
t; σ̄ , σp

)

≈ ck̂

⎛

⎝
k̂−1∏

i=1

Ki

⎞

⎠

ζ (
σp

σδe

)k̂ζ

×
⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k̂−1⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k−k̂

× exp

⎧
⎨

⎩
−Nk

(
Kkσp

σδe

)ζ
√

1 +
(
tp
tc

)θ

⎫
⎬

⎭

×
⎛

⎝

√

1 +
(
t

tc

)θ

−
√

1 +
(
tp
tc

)θ
⎞

⎠

×
(

σ̄

σp

)(k̂−k
)
ζ
⎛

⎝

√

1 +
(
t − tp
tc

)θ
⎞

⎠

k̂−k−1

,

t ≥ tp, 1 ≤ kp ≤ k ≤ k̂ − 2 and k̂ ≥ 3, (66)

which, as indicated, also happens to be valid for 1 ≤
kp ≤ k ≤ k̂−2 and k̂ ≥ 3. Note that when 1 = kp = k,
the two terms in the second line vanish. If we take
k = k̂ − 1 allowing k̂ ≥ 2, the last quantity in the last

line vanishes and this result collapses to (62) and does
not depend on kp.

4.3.2 Cluster of size k forms during proof hold time,
tp, with 1 < k < kp ≤ k̂ and k̂ ≥ 3

Again, suppose that during time tp a smaller cluster of
1 < k < k̂ − 1 fiber breaks forms but this time we also
have k < kp ≤ k̂. Here, all initial overloads during the
sustained loading will now be less than σp, and thus,
no new fibers will break until the cluster size reaches
kp. Once the cluster has reached size kp, and the load
is thus greater than the proof load, σp, new breaks will
occur until the critical cluster size, k̂, is reached and
the composite fails. In the case, 1 < k < kp ≤ k̂, and
k̂ > 4, the characteristic distribution function takes the
general form:

Wk̂,k< kp −1< k̂−1

(
t; σ̄ , σp

)

≈ ck Fδe

(
σp
)
[
k−1∏

i=1

Fδe

(
Kiσp, tp

)
]

× (1 − Fδe

(
Kkσp, tp

))Nk

×Nk
(
Fδe

(
σp, t

)− Fδe

(
σp, tp

))

×
[

kP−1∏

i=k+1

Ni Fδe

(
σp, t − tp

)
]

×
⎡

⎣
k̂−1∏

i=kp

Ni Fδe

(
Ki σ̄ , t − tp

)
⎤

⎦ ,

t ≥ tp, 1 < k < kp < k̂ and k̂ > 4. (67)

If only one break occurs during proof up to time tp, i.e.
k = 1, then the product term in square parentheses in
the first line can be omitted, and the formula applies
also to k̂ ≥ 4. Additionally, if 1 = k = kp − 1 < k̂ − 1
the product term in square parentheses in the fourth
line also vanishes, thus allowing k̂ ≥ 3. Finally, if k =
kp − 1 = k̂ − 1 the product term in square parentheses
in the last line also vanishes and allows k̂ ≥ 2. In this
case Eq. (67) reduces to Eq. (63).

The first two lines in Eq. (67) are the same as in
Eq. (65) and the arguments are the same. However, we
now have k < kp, so all overloads during the sustained
loading from cluster size k up to cluster size kp will
still be less than σp. Thus, no new fibers will break
even as the overload lengths expand following δ (t),
and the cluster grows only by encountering breaks that
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occurred earlier under stress, σp. Thus, the third and
fourth lines use σp as the applied stress instead of Ki σ̄ ,
as in Eq. (65). After that, for cluster sizes kp ≤ i up to
the critical size k̂−1, there emerge newfiber breaks due
to the overloads from the steady stress, Ki σ̄ , and where
from a probability of failure point of view, fibers are
taken as essentially ‘fresh’ and unaffected by the previ-
ous proof test stress, σp (i.e., they would be broken any-
way). The term in the last line reflects that probability.

Using Eq. (41) to approximate the failure probabil-
ity of a fiber element, and using Eq. (9) to describe the
growing length of the overload, Eq. (67) can be factored
and rearranged into the form:

Wk̂,k≤ kp −1≤ k̂−1

(
t; σ̄ , σp

)

≈ ck̂

⎛

⎝
k̂−1∏

i=1

Ki

⎞

⎠

ζ (
σp

σδe

)k̂ζ

×
⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k̂−1⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k−k̂

× exp

⎧
⎨

⎩
−Nk

(
Kkσp

σδe

)ζ
√

1 +
(
tp
tc

)θ

⎫
⎬

⎭

×
⎛

⎝

√

1 +
(
t

tc

)θ

−
√

1 +
(
tp
tc

)θ
⎞

⎠

⎛

⎝
kp−1∏

i=k

1

Ki

⎞

⎠

ζ

×
(

σ̄

σp

)(k̂−kp
)
ζ
⎛

⎝

√

1 +
(
t − tp
tc

)θ
⎞

⎠

k̂−k−1

,

t ≥ tp, 1 ≤ k ≤ kp − 1 ≤ k̂ − 1 and k̂ ≥ 3,

(68)

and in light of the comments following Eq. (67), the
above form also happens to be valid for the cases
1 ≤ k ≤ kp − 1 ≤ k̂ − 1 and k̂ ≥ 3, as indicated.
Note that when k = 1, the two terms in the second line
vanish, andwhen kp = k̂, the first factor in last line van-
ishes. Lastly, in the special case k = kp − 1 = k̂ − 1,
then the last line and the last term in the second line dis-
appear and the result collapses to Eq. (64) with k̂ ≥ 2.

4.3.3 Cluster of size k forms during proof hold time,
tp, with 1 ≤ k ≤ k̂ − 1 < kp − 1

Having just considered the cases where kp ≤ k̂, we also
must consider k ≤ k̂−1 < kp−1. For this to occur one

must have a very high proof ratio,σp/σ̄ , and a value of k̂
such that Kk̂σp/σδe may be of order unity or larger. This
case is also covered by Eqs. (67) and (68) upon replac-
ing kp with k̂, giving Wk̂,k≤ k̂−1<kp −1

(
t; σ̄ , σp

)
. The

result no longer involves kp as a parameter, but only σp.

4.4 Summation of mutually exclusive events to obtain
characteristic distribution function for composite
failure

Here we obtain the general characteristic distribution
function, denoted, Wk̂,kp

(
t; σp, σ̄

)
for failure after a

proof test for the case t ≥ tp. This involves summing
probabilities for all possible values of 1 ≤ k ≤ k̂,
which is the number of fiber breaks occurring over time
0 < t < tp on the way to forming an eventual critical
cluster of size k̂ during later time t ≥ tp.

In view of all the cases and equations described in
Sects. 4.1, 4.2.1, 4.2.2, 4.2.3, 4.3.1, 4.3.2 and 4.3.3,
and summing the first equations in each section but
rearranged in order of related cases, we obtain the fol-
lowing: For the case 1 ≤ kp < k̂ and k̂ ≥ 2, and sum-
ming on both 1 ≤ k < kp < k̂ and 1 ≤ kp ≤ k < k̂
we obtain:

Wk̂,kp< k̂

(
t; σp, σ̄

)

≈ ck̂ Fδe

(
σp
)
⎡

⎣
k̂−1∏

i=1

Fδe

(
Kiσp, tp

)
⎤

⎦

+
k̂−1∑

k=kp

ck Fδe

(
σp
)
[
k−1∏

i=1

Fδe

(
Kiσp, tp

)
]

× (1 − Fδe

(
Kkσp, tp

))Nk

×Nk
(
Fδe (Kk σ̄ , t) − Fδe

(
Kk σ̄ , tp

))

×
�
�

k̂−1∏

i=k+1

Ni Fδe

(
Ki σ̄ , t − tp

)
�
�

+
kp−1∑

k=1

H
(
kp − k

)
ck Fδe

(
σp
)

×
�
k−1∏

i=1

Fδe

(
Kiσp, tp

)
�
(
1 − Fδe

(
Kkσp, tp

))Nk

×Nk
(
Fδe

(
σp, t

)− Fδe

(
σp, tp

))

×
�

kP−1∏

i=k+1

Ni Fδe

(
σp, t − tp

)
�
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×
�
�

k̂−1∏

i=kp

Ni Fδe

(
Ki σ̄ , t − tp

)
�
� ,

t ≥ tp, 1 ≤ kp < k̂ and k̂ ≥ 2, (69)

where for any function gi , and any non-negative inte-
gers p, q and i we define:
�
�

q∏

i=p

gi

�
� ≡

⎧
⎨

⎩

q∏

i=p
gi , 1 ≤ p ≤ q

1, 0 ≤ q < p,
(70)

where the quantity in double-square parentheses is the
usual product unless q < p where it is unity. We also
define a left-continuous version of the ‘Heaviside func-
tion’, (i.e., H (0) ≡ 0, instead of equaling ‘1’):

H (κ) ≡
{
0, κ ≤ 0
1, κ > 0.

(71)

We similarly obtainWk̂,kp≥k̂

(
t; σp, σ̄

)
, covering the

case 2 ≤ k̂ ≤ kp, which involves summing over 1 ≤
k ≤ k̂ − 1. This results in an overall result covering
both cases, which is:

Wk̂,kp

(
t; σp, σ̄

)

≈ ck̂ Fδe

(
σp
)
⎡

⎣
k̂−1∏

i=1

Fδe

(
Kiσp, tp

)
⎤

⎦

+
k̂−1∑

k=1

ck Fδe

(
σp
)
Nk

�
�
k−1∏

i=1

Fδe

(
Kiσp, tp

)
�
�

× (1 − Fδe

(
Kkσp, tp

))Nk

× {H (k − kp + 1
) (

Fδe (Kk σ̄ , t) − Fδe

(
Kk σ̄ , tp

))

×
�
�

k̂−1∏

i=k+1

Ni Fδe

(
Ki σ̄ , t − tp

)
�
�

+H
(
kp − k

) (
Fδe

(
σp, t

)− Fδe

(
σp, tp

))

×

�
���

(
k̂∨kP

)
−1

∏

i=k+1

Ni Fδe

(
σp, t − tp

)

�
���

×
�
�

k̂−1∏

i=kp

Ni Fδe

(
Ki σ̄ , t − tp

)
�
�
⎫
⎬

⎭
,

t ≥ tp and k̂ ≥ 2 , (72)

where we have introduced H
(
k − kp + 1

)
in the first

sum rendering the terms ‘zero’ when k < kp. Also
k1 ∨ k2 ≡ min (k1, k2), is the minimum of k1 and k2.

Thus, in covering the case 2 ≤ k̂ ≤ kp, the first sum
vanishes in deference to the second sum whose upper
limit becomes k̂ − 1, and in this case, the upper limits
of all products over index i cannot exceed k̂ − 1, the
critical cluster size in Sects. 4.2.3 and 4.3.3.

Using the special versions for the various terms in
Sects. 4.1, 4.2.1, 4.2.2, 4.2.3, 4.3.1, 4.3.2 and 4.3.3
(final equation in each), we get the following: For the
case 1 ≤ kp < k̂ and k̂ ≥ 2 we have:

Wk̂,kp<k̂

(
t; σ̄ , σp

)

≈ ck̂

⎛

⎝
k̂−1∏

i=1

Ki

⎞

⎠

ζ (
σp

σδe

)k̂ζ
⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k̂−1

×

⎧
⎪⎨

⎪⎩
1 +

k̂−1∑

k=kp

⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k−k̂

× exp

⎧
⎨

⎩
−Nk

(
Kkσp

σδe

)ζ
√

1 +
(
tp
tc

)θ

⎫
⎬

⎭

×
⎛

⎝

√

1 +
(
t

tc

)θ

−
√

1 +
(
tp
tc

)θ
⎞

⎠
(

σ̄

σp

)(k̂−k
)
ζ

×
⎛

⎝

√

1 +
(
t − tp
tc

)θ
⎞

⎠

k̂−k−1

+
kp−1∑

k=1

H
(
kp − k

)
⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k−k̂

× exp

⎧
⎨

⎩
−Nk

(
Kkσp

σδe

)ζ
√

1 +
(
tp
tc

)θ

⎫
⎬

⎭

×
⎛

⎝

√

1 +
(
t

tc

)θ

−
√

1 +
(
tp
tc

)θ
⎞

⎠

⎛

⎝
kp−1∏

i=k

1

Ki

⎞

⎠

ζ

×
(

σ̄

σp

)(k̂−kp
)
ζ
⎛

⎝

√

1 +
(
t − tp
tc

)θ
⎞

⎠

k̂−k−1
⎫
⎪⎬

⎪⎭
,

t ≥ tp. (73)

On the other hand, for the case 1 ≤ k < k̂ ≤ kp and k̂ ≥
2, we instead obtain:
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Wk̂,kp≥k̂

(
t; σ̄ , σp

)

≈ ck̂

⎛

⎝
k̂−1∏

i=1

Ki

⎞

⎠

ζ (
σp

σδe

)k̂ζ
⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k̂−1

×

⎧
⎪⎨

⎪⎩
1 +

k̂−1∑

k=1

⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k−k̂

× exp

⎧
⎨

⎩
−Nk

(
Kkσp

σδe

)ζ
√

1 +
(
tp
tc

)θ

⎫
⎬

⎭

×
⎛

⎝
k̂−1∏

i=k

1

Ki

⎞

⎠

ζ ⎛

⎝

√

1 +
(
t

tc

)θ

−
√

1 +
(
tp
tc

)θ
⎞

⎠

×
⎛

⎝

√

1 +
(
t − tp
tc

)θ
⎞

⎠

k̂−k−1
⎫
⎪⎬

⎪⎭
, t ≥ tp. (74)

As was done in deriving Eq. (72), the results Eqs. (73)
and (74) can also be combined and collapsed to yield:

Wk̂,kp

(
t; σ̄ , σp

)

≈ ck̂

⎛

⎝
k̂−1∏

i=1

Ki

⎞

⎠

ζ (
σp

σδe

)k̂ζ
⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k̂−1

×

⎧
⎪⎨

⎪⎩
1 +

k̂−1∑

k=1

⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k−k̂

×
⎛

⎝

√

1 +
(
t

tc

)θ

−
√

1 +
(
tp
tc

)θ
⎞

⎠

×
⎛

⎝

√

1 +
(
t − tp
tc

)θ
⎞

⎠

k̂−k−1

× exp

⎧
⎨

⎩
−Nk

(
Kkσp

σδe

)ζ
√

1 +
(
tp
tc

)θ

⎫
⎬

⎭

×
⎡

⎣H
(
k − kp + 1

) ( σ̄

σp

)(k̂−k
)
ζ

+H
(
kp − k

)

⎛

⎜⎜
⎝

(
k̂∨kp

)
−1

∏

i=k

1

Ki

⎞

⎟⎟
⎠

ζ

×
(

σ̄

σp

)(k̂−
(
k̂∨kp

))
ζ
⎤

⎦

⎫
⎬

⎭
, t ≥ tp. (75)

Note that in both the general version Eq. (72) and the
special version (75) of Wk̂,kp

(
t; σ̄ , σp

)
, the quantity,

ck̂ , is given by Eqs. (26) and (27):

ck̂ =

⎧
⎪⎨

⎪⎩

2k̂−1, 2D planar array

ηk̂−1
k̂−1∏

j=1
jγ , hexagonal array

(76)

and the quantity, Nk , is given by Eqs. (23) and (24):

Nk =
{
2, 2D planar array
ηkγ , hexagonal array

(77)

where guidelines for choosing the parameters, η and γ ,
were described following Eq. (24).

4.5 Distribution function for composite failure for
times following a proof test

In the time range of the proof loading itself, 0 < t < tp,
we derived the probability of failure at time, t , and
thus, the portion of the cumulative distribution function
for failure corresponding to 0 < t < tp, during the
proof test as given in Sect. 4.1 by Eqs. (55) and (56).
Continuing on to longer times t ≥ tp, the probability of
overall composite failure (i.e., the distribution function)
is given by Eq. (38), and upon inserting Eq. (75) and
slightly rearranging the result we obtain:

HV
(
t; σ̄ , σp

)

≈ 1 − exp
[
−VWk̂,kp

(
t; σ̄ , σp

)]

≈ 1 − exp

⎧
⎪⎨

⎪⎩
−
(

σp

σ̂V

)α̂
√

1 +
(
tp
tc

)θ
k̂−1

×
⎡

⎣1 +
k̂−1∑

k=1

qk,k̂
(
t, σp

) ( σ̄

σp

)(k̂−k
)
ζ

× (H (k − kp + 1
)+ H

(
kp − k

)

×

⎛

⎜⎜
⎝

(
k̂∨kp

)
−1

∏

i=k

1

Ki

⎞

⎟⎟
⎠

ζ

(
σ̄

σp

)(k−
(
k̂∨kp

))
ζ

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭
,

t ≥ tp, (78)

where:

qk,k̂
(
t, σp

) =
⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k−k̂
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×
⎛

⎝

√

1 +
(
t

tc

)θ

−
√

1 +
(
tp
tc

)θ
⎞

⎠

×
⎛

⎝

√

1 +
(
t − tp
tc

)θ
⎞

⎠

k̂−k−1

× exp

⎧
⎨

⎩
−Nk

(
Kkσp

σδe

)ζ
√

1 +
(
tp
tc

)θ

⎫
⎬

⎭
. (79)

4.6 Conditional reliability following a proof test

Of special interest is the reliability of a structure,
Rp
(
t | t ≥ tp

)
, conditional on surviving a proof test.

This is calculated in general terms using Bayes theo-
rem:

Rp
(
t | t ≥ tp

) = R (t)

R
(
tp
) = 1 − F (t)

1 − F
(
tp
) . (80)

First, we consider the conditional reliability for life-
time, Rk̂,p

(
t | tp, σ̄

)
, under a sustained load, σ̄ , and for

times t ≥ tp, and conditioned on surviving to time tp
under the initial proof loading, σp = σ̄ (i.e., no eleva-
tion in the proof load relative the ‘service’ load). From
Eqs. (48) and (49) this is just:

Rk̂

(
t | tp, σ̄

) ≈ exp

⎧
⎪⎨

⎪⎩

(
σ̄

σ̂V

)α̂

⎡

⎢
⎣

⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k̂−1

−
⎛

⎝

√

1 +
(
t

tc

)θ
⎞

⎠

k̂−1
⎤

⎥
⎦

⎫
⎪⎬

⎪⎭
, tp ≤ t.

(81)

On the other hand, for the case of surviving a proof test
with elevated proof load, σp > σ̄ , the conditional relia-
bility, Rk̂,kp

(
t | tp, σp, σ̄

)
, is calculated using Eqs. (55)

and (78), in Eq. (80), yielding:

Rk̂,kp

(
t | tp, σp, σ̄

)

≈ exp

⎧
⎪⎨

⎪⎩

(
σp

σ̂V

)α̂
⎛

⎝

√

1 +
(
tp
tc

)θ
⎞

⎠

k̂−1

×
⎛

⎝1 −
⎡

⎣1 +
k̂−1∑

k=1

qk,k̂
(
t, σp

)
(

σ̄

σp

)(k̂−k
)
ζ

× (H (k − kp + 1
)+ H

(
kp − k

)

×

⎛

⎜⎜
⎝

(
k̂∨kp

)
−1

∏

i=k

1

Ki

⎞

⎟⎟
⎠

ζ

(
σ̄

σp

)(k−
(
k̂∨kp

))
ζ

⎞

⎟⎟
⎠

⎤

⎥⎥
⎦

⎞

⎟⎟
⎠

⎫
⎪⎪⎬

⎪⎪⎭
,

t ≥ tp, (82)

andwritten this way for later convenience. This expres-
sion is used in the next section to assess the effects on
COPV reliability due to a proof test.

5 Discussion and examples

In this section we present results for several cases of
interest (involving wide ranging sets of parameter val-
ues) where we compare stress-rupture lifetime predic-
tions from our new SFB model versus the CPL-W
model described in detail above. Results are gener-
ated and compared under conditions involving an initial
proof test versus having no true proof test, i.e., the proof
stress level over the proof time is less than or equal to
the stress level in later service. Specifically, we com-
pare probabilities of failure over time under fixed load
levels where high reliability is desired.

5.1 Determining model parameters

In characterizing experiment results fromstress-rupture
testing of composites, such as epoxy-impregnated
yarns or laboratory scale COPVs, there are four inde-
pendent parameters most commonly involved. These
are σ̂V and α̂, the Weibull scale and shape param-
eters, respectively, for strength for a given volume,
V , the power-law exponent, ρ̂, for sensitivity of life-
time to stress level, σ̄ , and tc, a characteristic lifetime
parameter also involved in controlling theWeibull scale
parameter for lifetime at a given stress ratio, σ̄ /σ̂V . An
additional parameter is the Weibull shape parameter
for lifetime, β̂, which in this stochastic fiber breakage
(SFB) model follows β̂ = α̂/ρ̂, and so is a dependent
parameter. Using the maximum likelihood estimation
method, as is described in Engelbrecht-Wiggans and
Phoenix (2018) and Engelbrecht-Wiggans and Phoenix
(2017a, b), estimates of these parameters can be deter-
mined from a comprehensive data set containing both
strength and lifetime observations, that have been repli-
cated at several stress levels.

For the SFB model of this paper, the structure of
the strength and lifetime distributions are parametri-
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cally similar in key respects to those of the model
involving a classic power-law in a Weibull framework
(CPL-W) (Coleman 1956, 1957, 1958a, b; Tobolsky
and Eyring 1943; Coleman and Knox 1957; Glasstone
et al. 1941), with the exception that, in the CPL-W
model β = α/(ρ + 1), whereas in the SFB model,
β̂ = α̂/ρ̂, as just mentioned. Also, the CPL-W model
involves a constraint on the reference time parameter,
tref , (analogous to tc in the current model), such that tref
can be written in terms of the other model parameters,
as well as the strength loading rate, R, used in deter-
mining the Weibull strength parameters, and on which
the scale parameter depends. This constraint gives the
CPL-W model three independent parameters, rather
than four.

Since the value of ρ̂ is typically quite large, there
is little numerical difference between ρ̂ and ρ̂ + 1,
and thus, the CPL-W model and the SFB model are
very similar for similar values of tc and tref . Given
a set of CPL-W model parameters {σref , α, ρ}, for a
given material volume, V , and loading rate, R, used
in strength testing, the corresponding strength and life-
time parameters for the SFB model are as follows:

σ̂V
.= σref ,

α̂
.= α,

ρ̂
.= ρ,

tc
.= tref ≡ σref

R (ρ + 1)
. (83)

However, when considering a proof test in the SFB
model, where σp is initially applied over 0 < t < tp,
additional parameters are required to describe the sub-
sequent failure probability at times, t ≥ tp, when
the subsequent long term applied stress is less than
the proof stress, σ̄ < σp, as described by Eqs. (78)
and (79). Beyond the phenomenologically motivated
parameters of the CPL-Wmodel, the additional param-
eters are based on fiber and matrix properties and the
micromechanics of stress redistribution around fiber
breaks, these being σδe , ζ , θ , k̂, and kp.

Typically, ζ , the Weibull shape parameter for fiber
strength, is known based on fiber strength tests. For
single carbon fibers for instance, ζ is typically around
5. The parameter kp is determined from Eq. (53) for
the 2D planar case and Eq. (54) for the 3D hexago-
nal packing case. The parameter σδe , the Weibull scale
parameter for fiber strength corresponding to the char-
acteristic elastic length, δe, for immediate fiber-to-fiber
load transfer, can be calculated indirectly given k̂, ζ , σ̂V

and the volume V , using Eq. (32). Also, from Eq. (47),
we have ρ̂ = 2ζ k̂/(θ(k̂ − 1)), and thus, if ρ̂ is known,
we can calculate θ in terms of k̂, knowing that α̂ = k̂ζ .
This results in:

θ = 2α̂

ρ̂
(
k̂ − 1

) . (84)

Note that some of these parameters, such as θ and
δe, could be determined, in principle, from special
micromechanical tests involving thin specimens under
tension that have fiber breaks driving matrix creep or
time dependent debonding of the matrix from the fiber,
all of which would have to be observable. However,
most are difficult to determine and must be interpreted
from strength and stress-rupture data for the system of
interest.

Finally, an expression for k̂ can be obtained solely
in terms of ζ and the volume, V . In the 2D planar case,
we obtain such a result by combining Eqs. (26), (28),
(32), (35) and (84), and carrying out a sequence of
manipulations as follows:

Kk̂−1 <
σδe

σ̂V
≤ Kk̂,

√√
√√
1 +

π
(
k̂ − 1

)

4

<
σδe

σδe

(
Vck̂

)−1/(k̂ζ )
(
K1K2 · · · Kk̂−1

)−1/k̂

≤
√

1 + π k̂

4
,

π
(
k̂ − 1

)

4
<
(
Vck̂

)2/(k̂ζ )

⎛

⎝
k̂−1∏

j=1

√

1 + π j

4

⎞

⎠

2/k̂

−1 ≤ π k̂

4
,

0 <
4

π

⎡

⎣
(
2k̂−1V

)2/(k̂ζ ) k̂−1∏

j=1

(
1 + π j

4

)1/k̂

− 1

⎤

⎦

−k̂ + 1 ≤ 1. (key form) (85)

This last expression is an implicit relationship for solv-
ing for k̂ in the 2D planar case.

Likewise for the 3D hexagonal fiber packing case,
combining Eqs. (27), (29), (32), (36) and (84), we
obtain an implicit expression for k̂ solely in terms of ζ

and the volume V :
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0 <
π3

4

[
(
Vηk̂−1

)2/(k̂ζ )

×
k̂−1∏

j=1

⎡

⎣ j2γ /(k̂ζ )

(

1 +
√
4 j

π3

)1/k̂
⎤

⎦− 1

⎤

⎦

2

−k̂ + 1 ≤ 1. (86)

In some circumstances Eqs. (85) and (86) may not
uniquely identify one value of k̂, however, we are typ-
ically interested in the smallest value of k̂ that satisfies
them, and in addition k̂, ζ , and α̂ should satisfyEq. (33),
namely α̂ = k̂ζ .

Thus, we now have a method for calculating all
five additional parameters, namely k̂, θ , ζ , σδe , and
kp, assuming we know the volume V , the three CPL-W
parameters, σref , α, and ρ, based on MLE estimation
of a strength and lifetime data set where strength was
obtained under loading rate, R.

First, we use the known value of ζ to determine
k̂ dependent on V using Eq. (85) in the planar case,
and Eq. (86) for the hexagonal case. Then θ may be
determined using α, ρ, and Eq. (84). The parameter σδe

can be calculated next, given k̂, ζ , σ̂V , V , and Eq. (32).
Finally the parameter kp is given by Eq. (53) for the
planar case and Eq. (54) for the hexagonal case. Of
course, the set of parameter values should be consistent
with any obtained from experimental micromechanical
observations.

5.2 Conditional lifetime distributions following a
proof test for both the SFB and CPL-W models

For the CPL-W model the conditional reliability for
times t > tp is given by:

RCPL−W, p
(
t | tp, σp, σ̄

)

= exp

{[(
σp

σref

)ρ tp
tref

]β

−
[(

σp

σref

)ρ tp
tref

+
(

σ̄

σref

)ρ t − tp
tref

]β
}

= exp

{[(
σp

σref

)ρ tp
tref

]β

×
(

1 −
[
1 +

(
σ̄

σp

)ρ t − tp
tp

]β
)}

, t ≥ tp.

(87)

Thus, for the CPL-Wmodel the failure probability con-
ditional on surviving a proof test is unity minus the
reliability in Eq. (87):

HCPL−W, p
(
t | tp, σp, σ̄

)

= 1 − exp

{[(
σp

σref

)ρ tp
tref

]β

×
(

1 −
[
1 +

(
σ̄

σp

)ρ t − tp
tp

]β
)}

, t ≥ tp,

(88)

Likewise, for the SFB model the conditional failure
probability following a proof test is obtained from
Eq. (82) as:

Hk̂,kp

(
t | tp, σp, σ̄

)

≈ 1 − exp

⎧
⎪⎨

⎪⎩
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)α̂
⎛

⎝
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(
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⎠
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⎫
⎪⎪⎬

⎪⎪⎭
,

t ≥ tp. (89)

These are the key results of the paper for which com-
parisons are to be made.

5.3 Graphical comparisons of lifetime distributions in
the SFB and CPL-W models with and without a
proof test

For the SFB model, Figs. 6, 7, 8, 9, 10 and 11 show
plots of the conditional distribution function for life-
time (conditional probability of failure vs. time t) fol-
lowing survival of a proof test, Eq. (89), as well as plots
for the corresponding lifetime distribution function in
the CPL-W model, Eq. (88). Also shown is the uncon-
ditional distribution function for lifetime (i.e., without
having applied a proof test), which is virtually the same
for both the SFBmodel and theCPL-Wmodel, as given
by Eq. (45). The results are all for a composite where
fibers form a planar array.
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Fig. 6 Plots of the SFB
model conditional lifetime
distribution following a
proof test, Eq. (89), versus
that for the CPL-W model,
Eq. (88), and the
unconditional lifetime
distribution (no proof test),
Eq. (45), for a planar fiber
array and the key parameter
values, α = 36, ρ =
360 and β = 0.1

Fig. 7 Plots of the SFB
model conditional lifetime
distribution following a
proof test, Eq. (89), versus
that for the CPL-W model,
Eq. (88), and the
unconditional lifetime
distribution (no proof test),
Eq. (45), for a planar fiber
array and the key parameter
values, α = 36, ρ =
144 and β = 0.25
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Fig. 8 Plots of the SFB
model conditional lifetime
distribution following a
proof test, Eq. (89), versus
that for the CPL-W model,
Eq. (88), and the
unconditional lifetime
distribution (no proof test),
Eq. (45), for a planar fiber
array and the key parameter
values α = 36, ρ =
72 and β = 0.5

Fig. 9 Plots of the SFB
model conditional lifetime
distribution following a
proof test, Eq. (89), versus
that for the CPL-W model,
Eq. (88), and the
unconditional lifetime
distribution (no proof test),
Eq. (45), for a planar fiber
array and the key parameter
values α = 36, ρ = 48 and
β = 0.75

The cases shown in Figs. 6, 7, 8, 9, 10 and 11, begin
with Fig. 6 corresponding to a very low Weibull shape
parameter for lifetime, β = 0.1, and correspondingly
very high power-law exponent value, ρ = 360 (gov-
erning the dependence of lifetime on stress level), to the
opposite in Fig. 11, where β = 1.5 is a relatively high
value and ρ = 24 is relatively low. Throughout the fig-
ures, the Weibull shape parameter for strength is kept
at α = 36, the Weibull scale parameter for strength is
normalized to unity, i.e., σV = 1, and the overall com-
posite volume is taken as V = 10,000 elements. The
characteristic time in all cases is taken as tc = 0.01,
and the proof hold time tp = 1, is 100 times larger.
Other parameter values specific to the SFB model are
kept fixed throughout, namely the respective Weibull

shape and scale parameters for fiber strength, ζ = 4
and σδ = 2.83, where the latter is 2.83 times the over-
all composite value, σV , and the critical cluster size is
k̂ = 9. Otherwise, the creep exponent, θ , varies among
Figs. 6, 7, 8, 9, 10 and 11 in keeping with the inverse
relationship of θ and ρ, as seen in Eq. (84). The various
panels in each figure vary in terms of stress ratio, σ̄ /σV ,
and proof ratio, σp/σ̄ , which also affects, kp, a specific
cluster size associated with the proof stress ratio, σp/σ̄ ,
as described in Eqs. (52)–(54).

A general observation in Figs. 6, 7, 8, 9, 10 and 11,
is that the SFB model has a conditional failure prob-
ability greater than for the CPL-W model. When the
proof ratio is unity, i.e. σp/σ̄ = 1, then initially both
the CPL-W model and the SFB model have a condi-
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Fig. 10 Plots of the SFB
model conditional lifetime
distribution following a
proof test, Eq. (89), versus
that for the CPL-W model,
Eq. (88), and the
unconditional lifetime
distribution (no proof test),
Eq. (45), for a planar fiber
array and with the key
parameter values
α = 36, ρ = 36 and
β = 1.0

Fig. 11 Plots of the SFB
model conditional lifetime
distribution following a
proof test, Eq. (89), versus
that for the CPL-W model,
Eq. (88), and the
unconditional lifetime
distribution (no proof test),
Eq. (45), for a planar fiber
array and with the key
parameter values
α = 36, ρ = 24 and
β = 1.5

tional failure probability that is less than the uncondi-
tional failure probability over time in service. That is,
there is a short-term benefit from the ‘proof test’, as
we would expect. In essence, placing freshly manufac-
tured structures (e.g., COPVs) in a proof test device,
where they are loaded to the service load, σ̄ , over a
proof hold time 0 ≤ t < tp, still amounts to a ‘weeding
out’ process before placing such structures in service,
however small their probability of failure in the proof
test itself. However, for the SFB model, the short-term
benefit is less than for the CPL-Wmodel, since the SFB
model lifetime distribution with a proof test reverts to

the lifetime distribution without a proof test earlier in
time than in the CPL-W model.

When the proof ratio is greater than unity, i.e.,
σp/σ̄ > 1, then the conditional failure probability over
time from the SFB model is higher than the corre-
sponding unconditional failure probability, (i.e. with-
out a proof test). Furthermore, the difference between
the SFB conditional and unconditional failure proba-
bilities is much more pronounced for small β and large
ρ combinations, and can span several orders of magni-
tude.
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For instance, Fig. 6, where β = 0.1 and ρ = 360,
shows the largest such difference, and Fig. 7 where
β = 0.25 and ρ = 144, is similar. However, Fig. 11
for β = 1.5 and ρ = 24 shows only a small difference
between the conditional andunconditional failure prob-
abilities. Very small values of β, as in Figs. 6, 7 and 8,
typically correspond to carbon fiber based composites,
whereas values of β satisfying β ≥ 1 as in Figs. 10
and 11, corresponds to polymeric fiber composites,
like Kevlar, Vectran and PBO with other parameters
adjusted accordingly to give similar strength distribu-
tions, as are often seen in practice.

The CPL-W model also exhibits the largest differ-
ence between the conditional lifetime failure probabil-
ity and the unconditional lifetime failure probability
for smaller β and higher ρ combinations, especially in
Figs. 6, 7 and 8, but in contrast to the SFB model, the
CPL-W model predicts much lower values for condi-
tional failure probability for lifetime (higher reliabili-
ties), not the higher values predicted by the SFBmodel
(lower reliabilities), when β < 1. This difference is
a key aspect of the results in this paper, namely that
proof testing in the SFB model can result in compos-
ite damage in terms of reduced reliability later in time,
where the classic CPL-Wmodel predicts just the oppo-
site. The difference is especially pronounced in Figs. 6
and 7, where a stress ratio of 0.6 followed by a high
proof ratio is detrimental to later reliability.

In fact, the conditional failure probabilities for life-
time in the CPL-Wmodel in such circumstances are so
small, that they cannot be plotted on the chosen scale for
the higher proof ratios in Figs. 6 and 7, where β � 1,
since the probability values are orders ofmagnitude less
than the unconditional lifetime failure probabilities.
However, when β > 1 (corresponding to an increasing
composite ‘hazard’ or failure rate in time in classical
reliability theory, that begins at zero at t = 0), and thus,
ρ is relatively small (as is the case for Kevlar/epoxy
composites), the reliability behavior is reversed. That
is, the CPL-W model predicts a slight increase in the
conditional failure probability versus time, relative to
the unconditional failure probability (no proof test), as
illustrated in Fig. 11. This occurs because the lower
tail of the failure rate becomes truncated such that the
failure rate now begins at a positive value.

However, when β � 1, as occurs in carbon fiber-
epoxy composite structures such as COPVs, decreased
failure probability (increased reliability) predictions of
the CPL-Wmodel after a proof test are very unrealistic

when applied to a fiber/matrix composite with complex
micromechanical failure processes, which the CPL-W
does reflect. This is true also of models adapted from
single fiber, stress rupture based on crack growth, as
described in Christensen (1984), Reeder (2012) and
Engelbrecht-Wiggans and Phoenix (2018).

Carbon fiber composite have become the primary
material for COPVs in aerospace and commercial (e.g.,
automotive) applications. The plotted results in this
section confirm what some practitioners in the field
suspect, namely that an excessive proof ratio applied to
a carbon/epoxy COPV can result in fiber damage that
significantly reduces longer-term, stress-rupture relia-
bility. This may seem obvious, in light of typically low
Weibull shape parameter values for single carbon fiber
strength, coupled to their resistance to stress-rupture,
however, mapping the failure process to show reduced
reliability thereafter is clearly a complex calculation.

Note also that the calculations were ‘sample cal-
culations’ performed for V = 10,000 whereas a real
COPV is likely to have of the order of V = 1010 fiber
elements, so a larger number by six orders of magni-
tude. If one thinks of the 10,000 elements as acting like
one super-element in a weakest- link system of 106

such elements, then if the absolute stresses remained
the same, all the failure probabilities in Figs. 6, 7, 8, 9,
10 and 11 would necessarily be increased by a factor
of 106, which would render them unacceptable in an
actual application. This does not, however, reflect the
true situation, since, the strength, σV , would be reduced
by the factor 10−6/α = 10−1/6 = 0.681, and thus, all
stress levels, σp and σ̄ must also be reduced.

If the model were applied directly to the larger
volume, V = 1010, then other changes would result
such as a larger critical cluster size, k̂, and associated
increases in α and β, as well as a milder reduction in
σV relative to the case V = 104. Reliabilities would
likely improve for the adjusted stress and proof ratios,
but the drawbacks of an excessive proof ratio would
remain.

While the choice of ζ = 4 is useful for demonstrat-
ing the richness in behavior of the model, it is bor-
derline in terms of the accuracy of the sequential fiber
failure approach we have used in calculating probabil-
ities of failure. That is, the behavior of the approxima-
tions in connection with Figs. 4 and 5 (where ζ = 5)
may begin to break down for smaller ζ . That said,
Mahesh et al. (2002), and to a lesser extentMahesh and
Phoenix (2004a), show that while the failure configu-
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rations begin to deviate from the idealization in Fig. 3
the resulting calculated probabilities themselves match
those from Monte Carlo simulations surprising well,
even down to ζ = 2. Although beyond the scope of
this paper, wemention there are newer models for clus-
ter growth, valid down to ζ = 1, and which could be
adapted to the current setting. See for instance the work
of Gupta et al. (2017).

Finally, when considering parametric cases stud-
ied in Mahesh and Phoenix (2004a) and that reason-
ably match up with the model and parameters here, it
was found that predictions from their theoretical model
were in strong agreement with results from theirMonte
Carlo simulations. Their theoreticalmodel had assump-
tions similar to ours on both collapsing failure time
sequences in fiber load-sharing, and on assuming trans-
verse alignment of fiber breaks rather than staggering.
TheirMonteCarlo simulations did not suffer from these
simplifying assumptions. Thus we have good reason to
believe that the model we have built that includes the
effects of proof testing will be accurate and have realis-
tic behavior. While not applicable to the circumstances
of proof testing, their model allows consideration of
time dependent failure of fibers under constant stress
through a power-law/Weibull breakdown mechanism
that is at the heart of the CPL-W model. This is an
important avenue to pursue in the future, i.e., combin-
ing both mechanisms for fiber failure over time.

6 Conclusions

In this paper we have developed the SFBmodel, which
involves the breakage of individual fibers with increas-
ing stress, load redistribution from failed to surviv-
ing fibers, and most important, matrix creep in shear,
which progressively lengthens overload regions along
fiber, thus resulting increasing numbers of fibers even
when the overall applied stress is held fixed. Themodel
exhibits richness in mathematical form as compared to
the CPL-Wmodel, and thus the SFBmodel can predict
different outcomes in the case of a proof test. This is,
perhaps unsurprising, as the SFB model has a very dif-
ferent form than the CPL-Wmodel, or anymodel of the
1979 functional form. At the same time, under linearly
increasing loads as in a strength test, or under constant
load in the absence of a proof test, the SFB model and
CPL-W model yield essentially the same strength and
lifetime distributions.

All current phenomenological models, including
those motivated by time-dependent crack growth in
fibers, predict that the conditional reliability follow-
ing such a proof test in carbon fiber/epoxy COPVs is
higher than that for a simple sustained load even when
conditioned on surviving the initial step load for some
small time. The SFB model indicates that many prac-
tically important situations of proof testing, following
certain protocols frozen into standards or considered as
‘best practices’, may in fact be detrimental.

There are many reasons not addressed in this paper
for performing a proof test all connected in some way
or another to screening out anomalous COPVs, such
as those with seriously flawed liners or using fiber that
came, say, from an inferior lot. The implication of the
results in this paper is that there are inevitably trade-
offs in proof testing, and proof levels much be chosen
carefully with that in mind.
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