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Abstract The formation of a second phase in pres-
ence of a crack in a crystalline material is modelled and
studied for different prevailing conditions in order to
predict and a posteriori prevent failure, e.g. by delayed
hydride cracking. To this end, the phase field formu-
lation of Ginzburg–Landau is selected to describe the
phase transformation, and simulations using the finite
volumemethod are performed for awide range ofmate-
rial properties. A sixth order Landau potential for a
single structural order parameter is adopted because it
allows the modeling of both first and second order tran-
sitions and its corresponding phase diagram can be out-
lined analytically. The elastic stress field induced by the
crack is found to cause a space-dependent shift in the
transition temperature, which promotes a second-phase
precipitation in vicinity of the crack tip. The spatio-
temporal evolution during nucleation and growth is
successfully monitored for different combinations of
material properties and applied loads. Results for the
second-phase shape and size evolution are presented
and discussed for a number of selected characteristic
cases. The numerical results at steady state are com-
pared to mean-field equilibrium solutions and a good
agreement is achieved. For materials applicable to the
model, the results can be used to predict the evolution of
an eventual second-phase formation through a dimen-
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sionless phase transformation in the crack-tip vicinity
for given conditions.
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1 Introduction

Most metallic materials experience some type of inter-
actionwith their surrounding environment, which often
results in changes in the material morphology that may
induce deterioration of their mechanical and physi-
cal properties. For many practical applications such
changes may derogate a material function and its use-
fulness,whichmay eventually lead to failure. If stresses
are applied to a structure subjected to a corrosive envi-
ronment, cracks that would not occur in the absence
of one of these two controlling conditions will appear,
even for virtually inert material. Thus, the combination
of these factors may lead to failure, which is commonly
referred to as stress corrosion cracking (Jones 1992).

Hydrogen embrittlement (HE) can be considered to
be a type of stress corrosion, since it commonly con-
cerns a ductile metal undergoing a brittle fracture as
a result of the combination of applied stresses and a
corrosive environment. HE can also occur in mechan-
ically loaded materials that already contain hydrogen
emanating from either the manufacturing process or
from earlier exposure to hydrogen. For some cases of
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HE, hydride formation plays a central role in the detori-
ation process. A hydride is a brittle non-metallic phase
that may cause the embrittlement of metallic materi-
als such as titanium- and zirconium-based alloys and
reduce their load bearing capabilities (Coleman and
Hardie 1966; Coleman et al. 2009; Chen et al. 2004;
Luo et al. 2006). For metal based components exposed
to hydrogen-rich environments, such as fuel cladding
materials in nuclear power reactors or components in
rocket engines, there is an impending risk of hydrides
forming, which could lead to the so called delayed
hydride cracking (DHC). This is a subcritical crack
growth mechanism (Coleman et al. 2009; Singh et al.
2004; Coleman 2007; Northwood and Kosasih 1983)
that can severely reduce the component life-time and
jeopardize its integrity.

Hydride formation occurs as a result of a combi-
nation of complex mechanisms, including for instance
simultaneous hydrogen diffusion, hydride precipitation
and material deformation (Varias and Massih 2002).
For some metals, including zirconium and titanium,
such formation has been specifically observed in the
vicinity of stress concentrators, following the increased
hydrogen transport toward regions of high hydrostatic
stresses (Birnbaum 1976; Takano and Suzuki 1974;
Grossbeck and Birnbaum 1977; Shih et al. 1988; Cann
and Sexton 1980). It is also known that the transfor-
mation is not only driven by changes of concentra-
tion of species, such impurities and alloying elements,
but mechanical stresses can per se promote the pre-
cipitation of a second phase (Birnbaum 1984; Allen
1978; Varias and Massih 2002). This type of transfor-
mation canbebeneficial for instance for certain ceramic
materials, which may experience an increase in frac-
ture toughness following the transformation. For such
cases, the crack propagationmay be impeded following
the transformation of metastable phase particles into
stable particles with increased volume at the crack tip
(Hutchinson 1989; Evans and Cannon 1986). Thus, the
resulting transformation-induced compressive stresses
in front of the crack-tip may obstruct its opening and,
consequently, limit the crack growth. However, for the
case of transition metals and hydrogen, such benefi-
cial transformation is rarely observed. In fact, for the
hydride forming materials the effect is rather the oppo-
site, leading to embrittlement and reduction of the frac-
ture toughness.

Over the years, numerous models have been devel-
oped to describe the formation of a second phase

at a flaw tip in a variety of crystalline materials
(Varias and Massih 2002; Deschamps and Bréchet
1998; Gómez-Ramírez and Pound 1973; Boulbitch and
Korzhenevskii 2016; Léonard and Desai 1998; Hin
et al. 2008; Massih 2011a; Bjerkén and Massih 2014;
Jernkvist and Massih 2014; Jernkvist 2014). Among
those are themodels resting on the phase-field approach
based on Ginzburg–Landau theory, see e.g. Provatas
and Elder (2010). Such modeling has found many
applications, especially in the areas of magnetic field
theory where it has been found useful for providing
predictive models (Cyrot 1973; Berger 2005; Barba-
Ortega et al. 2009; Cao et al. 2013; Gonçalves et al.
2014). But more importantly for the present applica-
tion it has also proven to be an efficient methodology
to model and predict microstructure evolution in mate-
rials. The review paper by Chen (2002) and the refer-
ences therein give a thorough account of applications
for which phase-field modeling has been successfully
used to predict the microstructural evolution. For phase
field theory applied to solid material microstructure
modeling order parameters are used to describe the evo-
lution of a material state (Desai and Kapral 2009). Typ-
ically, two different order parameters may be identified
to describe different type of phase transformations: the
non-conserved structural order parameter correspond-
ing to a diffusionless-type transformation and the con-
served composition order parameter which represents
a diffusional transformation.With this inmind, Hohen-
berg and Halperin (1977) defined three types of models
based on the use of these order parameters individu-
ally (model A and B, respectively) and their coupling
(model C).

In the material, the solid solution may be defined as
a disordered material state and crystal structures with
a lower degree of symmetry are considered ordered.
Under stress field conditions, such as stresses induced
by the presence of flaws, the evolution of the order
parameters are used to model a second-phase forma-
tion. One such study was reported by Massih (2011a),
who presented a general set-up with coupled conserved
and non-conserved field variables in the presence of
cracks and dislocations in an elastic solid. Further, in a
paper by Boulbitch and Korzhenevskii (2016), a non-
conserved order parameter is used to study quasi-static
phase transformation in the process zone of a propa-
gating crack. These works constitute a suitable base
reference to study the second-phase formation in pres-
ence of a crack. In the present paper, the effect of stress
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concentration in the presence of a crack on the second-
phase formation kinetics in crystalline materials is
modeled. This work is an extension of the Massih’s
and Bjerkén’s works (Bjerkén and Massih 2014; Mas-
sih 2011b), where precipitation kinetics at dislocations
is studied by using a scalar non-conserved order param-
eter (Model A), accounting formicrostructural reorder-
ing. The time-dependent Ginzburg–Landau (TDGL)
equation is solved numerically to capture the differ-
ent spatio-temporal state changes of the material in the
vicinity of the crack tip. This is achieved by assess-
ing the spatio-temporal fluctuations of the structural
order parameter for different sets of material parame-
ters, loads and phenomenological coefficients, making
of this paper a full parametrical study, usually undone
in the literature. The driving force of this equation,
which gives the rate of change the structural order
parameter, is the functional derivative of the total free
energy with respect to the non-conserved order param-
eter (Provatas and Elder 2010). To include the effect
of the crack to the modeling, a mechanical equilib-
rium condition is added to the free energy formulation
for the system at hand. The mechanical equilibrium is
solved analytically reducing the number of equations
to be solved to one, the TDGL equation, as in Boulbitch
and Korzhenevskii (2016). To this end, a small pertur-
bation from a stressed reference configuration under
known stress conditions due to the presence of the crack
is assumed. A sixth-order Landau potential energy is
incorporated in the structural free energy of the system
in order to model first and second order transitions.
Moreover, the total free energy of the system takes into
account a coupling between the dilatation of the second
phase and the order parameter (Boulbitch and Tolédano
1998). The effect of hydrogen concentration is not con-
sidered in the model.

The paper is organized as follows: first, the model
employed to study the formation of the second phase
in presence of the crack is described in Sect. 2. This
description is followed by a theoretical steady-state
analysis, accompanied by a phase diagram, in Sect. 3.
Thereafter, the methodology for the numerical simu-
lations is presented in Sect. 4. The following section,
Sect. 5, demonstrates the results obtained for differ-
ent cases and parameters which contains comparisons
between theoretical steady-state and long-time numer-
ical data and the influence of the interface energy on
the solutions. Finally, in Sect. 6, the findings are sum-
marized and the conclusions are stated.

2 Model description

In theGinzburg–Landau formalism, a parameter field η

is defined as a scalar function that represents the order
of the crystal structure and characterizes the presence of
two concurrently prevailing phases. The order param-
eter depends on time and space and defines the mor-
phology such that the high-temperature solid solution
that constitutes the initial phase corresponds to η = 0,
whereas the transformed second-phase precipitates are
represented by η �= 0. For such systems the total free
energy, F , can be expressed as

F = Fst + Fel + Fint , (1)

whereFst stands for the structural free energy,Fel the
elastic-strain energy and Fint is the striction energy,
which represents the interaction between the structure
order parameter and the strain field (Ohta 1990;Massih
2011b). Each individual contribution to the free energy
in (1) can be represented by an integral over the system
volume, V . The structural free energy is expressed by:

Fst =
∫ [g

2
(∇η)2 + Ψ (η)

]
dV . (2)

in which the term 1
2g(∇η)2 accounts for a spatial

dependence of the order parameter and the existence of
interfaces within an equilibrium inhomogeneous sys-
tem (Desai and Kapral 2009). The positive coefficient
g takes part in the surface energy by multiplying the
gradient in order parameter which only varies signif-
icantly at interfaces where a change of order occurs
(Provatas and Elder 2010). The second term Ψ (η) is
a phenomenological contribution to the free energy
that was introduced by Landau and Lifshitz (1980) as
the Landau potential and coincides with the bulk free
density. In the present work we assume a sixth order
description, expressed in the format

Ψ (η) = 1

2
α0 η2 + 1

4
β0 η4 + 1

6
γ η6. (3)

where α0, β0 and γ are named Landau coefficients in
the present paper. The coefficient α0 displays a lin-
ear variation with the material temperature as α0 =
[T−Tc0 ], where the parameter a is assumed to be a pos-
itive constant and T is the material temperature and the
parameter Tc0 is the transition temperature for a defect
free crystal (Provatas and Elder 2010). The definition
of α0 is the result of an assumption of the Landau’s
theory which states that α0 changes sign at Tc0 (Cow-
ley 1980). The coefficient β and γ are supposed to be
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temperature independent when the material tempera-
ture is sufficiently close to Tc0 (Cowley 1980; Massih
2011a). Additionally, to ensure stability of the system
the condition γ > 0 is required whenever β0 < 0. The
elastic strain energy is expressed as

Fel =
∫

M

[
ε2i j +

(
K

2M
− 1

d

)
ε2ll

]
dV , (4)

where K and M are the bulk and the shear mod-
uli respectively. The parameter d represents the space
dimensionality of the considered system, while the
strain tensor is defined within the small perturbations
hypothesis, i.e. εi j = 1

2 (∂u j/∂xi + ∂ui/∂x j ). The
striction energy is written on the format

Fint =
∫

−ξ η2 ∇ · u dV . (5)

that represents the interaction between the order param-
eter and the displacement vector field u = ui . This
contribution is characterized by the assumed posi-
tive constant ξ , also known as the striction factor.
The striction factor is related to e.g. lattice mismatch
and volume changes between phases, and represents
the stress derived from the stress-free strain, i.e. the
stress-free expansion. The quantity ∇ ·u represents the
strain resulting from the stress induced by the crack
(Eshelby 1957). The dilatational effects are assumed
to be isotropic and are taken into account in the inter-
face between second phase and solid solution, and in
the second phase.

Based onEqs. (2), (4) and (5), the total free energy of
the system can be rewritten in a more compact notation

F =
∫

ϕ(η(r, t),u(r, t))dV (6)

with

ϕ(η(r, t),u(r, t)) = g

2
(∇η)2 + Ψ (η)

+ M

[
ε2i j +

(
K

2M
− 1

d

)
ε2ll

]

− ξ η2 ∇ · u. (7)

such that ϕ is the volume specific energy density of the
system. Thus, mechanical equilibrium for the system,
which is assumed to exist at all time, requires that

∂σi j

∂x j
= −δF

δui
= ∂

∂x j

(
∂ϕ

∂εi j

)
= Qi (8)

where σi j is the stress tensor and Qi denotes a body
force field, which is induced by the presence of an elas-
tic defect in the solid (Massih 2011b). In the present

work the considered flaw is a crack. Equation (8) can
be further reduced to

M ∇2u + (Λ − M)∇∇ · u − ξ∇η2 = M f(r) (9)

where Λ = K + 2M(1 − d−1) and f(r) is a function
of space that describes the strain field due to the crack
(Massih 2011a). By solving Eq. (9) with respect to the
elastic strain field, as proposed inMassih (2011b) it can
be substituted into Eq. (7), which leads to the total free
energy of the system being transformed to a functional
described solely by the order parameter η(t, r):

F [η] =
∫ [g

2
(∇η)2 + 1

2
α η2

+ 1

4
β η4 + 1

6
γ η6

]
d r (10)

Following this rewrite, based on the assumptions of lin-
ear elastic fracture mechanics under plane strain condi-
tions andmechanical equilibrium, themodified Landau
coefficients for the quadratic and quartic terms (i.e. α

and β in Eq. (3), respectively) are given by

α ≡ |α0|
(
sgn(α0) −

√
r0
r
cos

θ

2

)
(11)

and

β = β0 − 2ξ2

Λ
, (12)

where

r0 ≡ 1

2π

(
2 ξ KI

|α0| (Λ − M)

)2

. (13)

is considered as a local characteristic length related to
the presence of the crack and KI is the mode I stress
intensity factor. It should be noted that for a defect-free
crystal, α = α0 and β = β0.

The considered geometry of the crack is described
by polar coordinates with the origin placed at the crack
tip, as shown in Fig. 1. Under plane strain, the crack
may be seen as semi-infinite, i.e. its thickness is infinite
in the out-of-plane direction.

Depending on the stress field induced by the crack,
the solubility limit may vary at different positions rela-
tive to the crack tip. In order to capture such abehaviour,
α [in Eq. (11)] is expressed as

α = a [T − Tc(r, θ)] , (14)

where

Tc(r, θ) ≡ Tc0 + 2 ξ KI

a (Λ − M)

cos(θ/2)√
2π r

. (15)
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Fig. 1 Geometry of the crack. The coordinates are represented
by the polar coordinates r and θ

The parameter Tc(r, θ) defined above is the transition
temperature for a crystal containing a crack. Thus,
the initial phase of a defect-free material is stable for
T > Tc0 , while that of a cracked material requires
T > max(Tc, Tc0), which implies α > 0. Conse-
quently, a secondary phase will form in the region of
the material where these conditions are not met. Like-
wise, owing to their influence on β, an increase of ξ and
a decrease in Λ contribute to the formation and growth
of a second phase.

The evolution of the non-conserved structural order
parameter is determined by the employment of the
TDGL, which corresponds to a diffusionless phase
transformation model (Hohenberg and Halperin 1977),
i.e.,

∂η

∂t
= −Γ

δF

δη
. (16)

where Γ is the kinetic coefficient that represents the
interface boundary mobility. By substituting the total
free energy term of Eq. (10) into (16), the govern-
ing equation for the spatio-temporal order evolution
becomes

1

Γ

∂η

∂t
= g∇2η − (

α η + β η3 + γ η5
)
. (17)

For practicality in the modeling and the subsequent
analyses, a parameter change to obtain a dimensionless
equation is made:

η = √|α0|/|β| Φ, xi = √
g/|α0| x̃i , r = √

g/|α0| ρ,

r0 = √
g/|α0| ρ0 and t = τ/ (|α0| Γ ) .

Following this manipulation, via the dimensionless
analogues of Eqs. (16) and (17), the relation describing
the transformed order parameter, Φ, is given by

∂Φ

∂τ
= ∇̃2Φ −

(
AΦ + sgn(β)Φ3 + κ Φ5

)
(18)

where A =
(
sgn(α0) −

√
ρ0
ρ
cos θ

2

)
, ∇̃ is the dimen-

sionless gradient operator for the rescaled coordinates
x̃i = (x̃, ỹ) and κ = γ |α0|/β2.

To gain insight behind the second phase nucle-
ation around a crack tip, in the present study we solve
Eq. (18) for different sign combinations of α0 and β.
This aims to investigate the importance of tempera-
ture induced solubility variation for different materi-
als, while the interaction between displacement field
and order parameter are varied.

3 Steady-state analysis

As an initial study, we analyze the steady-state solu-
tion of Eq. (18). This corresponds to the long-time
limit, at which the system does not evolve further and
no additional transformations occur. This implies that
∂η/∂t = 0. Here, the Laplacian term is neglected. The
physical interpretation of this simplification is that the
value of the order parameter in a material point is not
affected by the surrounding points. The neglect of the
Laplacian term is also expected to induce the appear-
ance of discontinuities of the function Φ(x, y) at the
crack tip and at the transition between zero and non-
zero values of the order parameter. Thus, Eq. (18) is
simplified as

Φ̄
(
A + sgn(β) Φ̄2 + κ Φ̄4

)
= 0, (19)

where Φ̄ is the order parameter of such a steady-state
system containing a crack. Depending on the parameter
set, the solutions to (19),which eitherminimize ormax-
imize the total free energy of the system in steady state,
can be found analytically. The real analytical solutions
of Eq. (19) may be expressed as:

⎧⎪⎨
⎪⎩

Φ̄0 = 0

Φ̄
2

± = −sgn(β) ± √
1 − 4 A κ

2 κ
.

(20)

(21)

The stability condition γ > 0 ensures positive values
of κ for any couple {α0, β}, and if Φ̄ exists, the solu-
tions always correspond to local extrema of the modi-
fied Landau potential. Thus, the existence of non-zero
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Fig. 2 Phase diagram presenting the length ratio
ρ /

[
ρ0 cos2(θ/2)

]
versus κ sgn(β) for α0 > 0. The star

(*) indicates that the phase is metastable, and the disorded
phase is denoted I, while the ordered is denoted II. The vertical
asymptotes of the curves given by A = 1

4κ and A = 3
16 κ

are
indicated with dashed lines

solutions to Eq. (19) depend on the signs of α0 and β

and the value of κ . The deduction of stability limits and
phase transition characteristics for different values of
{α0, β} are given in “Appendix”, and is summarized
for α0 > 0 in Fig. 2 as a phase diagram.

When α0 < 0, the parameter A is always negative.
This means that the transition temperature Tc becomes
higher than the material temperature T , regardless of
the distance from the crack. Thus, the whole mate-
rial is expected to transform into the second phase. If
instead α0 > 0, a second-phase region may form in
the proximity of the crack tip with the size of the zone
depending on the value of κ sgn(β). For this case the
transition temperature is higher than the material tem-
perature only locally, which explains the limited local
transformation. For β > 0, only second order transi-
tions between the phases may take place as the stability
lines of the phases coincides (at A = 0), regardless of
the value of κ . For negative β, the regions of stability of
the individual phases overlap, where a phase eithermay
be stable or metastable. The stability limits for phase I
(A = 0) and II (A = 1/4κ) are indicated in the figure.
Between these limits the transition line A = 3

16 κ
can be

identified, which represents a situation at which both
phases are equally stable and only first order transitions
are expected.

It can be seen that in immediate proximity to the
crack tip (i.e. ρ/[ρ0 cos2(θ/2)] < 1), the stress con-
centration induces a transformation from solid solution
into the second phase. Further away from the crack, the
situation may vary depending on the sign of β and the
value of κ . As κ sgn(β) < −3/16, the material can be
in four different states, and sorting them with increas-
ing distance from the crack tip, they correspond to:

– a pure second-phase area, II,
– an area with second phase and metastable solid
solution, I* + II,

– an area with solid solution with metastable second
phase, I + II*, and

– a pure solid solution, I.

For − 3
16 < κ sgn(β) < 0, it is found that the whole

material is supposed to be transformed into second
phase (II)with the possible presence ofmetastable solid
solution away from the crack tip (ρ/[ρ0 cos2(θ/2)] >

1). Finally, when κ sgn(β) > 0 no metastable state
can exist but a confined pure second-phase region
should develop in the region close to the crack tip (i.e.
ρ/[ρ0 cos2(θ/2)] < 1).

4 Numerical method

To numerically solve the TDGL equation, presented
in Sect. 2, we use the open-source partial differ-
ential equation solver package FiPy (Guyer et al.
2009), which is based on a standard finite volume
approach. For the modeling, the 2d-domain illustrated
in Fig. 1 is discretized using a square mesh consisting
of 1000×1000 equally-sized square elements with the
dimensionless side length corresponding to Δl̃ = 0.2.
This setup, combined with a LU-factorization solution
scheme, was found to yield well converged results and
the system is large enough such that the boundary con-
ditions do not affect the results. The size of the time step
is deduced from a convergence study, which revealed
that a time stepΔτ = 0.1 is sufficient to ensure a stable
solution.

At the boundary, the gradient of Φ is prescribed to
be perpendicular to the boundary such that∇Φ ·n = 0,
where n is a unit vector perpendicular to the boundary.

As initial condition the order parameter, Φini t was
randomly set throughout the entire domain, with values
in the range [5 × 10−5, 1 × 10−4].
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5 Results and discussion

In this section, the spatio-temporal evolution of the
dimensionless order parameter Φ is presented. Par-
ticular emphasis is on modeling and elucidating the
material transformation for varying signs of α0 and β

and the varying value of κ . These combinations rep-
resent different characteristic locations in the phase
diagram illustrated in Fig. 2. Thereafter, the numer-
ically obtained steady-state results are discussed with
reference to the analytical mean-field solutions given in
Sect. 3. Moreover, the width of inherent smooth inter-
face is discussed, and finally, the influence of material
stiffness and strength of interaction between strain field
and order parameter are investigated.

5.1 Temperature higher than bulk transition
temperature: T > Tc0

If the temperature T > Tc0 , no phase transition is
expected in an un-cracked material, and implies that
α = α0 > 0. The introduction of a loaded crack results
in a shift of α, see Eqs. (11), (14), whose magnitude
depends on the position relative to the crack tip. In gen-
eral, the closer to the crack tip, the higher the stress,
and the larger the shift, which inevitably implies that
the driving force for the phase transformation is larger.

With a sixth order potential, both second and first
order transitions can be modeled. According to the
phase diagram in Fig. 2, both first order transitions
can occur in a homogeneous material when κsgn(β) <

−3/16. Thus, it could be of interest to investigate of the
evolution of a second phase in the presence of a loaded
crack for a corresponding case; here κsgn(β) = −1
is chosen. The results from the numerical simulation
of the evolution of the order parameter are presented
in Fig. 3a–c. From this figure sequence, it is seen that
a ”kidney”-shaped zone with Φ �= 0 is developing in
the vicinity of the crack tip, which is an indication of
precipitation of a second phase. To further illustrate
the space dependence of Φ during the evolution, the
profile of the cross-section of the Φ-surface along the
x̃-axis (ỹ = 0) is given at different instants in Fig. 3d.
Two main stages in the order parameter evolution may
be identified: initially a relatively sharp peak emerges
close to the crack tip where the material locally trans-
forms, thereafter the transformed region expands in
space until a steady state (ss) is reached. The succes-

Fig. 3 a–c Evolution of the dimensionless order parameterΦ =
Φ(x, y) for the case with α0 > 0 and κ sgn(β) = −1 at different
instants; d Profiles of Φ(x̃, ỹ = 0) between τ = 0 and τ = 50.
The arrow illustrates the evolution direction with time for x̃ > 0
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Fig. 3 continued

sive increase of the order peak value Φpeak is evalu-
ated and its temporal evolution is presented in Fig. 4a
(cyan line). During the expansion stage, it is found that
the phase interface moves in the positive x̃-direction
with a seemingly constant slope, see Fig. 3d. Because
the model inherently relies on the assumption that the
interface between the two phases is smooth, no exact
boundary can be distinguished. Thus, to quantify the
expansion of the second phase, we monitor the width
w̃ of the Φ-profile illustrated in Fig. 3d and defined w̃

as the distance from the origin to the point along posi-
tive x̃ at which Φ = 0.01. The results in Fig. 4b (cyan
line) reveal that w̃ converges following an asymptote,
implying that there is a steady-state size.

Other cases where κ sgn(β) < −3/16 are also
studied. Similar evolution patterns are obtained as for
κ sgn(β) = −1, i.e. an initial order parameter peak
rises followed by a limited space expansion. Yet, the
evolution have other characteristic values, e.g. themax-
imum values of Φpeak and w̃, respectively, vary, see
Fig. 4.

To investigate the span −3/16 < κ sgn(β) < 0,
the evolution of Φ is calculated for the specific case
of κ sgn(β) = −1/9, which is deemed representa-
tive for the interval. The evolution of the Φ-profile is
presented in Fig. 5. Initially, the evolution pattern is
similar to that observed for the previously considered
parameter sets. However, as the precipitate continues
to grow, it expands with seemingly constant speed with
no tendency to slow down in order to eventually reach a
steady state. According to the phase diagram in Fig. 2,

Fig. 4 Evolution of a the peak value of the order parameter
Φpeak , and b the shape widthw of theΦ-profile whereΦ = 0.01
for θ = 0. (α0 > 0 in all cases.)

no matrix phase (I) should exist at steady-state in a
homogeneous material when α > 0, thus making the
proposed scenario plausible.

Additionally, the situation for positive values of β

is considered, which is motivated by the phase dia-
gram that only predicts second order transition regard-
less of value of κ , cf. the limit A = 0 in Fig. 2. Fig-
ure 6 shows the evolution of the Φ-profile for κ = 1,
whose behavior somewhat resembles that of the case
for κ sgn(β) = −1 (Fig. 3d) with a fast initial increase
of Φ close to the crack tip. However, the broaden-
ing is accompanied with a gradually decreasing slope
of the order parameter in the interface proximity, as
opposed to the relatively constant slope observed for
κ sgn(β) = −1. Simulationswith three different values
of κ are performed, and the evolution of Φpeak and w̃
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Fig. 5 Evolution of Φ(x, y = 0) for α0 > 0, κsgn(β) = −1/9.
Profiles are shown for τ = 0 to τ = 50

Fig. 6 Evolution of Φ(̃, ỹ = 0) for α0 > 0, β > 0 and κ = 1.
Profiles are shown for τ = 0 to τ = 50

for theses cases are included in Fig. 4. Neglecting small
numerical variations, the evolution of w̃ is found inde-
pendent of κ , i.e. the precipitation shape and growth
rate are expected to be similar for all cases such that
β > 0.

5.2 Temperature lower than bulk transition
temperature: T < Tc0

To further extend the investigation, modeling of the
situation for which the material temperature is lower
than the bulk transition temperature is performed, i.e.
T < Tc0 corresponding to α0 < 0. Based on Eqs. (11)
and (14), it can be shown that for the situation at

hand α ≤ 0 and T < Tc must prevail everywhere in
the domain. An example of the evolution of the order
parameter is monitored in Fig. 7 at different times and
Fig. 8 illustrates the evolution of the Φ-profile along
the x̃-axis. For the stated conditions, the order param-
eter Φ increases in the whole computational cell, i.e.
the whole material, but its value is higher in the crack-
tip neighborhood where a stress concentration resides.
Similar to the considered situations in the previous sec-
tion, the order parameter displays a peak in the vicinity
of the crack tip, which early on reaches a maximum
value, while a slower transformation is taking place
away from the crack tip.

5.3 Comparisons of evolution characteristics

In order to quantitatively describe the evolution behav-
ior, some characteristics measurements are defined:
Φmax denotes the maximum value of Φpeak, τmp the
time to reach this value, w̃ss steady-state width, and
τ95%ss required for the system to reach 95% of w̃ss .
Results for the presented cases are summarized in
Table 1.

For the situation where α0 > 0, three different types
of evolution patterns are obtained relating to different
intervals of κ sgn(β): β > 0, β < 0 ∧ κ > 3/16 and
β < 0 ∧ κ < 3/16, respectively. Results from the
simulations of the corresponding cases are presented
in the following paragraphs, and in the last paragraph
results for α0 < 0 are discussed.

For all investigated cases where α0 > 0 and β < 0,
it is found that Φmax , w̃ss and τ95%ss decrease with
increasing κ , see Table 1. In contrast, the time τmp

that characterizes the initial stage of the precipitation is
approximately the same (≈5) and not exceeding 20%
of τ95%ss for any of the considered cases. The latter
observations are also true for β > 0. Further, larger
Φmax are reached for negative β than for positive β

with same value of κ .
It is also found that in cases where κ sgn(β) <

−3/16, wss increases with increasing κ sgn(β). It can
be deduced that there is an approximate linear relation
between the two with dwss/dτ95%ss ≈ ρ0/50. How-
ever if β > 0, all choices of κ result in similar values
of the final widthwss and the time to reach 95% ofwss ,
respectively. Thus, as been mentioned earlier, the pre-
cipitation process is not influenced by the value of κ ,
and it can be concluded that a Landau potential of lower
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Fig. 7 Evolution of the dimensionless order parameter Φ =
Φ(x, y) for the case with α0 < 0, κsgn(β) < 0 at different
instants

Fig. 7 continued

Fig. 8 Evolution ofΦ(x̃, ỹ = 0) for α0 < 0, κ sgn(β) = 1 from
τ = 0 to τ = 50

order than what is used in this study may be sufficient
to simulate the evolution if β > 0.

The characteristic values for two studied cases for
which α0 < 0 are also given in Table 1. The maximum
peak value Φmax is found to be larger for negative β

than for positive β for the same value of κ , in line what
is found for positive α0. The time to reach this max-
imum, τmp, is approximately equal in both cases, but
about half the time for cases with α0 > 0. That the
evolution process is faster is expected, since the whole
material is quenched and the contribution from stress
concentration to the driving force for phase transfor-
mation is added on top.
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Table 1 Summary of the characteristic values {Φmax , τmp , w̃ss and τ95%ss} for different combinations of κ sgn(β) and α0

α0 > 0
κ sgn(β) −4 −2 −1 −1/4 −1/9

Φmax 1.12 1.37 1.69 2.70 3.66

τmp 4.6 4.6 4.6 4.6 4.4

w̃ss/ρ0 1.55 1.67 1.92 * −
τ95%ss 36.5 40.5 56.0 * −
α0 > 0

κ sgn(β) 1 2 4

Φmax 1.29 1.13 0.977

τmp 4.9 4.8 4.7

w̃ss/ρ0 1.40 1.39 1.38

τ95%ss 28.5 29.5 29.0

α0 < 0

κ sgn(β) −1 1

Φmax 1.84 1.50

τmp 2.3 2.4

w̃ss/ρ0 − −
τ95%ss 10.9 11.7

*Values are not obtained within the calculation time limit

5.4 Comparison with analytic local steady-state
solutions

Here, the numerical results are compared with the ana-
lytically deduced local steady-state solutions that are
presented in Sect. 3, which from now on is referred to
as the analytical solutions. This aims at investigating
the possibilities and limitations of using these analyti-
cal results to predict the evolution pattern for different
configurations.

In the analytical study, theLaplacian term inEq. (18)
is neglected, roughly implying that the solution in each
point in space is unaware of its neighbors. The Lapla-
cian termnot only governs the smoothening of the inter-
face between disordered matrix and second phase, but
it also affects the peak shape of the Φ-profile. In addi-
tion, it influences the non-zero values of Φ along the
crack surfaces.

Figure 9a presents the numerically steady-state and
analytical solutions for the case with α0 < 0 and
κ sgn(β) = 1, where it is found that the curves match
very well. However, an exception is found very close to
the crack tip where the analytical solution goes to infin-
ity and the effect of the interface energy on the numer-

ical results is pronounced. The same observations can
be done for all studied cases for which α0 < 0 and,
α0 > 0 with −3/16 < κ sgn(β) < 0.

In Fig. 9b, steady-state profiles for the case with
α0 > 0 and κ sgn(β) = −1 are displayed. A match
is found between the numerical and analytical results
although differences subsist in the direct vicinity of the
crack tip and at the interface between second phase and
solid solution. The location corresponding to the sta-
bility limits of phase I and II are included, as well as the
transition line between region I*+ II and I + II* given
by the phase diagram in Fig. 2. It can be seen that the
smooth interface is located about the line that indicates
the first order transition between globally stable phases.
Similar observations can be done for all studied cases
for which α0 > 0 with κ sgn(β) < −3/16 and α0 > 0
with β > 0. In the latter case however, the smooth
interface is approximately centered at x̃ = ρ0, which
corresponds to the second order transition location for
the analytical solution.

The strong resemblances of the curve appearance
indicate the numerical steady-state shape and approx-
imate size of the second phase can be predicted by
using the analytic local steady-state solutions for all
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Fig. 9 Comparison between analytical and numerical compu-
tations for spatial variation (x̃, ỹ = 0) of order parameter in a
steady state for a α0 < 0 and κ sgn(β) = 1 and for b α0 > 0
and κ sgn(β) = −1

cases. However, the assumption that transformation
takes place wherever Φ �= 0 is disputable since that
numerical solution renders a larger precipitate than
the analytical solution is considered, see e.g. Fig. 9b.
Indeed, the numerical result display an interface with
a certain thickness whereas it is sharp in the analytical
solution. The intersection between the curves ahead
the crack tip in Fig. 9b corresponds to an apparent
inflexion point of the interface profile obtained numer-
ically, and the same observation is made for all cases
whereα0 > 0 and κ sgn(β) < −3/16. The smoothness
of the interface depends on the interface energy and
thus cannot directly be predicted from the analytical

solution. Additionally, the steady-state solutions dis-
play possible metastable phases. The stability analysis
was performed only in a point wise way. However, the
metastable phases might not appear if the total energy
of the system and the temporal evolution of the space-
dependent field are considered.

5.5 Influence of stresses on interface width

To explore the influence of the crack induced stress field
on the characteristics of the diffuse interface, its width
λ ismeasured for different values of the gradient energy
coefficient g in Eq. (2). For a phase boundary with an
interface profile that is symmetric in the radial direc-
tion, λ is proportional to (g/ΔΨ )1/2, see e.g. Moelans
et al. (2008), Provatas and Elder (2010), where ΔΨ is
the bulk energy barrier for phase transition, as illus-
trated in Fig. 12 in “Appendix”. Further, the width λ

is often defined as the distance between two positions
for which Φ = L1 Φ0 and Φ = L2 Φ0, see Fig. 10,
where Φ0 is the maximum value of Φ. For example,
the limits 0.1 and 0.9 could be chosen to characterize
the interface width. In present study, all results are pre-
sented using a dimensionless length obtainedby scaling
with

√|α0|/g. In case of a symmetric interface, then a
dimensionless interface width λ̃ would be independent
of g.

In this study, the investigation of how λ depends
on g in the presence of the loaded crack is limited to
a single case: α0 > 0, β < 0 and κ = 1 at steady
state. In Fig. 9 numerical result (g �= 0) and the ana-
lytical solution (g = 0) are compared for the consid-

x

Φ
/Φ

0

0

1

λ

L1

L2

Fig. 10 Interface width definition
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Fig. 11 Interfacewidthλversus g1/2 for different limits defining
the width. A linear fit of the results is included

ered case. This comparison reveals that the analytical
solution is discontinuous at the transition point, and
ΔΦ is taken as the difference in Φ̄ at this location.
Different limits couples (L1, L2) are considered for
g = {1, 5, 7, 10, 50, 70} × 10−3 and the results are
shown into Fig. 11. From this figure, it is found that
λ is not proportional to g1/2, but rather that the rela-
tionship λ = C1(g1/2 + C2) can be deduced, where
C1 is a linear function of the limit, and the constant
C2 ≈ 0.08, which is not of negligible for the studied
cases. Thus, it may be noted that the space dependence
of the order parameter, induced by a local stress con-
centration, results in an interface width which cannot
be deduced by simply scaling the numerically obtained
results from the parametric study.

5.6 Effect of material properties and load

In the presented model, the coefficients α0, β0 and γ

in the Landau potential Eq. (3) are material dependent,
but they are not related to the elastic parameters, neither
is the interface energy coefficient g. Instead changes in
the elastic properties are introduced in themodel via the
shift in the transition temperature as seen in Eq. (15)
and the value of β, cf. Eq. (12). The strength of the
interaction between the displacement field and the field
parameter represented by ξ also affects the evolution of
a precipitate. For a stiffer material (larger Λ), β has a
lower value than for a more compliant material, which
corresponds to an increased κ . In the case ofβ > 0, this
means that the phase transition mode is still of second
order (see Fig. 2) but a higher transition rate is achieved,

cf. Table 1. However, if Λ is reduced such that there
is change in sign of β to a negative value, first order
transitions may be possible. The same argument can be
made for a material with a less pronounced interaction
between the displacement field and the order parameter,
i.e. a lower ξ . Additionally, if KI increases, r0 [see
Eq. (13)] and ρ0 also increase, which leads to a stronger
influence of the crack on its surrounding area.

In the case of diffusionless phase transformation, the
approach in the presentworkmaybeuseful. If all neces-
sary material properties and the stress intensity factor
are known, the steady state of the second-phase pre-
cipitation can be deduced by using the phase diagram
outlined in Fig. 2. Size, shape, growth rate, time to com-
plete transformation, and to some extent the smooth-
ness of the interface, can be thereafter be calculated
using the dimensionless results presented in this work.

5.7 Further remarks

The presented work, which includes a full paramet-
ric study, allows capturing all different scenarii cor-
responding to different combinations of load, phe-
nomenological coefficients and material properties in
time and space for a phase transformation induced by
the presence of a crack in a elastic structure. This type of
study is usually omitted in the literature. In addition, the
microstructure evolution of a material is traditionally
modeled by considering two coupled aspects: the phase
kinetics and the mechanical equilibrium, and, usually,
they are numerically solved separately e.g. Bair et al.
(2017), Ma et al. (2006), Thuinet et al. (2013). Here,
an analytical solution for themechanical equilibrium in
plane strain for an elastic structure containing a crack is
found through the use of the Irwin’s analytical solutions
and is directly incorporated into the TDGL equation
as in Boulbitch and Korzhenevskii (2016) in order to
account for the presence of a fixed crack-induced stress.
Thus, only one equation has to be solved rendering the
model time-efficient.

A large number of models in the literature, which
are based on phase field theory, and the present one
employ a phenomenological Landau potential, which
derives from a power series in the order parameter.
However, these models are not fully quantitative. This
limits the studyvis-a-vis the effects of temperature tran-
sient and temperature gradient (Shi andXiao2015), and
our understanding of the meaning of the Landau coef-
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ficients. An attempt was made by Shi and Xiao (2015)
to relate the Landau potential coefficients to physical
quantities but the study still lies on several arbitrary
simplifying assumptions.

Formost engineeringmaterials, the structural changes
are accompanied by a concentration re-distribution of
species, and coupled evolution laws for structural and
concentration order parameters may be the tool to suc-
cessfully capture such behaviour.

In the case of hydride forming metals, there is a
lack of some of the necessary material data and the
phase transition kinetics are not fully mapped. Never-
theless, ab-initio calculations such as reported in Ols-
son et al. (2014, 2015) may contribute to fill in the
gaps, as well as recently performed experiments, cf.
Maimaitiyili et al. (2015), Maimaitiyili et al. (2016).
Further experiments that are especially designed for
capturing phase transformation induced by a crack, are
recommended.

6 Summary and conclusions

A phase field approach is used to investigate the forma-
tion of a second phase at the vicinity of a crack tip in an
isotropic and linear elastic material. The tempo-spatial
evolution of the microstructure is computed by numer-
ically solving the TDGL equation. To capture the phase
transitions, we use a sixth order Landau potential for a
single structural order parameter, which represents the
degree of ordering of the crystal structure.

For the considered systems the phase diagram
for mean-field thermodynamic equilibrium is derived,
clearly showing the existence of possible meta-stable
phases and first order transitions, which might not
emerge by considering the total energy of the sys-
tem and the temporal evolution of the space-dependent
field. The driving force for the phase transformation
at the crack tip can be attributed to the phase transition
temperature being locally shifted as a result of the crack
induced stress field, which effectively acts as quench-
ing in the crack tip vicinity. Different phase transfor-
mation scenarios are simulated by using a wide range
of combinations of parameters, which represent vary-
ing material properties and stress levels. It is found that
close to the crack tip, the driving force is always large
enough to induce precipitation within a confined area
through a second order transformation. The subsequent
evolution pattern depends on the parameter set at hand,

and a shift to first order transition during growth of
the precipitate is observed occasionally. However, the
presence of any metastable phases cannot be revealed
from the calculations.

The complete steady-state solutions, with the excep-
tion of the shape of the smooth interface, is found to
be accurately predicted by using the mean-field solu-
tion for each location. The interface width is found
not to scale with the interface gradient energy coeffi-
cient because of the inhomogeneous stress field around
the crack. Finally, the evolution of the order parame-
ter is studied following quenching of the whole mate-
rial. It is shown that the formation of the second phase
is enhanced by the presence of the crack, despite that
the entire system undergoes transformation simultane-
ously.

Once the diffusionless phase-transformation model
parameters of an applicablematerial system are known,
the presented results will allow to predict the kinetics
of precipitations, e.g hydride formation, in the crack-
tip vicinity. Thus, this will contribute to the failure risk
quantification of structures avoiding the use of expen-
sive experiments.
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Appendix: Theoretical analysis of the steady state
solutions

In this paragraph the solutions of Eq. (19) presented in
Eqs. (20) and (21) are discussed depending on the signs
of α0, β and the positive value of κ . All cases described
below are illustrated by the graphs showing the poten-
tial Ψ versus the dimensionless order parameter Φ in
Fig. 12.

The condition for Φ̄
2

± to exist allowing the forma-
tion a second phase is A ≤ 1/(4 κ) which corresponds
to (ρ0/ρ)1/2 ≥ [sgn(α0) − 1/(4κ)]/ cos(θ/2). When
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Fig. 12 The Landau potential Ψ versus the dimensionless order
parameter Φ. a β > 0, b β < 0

this condition is fulfilled several situations for which a
second phase may nucleate are possible:

– if α0 < 0, which induces A < 0, the value Φ̄−
cannot exist for any values of β. Consequently,

the three solutions are {−|Φ̄+|, 0, |Φ̄+|} where the
non-zero solutions minimize the system energy.
Thus, a stable second phase is suppose to form in
every point of the system;

– if α0 > 0, β < 0 and A > 0, i.e. ρ
ρ0

≥ cos2 θ
2 , there

are five solutions: {−|Φ̄+|,−|Φ̄−|, 0, |Φ̄−|, |Φ̄+|}.
Since the equation solving gives 3 minima, two
non-zero and 0, both phases can exist in 2 states:
stable or metastable. The stable phase is designed
by a global minimum and the metastable one cor-
responds to a local minimum. When Ψ (Φ̄) = 0
together with δ Ψ (Φ̄)/δΦ̄ = 0 which yields A =
3

16 κ
all minima are equal, i.e. both phases are

equally stable. For 3
16 κ

≤ A ≤ 1
4 κ

then the solid
solution is expected to be stable and the second
phase to be metastable. If 0 ≤ A ≤ 3

16 κ
then the

solid solution is expected to be metastable and the
second phase to be stable.

– if α0 > 0, β < 0 and A ≤ 0, i.e. ρ
ρ0

< cos2 θ
2 , the

solutions of the equation are {−|Φ̄+|, 0, |Φ̄+|}. In
this situation, both minima induces the formation
of a stable second phase.

– if α0 > 0, β > 0 and A ≤ 0, i.e. ρ
ρ0

≤ cos2 θ
2 ,

the system has 2 minima, {−|Φ̄+|, |Φ̄+|}, and one
maximum, 0. In these condition, the stable second
phase is expected to form;

If the system has the configurations {α0 > 0, β < 0,
A > 1

4 κ
} and {α0 > 0, β > 0, A > 0}, the solid

solution is stable and no second phase is expected to
nucleate.
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