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Abstract A discrete lattice based model for the
interaction of cracking, delamination and buckling of
brittle elastic coatings is presented. The model is unique
in its simultaneous incorporation of the coating and of
disorder in the interface and material properties, lea-
ding to realistic 3D bending (and buckling) behavior.
Results are compared to the literature. In the case of cra-
cking, the key role of a stress transfer correlation length
ξ in establishing a scaling behavior for the brittle frac-
ture of thin films is shown to extend to all geometrical
and material properties involved. In the scaling regime
of crack density in uniaxial tension cracking and dela-
mination are found to occur simultaneously. In uniaxial
tension of films with an internal biaxial compressive
stress, the predicted initiation of buckles above delami-
nated areas near crack edges in the model is remarkably
similar to experimental results.
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1 Introduction

Coatings are used to protect surfaces in many
applications and failure of a coating may lead to
degradation of required engineering properties. Quite
generally, coating failure is due to stresses that trigger
irreversible mechanical deformation mechanisms, the
most important of which are cracking, delamination
and buckling. All of these mechanisms may appear in
successive stages of deformation and interact with each
other, as illustrated in Fig. 1.

The engineering interest in the field is focussed on
preventing coating failure but the fascinating array of
patterns that may form in these coatings (of which
Fig. 1d shows an example) have attracted interest from
various quarters.

This has resulted in a wide range of publications
dealing with the field that can roughly be divided in
two sets: firstly continuum mechanics literature dea-
ling with crack propagation and crack patterns near
bi-material interfaces (e.g. Xia and Hutchinson 2000;
Hutchinson and Suo 1992; Beuth 1992; He et al. 1998;
Gille 1984; Mezin et al. 1989a) and secondly litera-
ture that discusses so-called “lattice models” in which
coating, substrate and interface are represented by a
lattice of points connected by bonds, springs or beams
that can break irreversibly. Such lattice models have
been studied in a wide variety of contexts that will
not be discussed here; comprehensive reviews can be
found in Ostoja-Starzewski (2002), van Mier (2007)
and Alava et al. (2006). Initial work on the use of such
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Fig. 1 Illustration of
deformation and failure
mechanisms in supported
brittle films under uniaxial
tension. a–c Sketches of
successive stages in the
failure showing plane
sections parallel (a1–c1)
and perpendicular to the
tensile load (a2–c2).
Experimental image of
stage c showing triangular
buckles above delaminated
areas between cracks. (The
system consists of
amorphous hydrogenated
carbon deposited on Al
substrate) Symbols for
tensile direction (arrows)
and plane cuts (coded lines)
allow comparison of a–c
with d

a1

b1

c1

c2

b2

a2

d

models for coatings was performed by Meakin (1987),
Skjeltorp and Meakin (1988). Several adaptations anti-
cipated in the papers by Meakin have been investi-
gated, including models with viscoelastic Handge et
al. (1997) and plastic coating elements Handge et al.
(2001). Work has also been directed to the interaction
between disorder and elastic properties Handge et al.
(1999), pattern formation Leung and Neda (2000) and
the (onset of) scaling regimes in patterns Hornig et al.
(1996), Handge et al. (2000a). Part of the work has
dealt with essentially 1D cracking systems in which
the scaling properties may be analytically approxima-
ted, while still being relevant to experimental (or tes-
ting) situations Morgenstern et al. (1993), Handge et
al. (1999), Handge et al. (2000b).

A number of other papers discussed systems in which
the interface is allowed to deform irreversibly during
the simulation, e.g. by slippage Kitsuzenaki (1999).

Buckling, which requires a realistic description of
the bending stiffness of the coatings has been studied on
relatively few occasions, most notably by Jagla (2007)
who discusses the interaction of delamination and buck-
ling in layers with a compressive internal stress.

This paper aims to treat the most general situation
in which all three deformation mechanisms mentio-
ned above, cracking, delamination and buckling are
allowed to interact freely. Disorder in the material pro-
perties can also be taken into account. Some key cha-
racteristics of the behavior of a specific system that
shows this type of interaction are evident from Fig. 1d

showing deformation phenomena of a brittle elastic
amorphous carbon layer supported by polished Al. In
response to uniaxial tension (indicated by the arrows),
cracks develop perpendicular to the tensile direction.
Near the crack edges triangular delaminated areas are
visible above which the coating has buckled. From the
location of the buckles it is clear that the three defor-
mation mechanisms interact in this case. Figure 1a–c
shows sketches of the successive deformation stages
involved.

The paper is organized as follows: the numerical
model and its features are introduced in Sect. 2. In
Sect. 3, results of cracking are presented. The idea is to
establish the validity of the approach by a comparison
with the literature, and show some original results on
scaling behavior. Compared to what is commonly used
in the literature, a slightly different way of presenting
the scaling relations for the cracking of thin films will
be used. In Sect. 4 results of simultaneous cracking and
delamination are discussed. Finally the results of cra-
cking, delamination and buckling are given in Sect. 5.

2 Lattice based coating-substrate model

The lattice model consists of three regions: the sub-
strate, the interface and the coating, for which the cha-
racteristic unit cells are shown in Fig. 2.

Different boundary conditions may be applied as
shown in Fig. 3. In case of a 2D model periodic
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Fig. 2 A 2×7 3D model. In the side- and perspective-view black
represents the coating, light gray the interface and dark gray the
substrate. In the top view the black lines and grey area indicate
the projection of a single unit cell. The length of the interface is
magnified in the figure for viewing purposes

boundary conditions (PBC’s) are applied on a model
only one unit wide in x-direction, see Fig. 2. This geo-
metry is a representation of an array of straight cracks,
such as shown in Fig. 3. In such a model a crack cannot
propagate and delamination and buckling may initiate
and propagate only along the interface in z-direction.
Evidently, PBC’s can also be applied to models with a
width of several units, but these are not discussed here.
In the 3D models cracks may propagate, and delami-
nation and buckling behavior may develop.

Equilibrium configurations are determined in a stan-
dard fashion with the Finite Element Method (FEM).
Two different types of elements are used. Firstly, in the
coating and the substrate: brittle linear elastic spring
elements. These elements do not have a bending stiff-
ness and instead a 3D network in the coating provides
the bending stiffness necessary for the simulation of thi-
ckness effects in delamination and buckling. Secondly,
in the interface: brittle linear elastic leaf-springs that
transfer loads perpendicular as well as parallel to their
axis.

Elements in the coating are considered to break at
predetermined fracture forces (equivalent to predeter-
mined elongations), which represents cracking. If the
force in a spring element n exceeds its assigned fracture
limit Fb

n , the element is removed from the model.

The leaf spring elements in the interface are also
considered to break when their elongation equals a
predetermined value, which is equal to Fb

i /ki,ax . Per-
pendicular to the leaf-spring axis a force Fp leads to
an associated displacement Fp/ki,p, which causes a
small elongation of the spring. Defining an angle θ

with tan(θ)= (Fp/hi ki,p) and hi the leaf spring length
one finds for the axial elongation necessary to cause
fracture (first order approximation, for small values of
θ ) Fb/ki,ax − hi tan(θ)2/2. This effectively leads to
a type of mixed-mode delamination criterion in which
the energy necessary for delamination (i.e. removal of
the element) is different in pure axial loading (in this
model coinciding with mode I fracture) than it is in pure
perpendicular (mode II) loading. This is illustrated in
Fig. 4 where the mode I and mode II energies associated
with breaking are plotted. What is plotted is the frac-
ture energy in the two modes normalized with respect
to the pure mode I value. In this paper ka = kp = ki .
Results will depend on the ratio ka/kp (e.g. reducing kp

reduces the mode II contribution to the energy release
rate) but this is not addressed in this paper.

The breaking force Fb
n is defined as:

Fb
n = Fb + W · Fb

amp with (−1 < W < 1) (1)

where Fb is the mean breaking force (of the entire
coating), Fb

amp is the amplitude of the scatter around Fb

and W is taken randomly from a uniform distribution.
Disorder parameters κ are defined as:

κc = Fb
c,amp

Fb
c

and κi = Fb
i,amp

Fb
i

(2)

where the subscript (c) indicates the coating and (i ) the
interface.

The geometry of a coating lattice is expressed as
follows: a n × m 3D model has n units of length l0
in x-direction (in the plane z = zmin = 0 in Fig. 2)
with a total length L0x = nl0 and it has m units in
z-direction with a total length L0z = 1

2

√
3ml0. For 2D

models discussed here n ≡ 1 so only m is relevant and
the initial length L0 ≡ L0z .

Fig. 3 Static properties of
3D straight cracks and
delamination (a) can be
captured in a periodic 2D
model (b). Crack
propagation along arbitrary
directions, delamination and
buckling can only be
captured in a 3D model (c)
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Fig. 4 Energy stored in spring at fracture as a function of angle
θ (see text). For θ = 0 the fracture is equivalent to pure axial
loading or pure mode I. All values have been normalized with
respect to that value. The figure shows the mode I component,
the mode II component and the total fracture energy. The ratio
ka/kp is equal to 1 here

All nodes are initially regularly ordered such that
equilateral triangles are created in the xz-plane. Geo-
metrical disorder is introduced by displacing nodes
across a distance dr in direction dα in the xz-plane,
according to:

dr ∈ W2 · drmax and dα ∈ W3 · 2π (3)

where W2 and W3 are distributions (in this case: uni-
form) with 0 ≤ Wi ≤ 1 and i = 2, 3. The maximum
displacement of a node, drmax , can be defined to control
the amount of geometrical disorder κg:

κg = drmax
1
2 l0

(4)

where l0 is the initial element length without disorder
in the model.

2.1 Solution

The simulation is load-controlled and the nodal displa-
cements are calculated in each loading step using an
incremental solution algorithm based on a piece-wise
standard application of linear FEM:

u = K −1 f (5)

Here f is the nodal force column, K the stiffness
matrix and u the column with the nodal displacements.
A preconditioned conjugate gradient method (PCG) is
used to solve the system. As preconditioner the incom-
plete Cholesky factorization (ICF) of the stiffness

matrix is used. In every increment the external force
is changed in such a way as to precisely fracture one
element, thus making optimal use of the linear
relation between the applied forces and the nodal dis-
placements (Eq. 5). However, forces perpendicular to
element axes induce a slight non-linearity, which is
taken into account. For the determination of the requi-
red load step the lengths of the springs are updated
to assess this property. When the next weakest ele-
ment is known, it is broken. To improve on the effi-
ciency, elements are broken in sets. When the model
structure is projected along the y-axis certain sets of
elements fall on top of each other, these sets are cal-
led “groups”. Similarly, a projection along the x-axis
permits to identify sets, which are called “families”. A
“family” consists of a number of “groups”. In the model
we choose to always break either the group (3D) or
the family (2D) to which the weakest element belongs.
Since a group is the smallest part of the coating that
can crack, the cracks cannot be bridged along the y-
direction. The coating is cracked from the top-surface
right down to the interface. If the elements do not expe-
rience large strains or rotations K is not entirely recal-
culated. Rather, at each loading step the affected frac-
tion of K is updated to incorporate the element remo-
val. This significantly decreases the required calcula-
tion time for every increment. Likewise, the ICF is not
recalculated every increment, but only when the time
spent in recalculating outweighs the extra time spent in
iterating caused by bad preconditioning.

2.1.1 Residual stresses

Residual stresses are directly assigned to individual ele-
ments, yielding an extra contribution to the internal
force of these elements.

The determination of the nodal displacements (e.g.
when determining the weakest element) in the presence
of residual stresses is performed as follows. First, the
displacements uint caused by only the internal forces
are determined. Then, the displacements uext1N caused
by an external unit load of 1 [N ] are calculated. The
real displacements ui caused by an external force Fext

and all internal forces are now given by:

ui = uext1N Fext + uint (6)

The actual load Fext is then determined through the
weakest link, i.e. the element which first ’hits’ its frac-
ture limit.
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2.1.2 Buckling

The simulation of large displacements in buckling is
performed in a incrementally step-wise linear fashion
as well. The method discussed previously is again adop-
ted but the stiffness matrix K is updated at the end of
each increment. This has the desired influence on the
behavior of the model provided adequately small steps
are taken. Prior to updating K , the model must be in
equilibrium, which requires an extra solver step.

3 Results: in-plane cracking of the film

3.1 Correlation length

It is possible to establish a close correspondence bet-
ween the model parameters used in the lattice model
and material parameters representative for experimen-
tal situations. Moreover a set of simplifying assump-
tions known as the shear-lag approximation provide
interesting insights in the interplay between material
parameters (including disorder) and geometry when
cracking occurs. In a 2D representation as shown in
Fig. 5, a coating c is connected to the substrate s by
the interface i . The substrate is subjected to a uni-axial
uniform stress σ0 in x-direction. The following stress-
strain relation holds for both the coating and the sub-
strate:

εxx = σxx

E
. (7)

The shear-lag approximation relates the shear stress
τi (x) in the interface to the stress in the coating and the
stress change 	σs in the substrate:

τi (x) = hc
∂σc

∂x
= −hs

∂	σs

∂x
(8)

From Eq. 8 follows:

σc(x) = 1

hc

x∫

0

τi (x)dx (9)

and

σs(x) = σ0 − 1

hs

x∫

0

τi (x)dx (10)

At this point, a stress-strain relation for the shear
stress at the interface has to be specified. Using a linear
elastic shear approximation

τi ≈ C

w
(uc − us), (11)

with C a shear modulus and w a characteristic interfa-
cial distance across which the displacement occurs. In
relation with the adopted lattice model we take C = Gi

and w = hi . Using this result in Eq. 8 yields:

∂2σc

∂x2 = Gi

hc

(
εc − εs

hi

)
(12)

From Eq. 8, a relation between εc and εs follows that
can be used to arrive at:

∂2σc

∂x2 − k2
1σc(x) = −k2 (13)

with:

k2
1 = Gi

hi

(
1

hc Ec
+ 1

hs Es

)
and k2= Gi

hchi Es
σ0 (14)

Using the boundary conditions σc(−Ls/2) =
σc(Ls/2) = 0 gives:

σc(x) = − k2

k2
1

(
1 − cosh(k1x)

cosh( k1 Ls
2 )

)
(15)

and

τi (x) = hc
k2

k1

sinh(k1x)

cosh( k1 Ls
2 )

(16)

Fig. 5 a Substrate under a
uni-axial load. b The stress
components in a part of the
substrate, interface and
coating
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Fig. 6 Illustration of unit cell used in calculation of
representative stiffness tensor for the coating

Clearly, a correlation length k1
−1 = ξ can be intro-

duced:

ξ =
(

Gi

hi

(
1

hc Ec
+ 1

hs Es

))− 1
2

(17)

In the adopted lattice model, spring elements are
used and we define Cs , Ci and Cc as the spring constants
of the substrate, interface and coating elements respec-
tively. Of course it is desirable to establish equivalent
continuum moduli from the lattice model parameters.

For the coating a well-established homogenisation
procedure has been used Kouznetsova et al. (2002) to
determine the components of the representative stiff-
ness tensor. In this procedure, periodic boundary condi-
tions are assumed for unit cells see Fig. 6. Introducing
the planar (x,z) coordinates of the corners as xi and the
non-planar y coordinates as yi , with corners in the lower
plane numbered from 1 to 4 counterclockwise and in
the upper plane numbered from 5 to 8 counterclock-
wise, the periodic boundary conditions enforced on the
unit cell are: x1 − x2 = x4 − x3, x5 − x6 = x8 − x7,
y1 = y2 = y3 = y4 and y5 = y6 = y7 = y8. Using
these conditions it is found that the coating, as described
by the spring model is a transversely isotropic medium
with the following non-zero tensor components:

c11 = c22 = 3
√

3Cc(3 + cos 2φ)

4hc
(18)

c33 = 2hc(Cc + 6Cc(sin φ)2)√
3l2

0

(19)

c55 = c66 = 2
√

3Cchc(cos φ)2

√
3l2

0

(20)

c12 =
√

3Cc(3 + cos 2φ)

4hc
(21)

c13 =
√

3Cc sin 2φ

l0
(22)

This characterises the elastic properties of the layer
completely. Expressions for the Young’s moduli are
not quite as simple, since the Poissons’s ratio’s also
depend on the height hc and the angle φ. However this
dependence is rather weak. This effect can be captured
by a term c(φ) that varies in value between roughly
0.8 and 0.9 if φ varies from 0 to π

2 . So for the in-plane
Young’s modulus of the film we can use

Em
c = c(φ)

3
√

3Cc(3 + cos 2φ)

4hc
. (23)

Here, the superscript m indicates model properties.
For thickness changes in a regime of small angles φ

the cosine term is also more or less constant and the
in-plane Young’s modulus depends to a good approxi-
mation linearly on the spring constant and the inverse
coating height 1

hc
. To further establish correspondence

between model parameters, and (experimental) para-
meters that appear in the shear-lag formulation, one
can introduce the following quantities:

Gm
i = 4Ci hi√

3l2
0

, Em
s =

√
3Cs

4hs
. (24)

hi is the interface height in the model. hs serves only
to scale the spring constant Cs . Using these equiva-
lences it is possible to relate force profiles in coating
and interface or the correlation length in the model to
those calculated in Eqs. 15, 16 and 17.

3.2 Scaling behavior

In Fig. 7, the force profile Fc(x/Ls)/Fb in a part of a
coating is plotted for different values of Lsξ

−1, with
Ls the (mean) segment length. The set of curves is
representative for profiles occurring in a coating that is
fractured increasingly. When Lsξ

−1 � 1 the stress in
the coating reaches the maximum value in a “plateau”
region. When Lsξ

−1 � 1, the stress cannot reach this
plateau value, and the stress profile instead has a para-
bolic shape.

In uniaxial tensile experiments the behavior of the
mean segment length Ls as a function of the applied
strain ε is known to show two distinct regimes. This is
a direct consequence of the behaviour of the maximum
segment stress Fmax

c (Ls(ε)). Experimental work direc-
ted towards elucidating patterning and scaling behavior
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Fig. 7 Force profiles at constant external force, showing the
influence of decreasing Lsξ

−1

in crack patterns was reported in e.g. Gille and Wet-
zig (1983), Mezin et al. (1989b), Yanaka et al. (1998,
1999), Walmann et al. (1996), Leung et al. (2001),
Handge et al. (1999).

The first regime is characterized by a rapidly increa-
sing density of cracks without a further increase of the
external force (or strain). In a displacement control-
led tensile test many cracks would suddenly appear in
this first regime. In the second regime, an increasing
macroscopic strain is needed before more cracks will
initiate. Moreover in this mode a scaling regime deve-
lops. The onset of the scaling regime provides infor-
mation on the correlation length, and the slope in the
scaling regime is related to characteristics of the disor-
der in (“quality of”) the coating Handge et al. (2000a),
Morgenstern et al. (1993), Handge et al. (2000b). In
the following the obtained segment length as a function
of the overall strain ε, Ls(ε) for our model system is
illustrated. The aim is to show that it reproduces results
from literature, and suggests that Ls(ε) may be further
exploited in the assessment of coating and interface
properties.

The mean segment length Ls has been defined as

Ls = L0

ncr + 1
(25)

where L0 is the initial model length and ncr is the num-
ber of cracks in the coating.

It is clear from the above that Ls should be norma-
lized with ξ . Moreover it seems reasonable to expect
that ε scales with εb

max , so we introduce εn :

εn = ε

εb
max

(26)

The maximum breaking strain is given by:

εb
max = 6Fb

Em
c bhc

(27)

where Fb = Fb
c (1 + κc):

Results from a number of simulation run at dif-
ferent parameter values, shown in Table 1 are plotted
as Lsξ

−1(εn) in Fig. 8. All results, regardless of the
material and geometry parameters, are positioned on a
single master curve, shown as a thick black line. The
master curve is determined as follows: the maximum
force in a segment as a function of the segment length
is given by:

F0,Ls = k2ξ
2bhc

(
1 − sech

(
Ls

2ξ

))
(28)

For a break to occur at the centre of a segment this
maximum force has to be equal to the breaking force,
i.e. F0,Ls = Fb, and thus εn(Ls) of the mastercurve
equals:

εn(Ls) =
(

1 − sech

(
Ls

2ξ

))−1

(29)

The particular scaling presented in Fig. 8 is derived
for κc = 0. In the case where disorder occurs, the beha-
vior is known to deviate, as shown by Handge et al.
(2001). The model description shown here reproduces
their finding that the slopes of the curves at small values
of Lsξ

−1 change from − 1
2 for κc = 0.0 to − 1

3 for
κc = 1.0, but here this is not further discussed.

Table 1 1 × 1501 2D simulations

Simulation Varied parameter Simulation Varied parameter

1 None 5 Es− > 10Es

2 Ei − > 0.01Ei 6 Fb
c − > 2Fb

c
3 Gi − > 10Gi 7 hi − > 0.1hi
4 Ec− > 0.1Ec 8 l0− > 0.5l0

Changes to parameters for curves depicted in Fig. 8. No disorder
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]

Fig. 8 Results of calculations specified in Table 1 plotted as
Lsξ

−1(εn) together with master curve (see text)

3.3 Crack initiation and propagation versus ξ

The correlation length ξ plays a similar role in 3D uni-
axially loaded models as in 2D models, but additionally
it also influences the propagation of cracks. This fol-
lows from the fact that a stress concentration appears
in front of every crack, the amplitude of which depends
on ξ .

Figure 9 shows crack patterns resulting after 2500
fracture events, for situations with different values of
ξ . L0ξ

−1 equals 64 (left), 128 (middle) and 256, (right).
Note the clear difference in the crack patterns. Figure 10
shows Fext as a function of the number of fractured
elements for sim1 and sim3.

The curve of sim1 shows characteristic spikes. The
spikes represent the value of Fext necessary to initiate
a crack in sim1. Due to the stress concentration at the

0 625 1250 1875 2500
0.8

1.2

1.6

2
x 10

7

Number of broken elements [−]

F
ex

t [N
]

SIM 3
SIM 1

Fig. 10 Fext as function of the number of broken elements for
sim1 and sim3

crack tip, the force necessary to propagate the crack
is significantly smaller than the nucleation force in
this case. In displacement controlled experiments this
would be observed as a crack that initiates and imme-
diately propagates through the whole sample width. In
sim1 after seven of such cracks (that appear as 7 spikes
in Fig. 10), Ls has decreased and becomes the lengths-
cale relevant for the stress concentration at the crack
tip. Furthermore the fracture of the coating transfers
from the regime where (Ls � ξ ) to a power-law sca-
ling regime as discussed in 3.2. In the scaling regime,
a steady increase in the external loading is needed to
ensure further cracking. However, it can also be seen
that the difference between the initiation and propaga-
tion forces becomes less pronounced. The Fext curve of
sim3 in Fig. 10 does not present large spikes, because
the stress transfer to the crack tip is much less efficient
for small values of ξ . In this case the probability of
nucleation of a new crack compared to the propagation
of an already existing crack has increased.

3.3.1 Crack propagation and disorder

The influence of material disorder κc and geometric
disorder κg on the crack initiation and propagation is
shown in Fig. 11a–f. In Fig. 11a there is no material

Fig. 9 Influence of ξ on the
crack pattern after 2500
fractured elements in a
120 × 120 3D model.
Tensile direction is vertical.
From left to right
L0ξ

−1 = 64, 128 and 256.
Cracks are black. κc = 0.1
and κg = 0.1. Greyscale
indicates spring forces from
zero, (black), to Fb

c , (white)
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Fig. 11 3D uni-axial
simulations with different
values for κc and κg .
a κc = 0.0, κg = 0.0,
b κc = 0.5, κg = 0.0,
c κc = 1.0, κg = 0.0,
d κc = 0.0, κg = 0.0,
e κc = 0.0, κg = 0.5,
f κc = 0.0, κg = 1.0.
L0ξ

−1 = 9.9. The tensile
force is applied in vertical
direction. All graphs are
taken after the same amount
of broken elements

disorder, κc = 0, and therefore the first crack will ini-
tiate in the middle since the forces are the highest there.

In Fig. 11b κc = 0.5, which is large enough to cause
fracture of elements that are not loaded with the highest
force. This yields a crack that is not completely per-
pendicular to the tensile direction. In 11c κc = 1.0 and
elements may fracture at a force of (nearly) zero value,
through which propagation becomes a non-issue. The
broken elements are not randomly located since the
stress and the probability that an element will break are
both highest in the middle. The influence of κg is not as
remarkable as that of κc. This is shown in Fig. 11d–f.

4 Film cracking and delamination

In this section we will investigate the interaction bet-
ween cracking and delamination. In the presence of
delamination nearby a crack the load transfer to the coa-
ting is partially inhibited, which may clearly influence
further fracture events. In a typical sequence of uni-
axial tension experiments it has been observed that after
an initial increase in crack density, pockets of dela-
minated interface start to appear at the crack edges.
Subsequently, cracking and delamination may occur
side-by-side during the remainder of the experiment.
This sequence of events indicates that the occurrence
of cracks may also influence subsequent delamination.
In this section the interaction is studied within the limits

of the present model, but again departing from an essen-
tially scalar shear lag approximation.

4.1 Critical length for delamination

First, two new quantities are defined: the normalized
breaking strengths of the coating and interface: αc and
αi ,

αc(Ls) = Fc,max (Ls)

Fb
c

and αi (Ls)

= Fi,max (Ls)

Fb
i

(30)

Where Fc,max (Ls) and Fi,max (Ls) are the maximum
forces in the coating and interface as function of the
segment length Ls . Fb

c and Fb
i are the breaking forces

of the coating and interface respectively(κc = κi = 0).
Using Eqs. 15 and 16 for the force profile in the coating
and interface respectively, the maximum force in the
coating Fc,max and interface Fi,max may be expressed
as:

Fc,max (Ls) = f1

(
1 − sech

(
Ls

2ξ

))
with : f1

= k2ξ
2bhc (31)

and:

Fi,max (Ls) = f2 tanh

(
Ls

2ξ

)
with : f2=k2ξhi bl0 (32)
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The αc(Ls) and αi (Ls) are drawn in Fig. 12a. The
coating will crack if αc(Ls) > αi (Ls). When αc(Ls) <

αi (Ls), the coating will delaminate. As can be seen in
Fig. 12a there is a transition point between cracking and
delamination. The segment length where this transition
happens is called the critical segment length Lc given
by αc(Lc) = αi (Lc):

f1

Fb
c

(
1 − sech

(
Ls

2ξ

))
= f2

Fb
i

tanh

(
Ls

2ξ

)
(33)

It follows that,

Lc = 2ξ ln

(
1 + a

1 − a

)
with : a = hi l0 Fb

c

ξhc Fb
i

(34)

and 0 < a < 1. Equation 34 is plotted in Fig. 12b. The
figure shows the influence of the correlation length ξ

on the interaction between cracking and delamination.
During a simulation ξ is a constant and Ls decreases.
So, a descending path along a vertical line will be fol-
lowed in Fig. 12b. Ls will decrease until it reaches Lc.
Then the cracking will stop and the coating starts to
delaminate. So, for 0 < a < 1 the coating starts with
cracking (if L0 > Lc) and eventually it will always
delaminate. When Fb

c /Fb
i decreases the Lc-curve in

Fig. 12b will move towards the axes and the area under

the curve will be smaller and delamination starts at a
smaller Ls (or higher ε).When a ≥ 1 the coating will
only delaminate if L0 < Lc .

In this essentially scalar view, cracking and delami-
nation alternate if disorder is introduced in the element
failure properties. This is shown in Fig. 13a, where the
interface has a disorder κi = 0.33. This gives two addi-
tional curves for the interface elements, one with the
minimum breaking strength (αi,min) and one with the
maximum breaking strength (αi,max ).

In the grey area delamination and cracking can inter-
play until Ls is too small and breaking even the stron-
gest interface elements is more favorable than cracking
the coating. Figure 13a is converted into 13b to show the
influence of disorder in the interface. The thick curve is
the Lc calculated without disorder. The dashed lines are
the upper and lower bounds for the case with disorder.

4.1.1 Cracking and delamination in the discrete
model

The question is whether the simple conclusions drawn
from the shear lag approximation also hold in the nume-
rical simulations. In Fig. 14, the Ls and the number of

Fig. 12 a αc and αi as
function of Ls . ξ = 3.2
(mm) and a = 0.35 giving
Lc = 4.6 (mm). b Lc (black
line) for 0 < a < 1
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Fig. 13 αc and αi for
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Fig. 14 Ls(ε) and ndel(ε)

for a simulation with
delamination. Ls and ndel
are both expressed in terms
of number of springs

Fig. 15 Typical distribution of axial forces Fi in the interface
as function of the position x L−1

s in a segment. These forces are
not included in the shear-lag models

delaminated elements, ndel as a function of ε are drawn
for a numerical simulation with the same parameters as
those used in Fig. 13a and b.

As evident from Fig. 13a the general picture derived
from the shear lag approximation including disorder
is valid. First cracking occurs, subsequently there is a
regime of alternating cracking and delamination, and
finally delamination takes over completely.

We note that because of the bending in the coating
the stress distribution along the interface in general dif-
fers from that in the shear-lag approximation. Figure 15
shows a typical example. Quantitative discrepancies
with the predictions of the shear-lag model may the-
refore perhaps be expected. It is expected that diffe-
rences may also occur for delamination near corners or
intersections of delamination fronts with free edges.

Figure 14 shows the number of delaminated inter-
face springs vs. strain, revealing spikes, which are due
to the simultaneous fracture of multiple interface ele-
ments. When an interface element situated at the edge
of a segment fractures another interface element is now
at the edge of the segment. Possibly, the new edge ele-
ment is weaker than its predecessor and needs a lower
ε to fracture. Because of the solution method discussed

Fig. 16 Cracking (black) and delamination (grey) in 2D and
3D models. Sizes: 1 × 91 and 10 × 91, L0ξ

−1 = 17.2. 2D after
50 broken elements and 3D after 400 broken elements. In the
two upper simulations κc = κi = κg = 0, in the two lower ones
κc = κi = 0.125

in chapter 2 the overall strain ε is lowered to break this
weaker element, causing the spikes.

In Fig. 14, information on where the delamination
occurs with respect to the cracks is lacking. Results
of simulations providing that spatial information are
shown in Fig. 16, with κc = κi = κg = 0 in Fig. 16a and
b. Delamination is obviously located at the crack edges.
In Fig. 16c–d similar simulations are shown
except now withκc = κi = 0.125 andκg = 0. The cracks
in the 3D model no longer propagate strictly perpendi-
cular to the applied stress, but the delamination remains
correlated with the crack edges. Even though the situa-
tion is less clear when there is disorder in the model,
delamination still starts near cracks and prefers to ini-
tiate at the largest Ls .

4.2 Bi-axial coating failure in 3D

In bi-axially loaded 3D models, the first deformation
mechanism is delamination at the corners. This leaves
the remaining in-tact part of the of the interface with
more rounded edges, after which cracking starts. This is
shown in Fig. 17, where the interaction of cracking and
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Fig. 17 A bi-axially
stretched 80 × 81 3D model
with delamination after 900,
1800, 2700 and 3600
broken elements. κc = 0.25,
κi = 0.5 and κg = 0.0.
L0ξ

−1 = 20.1. Cracks
(black) and delamination
(grey)

900 1800 2700 3600
0

5

10

15
x 10

5

Number broken elements [−]

F
ex

t [N
]

Fig. 18 The external force as a function of the number of bro-
ken elements for the simulation shown in Fig. 17. The gray line
indicates the enveloping maximum force

delamination is shown at four stages. As can be seen in
the first stage, there is only delamination at the edges
of the model, after initiation form the corners. In the
second stage, after 1800 broken elements, cracks have
already appeared in the model. When the simulation is
continued further, cracking is almost arrested but the
delamination continues as shown in stages 3&4.

In displacement-controlled experiments a crack that
has initiated may propagate without the need of increa-
sing Fext , reflecting a local snap-through behaviour.
Evidently this is also captured in the simulations as
shown in Fig. 18. After the first crack initiates, a much
lower force is needed for propagation (see Sect. 3.3,
Fig. 10).

4.2.1 Influence of disorder

The influence of κi in the interface is next investigated.
The results are given in Fig. 19. The value of κi changes
from 0.0 to 1.0. The value of Fb

i was changed to keep
the “interface energy” G of the interface the same in
all three cases. We note that the interface energy (the
energy needed to break all spring in the interface divi-
ded by the total interface area) scales with the second
moment of the distribution of Fb

i . In case of a uniform
distribution this amounts to

G ∝ F2
b (1 + κ2

i /3) (35)

The cases shown in Fig. 19 all have approximately
the same G, but it can be seen that the relative amount
of delamination and cracking may differ quite substan-
tially.

Delamination and cracking patterns, as shown in
Fig. 17, make it possible to define the mean delami-
nated area and mean segment area as a function of the
macroscopic strain. Experimental results may be cor-
related to these quantities, giving insight in the amount
of disorder in the coating and interface.

5 Coating cracking, delamination and buckling

In the lattice model the coating has a bending stiffness
resulting from the spring network. It was verified that
bending was captured in a realistic way using properties
of the so-called Euler column the shape of which is
given by Hutchinson and Suo (1992), Audoly (1999):

y(z) = 2hc√
3

1 + cos 2π z
ld

2

(
σ0

σc
− 1

) 1
2

(36)

in which σ0 is the external load and σc is the critical
external load when a buckle starts to form. σc is defined
as:

σc = π2 Ech2
c

3l2
d(1 − ν)

(37)

Controlled buckles were created using 2D models
with pre-delaminated areas of fixed length, increasing
the compressive stress and suppressing cracking in the
coating. y(z) was measured as well as the relation bet-
ween σc and hc and ld . It was found that the buckle
shapes conformed closely to Eq. 36 and that σc is pro-
portional to h2

c and l−2
d as predicted by Eq. 37. In

experiments it was found that buckles initiated in the
scaling regime of cracking. More cracks would still
appear for increasing strain while at the same time
buckles initiated above delaminated areas along already
existing cracks. This is in accordance with results in
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Fig. 19 Bi-axial 104 × 121
3D models with
delamination after 2000
broken elements.
L0ξ

−1 = 23.3, κc = 0.25
(Fb

c = 100 ± 25 (N)) and
κg = 0.1. Cracks (black)
and delamination (grey). a
Fb

i = 6 ± 0 (N), b
Fb

i = 4.5 ± 1.5 (N), c
Fb

i = 3 ± 3 (N)

Fig. 20 Three stages of a
buckling process

Sect. 4 where it was shown that cracking end
delamination may occur at the same strain value for
coatings and interfaces showing disorder. In this parti-
cular case disorder may be present in the coating, but
plastic deformation of the Al substrate will certainly
lead to roughening and to local differences in the inter-
face energy release rate as well. Figure 1 shows a typi-
cal geometry of co-occurring cracking and buckling
over delaminated areas. The buckles that form have a
more or less triangular shape, widest near the crack
face. As noted above and in Sect. 4 delamination will
only become favorable above a certain crack density.
To reduce the computational effort in the following we
focus on an area between to already existing cracks.
That is, we start from a model with a certain size and
subsequently allow only for delamination and buckling.
Initially all interface springs are intact, but their brea-
king strengths show disorder. Weak interface springs
are therefore natural initiation points for delamination
and buckling. In anticipation of the discussion later
on it is noted that the interface area associated with
a single broken spring and the energy released when
it breaks are the only (implicit) limiting assumptions
made on the nucleation of buckling in this description.
Initially the model was subjected to a equi-biaxial com-
pressive stress state and subsequently uniaxial strain
was superimposed as indicated in Fig. 20. During the
uniaxial tensile test the equi-biaxial compressive stress
state changes to a stress state with tension along the
tensile direction and compression perpendicular to it.

Weak interface springs act as initiation sites for the
buckles. When an area of the interface delaminates,
the internal compressive stress causes the coating to
bend upwards. Results of a typical calculation shown
in Fig. 20, are indeed reproducing the experimentally
observed behavior. Triangular buckles are clearly
present near the edges of the mesh, which represent
physical crack edges in this case.

6 Discussion and conclusions

A simple numerical model based on discrete linear
elements has been proposed that describes cracking,
delamination and buckling, and takes disorder and ben-
ding stiffness into account.

Some typical results concerning cracking, delami-
nation and buckling are presented. The model has been
shown to reproduce results from literature and experi-
ments in a qualitative sense.

The advantages of choosing a lattice model to des-
cribe the interaction between cracking, delamination
and buckling is that after definition of the geometry
and breaking criteria no other assumptions are nee-
ded regarding nucleation, propagation and interaction
of the dissipation mechanisms. However, as with every
discrete description of physical phenomena it is use-
ful to discuss to what extent the geometry of the model
limits its applicability. Trivially, the choice of the spring
lengths and strength determines the spatial resolution,
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the minimal crack opening, the minimal delaminated
area and the minimal energy released in the model.
Failure to represent relevant length-scales in the model
can lead to misleading results. For instance it has been
shown by Klein et al. (2001) in a study on cohesive
zones that it may be necessary to spend a multiple
of the interface energy G to delaminate an interface
if it has been modeled by a grid that is too coarse. In
cases were several dissipative phenomena may inter-
act, such as cracking and delamination, “trapping” of
one dissipation mode, say a crack, may lead to propa-
gation in another mode, for instance delamination. This
can potentially lead to qualitatively different behavior.
It has been shown, in an apparently different context
that the behavior of Si modeled by atomistic poten-
tials may change from ductile to brittle depending on
subtle changes in the potentials used (Bernstein and
Hess 2003). In that case the anomalous presence of a
ductile response (caused by dislocation emission at the
crack tip) was associated with “lattice trapping” of a
crack in the potential ahead of the crack tip that is cor-
rugated on an atomic scale. Two relevant length scales
were proposed, one for bond breaking and the other
for elastic relaxation. The relative size of these length
scales was found to be important. A bond-breaking
length scale larger than the elastic relaxation length
scale caused the breaking of a single bond to happen
gradually as the crack advanced by several lattice per-
iods, and lattice trapping was small. In the opposite
case all of the bond-breaking energy was spent before
elastic relaxation lowered the total energy, and lattice
trapping was large. Such interplay between energy sto-
ring and dissipating phenomena clearly occurs in the
model proposed here, the transition from cracking to
delamination is a case in point. Here we have only
shown that the model reproduces the co-occurrence of
cracking and delamination observed in experiments.
Whether and how exactly the transition from cracking
to delamination is influenced by the model geometry
is an open issue that deserves further study. Length-
scales associated with buckling are large compared to
others length-scales involved (e.g. Hutchinson et al.
2000) and it is expected that if those are represented
correctly, buckling will be faithfully reproduced provi-
ded the overall size of the model is large enough. With
this in mind we turn to the following conclusions.

If limited to cracking only, the model reproduces
Lsξ

−1(εn) curves for 2D cracking that are in agreement
with the literature, and experiments. The interaction

between disorder and cracking is also in agreement with
the literature.

An essentially scalar (shear lag) representation of
the model indicates the existence of a transition point
(i.e. critical segment length) Lc between cracking and
delamination for κc = κi = 0 and a well-defined, range
of segment lengths at which cracking and delamination
occur side-by-side in case of disordered coatings. This
behavior is also retrieved by the model.

A comparison between 2D and 3D uni-axial simu-
lations with delamination is made to verify that Lc

is also present in 3D models. Uni-axial simulations
without disorder give the same results for both 2D and
3D models. When the disorder is increased, differences
between 3D and 2D simulations appear due to the crack
propagation.

The main distinguishing characteristic of the pro-
posed model, a 3D yet simple network of elements in
the coating that provides a bending stiffness, reflects a
qualitatively correct interaction between delamination
and buckling behavior. Specifically, the experimentally
observed initiation of triangular buckles above delami-
nated areas on crack edges is faithfully reproduced.
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