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Abstract
This article introduces a framework that is meant to assist inmitigating societal risks that soft-
ware can pose. Concretely, this encompasses facets of software doping as well as unfairness
and discrimination in high-risk decision-making systems. The term software doping refers to
software that contains surreptitiously added functionality that is against the interest of the user.
A prominent example of software doping are the tampered emission cleaning systems that
were found in millions of cars around the world when the diesel emissions scandal surfaced.
The first part of this article combines the formal foundations of software doping analysis with
established probabilistic falsification techniques to arrive at a black-box analysis technique
for identifying undesired effects of software. We apply this technique to emission cleaning
systems in diesel cars but also to high-risk systems that evaluate humans in a possibly unfair
or discriminating way. We demonstrate how our approach can assist humans-in-the-loop to
make better informed and more responsible decisions. This is to promote effective human
oversight, which will be a central requirement enforced by the European Union’s upcoming
AI Act. We complement our technical contribution with a juridically, philosophically, and
psychologically informed perspective on the potential problems caused by such systems.

Keywords Software doping · Artificial intelligence · Algorithmic fairness · Probabilistic
falsification · Adequate trust · Human oversight

1 Introduction

Software is the main driver of innovation of our times. Software-defined systems are per-
meating our communication, perception, and storage technology as well as our personal
interactions with technical systems at an unprecedented pace. “Software-defined everything”
is among the hottest buzzwords in IT today [78, 121].
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At the same time, we are doomed to trust these systems, despite being unable to inspect
or look inside the software we are facing: The owners of the physical hull of ‘everything’ are
typically not the ones owning the software defining ‘everything’, norwill they have the right to
look at what and how ‘everything’ is defined. This is because commercial software typically
is protected by intellectual property rights of the software manufacturer. This prohibits any
attempt to disassemble the software or to reconstruct its inner working, albeit it is the very
software that is forecasted to be defining ‘everything’. The use of machine-learnt software
components amplifies the problem considerably by adding opacity of its own kind. Since
commercial interests of the software manufacturers seldomly are aligned with the interest of
end users, the promise of ‘software-defined everything’ might well become a dystopia from
the perspective of individual digital sovereignty. In this article, we address two of the most
pressing incarnations of problematic software behaviour.
Diesel emissions scandal
A massive example of software-defined collective damage is the diesel emissions scandal.
Over a period of more than 10 years, millions of diesel-powered cars have been equipped
with illegal software that altogether polluted the environment for the sake of commercial
advantages of the car manufacturers. At its core, this was made possible by the fact that only
a single, precisely defined test setup was put in place for checking conformance with exhaust
emissions regulations. This made it a trivial software engineering task to identify the test
particularities and to turn off emission cleaning outside these particular conditions. This is
an archetypal instance of software doping.

Software doping can be formally characterised as a violation of a cleanness property of
a program [10, 32]. A detailed and comparative account of meaningful cleanness definitions
related to software doping is available [16, Chapter 3]. One cleanness notion that has proven
suitable to detect diesel emissions doping is robust cleanness [16, 19]. It is based on the
assumption that there is some well-defined and agreed standard input/output behaviour of
the system which the definition extends to the vicinity around the inputs and outputs close to
the standard behaviour. The precise specification of “vicinity” and of “standard behaviour”
is assumed to be part of a contract between software manufacturer and user. That contract
entails the standard behaviour, distance functions for input and output values, and distance
thresholds to define the input and output vicinity, respectively. With this, a system behaviour
is considered clean, if its output is (or stays) in the output vicinity of the standard, unless the
input is (or moves) outside the standard’s input vicinity (see Fig. 1).

Example 1 Every car model that is to enter the market in the European Union (and other
countries) must be compliant with local regulations. As part of this homologation process,
common to all of these regulations is the need for executing a test under precisely defined lab
conditions, carried out on a chassis dynamometer. In this, the car has to follow a speed profile,
which is called test cycle in regulations. At the time when the diesel scandal surfaced, the
New European Driving Cycle (NEDC) [128] was the single test cycle used in the European
Union. It has by now been replaced by the Worldwide harmonized Light vehicles Test Cycle
(WLTC) [124] in many countries. We refer to previous work for more details [16, 19, 22].
From a perspective of fraud prevention, having only a single test cycle is a major weakness
of the homologation procedure. Robust cleanness can overcome this problem. It admits the
consideration of driving profiles that stay in the bounded vicinity of one of several standard-
ised test cycle (i.e., NEDC as well as WLTC), while enforcing bounds on the deviations
regarding exhaust emission.
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Discrimination mitigation
Another set of exemplary scenarios we consider in this article are high-risk AI systems, sys-
tems empowered by AI technology whose functioning may introduce risks to health, safety,
or fundamental rights of human individuals. The European Union is currently developing the
AI Act [40, 41] that sets out to mitigate many of the risks that such systems pose. Applica-
tion areas of concern include credit approval ( [95]), decisions on visa applications ( [84]),
admissions to higher education ( [27, 133]), screening of individuals in predictive policing
( [58]), selection in HR ( [92–94]), judicial decisions (as with COMPAS [3, 30, 34, 72]),
tenant screening ( [115]), and more. In many of these areas, there are legitimate interests and
valid reasons for using well-understood AI technology, although the risks associated with
their use to date is manifold.

It is widely recognised that discrimination by unfair classification and regressionmodels is
one particularly important risk. As a result, a colourful zoo of different operationalisations of
unfairness has emerged [96, 131], which should be seen less as a set of competing approaches
and more as mutually complementary [52]. At the same time, a consensus is emerging that
human oversight is an important piece of the puzzle for mitigating and minimising societal
risks of AI [59, 83, 129]. Accordingly, that principle made it into recent drafts of legislation
including the European AI Act [40, 41] or certain US state laws [132].

The generic approach we develop for software-doping analysis turns out to be powerful
enough to provide automated assistance for human overseers of high-risk AI systems. Apart
from spelling out the necessary refocusing, we illustrate the challenge that our work helps
to overcome by an exemplary, albeit hypothetical admission system for higher education
(inspired by [27, 133]).

Example 2 A large university assigns scores to applicants aiming to enter their computer
science PhD program. The scores are computed using an automated, model-based procedure
P which is based on three data points: the position of the applicant’s last graduate institution
in an official, subject-specific ranking, the applicant’s most recent grade point average (GPA),
and their score in a subject-specific standardised test taken as part of the application procedure.
The system then automatically computes a score for the candidate based on an estimation of
how successful it expects them to be as students. A dedicated university employee, Unica is in
charge of overseeing the individual outcomes of P and is supposed to detect cases where the
output ofP is or appearsflawed.Theuniversity pays especial attention to fairness in the scoring
procedure, so Unica has to watch out to any signs of potential unfairness. Unica is supposed
to desk-reject candidates whose scores are below a certain, predefined threshold—unless she
finds problems with P’s scoring. Without any additional support, Unica, as human overseer
in the loop, must manually check all cases for signs of unfairness as they are processed. This
can be a tedious, complicated, and error-prone task and as such constitutes an impediment
for the assumed scalability of the automated scoring process to high numbers of applicants.
Therefore, she at least requires tool support that assists her in detecting when something is
off about the scoring of individual applicants.

This support can be made real by exploiting the technical contributions of this article, in
terms of a runtime monitor that provides automated assistance to the human oversight and
itself is based on the probabilistic falsification technique we develop. As we will explain,
func-cleanness, a variant of cleanness, is a suitable basis for rolling out runtime monitors for
such high-risk systems, that are able to detect and flag discrimination or unfair treatment of
humans.

The contributions made by this article are threefold.
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Detecting software doping using probabilistic falsification. The paper starts off by develop-
ing the theory of robust cleanness and func-cleanness. We provide characterisations in the
temporal logics HyperSTL and STL, that are then used for an adaptation of existing prob-
abilistic falsification techniques [1, 49]. Altogether, this reduces the problem of software
doping detection to the problem of falsifying the logical characterisation of the respective
cleanness definition.
Falsification-based test input generation. Recent work [19] proposes a formal framework
for robust cleanness testing, with the ambition of making it usable in practice, namely for
emissions tests conducted with a real diesel car on a chassis dynamometer. However, that
approach leaves open how to perform test input selection in a meaningful manner. The prob-
abilistic falsification technique presented in this article attacks this shortcoming. It supports
the testing procedure by guiding it towards test inputs that make the robust cleanness tests
likely to fail.
Promoting effective human oversight.Wediscuss anddemonstrate how the technical contribu-
tions of this paper contribute to effective human oversight of high-risk systems, as required by
the current proposal of the AI act. The hypothetical university admission scenario introduced
above will serve as a demonstrator for shedding light on the applicability of our approach
as well as the the principles behind it. On a technical level, we provide a runtime monitor
for individual fairness based on probabilistic falsification of func-cleanness. On a conceptual
level, we consider it important to clarify which duties come with the usage of such a system;
from a legal perspective, particularly considering theAIAct, substantiated by considering the
ethical dimension from a philosophical perspective, and from a psychological perspective,
particularly deliberating on how the overseeing can become effective.

This paper is based on a conference publication [17]. Relative to that paper, the develop-
ment of the theory here is more complete and now includes temporal logic characterisations
for func-cleanness. On the conceptual side, this article adds a principled analysis of the appli-
cability of func-cleanness to effective human oversight, spelled out in the setting of admission
to higher education. We live up to the societal complexity of this new example and provide
an interdisciplinary situation analysis and an interdisciplinary assessment of our proposed
solution. Accordingly, although the technical realisation is based on the probabilistic falsifi-
cation approach outlined in this article, our solution is substantially more thoughtful than a
naive instantiation of the falsification framework.

This article is structured as follows. Section 2 provides the preliminaries for the contri-
butions in this article. Section 3 develops the theoretical foundations necessary to use the
concept of probabilistic falsification with robust cleanness and func-cleanness. Section 4
demonstrates how the probabilistic falsification approach can be combined with the previ-
ously proposed testing approach [19] for robust cleanness, with a focus on tampered emission
cleaning systems of diesel cars. Section 5 develops the technical realisation of a fairnessmon-
itor based on func-cleanness for high-risk systems. Section 6 evaluates the fairness monitor
from the perspective of the disciplines philosophy, psychology, and law. Finally, Sect. 7
summarises the contributions of this article and discusses limitations of our approaches. The
appendix of this article contains additional technical details, proofs, and further philosophical
and juridical explanations.

123



Formal Methods in System Design

Fig. 1 Robust cleanness intuition

2 Background

2.1 Software doping

After early informal characterisations of software doping [10, 13], D’Argenio et al. [32]
propose a collection of formal definitions that specify when a software is clean. The authors
call a software doped (w.r.t. a cleanness definition)whenever it does not satisfy such cleanness
definition. We focus on robust cleanness and func-cleanness in this article [32].

We define by R≥0:={x ∈ R | x ≥ 0} the set of non-negative real numbers, by R:=R ∪
{−∞,∞} the set of extended reals [104], and byR≥0:=R≥0∪{∞} the set of the non-negative
extended real numbers. We say that a function d : X × X → R≥0 is a distance function if
and only if it satisfies d(x, x) = 0 and d(x, y) = d(y, x) for all x , y ∈ X . We let σ [k] denote
the kth literal of the finite or infinite word σ .
Reactive Execution Model
We can view a nondeterministic reactive program as a function S : Inω → 2(Outω) perpetually
mapping inputs In to sets of outputs Out [32]. To formally model contracts that specify the
concrete configuration of robust cleanness or func-cleanness, we denote by StdIn ⊆ Inω the
input space of the systemdesignated to define the standard behaviour, and by dIn : (In×In) →
R≥0 and dOut : (Out × Out) → R≥0 distance functions on inputs, respectively outputs.

For robust cleanness, we additionally consider two constants κi, κo ∈ R≥0. κi defines the
maximum distance that a non-standard input must have to a standard input to be considered in
the cleanness evaluation. For this evaluation, κo defines the maximum distance between two
outputs such that they are still considered sufficiently close. Intuitively, the contract defines
tubes around standard inputs and their outputs. For example, in Fig. 1, i is a standard input and
dIn and κi implicitly define a 2κi wide tube around i. Every input i′ that is within this tube will
be evaluated on its outputs. Similarly, dOut and κo define a tube around each of the outputs of
i. An output for i′ that is within this tube satisfies the robust cleanness condition. Together, the
above objects constitute a formal contract C = 〈StdIn, dIn, dOut, κi, κo〉. Robust cleanness
is composed of two separate definitions called l-robust cleanness and u-robust cleanness.
Assuming a fixed standard behaviour of a system, l-robust cleanness imposes a lower bound
on the non-standard outputs that a system must exhibit, while u-robust cleanness imposes
an upper bound. Such lower and upper bound considerations are necessary because of the
potential nondeterministic behaviour of the system; for deterministic systems the two notions
coincide. We remark that in this article we are using past-forgetful distance functions and
the trace integral variants of robust cleanness and func-cleanness (see Biewer [16, Chapter
3] for details).

Definition 1 A nondeterministic reactive program S : Inω → 2(Outω) is robustly clean w.r.t.
contract C = 〈StdIn, dIn, dOut, κi, κo〉 if for every standard input i ∈ StdIn and input sequence
i′ ∈ Inω it is the case that

123



Formal Methods in System Design

1. for every o ∈ S(i), there exists o′ ∈ S(i′), such that for every index k ∈ N, if
dIn(i[ j], i′[ j]) ≤ κi for all j ≤ k, then it holds that dOut(o[k], o′[k]) ≤ κo,

(l-robust cleanness)
2. for every o′ ∈ S(i′), there exists o ∈ S(i), such that for every index k ∈ N, if

dIn(i[ j], i′[ j]) ≤ κi for all j ≤ k, then it holds that dOut(o[k], o′[k]) ≤ κo.
(u-robust cleanness)

Wewill in the following refer to Definition 1.1 for l-robust cleanness andDefinition 1.2 for
u-robust cleanness. Intuitively, l-robust cleanness enforces that whenever an input i′ remains
within κi vicinity around the standard input i, then for every standard output o ∈ S(i), there
must be a non-standard output o′ ∈ S(i′) that is in κo proximity of o. Referring to Fig. 1,
every i′ in the tube around i must produce for every standard output o ∈ S(i) at least one
output o′ ∈ S(i′) that resides in the κo-tube around o. In other words, for non-standard inputs
the system must not lose behaviour that it can exhibit for a standard input in κi proximity.

For u-robust cleanness the standard and non-standard output switch roles. It enforces that
whenever an input i′ remains within κi vicinity around the standard input i, then for every
output o′ ∈ S(i′) the system can exhibit for this non-standard input, there must be a standard
output o ∈ S(i) that is in κo proximity of o′. Referring to Fig. 1, every i′ in the tube around i
must only produce outputs o′ ∈ S(i′) that are in the κo-tube of at least one o ∈ S(i). In other
words, for non-standard inputs within κi proximity of a standard input the system must not
introduce new behaviour, i.e., it must not exhibit an output that is further than κo away from
the set of standard outputs.

A generalisation of robust cleanness is func-cleanness. A cleanness contract for func-
cleanness replaces the constants κi and κo by a function f : R≥0 → R≥0 inducing a dynamic
threshold for output distances based on the distance between the inputs producing such
outputs.

Definition 2 A nondeterministic reactive system S is func-clean w.r.t. contract C =
〈StdIn, dIn, dOut, f 〉 if for every standard input i ∈ StdIn and input sequence i′ ∈ Inω it
is the case that

1. for every o ∈ S(i), there exists o′ ∈ S(i′), such that for every index k ∈ N,
dOut(o[k], o′[k]) ≤ f (dIn(i[k], i′[k])), (l-func-cleanness)

2. for every o′ ∈ S(i′), there exists o ∈ S(i), such that for every index k ∈ N,
dOut(o[k], o′[k]) ≤ f (dIn(i[k], i′[k])). (u-func-cleanness)

We will in the following refer to Definition 2.1 for l-func-cleanness and Definition 2.2 for
u-func-cleanness.

For the fairness monitor in Sect. 5 we will use a simpler variant of func-cleanness for
deterministic sequential programs. Since P is deterministic, the lower and upper bound
requirements coincide, yielding the following simplified definition.

Definition 3 A deterministic sequential program P is func-clean w.r.t. contract C =
〈StdIn, dIn, dOut, f 〉 if for every standard input i ∈ StdIn and input i′ ∈ In, it holds that
dOut(P(i), P(i′)) ≤ f (dIn(i, i′)).

Mixed-IO System Model
The reactive execution model above has the strict requirement that for every input, the system
produces exactly one output. Recent work [18, 19] instead considersmixed-IOmodels, where
a program L ⊆ (In∪Out)ω is a subset of traces containing both inputs and outputs, butwithout
any restriction on the order or frequency in which inputs and outputs appear in the trace. In
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particular, they are not required to strictly alternate (but they may, and in this way the reactive
execution model can be considered a special case [16]). A particularity of this model is the
distinct output symbol δ for quiescence, i.e., the absence of an output. For example, finite
behaviour can be expressed by adding infinitely many δ symbols to a finite trace.

The new systemmodel induces consequences regarding cleanness contracts. Everymixed-
IO trace is projected into an input, respectively output domain. The set of input symbols
contains one additional element –i, that indicates that in the respective steps an output was
produced, but masking the concrete output. Similarly, the set of output symbols contains
the additional element –o to mask a concrete input symbol. Projection on inputs ↓i : (In ∪
Out)ω → (In∪{–i})ω and projection on outputs ↓o : (In∪Out)ω → (Out∪{–o})ω are defined
for all traces σ ∈ (In∪Out)ω and k ∈ N as follows: σ↓i[k]:= if σ [k] ∈ In then σ [k] else –i
and similarly σ↓o[k]:= if σ [k] ∈ Out then σ [k] else –o. The distance functions dIn and
dOut apply on input and output symbols or their respective masks, i.e., they are functions
(In ∪ {–i}) × (In ∪ {–i}) → R≥0 and, respectively, (Out ∪ {–o}) × (Out ∪ {–o}) → R≥0.
Finally, instead of a set of standard inputs StdIn, we evaluate mixed-IO system cleanness
w.r.t. to a set of standard behaviour Std ⊆ L. Thus, not only inputs, but also outputs can
be defined as standard behaviour and for an input, one of its outputs can be considered in
Std while a different output can be excluded from Std. As a consequence, the set Std is
specific for some mixed-IO system L, because Std is useful only if Std ⊆ L. To emphasise
this difference we will call the tuple C = 〈Std, dIn, dOut, κi, κo〉 (cleanness) context (instead
of cleanness contract). Robust cleanness of mixed-IO systems w.r.t. such a context is defined
below [19].

Definition 4 A mixed-IO system L ⊆ (In ∪ Out)ω is robustly clean w.r.t. context C =
〈Std, dIn, dOut, κi, κo〉 if and only if Std ⊆ L and for all σ ∈ Std and σ ′ ∈ L,

1. there exists σ ′′ ∈ L with σ ′↓i = σ ′′↓i, such that for every index k ∈ N it holds that
whenever dIn(σ [ j]↓i, σ

′[ j]↓i) ≤ κi for all j ≤ k, then dOut(σ [k]↓o, σ
′′[k]↓o) ≤ κo,

(l-robust cleanness)
2. there exists σ ′′ ∈ Std with σ↓i = σ ′′↓i, such that for every index k ∈ N it holds that

whenever dIn(σ [ j]↓i, σ
′[ j]↓i) ≤ κi for all j ≤ k, then dOut(σ ′[k]↓o, σ

′′[k]↓o) ≤ κo.
(u-robust cleanness)

We will in the following refer to Definition 4.1 for l-robust cleanness and Definition 4.2
for u-robust cleanness. Definition 4 universally quantifies a standard trace σ . For l-robust
cleanness, the universal quantification of σ ′ effectively only quantifies an input sequence;
the input projection for the existentially quantified σ ′′ must match the projection for σ ′.
The remaining parts of the definition are conceptually identical to their reactive systems
counterpart in Definition 1.1. For u-robust cleanness, the existentially quantified trace σ ′′ is
obtained from set Std in contrast to l-robust cleanness, where σ ′′ can be any arbitrary trace
of L. This is necessary, because u-robust cleanness is defined w.r.t. a cleanness context; from
knowing that σ ∈ Std is a standard trace and by enforcing that σ↓i = σ ′′↓i we cannot
conclude that also σ ′′ ∈ Std.

Definition 5 shows the definition func-cleanness of mixed-IO systems.

Definition 5 A mixed-IO system L ⊆ (In ∪ Out)ω is func-clean w.r.t. context C =
〈Std, dIn, dOut, f 〉 if and only if Std ⊆ L and for all σ ∈ Std and σ ′ ∈ L,

1. there exists σ ′′ ∈ L with σ ′↓i = σ ′′↓i, such that for every index k ∈ N, it holds that
dOut(σ [k]↓o, σ

′′[k]↓o) ≤ f (dIn(σ [k]↓i, σ
′[k]↓i)), (l-func-cleanness)
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2. there exists σ ′′ ∈ Std with σ↓i = σ ′′↓i, such that for every index k ∈ N, it holds that
dOut(σ ′[k]↓o, σ

′′[k]↓o) ≤ f (dIn(σ [k]↓i, σ
′[k]↓i)). (u-func-cleanness)

We will in the following refer to Definition 5.1 for l-func-cleanness and Definition 5.2 for
u-func-cleanness.

2.2 Temporal logics

2.2.1 HyperLTL

Linear Temporal Logic (LTL) [97] is a popular formalism to reason about properties of traces.
A trace is an infinite word where each literal is a subset of AP, the set of atomic propositions.
We interpret programs as circuits encoded as sets C ⊆ (2AP)ω of such traces. LTL provides
expressive means to characterise sets of traces, often called trace properties. For some set
of traces T , a trace property defines a subset of T (for which the property holds), whereas a
hyperproperty defines a set of subsets of T (constituting combinations of traces for which
the property holds). In this way it specifies which traces are valid in combination with one
another. Many temporal logics have been extended to corresponding hyperlogics supporting
the specification of hyperproperties.

HyperLTL [31] is such a temporal logic for the specification of hyperproperties of reactive
systems. It extends LTLwith trace quantifiers and trace variables that make it possible to refer
to multiple traces within a logical formula. A HyperLTL formula is defined by the following
grammar, where π is drawn from a set V of trace variables and a from the set AP:

ψ :: = ∃π.ψ | ∀π.ψ | φ

φ :: = aπ | ¬φ | φ ∧ φ | Xφ | φ U φ

The quantifiers ∃ and ∀ quantify existentially and universally, respectively, over the set of
traces. For example, the formula ∀π. ∃π ′. φ means that for every trace π there exists another
trace π ′ such that φ holds over the pair of traces. To account for distinct valuations of atomic
propositions across distinct traces, the atomic propositions are indexed with trace variables:
for some atomic proposition a ∈ AP and some trace variable π ∈ V , aπ states that a holds in
the initial position of traceπ . The temporal operators andBoolean connectives are interpreted
as usual for LTL. Further operators are derivable: φ ≡ trueU φ enforces φ to eventually
hold in the future, φ ≡ ¬ ¬φ enforces φ to always hold, and the weak-until operator
φ W φ′ ≡ φ U φ′ ∨ φ allows φ to always hold as an alternative to the obligation for φ′ to
eventually hold.
HyperLTL Characterisations of Cleanness
D’Argenio et al. [32] assume distinct sets of atomic propositions to encode inputs and outputs.
That is, they assume that AP = APi ∪ APo of atomic propositions, where APi and APo are the
atomic propositions that define the the input values and, respectively, the output values. Thus,
in the context of Boolean circuit encodings of programs, we take In = 2APi and Out = 2APo .
We capture the following natural correspondence between reactive programs and Boolean
circuits; a circuit C can be interpreted as a function Ŝ : Inω → 2(Outω), where

t ∈ C if and only if (t↓APo) ∈ Ŝ(t↓APi), (1)

with t↓A defined by (t↓A)[k] = t[k] ∩ A for all k ∈ N.
In the HyperLTL formulas below occur, for convenience, non-atomic propositions. Their

semantics is encoded by atomic propositions andBoolean connectives according to aBoolean
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encoding of inputs and outputs. We refer to the original work for the details [32, Table
1]. Further, we assume that there is a quantifier-free HyperLTL formula StdInπ that can
check whether the trace represented by trace variable π is in the set of standard inputs
StdIn ⊆ Inω. That is, StdInπ should be defined such that for every trace t ∈ C it holds that
{π :=t} |�C StdInπ if and only if (t↓APi) ∈ StdIn.

Proposition 1 shows HyperLTL formulas for l-robust cleanness and u-robust cleanness,
respectively.1

Proposition 1 LetC be a set of infinite traces over 2AP, let Ŝ be the reactive system constructed
from C according to Equation 1, and let C = 〈StdIn, dIn, dOut, κi, κo〉 be a contract for robust
cleanness. Then Ŝ is l-robustly clean w.r.t. C if and only if C satisfies the HyperLTL formula

∀π1. ∀π2. ∃π ′
2. StdInπ1

→
(

(iπ2 = iπ ′
2
) ∧ (

(dOut(oπ1 , oπ ′
2
) ≤ κo)W(dIn(iπ1 , iπ ′

2
) > κi)

))
,

and Ŝ is u-robustly clean w.r.t. C if and only if C satisfies the HyperLTL formula

∀π1.∀π2. ∃π ′
1. StdInπ1

→
(

(iπ1 = iπ ′
1
) ∧ (

(dOut(oπ ′
1
, oπ2) ≤ κo)W(dIn(iπ ′

1
, iπ2) > κi)

))
.

The first quantifier (for π1) in both formulas implicitly quantifies the standard input i and
the second quantifier (for π2) implicitly quantifies the second input i′. Due to the poten-
tial nondeterminism in the behaviour of the system, the third, existential, quantifier for π ′

1,
respectively π ′

2 is necessary. While the formula for l-robust cleanness has the universal quan-
tification on the outputs of the program that takes the standard input i and the existential
quantification on the output for i′, the formula for u-robust cleanness works in the other way
around. Thus, the formulas capture the ∀∃ alternation in Definition 1. The weak until operator
W has exactly the behaviour necessary to represent the interaction between the distances of
inputs and the distances of outputs.

The HyperLTL formulas for func-cleanness are given below.

Proposition 2 LetC be a set of infinite traces over 2AP, let Ŝ be the reactive system constructed
from C according to Equation 1, and let C = 〈StdIn, dIn, dOut, f 〉 be a contract for func-
cleanness. Then Ŝ is l-func-clean w.r.t. C if and only if C satisfies the HyperLTL formula

∀π1.∀π2. ∃π ′
2. StdInπ1 →

(
(iπ2 = iπ ′

2
) ∧

(
dOut(oπ1 , oπ ′

2
) ≤ f (dIn(iπ1 , iπ ′

2
))

))
,

and Ŝ is u-func-clean w.r.t. C if and only if C satisfies the HyperLTL formula

∀π1.∀π2. ∃π ′
1. StdInπ1 →

(
(iπ1 = iπ ′

1
) ∧

(
dOut(oπ ′

1
, oπ2) ≤ f (dIn(iπ ′

1
, iπ2))

))
.

2.2.2 Signal temporal logic

LTL enables reasoning over traces σ ∈ (2AP)
ω
for which it is necessary to encode values

using the atomic propositions inAP. Each literal in a trace represents a discrete time step of an
underlyingmodel. Thus, σ can equivalently be viewed as a functionN → 2AP. One extension
of LTL is Signal Temporal Logic (STL) [33, 76], which instead is used for reasoning over

1 All HyperLTL formulas from D’Argenio et al. [32] are adapted for non-parametrised systems.
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real-valued signals that may change in value along an underlying continuous time domain.
In this article, we generalise the original work and use generalised timed traces (GTTs) [53],
which, for some value domain X and time domain T define traces as functions T → X .
The time domain T can be either N (discrete-time), or R≥0 (continuous-time). For the value
domain we will use vectors of real values X = R

n for some n > 0 or, to express mixed-IO
traces, the set X = In ∪ Out.

STL formulas can express properties of systems modelled as setsM ⊆ (T → X) of traces
by making the atomic properties refer to booleanisations of the signal values. The syntax of
the variant of STL that we use in this article is as follows, where f ∈ X → R:

φ :: = � | f > 0 | ¬φ | φ ∧ φ | φ U φ .

STL replaces atomic propositions by threshold predicates of the form f > 0, which hold
if and only if function f applied to the trace value at the current time returns a positive value.
The Boolean operators and the Until operator U are very similar to those of HyperLTL. The
Next operator X is not part of STL, because “next” is without precise meaning in continuous
time. The definitions of the derived operators , and W are the same as for HyperLTL.
Formally, the Boolean semantics of an STL formula φ at time t ∈ T for a trace w ∈ T → X
is defined inductively:

w, t |� �
w, t |� f > 0 iff f (w(t)) > 0

w, t |� ¬φ iff w, t �|� φ

w, t |� φ ∧ ψ iff w, t |� φ and w, t |� ψ

w, t |� φ U ψ iff exists t ′ ≥ t s.t. w, t ′ |� ψ and

for all t ′′ ∈ [t, t ′), w, t ′′ |� φ

A system M satisfies a formula φ, denoted M |� φ, if and only if for every w ∈ M it holds
that w, 0 |� φ.
Quantitative Interpretation
STL has been extended by a quantitative semantics [1, 33, 49]. This semantics is designed
in such a way that whenever ρ(φ,w, t) �= 0, its sign indicates whether w, t |� φ holds
in the Boolean semantics. For any STL formula φ, trace w and time t , if ρ(φ,w, t) > 0,
then w, t |� φ holds, and if ρ(φ,w, t) < 0, then w, t |� φ does not hold. The quantitative
semantics for an STL formula φ, trace w, and time t the quantitative semantics is defined
inductively:

ρ(�, w, t) = ∞
ρ( f > 0, w, t) = f (w(t))

ρ(¬φ,w, t) = −ρ(φ,w, t)

ρ(φ ∧ ψ,w, t) = min(ρ(φ,w, t), ρ(ψ,w, t))

ρ(φ U ψ,w, t) = sup
t ′≥t

min{ρ(ψ,w, t ′), inf
t ′′∈[t,t ′)

ρ(φ,w, t ′′)}

Robustness and Falsification
The value of the quantitative semantics can serve as a robustness estimate and as such be
used to search for a violation of the property at hand, i.e., to falsify it. The robustness of STL
formula φ is its quantitative value at time 0, that is, Rφ(w):=ρ(φ,w, 0). So, falsifying a
formula φ for a systemM boils down to a search problemwith the goal conditionRφ(w) < 0.
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Algorithm 1Monte-Carlo falsification
Input: w: Initial trace, R: Robustness function, PS: Proposal Scheme
Output: w ∈ M
1: while R(w) > 0 do
2: w′ ← PS(w)

3: α ← exp(−β(R(w′) − R(w)))

4: r ← UniformRandomReal(0, 1)
5: if r ≤ α then
6: w ← w′
7: end if
8: end while

Successful falsification algorithms solve this problem by understanding it as the optimisation
problem minimisew∈MRφ(w). Algorithm 1 [1, 88] sketches an algorithm for Monte-Carlo
Markov Chain falsification, which is based on acceptance-rejection sampling [29].

An input to the algorithm is an initial trace w and a computable robustness function R.
Robustness computation for STL formulas has been addressed in the literature [33, 49]; we
omit this discussion here. The third input PS is a proposal scheme that proposes a new trace
to the algorithm based on the previous one (line 2). The parameter β (used in line 3) can be
adjusted during the search and is a means to avoid being trapped in local minima, preventing
to find a global minimum.

Notably, there exists prior work by Nguyen et al. [89] that discusses an extension of
STL to HyperSTL though using a non-standard semantic underpinning. In this context, they
present a falsification approach restricted to the fragment “t-HyperSTL” where, according to
the authors, “a nesting structure of temporal logic formulas involving different traces is not
allowed”. Therefore, none of our cleanness definitions belongs to this fragment.

3 Logical characterisation of Mixed-IO cleanness

In this section we provide a temporal logic characterisation for robust cleanness and func-
cleanness formixed-IO systems. For this, we propose aHyperSTL semantics (different to that
of [89]) and proposeHyperSTL formulas for robust cleanness and func-cleanness.We explain
how these formulas can be applied to mixed-IO traces and prove that the characterisation is
correct. Furthermore, for the special case that Std is a finite set, we reformulate the HyperSTL
formulas characterising the u-cleannesses as equivalent STL formulas.
Hyperlogics over Continuous Domains
Previous work [89] extends STL to HyperSTL echoing the extension of LTL to HyperLTL.
We use a similar HyperSTL syntax in this article:

ψ :: = ∃π.ψ | ∀π.ψ | φ

φ :: = � | f > 0 | ¬φ | φ ∧ φ | φ U φ .

The meaning of the universal and existential quantifier is as for HyperLTL. In contrast to
HyperLTL (and to the existing definition of HyperSTL), we consider it insufficient to allow
propositions to refer to only a single trace. In HyperLTL atomic propositions of individual
traces can be compared bymeans of the Boolean connectives. To formulate thresholds for real
values, however, we feel the need to allow real values from multiple traces to be combined in
the function f , and thus to appear as arguments of f . Hence, in our semantics of HyperSTL,
f > 0 holds if and only if the result of f , applied to all traces quantified over, is greater than
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0. For this to work formally, the arity of function f is the number m of traces quantified over
at the occurrence of f > 0 in the formula, so f : Xm → R.

A trace assignment [31]� : V → M is a partial function assigning traces ofM to variables.
Let�[π :=w] denote the same function as�, except thatπ ismapped to tracew. TheBoolean
semantics of HyperSTL is defined below.

Definition 6 Let ψ be a HyperSTL formula, t ∈ T a time point, M ⊆ (T → X) a set of
GTTs, and � a trace assignment. Then, the Boolean semantics for M,�, t |� ψ is defined
inductively:

M,�, t |� ∃π.ψ ⇔ ∃w ∈ M. M,�[π :=w], t |� ψ

M,�, t |� ∀π.ψ ⇔ ∀w ∈ M. M,�[π :=w], t |� ψ

M,�, t |� �
M,�, t |� f > 0 ⇔ f (�(π1)(t), . . . ,�(πm)(t)) > 0 for dom(�) = {π1, . . . , πm}2
M,�, t |� ¬φ ⇔ M,�, t �|� φ

M,�, t |� φ1 ∧ φ2 ⇔ M,�, t |� φ1 and M,�, t |� φ2

M,�, t |� φ1 U φ2 ⇔ ∃t ′ ≥ t . M,�, t ′ |� φ2 and ∀t ′′ ∈ [t, t ′). M,�, t ′′ |� φ1

A systemM satisfies a formula ψ if and only ifM, ∅, 0 |� ψ . The quantitative semantics
for HyperSTL is defined below:

Definition 7 Let ψ be a HyperSTL formula, t ∈ T a time point, M ⊆ (T → X) a set
of GTTs, and � a trace assignment. Then, the quantitative semantics for ρ(ψ,M,�, t) is
defined inductively:

ρ(∃π. ψ,M,�, t) = sup
w∈M

ρ(ψ,M,�[π :=w], t)

ρ(∀π. ψ,M,�, t) = inf
w∈M ρ(ψ,M,�[π :=w], t)

ρ(�,M,�, t) = ∞
ρ( f > 0,M,�, t) = f (�(π1)(t), . . . ,�(πm)(t)) for dom(�) = {π1, . . . , πm}2

ρ(¬φ,M,�, t) = −ρ(φ,M,�, t)

ρ(φ1 ∧ φ2,M,�, t) = min(ρ(φ1,M,�, t), ρ(φ2,M,�, t))

ρ(φ1 U φ2,M,�, t) = sup
t ′≥t

min{ρ(φ2,M,�, t ′), inf
t ′′∈[t,t ′)

ρ(φ1,M,�, t ′′)}

HyperSTL Characterisation
The HyperLTL characterisations in Sect. 2.2.1 assume the system to be a subset of (2AP)ω

and works with distances between traces by means of a Boolean encoding into atomic propo-
sitions. By using HyperSTL, we can characterise cleanness for systems that are representable
as subsets of (T → X).

We can take the HyperLTL formulas from Proposition 1 and 2 and transform them into
HyperSTL formulas by applying simple syntactic changes. We get for l-robust cleanness the
formula

ψl-rob:= ∀π1.∀π2. ∃π ′
2. Stdπ1 > 0

→
(

(eq(π2↓i, π
′
2↓i) ≤ 0) ∧

2 We admit some sloppiness; the set dom(�) should have a fixed order.
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(
(dOut(π1↓o, π ′

2↓o) − κo ≤ 0)W(dIn(π1↓i, π
′
2↓i) − κi > 0)

))
, (2)

u-robust cleanness is characterised by

ψu-rob:= ∀π1. ∀π2. ∃π ′
1. Stdπ1 > 0

→
(
Stdπ ′

1
> 0 ∧ (eq(π1↓i, π

′
1↓i) ≤ 0) ∧

(
(dOut(π

′
1↓o, π2↓o) − κo ≤ 0)W(dIn(π ′

1↓i, π2↓i) − κi > 0)
))

, (3)

for l-func-cleanness we get the formula

ψl-fun:= ∀π1.∀π2. ∃π ′
2. Stdπ1 > 0

→
(

(eq(π2↓i, π
′
2↓i) ≤ 0) ∧ (

(dOut(π1↓o, π ′
2↓o) − f (dIn(π1↓i, π

′
2↓i)) ≤ 0)

))
, (4)

and, finally, u-func-cleanness is encoded by

ψu-fun:= ∀π1.∀π2. ∃π ′
1. Stdπ1 > 0

→
(
Stdπ ′

1
> 0 ∧ (eq(π1↓i, π

′
1↓i) ≤ 0) ∧

(
(dOut(π

′
1↓o, π2↓o) − f (dIn(π ′

1↓i, π2↓i)) ≤ 0)
))

. (5)

The quantifiers remain unchanged relative to the formulas in Propositions 1 and 2. The
formulas use generic projection functions↓i : X → In and↓o : X → Out to extract the input
values, respectively output values from a trace. To apply the formulas, these functionsmust be
instantiatedwith functions for the concrete instantiation of the value domain X of the traces to
be analysed. For example, for In = R

m , Out = R
l , and M ⊆ (T → R

m+l), the projections
could be defined for every w = (s1, . . . , sm, sm+1, . . . , sm+l) as w↓i = (s1, . . . , sm) and
w↓o = (sm+1, . . . , sm+l). The input equality requirement for two traces π and π ′ is ensured
by globally enforcing eq(π↓i, π

′↓i) ≤ 0. eq is a generic function that returns zero if its
arguments are identical and a positive value otherwise. It must be instantiated for concrete
value domains. For example, eq((s1, . . . , sm), (s′

1, . . . , s′
m)) could be defined as the sum of

the component-wise distances
∑

1≤i≤m |si − s′
i |. Finally, in the above formulas we perform

simple arithmetic operations to match the syntactic requirements of HyperSTL.
Formulas (3) and (5) are prepared to express u-robust cleanness, respectively u-func-

cleanness w.r.t. both cleanness contracts or cleanness contexts. That is, we assume the
existence of a function Stdπ that returns a positive value if and only if the trace assigned to
π encodes a standard input (when considering cleanness contracts) or encodes an input and
output that constitute a standard behaviour (when considering cleanness contexts). Explicitly
requiring that π ′

1 represents a standard behaviour echoes the setup in Definitions 4.2 and 5.2.
We remark that for encoding Stdπ , due to the absence of the Next-operator in HyperSTL,

it might be necessary to add a clock signal s(t) = t to traces in a preprocessing step.

Example 3 Let In = Out = R be the sets representing real-valued inputs and outputs, T = N

be the discrete time domain, and X = In×Out the value domain that considers pairs of inputs
and outputs as values. We consider the robust cleanness context C = 〈Std, dIn, dOut, κi, κo〉,
where Std = {w0, w1} contains the two standard traces

w0 = (1; 0) (2; 0) (3; 0) (4; 0) · · · and w1 = (1; 1) (2; 2) (3; 3) (4; 4) · · · .
For the distance functionsweuse the absolute differences, i.e.,dIn(v1, v2) = dOut(v1, v2) =

|v1 − v2|. Let the value thresholds be κi = 1 and κo = 2, and let ↓i,↓o, eq
and Stdπ be defined as explained above. We consider the non-standard traces wA =
(1.3; 0) (2.6; 0) (3.9; 0) (5.2; 0) · · · , wB = (1.3; 1.3) (2.6; 2.6) (3.9; 3.9) (5.2; 5.2) · · · ,
and w� = (1.5; 1.5) (2.5; 3.2) (3.5; 4.9) (4.5; 6.6) · · · .
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The HyperSTL formulasψl-rob andψu-rob reason about sets of traces. For example, the set
M = {w0, w1, wA, wB} satisfies both formulas. If both π1 and π2 represent standard traces,
then π1↓i = π2↓i, because w0↓i = w1↓i, and the formulas hold for π ′

2 = π1, respectively
π ′
1 = π2. Otherwise, assume that π1 represents w0 and π2 represents wB (the reasoning for

other combinations of traces is similar).
First considering ψl-rob, we pick wA for π ′

2. We get that π2↓i = π ′
2↓i, because wB↓i =

wA↓i. Hence, we globally have |π2↓i − π ′
2↓i| = 0 and, thus, eq(π2↓i, π

′
2↓i) = 0. At time

steps 0 ≤ t ≤ 3, the distance between the outputs |w0↓o(t) − wA↓o(t)| is at most κo. Hence,
the left operand of W holds and the formula is satisfied for t ≤ 3. At time t = 3 we have
that |w0↓i(t) − wA↓i(t)| = |4.0 − 5.2| > κi. Hence, the right operand of the W operator
holds and ψl-rob is satisfied also for t ≥ 3. Notice that if we would remove wA fromM, then
it would violate ψl-rob, because there is no possible choice for π ′

2 that has the same inputs as
wB and where the output distances to w0 are below the κo threshold.

To satisfyψu-rob, we pickw1 forπ ′
1. The reasoningwhy the formula holds for this choice is

analogue toψl-rob. Notice that if we add the tracew� toM, thenψu-rob is violated. Concretely,
π2 could representw�; then, whether we pickw0 orw1 for π ′

1, we eventually get outputs that
violate theκo constraint,while theκi constraint is always satisfied. For example, ifwe compare
w� and w1, then we have for all time steps t ≤ 3 that |w1↓i(t) − w�↓i(t)| = 0.5 ≤ κi, but
at time t = 3 we get |w1↓o(t) − w�↓o(t)| = 2.6 > κo. Hence, at t = 3 the left and right
operand of W are false, so ψu-rob is violated.

Correctness under Mixed-IO Interpretation
Mixed-IO signals are defined in the discrete time domain N and value domain In∪Out. The
abstract functions ↓i and ↓o can be defined equally to the syntactically identical projection
functions for mixed-IO models defined in Sect. 2.1. The function eq(i1, i2) can be defined
using the distance function dIn and some arbitrary small ε > 0:

eq(i1, i2):=

⎧⎪⎨
⎪⎩

0, if i1 = i2
dIn(i1, i2) + ε, if i1 �= i2 ∧ i1, i2 ∈ In

∞, otherwise.

(6)

In the second clause of the above definition we add some positive value ε to the result of dIn,
because dIn(i1, i2) could be 0 even if i1 �= i2. For the correctness of the above HyperSTL for-
mulas, however, it is crucial that eq(i1, i2) = 0 if and only if i1 = i2. For a good performance
of the falsification algorithm, we will nevertheless want to make use of dIn if i1 �= i2.

Proposition 3 shows thatHyperSTL formulas (2) and (3) under themixed-IO interpretation
outlined above indeed characterise l-robust cleanness and u-robust cleanness. Proposition 4
shows the same for func-cleanness.

Proposition 3 Let L ⊆ N → (In∪Out) be a mixed-IO system and C = 〈Std, dIn, dOut, κi, κo〉
a contract or context for robust cleanness with Std ⊆ L. Further, let Stdπ be a quantifier-free
HyperSTL subformula, such that L, {π :=w}, 0 |� Stdπ if and only if w ∈ Std. Then, L is
l-robustly clean w.r.t. C if and only if L, ∅, 0 |� ψl-rob, and L is u-robustly clean w.r.t. C if and
only if L, ∅, 0 |� ψu-rob.

Proposition 4 Let L ⊆ N → (In ∪ Out) be a mixed-IO system and C = 〈Std, dIn, dOut, f 〉
a contract or context for func-cleanness with Std ⊆ L. Further, let Stdπ be a quantifier-free
HyperSTL subformula, such that L, {π :=w}, 0 |� Stdπ if and only if w ∈ Std. Then, L is
l-func-clean w.r.t. C if and only if L, ∅, 0 |� ψl-fun, and L is u-func-clean w.r.t. C if and only
if L, ∅, 0 |� ψu-fun.
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STL Characterisation for Finite Standard Behaviour
In many practical settings—when the different standard behaviours are spelled out upfront
explicitly, as in NEDC and WLTC—it can be assumed that the number of distinct standard
behaviours Std is finite (while there are infinitely many possible behaviours inM). Finiteness
of Stdmakes it possible to remove by enumeration the quantifiers from the u-robust cleanness
and u-func-cleannessHyperSTL formulas. This opens theway toworkwith the STL fragment
of HyperSTL, after proper adjustments. In the following, we assume that the set Std =
{w1, . . . , wc} is an arbitrary standard set with c unique standard traces, where every wk :
T → X uses the same time domain T and value domain X .

To encode the HyperSTL formulas (3) and (5) in STL, we use the concept of self-
composition, which has proven useful for the analysis of hyperproperties [9, 51]. We
concatenate a trace under analysis w : T → X and the standard traces w1 to wc to the
composed trace w+ = (w,w1, . . . , wc) ⊆ (T → Xc+1). Given a system M ⊆ (T → X)

and a set Std = {w1, . . . , wc} ⊆ M, we denote by M ◦ Std:={(w,w1, . . . , wc) | w ∈ M}
the system in which every trace in M is composed with the standard traces in Std. For every
w+ ∈ M ◦ Std, we will in the following STL formula write w to mean the projection on w+
to the trace w, and we write wk , for 1 ≤ k ≤ c, to mean the projection on w+ to the kth
standard trace.

Theorem 5 Let L ⊆ N → (In∪Out) be a mixed-IO system and C = 〈Std, dIn, dOut, κi, κo〉 a
context for robust cleanness with finite standard behaviour Std = {w1, . . . , wc} ⊆ L. Then,
L is u-robustly clean w.r.t. C if and only if (L ◦ Std) |� ϕu-rob, where

ϕu-rob:=
∧

1≤a≤c

∨
1≤b≤c

(
(eq(wa↓i, wb↓i) ≤ 0) ∧

(
(dOut(wb↓o, w↓o) − κo ≤ 0)W(dIn(wb↓i, w↓i) − κi > 0)

))
.

The theorem for u-func-cleanness is analogue to Theorem 5.

Theorem 6 Let L ⊆ N → (In ∪ Out) be a mixed-IO system and C = 〈Std, dIn, dOut, f 〉 a
context for func-cleanness with finite standard behaviour Std = {w1, . . . , wc} ⊆ L. Then, L
is u-func-clean w.r.t. C if and only if (L ◦ Std) |� ϕu-fun, where

ϕu-fun:=
∧

1≤a≤c

∨
1≤b≤c

(
(eq(wa↓i, wb↓i) ≤ 0) ∧

(
(dOut(wb↓o, w↓o) − f (dIn(wb↓i, w↓i)) ≤ 0)

))
.

Example 4 Weconsider the robust cleanness context C = 〈Std, dIn, dOut, κi, κo〉where Std =
{w1, w2} contains the two standard traces w1 = 1i 2i 3i 7o 0i δω and w2 = 0i 1i 2i 3i 6o δω.
We here decorate inputs with index i and outputs with index o, i.e., w1 describes a system
receiving the three inputs 1, 2, and 3, then producing the output 7, and finally receiving input
0 before entering quiescence. We take

dIn(i1, i2) =

⎧
⎪⎨
⎪⎩

|i1 − i2|, if i1, i2 ∈ In

0, if i1= i2=–i
∞, otherwise,
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and

dOut(o1, o2) =

⎧
⎪⎨
⎪⎩

|o1 − o2|, if o1, o2 ∈ Out\{δ}
0, if o1=o2=–o or o1=o2=δ

∞, otherwise.

The contractual value thresholds are assumed to be κi = 1 and κo = 6.
Assumewe are observing the tracew = 0i 1i 2i 6o 0i δω to be monitored with STL formula

ϕu-rob (fromTheorem 5). First notice, that for combinations of a and b in ϕu-rob, where a �= b,
the subformula (eq(wa↓i, wb↓i) ≤ 0) is always false, because w1 and w2 have different
(input) values at time point 0. Hence, it remains to show that

(dOut(w1↓o, w↓o) − κo ≤ 0)W(dIn(w1↓i, w↓i) − κi > 0) ∧
(dOut(w2↓o, w↓o) − κo ≤ 0)W(dIn(w2↓i, w↓i) − κi > 0).

For the first conjunct, the input distance between inputs inw andw1 is always 1 at positions 1
to 3, it is 0 at position 4 (because –i is compared to –i), and remains 0 in position 5 and beyond.
Thus, dIn(w1↓i, w↓i) − κi is always at most 0, and the right hand-side of the W operator
is always false. Consequently, by definition of W , the left operand of W must always hold,
i.e., dOut(w1↓o, w↓o) must always be less or equal to 6. This is the case for w1 and w: at all
positions except for 4, –o is compared to –o (or δ to δ), so the difference is 0, and at position
4, the distance of 6 and 7 is 1.

For the secondW-formula,w is compared tow2. These two traces are comparable only to
a limited extent: the order of input and output is altered at the last two positions of the signals
before quiescence. Hence, the right operand ofW is true at position 4, and the formula holds
for the remaining trace. For positions 1 to 3, the input distances are 0, because the input values
are identical. At these positions, the left operand must hold. The values are input values, so
–o is compared to –o at each position. This distance is defined to be 0, so it holds that−6 ≤ 0,
and the formula is satisfied. Since both formulas hold, the conjunction of both holds, too,
and trace w is qualified as robustly clean. There could however be other system traces not
considered in this example, that overall could violate robust cleanness of the system.

Restriction of input space
Robust cleanness puts semantic requirements on fragments of a system’s input space, outside
of which the system’s behaviour remains unspecified. Typically, the fragment of the input
space covered is rather small. To falsify the STL formula ϕu-rob from Theorem 5, the falsifier
has two challenging tasks. First, it has to find a way to stay in the relevant input space,
i.e., select inputs with a distance of at most κi from the standard behaviour. Only if this is
assured it can search for an output large enough to violate the κo requirement. In this, a
large robustness estimate provided by the quantitative semantics of STL cannot serve as an
indicator for decidingwhether an input is too far off or whether an output stays too close to the
standard behaviour. We can improve the efficiency of the falsification process significantly
by narrowing upfront the input space the falsifier uses.

In practice, test execution traces will always be finite. In previous real-life doping tests,
test execution lengths have been bounded by some constant B ∈ N [19], i.e., systems are
represented as sets of finite traces M ⊆ (In ∪ Out)B (which for formality reasons each
can be considered suffixed with δω). In this bounded horizon, we can provide a predicate
discriminating between relevant and irrelevant input sequences. Formally, the restriction
to the relevant input space fragment of a system M ⊆ (In ∪ Out)B is given by the set
InStd,κi = {w ∈ M | ∃w′ ∈ Std.

∧B−1
k=0(dIn(w[k]↓i, w

′[k]↓i) ≤ κi)}. Since Std and B are
finite, membership is computable.
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There are rare cases in which this optimisation may prevent the falsifier from finding a
counterexample. This is only the case if there is an input prefix leading to a violation of the
formula for which there is no suffix such that the whole trace satisfies the κi constraint. Below
is a pathological example in which this could make a difference.

Example 5 Apart from NOx emissions, NEDC (and WLTC) tests are used to measure fuel
consumption. Consider a contract similar to the contracts above, but with fuel rate as the
output quantity. Assuming a “normal” fuel rate behaviour during the standard test, there
might be a test within a reasonable κi distance, where the fuel is wasted insanely. Then, the
fuel tank might run empty before the intended end of the test, which therefore could not be
finished within the κi distance, because speed would be constantly 0 at the end. The actually
driven test is not in set InStd,κi , but there is a prefix within κi distance that violates the robust
cleanness property.

Notably, there may be additional techniques to reduce the size of the input space. For
example, if the next input symbol depends on the history of inputs, this constraint could be
considered in the proposal scheme.

4 Supervision of diesel emission cleaning systems

The severity of the diesel emissions scandal showed that the regulations alone are insufficient
to prevent car manufacturers from implementing tampered—or doped—emission cleaning
systems. Recent works [19] shows that robust cleanness is a suitable means to extend the
precisely defined behaviour of cars for the NEDC to test cycles within a κi range around
the NEDC. To demonstrate the usefulness of robust cleanness, the essential details of the
emission testing scenario were modelled: the set of inputs is the set of speed values, an output
value represents the amount of emissions—in particular, the nitric oxide (NOx ) emissions—
measured at the exhaust pipe of a car. The distance functions are the absolute differences
of speed, respectively NOx , values, and the standard behaviour is the singleton set that
contains a trace that consists of the inputs that define the test cycle followed by the average
amount of NOx gas measured during the test. Thus, formally, we get In = R, Out = R,
Std = {NEDC · o},3 and dIn and dOut as defined in Example 4 [19].

The STL formulas developed in the previous section, combined with the probabilistic
falsification approach, give rise to further improvements to the existing testing-based work
[19] on diesel doping detection.

To use the falsification algorithm in Algorithm 1, we implement the restriction of the input
space to In{NEDC·o},κi as explained in Sect. 3. With this restriction the STL formula ϕu-rob
from Theorem 5 can be simplified to

(dOut((NEDC · o)↓o, w↓o) − κo ≤ 0). (7)

This is because the conjunction and disjunction over standard traces becomes obsolete for
only a single standard trace. For the same reason, the requirement (eq(wa↓i, wb↓i) ≤ 0)
becomes obsolete, as the compared traces are always identical. In the W subformula, the
right proposition is always false, because of the restricted input space. We implemented
Algorithm 1 for the robustness computation according to formula (7).

3 NEDC is the sequence of 1180 inputs with the kth input defining the speed of the car after k seconds from
the beginning of the NEDC

123



Formal Methods in System Design

In practice, running tests like NEDC with real cars is a time consuming and expensive
endeavour. Furthermore, tests on chassis dynamometers are usually prohibited to be carried
out with rented cars by the rental companies. On the other hand, car emission models for
simulation are not available to the public—and models provided by the manufacturer cannot
be considered trustworthy. To carry out our experiments, we instead use an approximation
technique that estimates the amount of NOx emissions of a car along a certain trajectory based
on data recorded during previous trips with the same car, sampled at a frequency of 1HZ
(one sample per second). Notably, these trips do not need to have much in common with the
trajectory to be approximated. A trip is represented as a finite sequence ϑ ∈ (R × R × R)∗
of triples, where each such triple (v, a, n) represents the speed, the acceleration, and the
(absolute) amount of NOx emitted at a particular time instant in the sample. Speed and
acceleration can be considered as the main parameters influencing the instant emission of
NOx . This is, for instance, reflected in the regulation [67, 124] where the decisive quantities
to validate test routes for real-world driving emissions tests on public roads are speed and
acceleration.

A recording D is the union of finitely many trips ϑ . We can turn such a recording into a
predictor P of the NOx values given pairs of speed and acceleration as follows:

P(v, a) = average[n | (∃v′, a′. (|v − v′| ≤ 2 ∧ |a − a′| ≤ 2 ∧ (v′, a′, n) ∈ D))].
The amount of NOx assigned to a pair (v, a) here is the average of all NOx values seen in the
recordingD for v±� and a ±�, with 0 ≤ � ≤ 2. To overcomemeasurement inaccuracies and
to increase the robustness of the approximated emissions, the speed and acceleration may
deviate up to 2 km/h, and 2m/s2, respectively. This tolerance is adopted from the official
NEDC regulation [128], which allows up to 2km/h of deviations while driving the NEDC.

To demonstrate the practical applicability of our implementation of Algorithm 1 and our
NOx approximation, we report here on experiments with an Audi A6 Avant Diesel admitted
in June 2020 as well as with its successor model admitted in 2021. We will refer to the
former as car A20 and to the latter as car A21. We used the app LolaDrives to perform in
total six low-cost RDE tests—two with A20 and four4 with A21—and recorded the data
received from the cars’ diagnosis ports. The raw data is available on Zenodo [15]. Using the
emissions predictor proposed above we estimate that for an NEDC test A20 emits 86mg/km
of NOx and that A21 emits 9mg/km. Car A20 has previously been falsified w.r.t. the RDE
specification. Neither A20 nor A21 has been falsified w.r.t. robust cleanness.

Before turning to falsification, we spell out meaningful contexts for robust cleanness. We
identified suitable In, Out, Std, dIn, and dOut at the beginning of the section. For κi, it turned
out that κi = 15 km/h is a reasonable choice, as it leaves enough flexibility for human-caused
driving mistakes and intended deviations [19]. The threshold for NOx emissions under lab
conditions is 80mg/km. The emission limits for RDE tests depend on the admission date of
the car. Cars admitted in 2020 or earlier,must emit 168mg/kmatmost, and cars admitted later
must adhere to the limit of 120mg/km. For our experiments, we use κo = 88mg/km for A20
and κo = 40mg/km for A21 to have the same tolerances as for RDE tests. Effectively, the
upper threshold forA20 is 84+88 = 172mg/km, and forA21 the limit is 9+40 = 49mg/km.
Notice that for software doping analysis, the output observed for a certain standard behaviour
and the constant κo define the effective threshold; this threshold is typically different from
the thresholds defined by the regulation.

We modified Algorithm 1 by adding a timeout condition: if the algorithm is not able to
find a falsifying counterexample within 3,000 iterations, it terminates and returns both the

4 We do not consider test A21.3 in this article, see [22, Section 5] for details
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Fig. 2 NEDC speed profile (blue,
dashed) and input falsifying C for
κo = 88mg/km (red) with
182mg/km of emitted NOx
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Fig. 3 NEDC speed profile (blue,
dashed) and input maximising
NOx emissions to 11mg/km
(red)
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trace for which the smallest robustness has been observed and its corresponding robustness
value. Hence, if falsification of robust cleanness for a system is not possible, the algorithm
outputs an upper bound on how robust the system satisfies robust cleanness.

For the concrete case of the diesel emissions, the robustness value during the first 1180
inputs (sampled from the restricted input space InStd,κi ) is always κo. When the NEDC output
oNEDC and the non-standard output o are compared, the robustness value is κo−|oNEDC − o|
(cf., eq. (7), the quantitative semantics of STL, and definition of dOut). Hence, for test cycles
with small robustness values, we get NOx emissions o that are either very small or very
large compared to oNEDC. We ran the modified Algorithm 1 on A20 and A21 for the contexts
defined above. For A20, it found a robustness value of −8, i.e., it was able to falsify robust
cleanness relative to the assumed contract and found a test cycle for which NOx emissions of
182mg/km are predicted. The test cycle is shown in Fig. 2. For A21, the smallest robustness
estimate found—even after 100 independent executions of the algorithm—was 38, i.e., A21 is
predicted to satisfy robust cleanness with a very high robustness estimate. The corresponding
test cycle is shown in Fig. 3.
On Doping Tests for Cyber-physical Systems
The proposed probabilistic falsification approach to find instances of software doping needs
several hundreds of iterations. This is problematic for testing real-world cyber-physical sys-
tems (CPS) to which inputs cannot be passed in an automated way. To conduct a test with
a car, for example, the input to the system is a test cycle that is passed to the vehicle by
driving it. Notably, we consider here the scenario that the CPS is tested by an entity that is
different from themanufacturer.While the latter might have tools to overcome these technical
challenges, the former typically does not have access to them.

We propose the following integrated testing approach for effective doping tests of cyber-
physical systems. The big picture is provided in Fig. 4. In a first step, the CPS is used under
real-world conditions without enforcing any specific constraints on the inputs to the system.
For all executions, the inputs and outputs are recorded. So, essentially, the system can be used
as it is needed by the user, but all interactions with it are recorded. From these recordings, a
model can be learned that for arbitrary inputs (whether they were covered in the recorded data
or not) predicts the output of the system. Such learning can be as simple as using statistics
as we did for the emissions example above, or as complex as using deep neural nets. For the
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Fig. 4 Integrated testing
approach

learnedmodel, the probabilistic falsification algorithm computes a test input that falsifies it—
inputs to this model can be passed automatically and an output is produced almost instantly.
The resulting input serves as an input for the real CPS. If the prediction was correct, also the
real system is falsified. If it was incorrect, the learned model can be refined and the process
starts again.

For diesel emissions, the first part of this integrated testing approach has been carried
out as part of the work reported in this article. We leave the second part—evaluating the
generated test traces from Figs. 2 and 3 with a real car—for future work.
Technical Context
Software doping theory provides a formal basis for enlarging the requirements on vehicle
exhaust emissions beyond too narrow lab test conditions. That conceptual limitation has by
now been addressed by the official authorities responsible for car type approval [124, 127]:
The old NEDC-based test procedure is replaced by the newer Worldwide Harmonised Light
Vehicles Test Procedure (WLTP), which is deemed to be more realistic. WLTP replaces the
NEDCtest by anewWLTCtest, butWLTCstill is just a single test scenario. In addition,WLTP
embraces so called Real Driving Emissions (RDE) tests to be conducted on public roads.
A recently launched mobile phone app [20, 22], LolaDrives, harvests runtime monitoring
technology for making low-cost RDE tests accessible to everyone.

Learning or approximating the behaviour of a system under test has been studied
intensively. Meinke and Sindhu [82] were among the first to present a testing approach incre-
mentally learning a Kripke structure representing a reactive system. Volpato and Tretmans
[130] propose a learning approach which gradually refines an under- and over-approximation
of an input-output transition system representing the system under test. The correctness of
this approach needs several assumptions, e.g., an oracle indicating when, for some trace, all
outputs, which extend the trace to a valid system trace, have been observed.

5 Individual fairness of systems evaluating humans

Example 2 introduces a new application domain for cleanness definitions. Unica uses an
AI system that is supposed to assist her with the selection of applicants for a hypothetical
university. Cleanness of such a system can be related to the fair treatment of the humans that
are evaluated by it. A usable fairness analysis can happen no later than at runtime, since Unica
needs to make a timely decision on whether to include the applicant in further considerations.
We describe technical measures that help in mitigating this challenge by providing her with
information from an individual fairness analysis in a suitable, purposeful, expedient way.
To this end, we propose a formal definition for individual fairness extending the one by
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[35] and based on func-cleanness. We develop a runtime monitor that analyses every output
of P immediately after P’s decision, which strategically searches for unfair treatment of a
particular individual by comparing them to relevant hypothetical alternative individuals so
as to provide a fairness assessment in a timely manner.

Much like P is to support Unica, AI systems—in the broadest sense of theword—more and
more often support human decision makers. Undoubtedly, such systems should be compliant
with applicable law (such as the futureEuropeanAIAct [40, 41] or theWashingtonState facial
recognition law [132]) and ought tominimise any risks to health, safety or fundamental rights.
Sometimes, we cannotmitigate all these risks in advance by technicalmeasures and also some
risk-mitigation requires trade-off decisions involving features that are either impossible or
difficult to operationalise and formalise. This is why it is essential that a human effectively
oversees the system (which is also emphasised by several institutions such as UNESCO [129]
and the European High Level Expert Group [59]). Effective human oversight, however, is
only possible with the appropriate technical measures that allow human overseers to better
understand the system at runtime [70, 71]. From a technical point of view, this raises the
pressing question of what such technical measures can and ought to look like to actually
enable humans to live up to these responsibilities. Our contribution is intended to bridge
the gap between the normative expectations of law and society and the current reality of
technological design.

5.1 Positioning within related research topics

Our contribution draws on and adds to three vibrant topics of current research, namely
Explainable AI (XAI), AI fairness, and discrimination.
XAI
Manyof themost successfulAI systems today are somekindof blackboxes [11].Accordingly,
the field of ‘ExplainableAI’ [54] focuses on the question of how to provide users (and possibly
other stakeholders) with more information via several key perspicuity properties [117] of
these systems and their outputs to make them understand these systems and their outputs in
ways necessary to meet various desiderata [5, 28, 69, 74, 85, 91]. The concrete expectations
and promises associated with various XAI methods are manifold. Among them are enabling
warranted trust in systems [12, 62, 65, 102, 111], increasing human-system decision-making
performance [68] for instance through increasing human situation awareness when operating
systems [109], enabling responsible decision-making and effective human oversight [14, 80,
114], as well as identifying and reducing discrimination [74]. It often remains unclear what
kind of explanations are generated by the various explainability methods and how they are
meant to contribute to the fulfilment of the desiderata, even though these questions have
become the subject of systematic and interdisciplinary research [69, 103].

Our approach can be taxonomised along at least two different distinctions [70, 86, 101,
102, 116]: First, it is model-agnostic (not model-specific), i.e., it is not tailored to a particular
class of models but operates on observable behaviour—the inputs and outputs of the model.
Second, our method is a local method (not global), i.e., it is meant to shed light on certain
outputs rather than the system as a whole.
(Un-)Fair Models
Fairness, discrimination, justice, equal opportunity, bias, prejudice, and many more such
concepts are part of a meaningfully interrelated cluster that has been analysed and dissected
for millennia [6, 7]. Many fields are traditionally concerned with the concepts of fairness and
discrimination, ranging from philosophy [6, 7, 36, 52, 98–100] to legal sciences [25, 57, 125,
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Fig. 5 Sketch of different origins of unfairness in a decision process supported by a system; the dotted box
indicates which unfairness our monitoring targets

131], to psychology [60, 136], to sociology [2, 63], to political theory [99], to economics
[55]. Nowadays, it has also become a technological topic that calls for cross-disciplinary
perspectives [50].

With regard to fairness, there are two distinctions that are especially relevant to our work.
First, one distinction is made between individual fairness, i.e., that similar individuals are
treated similarly [35], and group fairness, i.e., that there is adequate group parity [23]. Mea-
sures of individual fairness are often close to the Aristotelian dictum to treat like cases alike
[6, 7]. In a sense, operationalisations of individual fairness are robustness measures [24, 118],
but instead of requiring robustness with respect to noise or adversarial attacks, measures of
individual fairness, such as the one by Dwork et al. [35], call for robustness with respect to
highly context-dependent differences between representations of human individuals. Second,
recent work from the field of law [131] suggests to differentiate between bias preserving and
bias transforming fairness metrics. Bias preserving fairness metrics seek to avoid adding new
bias. For such metrics, historic performances are the benchmarks for models, with equivalent
error rates for each group being a constraint. In contrast, bias transforming metrics do not
accept existing bias as a given or neutral starting point, but aim at adjustment. Therefore,
they require to make a ‘positive normative choice’ [131], i.e. to actively decide which biases
the system is allowed to exhibit, and which it must not exhibit.

Over the years, many concrete approaches have been suggested to foster different kinds
of fairness in artificial systems, especially in AI-based ones [74, 81, 96, 131, 134]. Yet, to
the best of our knowledge, an approach like ours is still missing. One of the approaches that
is closest to ours, namely that by John et al. [64], is not local and therefore not suitable for
runtime monitoring. Also, it is not model-agnostic. So, to the best of our knowledge, our
approach provides a new contribution to the debate on unfairness detection.

It is important to note/recognise that our approach can only be understood as part of a
more holistic approach to preventing or reducing unfairness. After all, there are many sources
of unfairness [8] (also see Fig. 5 and Appendix B). Therefore, not every technical measure
is able to detect every kind of unfairness and eliminating one source of unfairness might not
be sufficient to eliminate all unfairness. Our approach tackles only unfairness introduced by
the system, but not other kinds of unfairness.
Discrimination
We understand discrimination as dissimilar treatment of similar cases or similar treatment of
dissimilar cases without justifying reason. This is a definition that can also be found in the
law [44, §43]. Our work is exclusively focused on discrimination qua dissimilar treatment of
similar cases. Discrimination requires a thoughtful and largely not formalisable consideration
of ‘justifying reason’. However, we will exploit the relation of discrimination and fairness:
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Unfairness in a system can arguably be a good proxy of discrimination—even though not
every unfair treatment by a system necessarily constitutes discrimination (especially not in
the legal sense). Thus, a tool that highlights cases of unfairness in a system can be highly
instrumental in detecting discriminatory features of a system. It is not viable, though, to let
such a tool rule out unfair treatment fully automatically without human oversight, since there
could be justifying reason to treat two similar inputs in a dissimilar way.

5.2 Individual fairness

Unica from Example 2 should be able to detect individual unfairness. An operationalisation
thereof by Dwork et al. [35] is based on the Lipschitz condition to enforce that similar
individuals are treated similarly. To measure similarity, they assume the existence of an input
distance function dIn and an output distance function dOut. This assumption is very similar
to the one that we implicitly made in the previous sections for robust cleanness and func-
cleanness. However, in the case of the fair treatment of humans finding reasonable distance
functions is more challenging than it was for the examples in the previous chapters. Dwork et
al. assume that both distance functions perfectly measure distances between individuals5 and
between outputs of the system, respectively, but admit that in practice these distance functions
are only approximations of a ground truth at best. They suggest that distance measures might
be learned, but there is no one-size-fits-all approach to selecting distance measures. Indeed,
obtaining such distance metrics is a topic of active research [61, 87, 135]. Additionally, the
Lipschitz condition assumes a Lipschitz constant L to establish a linear constraint between
input and output distances.

Definition 8 A deterministic sequential program P : In → Out is Lipschitz-fair w.r.t.
dIn : In × In → R, dOut : Out × Out → R, and a Lipschitz constant L , if and only if for

all i1, i2 ∈ In, dOut(P(i1), P(i2)) ≤ L · dIn(i1, i2).

Lipschitz-fairness comes with some restrictions that limit its suitability for practical appli-
cation:

dIn-dOut-relation: High-risk systems are typically complex systems and ask for more com-
plex fairness constraints than the linearly bounded output distances
provided by the Lipschitz condition. For example, using the Lipschitz
condition prevents us from allowing small local jumps in the output and
at the same time forbidding jumps of the same rate of increase over
larger ranges of the input space (also see supplementary material in Sec-
tion Appendix A).

Input relevance: The condition quantifies over the entire input domain of a program. This
overlooks two things: first, it is questionable whether each input in such
a domain is plausible as a representation for a real-world individual. But
whether a system is unfair for two implausible and purely hypothetical
inputs is largely irrelevant in practice. Secondly, it also ignores that mere
potential unfair treatment is at most a threat, not necessarily already a
harm [106]. Therefore, even with a restriction to only plausible appli-
cants, the analysis might take into account more inputs than needed for

5 For easier readability, we will not distinguish between individuals and their representations unless this
distinction is relevant in the specific context. It is nevertheless important to note that inputs are not individuals,
but only representations of individuals, since an input could inadequately represent an individual and therefore
be unfair (also see Appendix B).
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many real-world applications. What is important in practice is the ability
to determine whether actual applicants are treated unfairly—and for this
it is often not needed to look at the entire input domain.

Monitorability: In a monitoring scenario with the Lipschitz condition in place, a fixed
input i1 must be compared to potentially all other inputs i2. Since the input
domain of the system can be arbitrarily large, the Lipschitz condition is
not yet suitable for monitoring in practice (for a related point see John
et al. [64]).

Wepropose anotionof individual fairness that is basedonDefinition3. Insteadof cleanness
contracts we consider here fairness contracts, which are tuplesF = 〈dIn, dOut, f 〉 containing
input and output distance functions and the function f relating input distances and output
distances. Notably, the set of standard inputs StdIn known from cleanness contracts is not
part of a fairness contract; it is unknownwhat qualifies an input to be ‘standard’ in the context
of fairness analyses. Still, our fairness definition evaluates fairness for a set of individuals
I ⊆ In (e.g., a set of applicants), which has conceptual similarities to the set StdIn. A
fairness contract specifies certain fairness parameters for a concrete context or situation.
Such parameters should generally not already include I to avoid introducing new unfairness
through the monitor by tailoring it to specific inputs individually or by treating certain inputs
differently from others. Func-fairness can thus be defined as follows:

Definition 9 A deterministic sequential program P : In → Out is func-fair for a set I ⊆ In
of actual inputs w.r.t. a fairness contract F = 〈dIn, dOut, f 〉, if and only if for every i ∈ I and
i′ ∈ In, dOut(P(i), P(i′)) ≤ f (dIn(i, i′)).

The idea behind func-fairness is that every individual in set I is compared to potential
other inputs in the domain of P. These other inputs do not necessarily need to be in I, nor do
these inputs need to have “physical counterparts” in the real world. Driven by the insights
of the Input relevance restriction of Lipschitz-fairness, we explicitly distinguish inputs in
the following and will call inputs that are given to P by a user actual inputs, denoted ia, and
call inputs to which such ia are compared to synthetic inputs, denoted is. Actual inputs are
typically6 inputs that have a real-world counterpart, while this might or might not be true for
synthetic inputs. On first glance, an alternative to using synthetic inputs is to use only actual
inputs, e.g., to compare every actual input with every other actual input in I. For example, for
a university admission, all applicants could be compared to every other applicant. However,
this would heavily rely on contingencies: the detection of unfair treatment of an applicant
depends on whether they were lucky enough that, coincidentally, another candidate has also
applied who aids in unveiling the system’s unfairness towards them. Instead, func-fairness
prefers to over-approximate the set of plausible inputs that actual inputs are compared to
rather than under-approximating it by comparing only to other inputs in I. This way, the
attention of the human exercising oversight of the system might be drawn to cases that are
actually not unfair, but as a competent human in the loop, they will most likely be able to
judge that the input was compared to an implausible counterpart. This will usually enable
more effective human oversight than an under-approximation that misses to alert the human
to unfair cases.

Notice that func-fairness is a conservative extension of Lipschitz-fairness. With I = In
and f (x) = L · x , func-fairness mimics Lipschitz-fairness. Wachter et al. [131] classify
the Lipschitz-fairness of Dwork et al. [35] as bias-transforming. As we generalise this and

6 A case where actual inputs might not have real-world counterparts is testing.
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Algorithm 2 FairnessMonitor, with ξ -min S = (ξ, i1, i2) only if (ξ, i1, i2) ∈ S and for all
(ξ ′, i′1, i′2) ∈ S, ξ ′ ≥ ξ

Falsification Parameters: PS: Proposal scheme, β: Temperature parameter
Input: System P : In → Out, Fairness contract F = 〈dIn, dOut, f 〉, and set of actual inputs I
Output: A minimal fairness score triple from R × I × In.
1: is ← any input ia ∈ I
2: (ξ, imin, is) ← ξ -min{(F(ia, is), ia, is) | ia ∈ I}
3: (ξmin, i1, i2) ← (ξ, imin, is)
4: while not timeout do
5: i′s ← PS(is, P(is))
6: (ξ ′, i′min, i′s) ← ξ -min{(F(ia, i′s), ia, i′s) | ia ∈ I}
7: (ξmin, i1, i2) ← ξ -min{(ξmin, i1, i2), (ξ ′, i′min, i′s)}
8: α ← exp(−β(ξ ′ − ξ))

9: r ← UniformRandomReal(0, 1)
10: if r ≤ α then
11: is ← i′s
12: ξ ← ξ ′
13: end if
14: end while
15: return(ξmin, i1, i2)

introduce no element that has to be regarded as bias-preserving, our approach arguably is
bias-transforming, too.

Func-fairness, with its function f , provides a powerful tool to model complex fairness
constraints. How such an f is defined has profound impact on the quality of the fairness
analysis. A full discussion about which types of functions make a good f go beyond the
scope of this article. A suitable choice for f and the distance functions dIn and dOut heavily
depends on the context in which fairness is analysed—there is no one-fits-it-all solution.
Func-fairness makes this explicit with the formal fairness contract F = 〈dIn, dOut, f 〉.

5.3 Fairness monitoring

We develop a probabilistic-falsification-based fairness monitor that, given a set of actual
inputs, searches for a synthetic counterexample to falsify a system P w.r.t. a fairness contract
F . To this end, it is necessary to provide a quantitative descriptionof func-fairness that satisfies
the characteristics of a robustness estimate. We call this description fairness score. For an
actual input ia and a synthetic input iswedefine the fairness score as F(ia, is):= f (dIn(ia, is))−
dOut(P(ia), P(is)). F is indeed a robustness estimate function: if F(ia, is) is non-negative, then
dOut(P(ia), P(is)) ≤ f (dIn(ia, is)), and if it is negative, thendOut(P(ia), P(is)) � f (dIn(ia, is)).
For a set of actual inputs I, the definition generalises to F(I, is):=min{F(ia, is) | ia ∈ I},
i.e., the overall fairness score is the minimum of the concrete fairness scores of the inputs in
I. Notice thatRI(is):=F(I, is) is essentially the quantitative interpretation of ϕu-func (from
Theorem 6) after simplifications attributed to the fact that P is a sequential and deterministic
program (cf. Definition 2.2 vs. Definition 3).

Algorithm 2 shows FairnessMonitor, which builds on Algorithm 1 to search for the mini-
mal fairness score in a system P for fairness contract F . The algorithm stores fairness scores
in triples that also contain the two inputs for which the fairness score was computed. The
minimum in a set of such triples is defined by the function ξ -min that returns the triple with
the smallest fairness score of all triples in the set. The first line of FairnessMonitor initialises
the variable is with an arbitrary actual input from I. For this value of is, the algorithm checks
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Algorithm 3 FairnessAwareSystem
Parameters: System P : In → Out, Fairness contract F = 〈dIn, dOut, f 〉
Input: Input ia ∈ In
Output: Tuple of the system output, normalised fairness score, and synthetic values witnessing the fairness

score
1: (ξmin, ia, is) ← FairnessMonitor(P,F , {ia})
2: return(P(ia), ξmin ÷ f (dIn(ia, is)), (is, P(is)))

the corresponding fairness scores for all actual inputs ia ∈ I and stores the smallest one. In
line 3, the globally smallest fairness score triple is initialised. In line 5 it uses the proposal
scheme to get the next synthetic input i′s. Line 6 is similar to line 2: for the newly proposed
i′s it finds the smallest fairness score, stores it, and updates the global minimum if it found
a smaller fairness score (line 7). Lines 8-13 come from Algorithm 1. The only difference is
that in addition to is we also store the fairness score ξ . Line 4 of Algorithm 2 differs from
Algorithm 1 by terminating the falsification process after a timeout occurs (similar to the
adaptation of Algorithm 1 in Sect. 4). Hence, the algorithm does not (exclusively) aim to
falsify the fairness property, but aims at minimising the fairness score; even if the fair treat-
ment of the inputs in I cannot be falsified in a reasonable amount of time, we still learn how
robustly they are treated fairly, i.e., how far the least fairly treated individual in I is away
from being treated unfairly. After the timeout occurs, the algorithm returns the triple with the
overall smallest seen fairness score ξmin, together with the actual input i1 and the synthetic
input i2 for which ξmin was found. In case ξmin is negative, i2 is a counterexample for P being
func-fair.

FairnessMonitor implements a sound F-unfairness detection as stated in Proposition 7.
However, it is not complete, i.e., it is not generally the case that P is func-fair for I if ξ is
positive. It may happen that there is a counterexample, but FairnessMonitor did not succeed
in finding it before the timeout. This is analogue to results obtained for model-agnostic robust
cleanness analysis [19].

Proposition 7 Let P : In → Out be a deterministic sequential program, F = 〈dIn, dOut, f 〉
a fairness contract, and I a set of actual inputs. Further, let (ξmin, i1, i2) be the result of
FairnessMonitor(P,F, I). If ξmin is negative, then P is not func-fair for I w.r.t. F .

Moreover, FairnessMonitor circumvents major restrictions of the Lipschitz-fairness:

dIn-dOut-relation: Func-fairness defines constraints between input and output distances by
means of a function f , which allows to express also complex fairness
constraints. For a more elaborate discussion, see Sect. Appendix A.

Input relevance: Func-fairness explicitly distinguishes between actual and synthetic
inputs. This way, func-fairness acknowledges a possible obstacle of the
fairness theory when it comes to a real-world usage of the analysis,
namely that only some elements of the system’s input domain might be
plausible and that usually only few of them become actual inputs that
have to be monitored for unfairness.

Monitorability: FairnessMonitor demonstrates that func-fairness is monitorable. It
resolves the quantification over In using the above concepts from proba-
bilistic falsification using the robustness estimate function F as defined
above.

123



Formal Methods in System Design
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Towards func-fairness in the loop
If a high-risk system is in operation, a human in the loop must oversee the correct and
fair functioning of the outputs of the system. To do this, the human needs real-time fair-
ness information. Figure 6 shows how this can be achieved by coupling the system P
and the FairnessMonitor in Algorithm 2 in a new system called FairnessAwareSystem.
FairnessAwareSystem is sketched in Algorithm 3. Intuitively, the FairnessAwareSystem is
a higher-order program that is parameterisedwith the original program P and the fairness con-
tract F . When instantiated with these parameters, the program takes arbitrary (actual) inputs
ia from In. In the first step, it does a fairness analysis using FairnessMonitor with arguments
P, F , and {ia}. To make fairness scores comparable, FairnessAwareSystem normalises the
fairness score ξ received from FairnessMonitor by dividing7 it by the output distance limit
f (dIn(ia, is)). For fair outputs, the score will be between 0 (almost unfair) and 1 (as fair as
possible).8 Outputs that are not func-fair are accompanied by a negative score representing
how much the limit f (dIn(ia, is)) is exceeded. A fairness score of −n means that the output
distance of P(ia) and P(is) is n + 1 times as high as that limit. Finally, FairnessAwareSystem
returns the triple with P’s output for ia, the normalised fairness score, and the synthetic input
with its output witnessing the fairness score.
Interpretation of monitoring results
Especially when FairnessAwareSystem finds a violation of func-fairness, the suitable inter-
pretation and appropriate response to the normalised fairness score proves to be a non-trivial
matter that requires expertise.

Example 6 Insteadof usingP fromExample 2on its own,Unica nowusesFairnessAwareSystem
with a suitable fairness contract. and thereby receive a fairness score along with P’s verdict
on each applicant. (Which fairness contracts are suitable is an open research problem, see
Limitations & Challenges in Sect. 7.) If the fairness score is negative, she can also take into
account the information on the synthetic counterpart returned by FairnessAwareSystem.
Among the 4096 applicants for the PhD program, the monitoring assigns a negative fairness
score to three candidates: Alexa, who received a low score, Eugene, who was scored very
highly, and John, who got an average score. According to their scoring, Alexa would be
desk-rejected, while Eugene and John would be considered further.

Alexa’s synthetic counterpart, let’s call him Syntbad, is ranked much higher than Alexa.
In fact, he is ranked so high that Syntbad would not be desk-rejected. Unica compares Alexa

7 For f that can return 0, there may be a 0÷0 division. The result of this division should be defined depending
on the concrete context; reasonable values range from the extreme scores 0 (to indicate that the score is on the
edge to becoming ‘unfair’) to 1 (to indicate that more fairness is impossible).
8 Fairness may be a vague concept that cannot be dichotomised. By its choice of the fairness contract parame-
ters, our approachnevertheless specifies a (non-arbitrary) cut-off point at 0; but it does so for purely instrumental
and non-ontological reasons.
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Fig. 7 Exemplary illustration of configurations of an input (red cross) and its synthetic counterparts (grey
circles) and the synthetic counterpart with the minimal fairness score (blue polygon); with a two-dimensional
input space (grid) and a one-dimensional output

and Syntbad and finds that they only differ in one respect: Syntbad’s graduate university is
the one in the official ranking that is immediately below the one that Alexa attended. Unica
does some research and finds that Alexa’s institution is predominantly attended by People of
Colour, while this is not the case for Syntbad’s institution. Therefore, FairnessAwareSystem
helped Unica not only to find an unfair treatment of Alexa, but also to uncover a case of
potential racial discrimination.

John’s counterpart, Synclair, is ranked much lower than him. Unica manually inspects
John’s previous institution (an infamous online university), his GPA of 1.8, and his test
result with only 13%. She finds that this very much suggests that John will not be a
successful PhD candidate and desk-rejects him. Therefore, Unica has successfully used
FairnessAwareSystem to detect a fault in scoring system P whereby John would have been
treated unfairly in a way that would have been to his advantage.

Eugene received a top score, but his synthetic counterpart, Syna, received only an average
one. Unica suspects that Eugene was ranked too highly given his graduate institution, GPA,
and test score. However, as he would not have been desk-rejected either way, nothing changes
for Eugene, and the unfairness he was subject to, is not of effect to him.

The cases of John and Eugene share similarities with the configuration in (b) in Fig. 7,
the one of Alexa with (a), and the ones of all other 4093 candidates with (c).

If our monitor finds only a few problematic cases in a (sufficiently large and diverse) set
of inputs, our monitoring helps Unica from our running example by drawing her attention to
cases that require special attention. Thereby, individuals who are judged by the system have a
better chance of being treated fairly, since even rare instances of unfair treatment are detected.
If, on the other hand, the number of problematic cases found is large, or Unica finds especially
concerning cases or patterns, this can point to larger issues within the system. In these cases,
Unica should take appropriate steps and make sure that the system is no longer used until
clarity is established why so many violations or concerning patterns are found. If the system
is found to be systematically unfair, it should arguably be removed from the decision process.
A possible conclusion could also be that the system is unsuitable for certain use cases, e.g., for
the use on individuals from a particular group. Accordingly, it might not have to be removed
altogether but only needs to be restricted such that problematic use cases are avoided. In any
case, significant findings should also be fed back to developers or deployers of the potentially
problematic system. A fairness monitoring such as in FairnessAwareSystem or a fairness
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analysis as in FairnessMonitor could also be useful to developers, regulating authorities,
watchdog organisations, or forensic analysts as it helps them to check the individual fairness
of a system in a controlled environment.

6 Interdisciplinary assessment of fairness monitoring

Regulations for car related emissions are in force for a considerable amount of time, thus, its
legal interpretation is mostly clear. In case of human oversight of AI systems, the AI act is
new and parts of it are legally ambiguous. This raises the question of whether our approach
meets requirements that go beyond pre-theoretical deliberations. Even though comprehensive
analyses would go far beyond the scope of this paper, we will nevertheless assess some
key normative aspects in philosophical and legal terms, and also briefly turn to the related
empirical aspects, especially from psychology.

6.1 Psychological assessment

Fairness monitoring promises various advantages in terms of human-system interaction in
application contexts—provided it is extended by an adequate user interface—which call for
empirical tests and studies. We will only discuss a possible benefit that closely aligns with
the current draft of the AI Act: our approach may support effective human oversight. Two
central aspects of effective oversight are situation awareness and warranted trust. Our method
highlights unfairness in outputs which can be expected to increase users’ situation awareness
(i.e., ‘the perception of the elements in the environment within a volume of time and space,
the comprehension of their meaning and the projection of their status in the near future’
[37, p. 36]), which is a variable central for effective oversight [38]. In the minimal case, this
allows users to realise that something requires their attention and that they should check the
outputs for plausibility and adequacy. In the optimal case and after some experience with the
monitor, it may even allow users to predict instances where a system will produce potentially
unfair outputs. In any case, the monitoring should enable them to understand limitations of
the system and to feed back their findings to developers who can improve the system. This
leads us to warranted trust, which includes that users are able to adequately judge when to
rely on system outputs and when to reject them [62, 73]. Building warranted trust strongly
depends on users being able to assess system trustworthiness in the given context of use
[73, 110]. According to their theoretical model on trust in automation, Lee and See [73]
propose that trustworthiness relates to different facets of which performance (e.g., whether
the system performs reliably with high accuracy) and process (e.g., knowing how the system
operates and whether the system’s decision-processes help to fulfil the trustor’s goals) are
especially relevant in our case. Specifically, fairness monitoring should enable users to more
accurately judge system performance (e.g., by revealing possible issues with system outputs)
and system processes (e.g., whether the system’s decision logic was appropriate). In line with
Lee and See’s propositions, this should provide a foundation for users to be better able to
judge system trustworthiness and should thus be a promising means to promote warranted
trust. In consequence, our monitoring provides a needed addition to high-risk use contexts of
AI because it offers information enabling humans to more adequately use AI-based systems
in the sense of possibly better human-system decision performance and with respect to user
duties as described in the AI Act.
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6.2 Philosophical assessment

More effective oversight promises more informed decision-making. This, in turn, enables
morally better decisions and outcomes, since humans can morally ameliorate outcomes in
terms of fairness and can see to it that moral values are promoted. Also, fairness monitoring
helps in safeguarding fundamental democratic values if it is applied to potentially unfair
systems which are used in certain societal institutions of a high-risk character such as courts
or parliaments. It could, for example, make AI-aided court decisions more transparent and
promote equality before the law. However, since our approach requires finding context-
appropriate and morally permissible parameters for F , moral requirements arise to enable
the finding of such parameters. This not only affects, e.g., developers of such systems, but
also those who are in a position to enforce that adequate parameters are chosen, such as
governmental authorities, supervising institutions or certifiers.

Apart from that, various parties have arguably a legitimate interest in adequately ascribing
moral responsibility for the outcomes of certain decisions to human deciders [14]—regardless
of whether the decisionmaking process is supported by a system. Adequately ascribingmoral
responsibility is not always possible, though. One precondition for moral responsibility is
that the agent had sufficient epistemic access to the consequences of their doing [90, 119], i.e.,
that they have enough and sufficiently well justified beliefs about the results of their decision.
Someone overseeing a university selection process (like Unica) should, for example, have
sufficiently well justified beliefs that, at the very least, their decisions do not result in more
unfairness in the world. If the admission process is supported by a black-box system, though,
Unica cannot be expected to have any such beliefs since she lacks insight in the fairness of the
system. Therefore, adequate responsibility ascription is usually not possible in this scenario.
Our monitoring alleviates this problem by providing the decider with better epistemic access
to the fairness of the system.

FairnessAwareSystem helps in making Unica’s role in the decision process significant
and not only that of a mere button-pusher. FairnessAwareSystemmakes it possible for her to
fulfil some of the responsibilities and duties plausibly associated with her role. For example,
she can now be realistically expected to not only detect, but resolve at least some cases of
apparent unfairness competently (although she may need additional information to do so).
In this respect, she should not be ‘automated away’ (cf. [79]).

6.3 Legal assessment

A central legislative debate of our time is how to counter the risks AI systems can pose to the
health and safety or fundamental rights of natural persons. Protective measures must be taken
at various levels: First, before being permitted on the market, it must be ensured ex ante that
such high-risk AI-systems are in conformity with mandatory requirements9 regarding safety
and human rights. This means in particular that the selection of the properties which a system
should exhibit requires a positive normative choice and should not simply replicate biases
present in the status quo [131]. In addition, AI-systems must be designed and developed in
such a way that natural persons can oversee their functioning. For this purpose, it is necessary
for the provider to identify appropriate human oversight measures before its placing on the
market or putting into service. In particular, such measures should guarantee that the natural

9 The specific risks set by AI-systems may also give reason to consider an adaptation and expansion of
European legal frameworks such that an even broader prohibition of discrimination (cf. “Appendix C.1”) is
set into place.
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persons towhomhuman oversight has been assigned have the necessary competence, training
and authority to carry out that role [40, recital 48] [41, Art. 14 (5)].

Second, during runtime, the proper functioning of high-risk AI systems, which have been
placed on the market lawfully, must be ensured. To achieve this goal, a bundle of different
measures is needed, ranging from legal obligations to implement and perform meaningful
oversightmechanisms to user training and awareness in order to counteract ‘automation bias’.
Furthermore, the AI Act proposal requires deployers to inform the provider or distributor
and suspend the use of the system when they have identified any serious incidents or any
malfunctioning [40, 41, Art. 29(4)].

Third, and ex post, providers must act and take the necessary corrective actions as soon
as they become aware, e.g. through information provided by the deployer, that the high-risk
system does not (or no longer) meet the legal requirements [40, 41, Art. 16(g)]. To this end,
they must establish and document a system of monitoring that is proportionate to the type of
AI technology and the risks of the high-risk AI system [40, 41, Art. 61(1)].

Fairness monitoring can be helpful in all three of the above respects. Therefore, we argue
that there is even a legal obligation to use technical measures such as the method presented
in this paper if this is the only way to ensure effective human oversight.

7 Conclusion and future work

This articles brings together software doping theory and probabilistic falsification techniques.
To this end, it proposes a suitableHyperSTL semantics and characterises robust cleanness and
func-cleanness as HyperSTL formulas and, for the special case of finite standard behaviour,
STL formulas. Software doping techniques have been extensively applied to the tampered
diesel emission cleaning systems; this article continues this path of research by demonstrating
how testing of real cars can become more effective. For the first time, we apply software
doping techniques to high-risk (AI) systems. We propose a runtime fairness monitor to
promote effective human oversight of high-risk systems. The development of this monitor is
complemented by an interdisciplinary evaluation from a psychological, philosophical, and
legal perspective.
Limitations & Challenges

Achallenge to those employing robust cleanness or func-cleanness analysis is the selection
of suitable parameters, especially dIn, dOut, and f or κi and κo. Because of their high degree
of context sensitivity, there are no paradigmatic candidates for them that one can default to.
Instead, they have to be carefully selected with the concrete system, the structure of input
data and the situation of use in mind.

Reasonable choices for robust cleanness analysis of diesel emissions have been proposed
in recent work [19, 21]. With respect to individual fairness analysis, potential systems to
which FairnessAwareSystem or FairnessMonitor can be applied to are still too diverse to
give recommendations for the contract parameters. Obviously, further technical limitations
include that f , dIn, and dOut must be computable.

With a particular regard to fairness analysis, we identify also non-technical limitations. As
seen in Fig. 5, our fairness monitoring aims to uncover a particular kind of unfairness, namely
individual unfairness that originates from within the system. This excludes all kinds of group
unfairness as well as unfairness from sources other than the system. Another limitation is
the human’s competence to interpret the system outputs. Even though this is not a limitation
that is inherent to our approach, it nevertheless will arguably be relevant in some practical
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cases, and an implementation of the monitoring always has to happen with the human in
mind. For example, the design of the tool should avoid creating the false impression that
the system is proven to be fair for an individual if no counterexample has been found.
Interpretations like this could lead to inflated judgements of system trustworthiness and
eventually to overtrusting system outputs [110, 112]. Also, it might be reasonable to limit
access to the monitoring results: if individuals who are processed by the system have full
access to their fairness analysis, they could use this to ‘game’ the system, i.e. they could use
the synthetic inputs to slightly modify their own input such that they receive a better outcome.
While more transparency for the user is generally desirable, this has to be kept in mind to
avoid introducing new unfairness on a meta-level.
Future Work

The probabilistic falsification technique we use in this article can be seen as a modular
framework that consists of several interchangeable components. One of these components is
the optimisation technique used to find the input with minimal robustness value. Algorithm 1
uses a simulated annealing technique [29, 107], but other techniques have been proposed
for temporal logic falsification, too [4, 108]. We want to further look into such alternative
optimisation techniques and to evaluate if they offer benefits w.r.t. cleanness falsification.

Finally, the fairness monitoring approach has been presented using a toy example. It is
not claimed to be readily applicable to real-life scenarios. Besides the future work that has
already been mentioned throughout the paper, we are planning on various extensions of our
approach, and are working on an implementation that will allow us to integrate the moni-
toring into a real system. Moreover, we plan to test the possible benefits and shortcomings
of the approach in user studies where decision-makers are tasked to make hiring decisions
with and without the fairness monitoring approach. Further work will encompass activi-
ties such as the improvement and embedding of the algorithm FairnessAwareSystem into
a proper tool that can be used by non-computer-scientists, and the extension of the moni-
toring technique to cover more types of unfairness. For example, logging the output of the
fairness monitor could be used to identify groups that are especially likely to be treated
unfairly by the system: The individual fairness verdicts provided by FairnessAwareSystem
and FairnessMonitor may also be logged and considered for further fairness assessments or
other means of quality assurance of system P . Statistical analysis might unveil that individu-
als of certain groups are treated unfairly more frequently than individuals from other groups.
Depending on the distinguishing features of the evaluated group, this can uncover problems
in P , especially if protected attributes, such as gender, race, age, etc, are taken into account.
Thereby, system fairness can be assessed for protected attributes without including them in
the input of P , which should generally be avoided, and even without disclosing them to the
human in the loop. By evaluating the monitoring logs from sufficiently many diverse runs of
FairnessAwareSystem, our local method can be lifted such that it resembles a global method
for many practical applications, i.e. we can make statistical statements about the general
fairness of P . Such an evaluation can also be used to extract prototypes and counterexamples
in the spirit of Been et al. [66] illustrating the tendency to judge unfairly. This is an interesting
combination of individual and group fairness that we want to look into further. Other insights
from the research on reactive systems [19, 21, 32] can potentially be used to further enrich the
monitoring. Finally, various disciplines have to join forces to resolve highly interdisciplinary
questions such as what constitutes reasonable and adequate choices for f , dIn, and dOut in
given contexts of application.
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Appendix A Technical Appendix

This appendix illustrates that func-fairness ismore expressive thanLipschitz-fairness andwhy
this is useful. For this, we use as a toy example a very simple, hypothetical HR scoring system
that aggregates five scores given to the candidates. We remark that the whole scenario, the
implementation of the system, the choice of distance functions and f , is likely not applicable
for real-life situations; everything is picked so that our explanations are understandable.

Suppose that certain qualities and characteristics of the applicants are pre-scored by other
systems on a scale from 0 to 100%, where 0 means that the candidate is utterly unsuitable
for the job in a certain regard, while a scoring of 100% means that the candidate is perfect
for the job in this regard. In particular, we will assume that the following marks are given to
each applicant: an education mark for how well they are academically suitable for the job, an
experience mark for how well their previous work experience fits the job, a personality mark
for their personal and social skills, a mental ability mark for what is colloquially referred to
as an applicant’s general intelligence, and, finally, a skill mark that tracks the special skills
that applicants have which might be beneficial for the job, such as their knowledge of foreign
languages.

The system P that is of interest for us in this example is the one that aggregates all of
these marks and gives out an overall score of how well the candidate is suited for the job.
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Fig. 8 Visualisation of subscoring functions mapping marks to subscores

The human responsible for the hiring process can use this in her hiring decision, e.g., she can
focus on the top-scoring candidates and choose among them.

LetM = [0, 1] ⊆ R be the reals between 0 and 1. Each of the fivemarksmentioned above
is a real number from set M. The input domain In = M5 for the sketched HR system is a
tuple of five marks. The output of the system is the overall suitability score of an applicant,
which is also a value from M. The distance between two inputs is defined as the euclidean
distance, normalised to a value between 0 and 1, i.e.,

dIn
(
(ed1, ex1,pe1, in1, sk1), (ed2, ex2,pe2, in2, sk2)

) =√
(ed1 − ed2)2 + (ex1 − ex2)2 + (pe1 − pe2)2 + (in1 − in2)2 + (sk1 − sk2)2

5
,

where ed represents the education mark, ex the experience mark, pe the personality mark,
in the mental ability mark, and sk the skill mark of an applicant. The distance between two
outputs dOut(o1, o2) = |o1 − o2| is the absolute difference between the overall scores o and
o′. Note that also output distances are values between 0 and 1.

Our scoring system is a function P : M5 → M. We will assume here that P is defined as
the sum of five subscoring systems, one for each of the five input marks, computing a value
between 0 and 0.2. Then,

P((ed, ex,pe, in, sk)):=Ped(ed) + Pex(ex) + Ppe(pe) + Pin(in) + Psk(sk).

Let Ped, Pex, Ppe and Pin be defined according to the plot shown in Fig. 8a. With an
increasingmark, these subscores increases up to an inputmark of 0.8,whereafter the applicant
becomes overqualified and the subscore slowly decreases. Psk is depicted in Fig. 8b: The skill
mark is less important, however a minimum amount of skills is required for the job. Hence,
there is a jump of the skill score at an skill mark of roughly 0.19. Let John be an applicant
with ed = ex = pe = in = 0.5 and a skill mark of sk = 0.2, which maps to a skill score on
the plateau after the jump. The subscores for education, experience, personality and mental
ability mark are 0.12 each. The skill score computed for John is 0.05. Hence, John’s overall
score is P(John) = 4 · 0.12 + 0.05 = 0.53. Let Synthia be a synthetic applicant with the
same marks as John, except for the skill mark, which is 0.19 in Synthia’s case. As depicted in
Fig. 8b, the skill subscore for skill mark 0.19 is 0.02—Synthia is at the plateau right before
the jump of the skill score. Her overall score is P(Synthia) = 4 · 0.12 + 0.02 = 0.50. The

input distance between John and Synthia is dIn(John,Synthia) =
√

0.012
5 ≈ 0.0045 and the

output distance is dOut(John,Synthia) = |0.53 − 0.5| = 0.03. It is easy to see that if we use
Lipschitz-fairness, the Lipschitz constant L must be at least L = 6.7 to allow the small jump
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in the skill subscoring function. We argue that small jumps like those in the skill subscore
are normal behaviour and, hence, fair. Assume for the remainder of this example that we use
Lipschitz-fairness with L = 6.7.

Consider now a slightlymodified variant P ′ of P . P ′ is as P but uses a different subscoring
function P ′

sk for the skill score. Fig. 8c shows the skill subscoring function for P ′. P ′
sk

has a jump at skill mark 0.13 that is significantly larger than that in Psk . We assume in
this example that such a big jump is unfair. This assumption is warranted since, for many
applications, such a small change in technical skills which has an immense impact on the
skill subscore is not reasonable. Considering applicant John, his skill mark still maps to a
very high skill score of 0.19. Let Synclair be a third (potentially synthetic) applicant with
ed = ex = pe = in = 0.5 (as for John and Synthia) and sk = 0.13. Her skill mark maps to a
very small skill score of 0.01. The overall scores are P ′(John) = 4 · 0.12+ 0.19 = 0.67 and
P ′(Synclair) = 4 · 0.12 + 0.01 = 0.49. The input distance is dIn(John,Synclair) = 0.0313
and the output distance is dOut(John,Synclair) = 0.18. Applying the Lipschitz condition to
P ′ and dIn(John,Synclair), it easy to see that dOut(John,Synclair) may become as large as
0.21. Hence, P ′ is classified as fair w.r.t. the Lipschitz condition. We see that a problem of
the Lipschitz condition is that it is not possible to allow small jumps and at the same time
disallow large jumps with equal increasing rate. This is because the distance of the inputs
can only be used to multiply it with the Lipschitz constant.

f (d) =

⎧⎪⎨
⎪⎩

0.001 + 8d, for d ∈ [0.0, 0.01]
0.001 + 4d, for d ∈ (0.01, 0.1]
0.001 + 2d, for d ∈ (0.1, 1.0]

Func-fairness is different in this regard. Function f receives the input distance and can freely
define a bound on output distances based on the input distance. Indeed, the concrete f on the
right overcomes the problem observed in the example. It uses the input distance for a case
distinction on themagnitude of the input distance. For input distances up to 0.01, f effectively
applies Lipschitz-fairness with L = 8 to allow small jumps. For input distances between
0.01 and 0.1, f behaves like Lipschitz-fairness for L = 4, and for larger input distances,
it enforces L = 2. In all cases we add 0.001 to the result to avoid f becoming zero (see
footnote 7 on page 27 in the main paper). Applying func-fairness with C = 〈dIn, dOut, f 〉 to
P , the combination of John and Synthia (and hence the small jump of the skill score function)
is not highlighted by FairnessAwareSystem, i.e., it is correctly detected as func-fair. Applied
to P ′, however, John and Synclair fall into the second case in the definition of f , but, as the
emulated Lipschitz condition with L = 4 is violated, FairnessAwareSystem likely finds a
negative fairness score, i.e., P ′ is not func-fair w.r.t. John. We remark that we propose this
f for purely illustrative purposes. For real-world examples, f should be more sophisticated.
Finding a suitable f can be a non-trivial task which hinges on various aspects that are crucial
for the fairness evaluation in a given context. Clearly, the P and f provided in this illustration
are toy examples that are probably inappropriate for real-world usage.

A.1 Proofs

In this section, we will provide proofs for most of the propositions and theorems in the main
paper. First, we show the correctness of the HyperSTL characterisations of robust cleanness
and func-cleanness.

We first provide a lemma, which destructs the globally ( ) and weak until (W) operators
such that the timing constraints encoded by these operators becomes explicit.
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Lemma 8 Let σ : T → X be a trace with T = N or T = R≥0 and let φ and ψ be STL
formulas. Then the following equivalences hold.

1. σ, 0 |� φ if and only if ∀t ≥ 0. σ, t |� φ,
2. if T = N, then σ, 0 |� φ W ψ if and only if ∀t ≥ 0. (∀t ′ ≤ t . σ, t ′ |� ¬ψ) ⇒ σ, t |� φ.

Proof We prove the two statements separately.

1. Using the definition of the derived operators and , we get that σ, 0 |� φ holds if
and only if σ, 0 |� ¬(�U ¬φ) holds. Using the (Boolean) semantics of STL, we get that
this is equivalent to ¬(∃t ≥ 0. σ, t |� ¬φ ∧ ∀t ′ < t . σ, t ′ |� �). After simple logical
operations, we get that this is equivalent to ∀t ≥ 0. σ, t |� φ as required.

2. Using , the definition ofW , the (Boolean) semantics of STL, and considering that T = N,
we get that σ, 0 |� φ W ψ if and only if ∃t ∈ N. σ, t |� ψ ∧ ∀t ′ < t . σ, t ′ |� φ or
∀t ∈ N. σ, t |� φ. We denote this proposition as V . It is easy to see that the right operand
of the equivalence to prove can be rewritten to ∀t ∈ N. (∃t ′ ≤ t . σ, t ′ |� ψ) ∨ σ, t |� φ.
We denote this proposition as W and must show that V ⇒ W and W ⇒ V . To prove
that V implies W , we distinguish two cases.

• For the first case, assume that the left operand of the disjunction in V holds, i.e.,
there is some t ∈ N, such that σ, t |� ψ ∧ ∀t ′ < t . σ, t ′ |� φ. To show W , let t0 ∈ N

be arbitrary. If t ≤ t0, then there exists t ′ ≤ t0 (namely t ′ = t) such that σ, t ′ |� ψ ;
hence W holds. If t > t0, then we know from ∀t ′ < t . σ, t ′ |� φ that σ, t0 |� φ is
true; hence, W holds.

• For the second case, assume that the right operand of the disjunction in V holds, i.e.,
∀t ∈ N. σ, t |� φ. Then, obviously W holds.

To prove that W implies V , let PV = {t ∈ N | σ, t |� ψ} be the set of all time
points at which ψ holds. If PV is the empty set, it follows immediately from W that
∀t ∈ N. σ, t |� φ and that, hence, V holds. If PV is not empty, let t = min PV be the
smallest time in PV (the minimum always exists, because T = N). Then, obviously,
∃t ∈ N. σ, t |� ψ . To show that V holds, it suffices to show that ∀t ′ < t . σ, t ′ |� φ. This
follows from W , because t is the smallest time at which σ, t |� ψ holds and, therefore,
for every t ′ < t it does not hold that σ, t ′ |� ψ .

��
Lemma 9 is specific to the HyperSTL formula (3); it converts it into a first-order logic

formula.

Lemma 9 Let M ⊆ (N → X) be a discrete-time system and let Std ⊆ M be a set of standard
traces. Also, let Stdπ be a quantifier-free HyperSTL subformula, such that M, {π :=w}, 0 |�
Stdπ if and only if w ∈ Std. Then, M, ∅, 0 |� ψu-rob if and only if

∀w ∈ Std. ∀w′ ∈ M. ∃w′′ ∈ Std. (∀t ≥ 0. eq(w↓i[t], w′′↓i[t]) ≤ 0) ∧
∀t ≥ 0. (∀t ′ ≤ t . dIn(w

′′↓i[t ′], w′↓i[t ′]) − κi ≤ 0) ⇒ dOut(w
′′↓o[t], w′↓o[t]) − κo ≤ 0.

Proof Using Lemma 8.1, Lemma 8.2, and Definition 6, we get that

M, ∅, 0 |� ∀π. ∀π ′. ∃π ′′. Stdπ

→
(
Stdπ ′′ ∧ (eq(π↓i, π

′′↓i) ≤ 0) ∧
(
(dOut(π

′′↓o, π ′↓o) − κo ≤ 0)W(dIn(π ′′↓i, π
′↓i) − κi > 0)

))
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holds if and only if

∀w ∈ M. ∀w′ ∈ M. ∃w′′ ∈ M. (M, �, 0 |� Stdπ )

→
(
(M, �, 0 |� Stdπ ′′ ) ∧ (∀t ≥ 0. (M, �, t |� eq(π↓i, π

′′↓i) ≤ 0)) ∧
(∀t ≥ 0. (∀t ′ ≤ t . (M, �, t ′ |� ¬dIn(π ′′↓i, π

′↓i) − κi > 0))

⇒ (M, �, t |� dOut(π
′′↓o, π ′↓o) − κo ≤ 0)

))

holds for � = {π :=w,π ′:=w′, π ′′:=w′′}. Using the the constraint under which Stdπ must
be modelled, and by further applying Definition 6 and basic logical operations, we get that
the above proposition is equivalent to

∀w ∈ M. ∀w′ ∈ M. ∃w′′ ∈ M. w ∈ Std

→
(
w′′ ∈ Std ∧ (∀t ≥ 0. eq(w↓i[t], w′′↓i[t]) ≤ 0) ∧

(∀t ≥ 0. (∀t ′ ≤ t . dIn(w′′↓i[t ′], w′↓i[t ′]) − κi ≤ 0) ⇒ dOut(w
′′↓o, w′↓o) − κo ≤ 0

))
.

Finally, after carefully reordering premises, we get that the above holds if and only if

∀w ∈ Std. ∀w′ ∈ M. ∃w′′ ∈ Std. (∀t ≥ 0. eq(w↓i[t], w′′↓i[t]) ≤ 0) ∧
∀t ≥ 0. (∀t ′ ≤ t . dIn(w′′↓i[t ′], w′↓i[t ′]) − κi ≤ 0) ⇒ dOut(w

′′↓o, w′↓o) − κo ≤ 0.

��
We omit the lemma analogue to Lemma 9 that reformulates formula (2) as a first-order

characterisation. The proof for Proposition 3 further transforms the first-order characteri-
sations of formulas (2) and (3) to show that they indeed match the definitions of l-robust
cleanness and u-robust cleanness.

Proposition 3 Let L ⊆ N → (In∪Out) be a mixed-IO system and C = 〈Std, dIn, dOut, κi, κo〉
a contract or context for robust cleanness with Std ⊆ L. Further, let Stdπ be a quantifier-free
HyperSTL subformula, such that L, {π :=w}, 0 |� Stdπ if and only if w ∈ Std. Then, L is
l-robustly clean w.r.t. C if and only if L, ∅, 0 |� ψl-rob, and L is u-robustly clean w.r.t. C if
and only if L, ∅, 0 |� ψu-rob.

Proof We prove the correctness for l-robust cleanness and u-robust cleanness separately and
begin with u-robust cleanness. Using Lemma 9, we get that

L, ∅, 0 |� ∀π1. ∀π2. ∃π ′
1. Stdπ1

→
(
Stdπ ′

1
∧ (eq(π1↓i, π

′
1↓i) ≤ 0) ∧

(
(dOut(π

′
1↓o, π2↓o) − κo ≤ 0)W(dIn(π ′

1↓i, π2↓i) − κi > 0)
))

holds if and only if

∀w1 ∈ Std. ∀w2 ∈ L. ∃w′
1 ∈ Std. (∀t ≥ 0. eq(w1↓i[t], w′

1↓i[t]) ≤ 0) ∧
∀t ≥ 0. (∀t ′ ≤ t . dIn(w′

1↓i[t ′], w2↓i[t ′]) − κi ≤ 0) ⇒ dOut(w
′
1↓o, w2↓o) − κo ≤ 0.

After applying simple logical operations and using that eq(i1, i2) = 0 if and only if i1 = i2,
we get that this is equivalent to

∀w1 ∈ Std. ∀w2 ∈ L. ∃w′
1 ∈ Std with w1↓i = w′

1↓i.(∀t ≥ 0. (∀t ′ ≤ t . dIn(w′
1↓i[t ′], w2↓i[t ′]) ≤ κi) ⇒ dOut(w

′
1↓o[t], w2↓o[t]) ≤ κo

)
,

which, since we assumed Std ⊆ L, is equivalent to the definition of u-robust cleanness for
mixed-IO systems.

The proof for l-robust cleanness is analogue. ��
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We recapitulate the proposition similar to Proposition 3 for func-cleanness.

Proposition 4 Let L ⊆ N → (In ∪ Out) be a mixed-IO system and C = 〈Std, dIn, dOut, f 〉
a contract or context for func-cleanness with Std ⊆ L. Further, let Stdπ be a quantifier-free
HyperSTL subformula, such that L, {π :=w}, 0 |� Stdπ if and only if w ∈ Std. Then, L is
l-func-clean w.r.t. C if and only if L, ∅, 0 |� ψl-fun, and L is u-func-clean w.r.t. C if and only
if L, ∅, 0 |� ψu-fun.

The proof for Proposition 4 is conceptually similar to the one for Proposition 3. The only
difference is that instead of the reasoning about theW construct, the globally enforced relation
between output distances and the result of f must be proven equivalent in the HyperSTL
formulas and func-cleanness. We omit the proofs here.
Correctness of STL characterisations

Next, we show the correctness of the STL characterisations, i.e., we will prove the correct-
ness of Theorems 5 and 6.We do so by first establishing a connection between the HyperSTL
and the STL characterisations.

Lemma 10 Let M ⊆ (N → X) be a discrete-time system and let Std = {w1, . . . , wc} ⊆ M
be a finite set of standard traces. Also, let Stdπ be a quantifier-free HyperSTL subformula,
such that M, {π :=w}, 0 |� Stdπ if and only if w ∈ Std. Then, M, ∅, 0 |� ψu-rob if and only
if (M ◦ Std) |� ϕu-rob (with ϕu-rob from Theorem 5).

Proof Using Lemma 9 we get that

M, ∅, 0 |� ∀π ′.∀π ′′. ∃π ′′′. Stdπ ′

→
(
Stdπ ′′′ ∧ (eq(π ′↓i, π

′′′↓i) ≤ 0) ∧
(
(dOut(π

′′′↓o, π ′′↓o) − κo ≤ 0)W(dIn(π ′′′↓i, π
′′↓i) − κi > 0)

))

holds if and only if

∀w′ ∈ Std. ∀w′′ ∈ M. ∃w′′′ ∈ Std. (∀t ≥ 0. eq(w′↓i[t], w′′′↓i[t]) ≤ 0) ∧
∀t ≥ 0. (∀t ′ ≤ t . dIn(w′′′↓i[t ′], w′′↓i[t ′]) − κi ≤ 0) ⇒ dOut(w

′′′↓o, w′′↓o) − κo ≤ 0.

Since Std = {w1, . . . , wc}, we can replace the universal and existential quantifiers over Std
by a conjunction, respectively disjunction, over the standard traces [105]. We instantiate the
universal quantifier for w′′ with w and get that

∧
1≤a≤c

∨
1≤b≤c

(∀t ≥ 0. eq(wa↓i[t], wb↓i[t]) ≤ 0) ∧

∀t ≥ 0. (∀t ′ ≤ t . dIn(wb↓i[t ′], w↓i[t ′]) − κi ≤ 0) ⇒ dOut(wb↓o, w↓o) − κo ≤ 0.

From the Boolean semantics of STL and by replacing all traces w, respectively wk , by the
corresponding w+-projections, we get the equivalent proposition

∧
1≤a≤c

∨
1≤b≤c

(∀t ≥ 0. (w+, t |� eq(wa↓i, wb↓i) ≤ 0)) ∧

∀t ≥ 0. (∀t ′ ≤ t . (w+, t ′ |� ¬dIn(wb↓i, w↓i) − κi > 0)) ⇒ (w+, t |� dOut(wb↓o, w↓o) − κo ≤ 0).

With the Boolean semantics of STL and Lemma 8.1 and 8.2 we get the equivalent statement
that

w+, 0 |�
∧

1≤a≤c

∨
1≤b≤c

( (eq(wa↓i, wb↓i) ≤ 0)) ∧
(
(dOut(wb↓o, w↓o) − κo ≤ 0)W(dIn(wb↓i, w↓i) − κi > 0)

)
.

��
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We are now able to prove Theorem 5.

Theorem 5 Let L ⊆ N → (In ∪ Out) be a mixed-IO system and C = 〈Std, dIn, dOut, f 〉 a
context for func-cleanness with finite standard behaviour Std = {w1, . . . , wc} ⊆ L. Then, L
is u-func-clean w.r.t. C if and only if (L ◦ Std) |� ϕu-fun, where

ϕu-fun:=
∧

1≤a≤c

∨
1≤b≤c

(
(eq(wa↓i, wb↓i) ≤ 0) ∧

(
(dOut(wb↓o, w↓o) − f (dIn(wb↓i, w↓i)) ≤ 0)

))
.

Proof The theorem follows from Proposition 3 and Lemma 10. ��
To prove Theorem 6, we establish the following lemma, which is analogue to Lemma 10,

up to u-func-cleanness replacing u-robust cleanness.

Lemma 11 Let M ⊆ (T → X) be a system and let Std = {w1, . . . , wc} ⊆ M be a finite
set of standard traces. Also, let Stdπ be a quantifier-free HyperSTL subformula, such that
M, {π :=w}, 0 |� Stdπ if and only if w ∈ Std. Then, M, ∅, 0 |� ψu-fun if and only if
(M ◦ Std) |� ϕu-fun (with ϕu-fun from Theorem 6).

The proof for Lemma 11 is, up to the different reasoning for (dOut(wb↓o, w↓o) −
f (dIn(wb↓i, w↓i)) ≤ 0) instead of (dOut(wb↓o, w↓o) − κo ≤ 0)W(dIn(wb↓i, w↓i) − κi >

0), identical to that of Lemma 10. We omit it here.

Theorem 6 Let L ⊆ N → (In ∪ Out) be a mixed-IO system and C = 〈Std, dIn, dOut, f 〉 a
context for func-cleanness with finite standard behaviour Std = {w1, . . . , wc} ⊆ L. Then, L
is u-func-clean w.r.t. C if and only if (L ◦ Std) |� ϕu-fun, where

ϕu-fun:=
∧

1≤a≤c

∨
1≤b≤c

(
(eq(wa↓i, wb↓i) ≤ 0) ∧

(
(dOut(wb↓o, w↓o) − f (dIn(wb↓i, w↓i)) ≤ 0)

))
.

Proof The theorem follows from Proposition 4 and Lemma 11. ��

Appendix B Fairness Pipeline

As explained in Section 2 in the main paper, it is important to recognise that there are many
sources of unfairness [8]. Section Appendix B shows a more detailed version of Fig. 5 in
the main paper. Not every technical measure is able to detect every kind of unfairness and
eliminating one source of unfairness might not be sufficient to eliminate all unfairness.

World There can be unfairness in the world that leads to individuals
already having worse (or better) starting conditions than others
and subsequently have a lower (or higher) chance that the final
decision ismade in their favour. For example, an individual could
be systematically excluded from certain societal resources (e.g.,
girls who are excluded from education in Afghanistan under the
Taliban) which puts these individuals at a disadvantage.
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world input data system

training data

output decision

unfairness
in the world

unfairness
introduced through
the input data or
in its collection,
representation
or selection

unfairness
introduced
by the

system itself

unfairness
introduced

by the human
interpretation
of the output

unfairness intro-
duced by the

human decision

Fig. 9 Sketch of different origins of unfairness in a decision process supported by a system; dashed elements
are inapplicable to systems that are not learning-based

Input data The input data or its collection, representation or selection could
be problematic and lead to unfairness [139]. If, for example, cru-
cial information is left out in the input data or data is aggregated
in unsuitable ways, individuals could face an outcome that is
unwarranted by the factual situation.

System (and training data) The system itself can introduce new unfairness. Among other
things, this can come about by erroneous algorithms or (in the
case of a trained model) by problematic training data, e.g., if a
certain group of individuals is not properly represented [120].

Output The human decider can fail to interpret the output properly [138,
140], which can lead to further unfairness. They could, for exam-
ple, lack knowledge of the limitations of the system or fail to take
into account that the system output is subject to some systematic
uncertainty.

Decision The human decider can make an unfair decision even in the face
of a fair system output and an adequate interpretation thereof,
for example if they have conscious or subconscious bias against
certain groups [137].

Unfairness in any part of the chain can arguably perpetuate or reinforce unfairness in the
world.

In the main paper, we propose a runtime monitoring technique that aims to uncover
individual unfairness introduced by the system. By focusing on the system and its input-
output relation only, we can say that the system is unfair without having to say anything
about the degree of fairness with which an individual is treated in other respects in the
decision process. It especially allows us to say that a system output is unfair, even though
the outcome of the overall decision process is not. It may, for example, be that the system
unfairness is ‘cancelled out’ by something else that is hidden from the system: an applicant
with a stellar-looking CV might be treated unfairly by the system because of their age, but
not hiring them is not unfair because they are known to have forged their diploma. Cases like
this, however, do not make the unfairness introduced by the system any less problematic.

123



Formal Methods in System Design

Appendix C Legal Appendix

C.1 EU anti-discrimination law

Antidiscrimination is a principle deeply rooted in EU law. It is enshrined in Art. 21 of the
Charter of Fundamental Rights (CFR) [47], which prohibits ‘[a]ny discrimination based on
any ground such as sex, race, colour, ethnic or social origin, genetic features, language, reli-
gion or belief, political or any other opinion, membership of a national minority, property,
birth, disability, age or sexual orientation’ as well as ‘any discrimination based on grounds
of nationality’. According to Art. 51 CFR, the addressees of this fundamental right are the
EU and its institutions, bodies, offices and agencies as well as the Member States, insofar as
they implement Union law. They are directly bound by Art. 21 above all in their legislative
activities, but also in their executive and judicial measures. In contrast, private individuals
are not directly bound by Art. 21 CFR, but they may be bound by regulations implementing
this provision. However, according to recent European Court of Justice (ECJ) case law, Art.
21 CFR is directly applicable as a result of Directives, such as Directive 2000/78/EC [122]
establishing a general framework for equal treatment in employment and occupation [45,
§76]. Apart from this, while Art. 21 CFR stipulates a general prohibition of any unjustified
discrimination, the more specific secondary legislation applicable to private actors only pro-
hibits discrimination only in certain sensitive areas and only with regard to certain protected
attributes. Correspondingly, private actors may not discriminate against certain persons—
to name just a few—in employment relationships [122], in cases of abuse of a dominant
market position [48, Art. 102] or also in so-called mass transactions, i.e., contracts that are
typically concluded without regard to the person on comparable terms in a large number of
cases [123]. In contrast, discriminating in other legal relationships or on other grounds such
as local origin (as opposed to ethnic origin), or a person’s financial situation is not gener-
ally prohibited. The rationale behind these ‘discriminatory standards of anti-discrimination
law’ [57, 113, 126] is the principle of private (or personal) autonomy, and more specifically
freedom of contract as one of its manifestations, which govern legal transactions between
private individuals [75]. According to this principle, individuals are free to shape their legal
relationships according to their own preferences and ideas, however irrational or socially
unacceptable they may be. In essence, this also includes a right to discriminate against oth-
ers. This freedom to autonomously form legal relations is only constrained where this is
stipulated by anti-discrimination legislation for policy reasons.

When using an AI-system to recruit candidates, developers and deployers have to make
sure that the system with its parameters comply with these legal requirements set by anti-
discrimination law. This means in particular that the selection of the properties which a
classifier should exhibit requires a positive normative choice and should not simply replicate
biases present in the status quo [131]. However, the risks associated with deploying such sys-
tems in an HR context (such as a malfunctioning remaining undetected due to the system’s
opacity, a huge practical relevance of biased outputs due to the systems’ scalability or the
humanoperator’s tendencyof over-relyingon the output producedby theAI system ( ‘automa-
tion bias’)), raise the question whether it can still be deemed normatively acceptable that the
EU legal framework turns a blind eye on certain forms of discrimination. Furthermore, the
principle of private autonomy as rationale for justifying the freedom to discriminate against
others is only valid with regard to human’s wilful actions, but not to algorithm-generated
output. We are not advocating for abolishing the existing balance between private autonomy
(freedom to contract) and prohibition to discriminate. So humans should still be permitted
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to differentiate on grounds that are not caught by anti-discrimination law. However, there is
no reason to grant the ‘right to discriminate’ also to a non-human system that has merely
"learned" this discrimination. In this respect, it seems justified to apply different standards for
algorithms with regard to the prohibition of discrimination than for human decisions. With
regard to an AI system’s decision metrics, therefore, it should be considered to expand the
secondary legal framework to include a broad prohibition of discrimination. This would not
mean that all discrimination would be unlawful, since objectively justified unequal treatment
is, after all, permissible, but it would shift the focus to the question of objective justification
[46]. Another legal challenge that will become even more pressing with the advent of tech-
nical decision systems is how to detect and prove prohibited discrimination. This is because
the prohibition of discrimination resulting from various legal regulations in certain, espe-
cially sensitive, areas, such as human resources, presupposes that a difference in treatment
is recognised in the first place. The recognition of discrimination is therefore not only in the
interest of the decision-maker, who is threatened with sanctions in the event of a violation
of the prohibition of discrimination. Rather, it is also essential for the discriminated party to
prove the discrimination. For as far as a legal claim follows from a prohibited discrimina-
tion, the principle applies that the person who invokes the legal claim must prove the facts
giving rise to the claim. Especially when complex algorithms are used, however, it is likely
to be extremely difficult to prove corresponding circumstantial evidence. According to the
case law of the ECJ, however, the burden of proof is reversed if the party who has prima
facie been discriminated against would otherwise have no effective means of enforcing the
prohibition of discrimination [42, 43]. Monitoring, as described here, would therefore be a
suitable means of providing the ‘prima facie’ evidence necessary for shifting the burden of
proof.

C.2 Discrimination and the GDPR

There has recently been discussion if and to which extent data protection law contains obli-
gations for non-discriminating data processing or whether the scope of protection of data
protection law is thereby overstretched. There is no explicit prohibition of discrimination
in the General Data Protection Regulation (GDPR). According to Article 1 (2), however,
the GDPR is intended to protect the fundamental rights and freedoms of natural persons.
This is aimed in particular at their right to protection of personal data (Article 8 CFR), but
not exclusively so. Thus, the broad and non-restrictive reference to fundamental rights also
encompasses all other fundamental rights, including the right to non-discrimination (Article
21 CFR) [39]. This is reflected, for example, in the higher level of protection for data with an
increased potential for discrimination, the so-called special categories of personal data under
Article 9 GDPR. The GDPR can also be interpreted as granting a “preventive protection
against discrimination”, namely when discrimination is made impossible from the outset,
in that the data-processing agencies cannot gain knowledge of characteristics susceptible to
discrimination in the first place, i.e., when any respective data processing is forbidden [26].
Any processing of personal data must furthermore comply with the processing principles set
out in Article 5 GDPR, including the fairness principle (‘personal data shall be processed
fairly’) set out in Article 5(1)(a). While formerly transparency obligations were read into this
principle while the Data Protection Directive was into effect, the regulatory content of the
fairness principle is highly disputed since it was split off into a separate processing principle.
But due to the fact that discriminatory data processing can hardly be described as fair, a
prohibition of discrimination can be linked to the fairness principle [56, 77]. However, the
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concrete scope of the fairness principle clearly goes beyond the understanding of fairness in
the context of technical systems on which this paper is based.

Specifically for the HR context, there are discrimination-sensitive regulations in the
GDPR. Article 9 GDPR makes the processing of special categories of data, i.e., sensitive
data and data susceptible to discrimination, subject to particularly strict authorisation criteria,
which should in practice rarely be present in recruitment situations. On the one hand, process-
ing for recruitment purposes, i.e., prior to the establishment of an employment relationship,
is rarely necessary in order to exercise certain rights and obligations under employment law
(Art. 9(2)(b) GDPR), and on the other hand, explicit consent (Art. 9(2)(a) GDPR) will often
lack the necessary voluntariness due to the specifics of job application situations and the
power imbalances inherent in them. The prohibition of processing sensitive data may be
problematic in cases where the link to sensitive data is strictly necessary to detect discrimi-
natory effects. For high-risk systems, Art. 10 V AI Regulation Proposal therefore provides
for a new permissive clause: ’To the extent that it is strictly necessary for the purposes of
ensuring bias monitoring, detection and correction, ... the providers of such systems may
process special categories of personal data’ while ensuring appropriate safeguards for the
fundamental rights of natural persons.

With regard to the processing of non-sensitive personal data, however, the opening clause
in Art 88(1) GDPR allows Member States to adopt more specific rules for processing for
recruitment purposes, whereby, according to paragraph 2, suitable and specific measures
must be ensured to safeguard the fundamental rights of the data subject. These requirements
can be met by state-of-the-art monitoring tools. The national regulations cannot be discussed
in depth here. For Germany, for example, Section 26 of the Federal Data Protection Act
(BDSG) stipulates that personal data may only be processed for recruitment purposes if this
is necessary, i.e., if the data processing is required for the decision on recruitment. In any
case, data processing may not be necessary if the characteristics depicted in the data may
not be taken into account in the hiring decision, for example due to anti-discrimination law
[103].
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