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Abstract
Markov chain analysis is a key technique in formal verification. A practical obstacle is that all
probabilities inMarkovmodels need to be known. However, system quantities such as failure
rates or packet loss ratios, etc. are often not—or only partially—known. This motivates con-
sidering parametric models with transitions labeled with functions over parameters. Whereas
traditional Markov chain analysis relies on a single, fixed set of probabilities, analysing para-
metric Markov models focuses on synthesising parameter values that establish a given safety
or performance specification ϕ. Examples are: what component failure rates ensure the prob-
ability of a system breakdown to be below 0.00000001?, or which failure rates maximise the
performance, for instance the throughput, of the system? This paper presents various analysis
algorithms for parametric discrete-time Markov chains and Markov decision processes. We
focus on three problems: (a) do all parameter values within a given region satisfy ϕ?, (b)
which regions satisfy ϕ and which ones do not?, and (c) an approximate version of (b) focus-
ing on covering a large fraction of all possible parameter values. We give a detailed account
of the various algorithms, present a software tool realising these techniques, and report on
an extensive experimental evaluation on benchmarks that span a wide range of applications.
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1 Introduction

Uncertainty. Probabilistic model checking subsumes a multitude of formal verification tech-
niques for systems that exhibit uncertainties [16, 54, 98]. Such systems are typically modeled
by Markov chains or Markov decision processes [121]. Applications range from reliability,
dependability and performance analysis to systems biology, take for instance reliability mea-
sures such as the mean time between failures in fault trees [28, 123] and the probability of a
system breakdown within a time limit.

The results of probabilistic model checking algorithms are rigorous, their quality depends
solely on the system models. Yet, there is one major practical obstacle: All probabilities (or
rates) in theMarkovmodel are precisely known a priori. Inmany cases, this assumption is too
severe. System quantities such as component fault rates, molecule reaction rates, packet loss
ratios, etc. are often not, or at best partially, known. Let us give a few examples. The quality of
service of a (wireless) communication channel may be modelled by e.g., the popular Gilbert-
Elliott model, a two-state Markov chain in which packet loss has an unknown probability
depending on the channel’s state [112]. Other examples include the back-off probability
in CSMA/CA protocols determining a node’s delay before attempting a transmission [1],
the bias of used coins in self-stabilising protocols [88, 105], and the randomised choice of
selecting the type of time-slots (sleeping, transmit, or idle) in the birthday protocol, a key
mechanism used for neighbour discovery in wireless sensor networks [110] to lower power
consumption. In particular, in early stages of reliable system design, the concrete failure rate
of components [55] is left unspecified. Optimally, analyses in this stage may even guide the
choice of a concrete component from a particular manufacturer.

The probabilities in all these systems are deliberately left unspecified. They can later be
determined in order to optimise some performance or dependability measure. Dually, some
systems should be robust for all (reasonable) failure rates. For example, a network protocol
should ensure a reasonable quality of service for each reasonable channel quality.
Parametric probabilistic models. What do these examples have in common? The random
variables for packet loss, failure rate etc. are not fully defined, but are parametric. Whether
a parametric system satisfies a given property or not—“is the probability that the system
goes down within k steps below 10−8”—depends on these parameters. Relevant questions
are then: for which concrete parameter values is such a property satisfied—the (parameter)
synthesis problem—and, in case of decision-making models, which parameter values yield
optimal designs? That is, for which fixed probabilities do such protocols work in an optimal
way, i.e., lead to maximal reliability, maximise the probability for nodes to be discovered,
or minimise the time until stabilisation, and so on. These questions are intrinsically hard as
parameters can take infinitely many different values that, in addition, can depend on each
other.

This paper faces these challenges and presents various algorithmic techniques to treat
different variations of the (optimal) parameter synthesis problem. To dealwith uncertainties in
randomness,parametric probabilisticmodels are adequate. Thesemodels are just likeMarkov
models except that the transition probabilities are specified by arithmetic expressions over
real-valued parameters. Transition probabilities are thus functions over a set of parameters. A
simple instance is to use intervals over system parameters imposing constant lower and upper
bounds on every parameter [74, 100]. The general setting as considered here is more liberal
as it e.g., includes the possibility to express complex parameter dependencies. We address
the analysis of parametric Markov models where probability distributions are functions
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Fig. 1 A a biased and b parametric variant of Knuth-Yao’s algorithm. In gray states an unfair coin is flipped
with probability 2/5 for ‘heads’; for the unfair coin in the white states this probability equals 7/10. On the right,
the two biased coins have parametric probabilities

over system parameters, specifically, parametric discrete-time Markov chains (pMCs) and
parametric discrete-time Markov decision processes (pMDPs).

Example 1 The Knuth-Yao randomised algorithm [99] uses repeated coin flips to model a
six-sided die. It uses a fair coin to obtain each possible outcome (‘one’, ‘two’, ..., ‘six’) with
probability 1/6. Figure 1a depicts a Markov chain (MC) of a variant in which two unfair coins
are flipped in an alternating fashion. Flipping the unfair coins yields heads with probability
2/5 (gray states) or 7/10 (white states), respectively. Accordingly, the probability of tails is
3/5 and 3/10, respectively. The event of throwing a ‘two’ corresponds to reaching the state
in the MC. Assume now a specification that requires the probability to obtain ‘two’ to be
larger than 3/20. Knuth-Yao ’s original algorithm accepts this specification as using a fair coin
results in 1/6 as probability to end up in . The biased model, however, does not satisfy the
specification; in fact, a ‘two’ is reached with probability 1/10.

Probabilistic model checking. The analysis algorithms presented in this paper are strongly
related to (and presented as) techniques from probabilistic model checking. Model check-
ing [13, 46] is a popular approach to verify the correctness of a system by systematically
evaluating all possible system runs. It either certifies the absence of undesirable (danger-
ous) behaviour or delivers a system run witnessing a violating system behaviour. Traditional
model checking typically takes two inputs: a finite transition system modelling the system
at hand and a temporal logic formula specifying a system requirement. Model checking then
amounts to checking whether the transition system satisfies the logical specification, which
in its simplest form describes that a particular state can (not) be reached. Model checking
is nowadays a successful analysis technique adopted by mainstream hardware and software
industry [49, 101].

To cope with real-world systems exhibiting random behaviour, model checking has been
extended to deal with probabilistic, typically Markov, models. Probabilistic model checking
[13, 16, 98] takes as input a Markov model of the system at hand together with a quantitative
specification specified in someprobabilistic extension ofLTLorCTL.Example specifications
are e.g., “is the probability to reach some bad (or degraded) state below a safety threshold λ?”
or “is the expected time until the system recovers from a fault bounded by some threshold
κ”. Efficient probabilistic model-checking techniques do exist for models such as discrete-
time Markov chains (MCs), Markov decision processes (MDPs), and their continuous-time
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counterparts [98]. Probabilistic model checking extends and complements long-standing
analysis techniques for Markov models.

It has been adopted in the field of performance analysis to analyse stochastic Petri nets
[4, 38], in dependability analysis for analysing architectural system descriptions [29], in
reliability engineering for fault tree analysis [27, 139], as well as in security [114], dis-
tributed computing [105], and systems biology [104]. Unremitting algorithmic improvements
employing the use of symbolic techniques to deal with large state spaces have led to powerful
and popular software tools realising probabilistic model checking techniques such as PRISM
[102] and Storm [66].

1.1 Problem statements

We now give a more detailed description of the parameter synthesis problems considered in
this paper. We start off by establishing the connection between parametric Markov models
and concrete ones, i.e., ones in which the probabilities are fixed such asMCs andMDPs. Each
parameter in a pMC or pMDP (where p stands for parametric) has a given parameter range.
The parameter space of the parametric model is the Cartesian product of these parameter
ranges. Instantiating the parameters with a concrete value in the parameter space to the
parametric model results in an instantiated model. The parameter space defines all possible
parameter instantiations, or equivalently, the instantiated models. A parameter instantiation
that yields a Markov model, e.g., results in probability distributions, is called well-defined.
In general, a parametric Markov model defines an uncountably infinite family of Markov
models, where each family member is obtained by a well-defined instantiation. A region R is
a fragment of the parameter space; it is well-defined if all instantiations in R are well-defined.

Example 2 (pMC) Figure 1b depicts a parametric version of the biased Knuth-Yao die from
Example 1. It has parameters V = {p, q}, where p is the probability of outcome heads in
gray states and q the same for white states. The parameter space is {(p, q) | 0 < p, q < 1}.
The probability for tails is 1−p and 1−q , respectively. The sample instantiation u with
u(p) = 2/5 and u(q) = 7/10 is well-defined and results in the MC in Fig. 1a. The region

R = {u : V → R | 1/10 ≤ u(p) ≤ 9/10 and 3/4 ≤ u(q) ≤ 5/6}
is well-defined. Contrarily, region

R′ = {u | 1/5 ≤ u(p) ≤ 6/5 and 2/5 ≤ u(q) ≤ 7/10}
is not well-defined, as it contains the instantiation u′ with u′(p) = 6/5 which does not yield an
MC. For pMCs whose transition probabilities are high-degree polynomials, it is not always
obvious whether a region is well-defined.

We are now in a position to describe the three problems considered in this paper.

The verification problem is defined as follows:

The verification problem. Given a parametric Markov model D, a well-defined region
R, and a specification ϕ, the verification problem is to check whether all instantiations
of D within R satisfy ϕ.

Consider the following possible outcomes:

– If R only contains instantiations ofD satisfying ϕ, then the verification problem evaluates
to true and the Markov modelD on region R accepts specification ϕ. WheneverD and
ϕ are clear from the context, we call R accepting.
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– If R contains an instantiation of D refuting ϕ, then the problem evaluates to false. If
R contains only instantiations of D refuting ϕ, then D on R rejects ϕ. Whenever D and
ϕ are clear from the context, we call R rejecting.

– If R contains instantiations satisfying ϕ as well as instantiations satisfying ¬ϕ, then D
on R is inconclusive w. r. t. ϕ. In this case, we call R inconsistent.

In case the verification problem yields false for ϕ, one can only infer that the region R is
not accepting, but not conclude whether R is inconsistent or rejecting. To determine whether
R is rejecting, we need to consider the verification problem for the negated specification¬ϕ.
Inconsistent regions for ϕ are also inconsistent for ¬ϕ.

Example 3 (Verification problem) Consider the pMC D, the well-defined region R from
Example 2, and the specification ϕ′ := ¬ϕ that constrains the probability to reach to be
at most 3/20. The verification problem is to determine whether all instantiations of D in R
satisfy ϕ′. As there is no instantiation within R for which the probability to reach is above
3/20, the verification problem evaluates to true. Thus, R accepts ϕ′.

Typical structurally simple regions are described by hyperrectangles or given by linear con-
straints, rather than non-linear constraints; we refer to such regions as simple. A simple
region comprising a large range of parameter values may likely be inconsistent, as it contains
both instantiations satisfying ϕ, and some satisfying ¬ϕ. Thus, we generalise the problem to
synthesise a partition of the parameter space.

The exact synthesis problem is described as follows:

The synthesis problem.Given a parametric Markov modelD and a specification ϕ, the
(parameter) synthesis problem is to partition the parameter space ofD into an accepting
region Ra and a rejecting region Rr for ϕ.

The aim is to obtain such a partition in an automated manner. A complete sub-division of
the parameter space into accepting and rejecting regions provides deep insight into the effect
of parameter values on the system’s behaviour. The exact division typically is described by
non-linear functions over the parameters, referred to as solution functions.

Example 4 Consider the pMC D, the region R, and the specification ϕ as in Example 3. The
solution function:

fϕ(p, q) = p · (1 − q) · (1 − p)

1 − p · q
describes the probability to eventually reach . Given that ϕ imposes a lower bound of 3/20,
we obtain

Ra = {u | f (u(p), u(q)) ≥ 3/20} and Rr = R \ Ra .

The example illustrates that exact symbolic representations of the accepting and rejecting
regions may be complex and hard to compute algorithmically. The primary reason is that the
boundaries are described by non-linear functions. A viable alternative therefore is to consider
an approximative version of the synthesis problem.
The approximate synthesis problem:As argued before, the regions obtained via exact synthe-
sis are typically not simple. The aim of the approximate synthesis problem is to use simpler
and more tractable representations of regions. As such shapes ultimately approximate the
exact solution function, simple regions become infinitesimally small when getting close to
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Fig. 2 Parameter space
partitioning into accepting
(green), rejecting (red), and
unknown (white) regions

the border between accepting and rejecting areas. For computational tractability, we are thus
interested in approximating a partition of the parameter space in accepting and rejecting
regions, where we allow also for a (typically small) part to be covered by possibly incon-
sistent regions. Practically this means that c% of the entire parameter space is covered by
simple regions that are either accepting or rejecting, for some adequate value of c. Altogether
this results in the following problem description:

Theapproximate synthesis problem.Given aparametricMarkovmodel, a specification
ϕ, and a percentage c, the approximate (parameter) synthesis problem is to partition the
parameter space of D into a simple accepting region Ra and a simple rejecting region
Rr for ϕ such that Ra ∪ Rr cover at least c% of the entire parameter space.

Example 5 Consider the pMC D, the region R, and the specification ϕ as in Example 3.
The parameter space in Fig. 2 is partitioned into simple regions (rectangles). The green
(dotted) area—the union of a number of smaller rectangular accepting regions—indicates
the parameter values for which ϕ is satisfied, whereas the red (hatched) area indicates the
set of rejecting regions for ϕ. The white area indicates the unknown regions. The indicated
partition covers 95% of the parameter space. The sub-division into accepting and rejecting
(simple) regions approximates the solution function fϕ(p, q) given before.

1.2 Solution approaches

We now outline our approaches to solve the verification problem and the two synthesis
problems. For the sake of convenience, we start with the synthesis problem.
Synthesis. The most straightforward description of the sets Ra and Rr is of the form:

Ra = {u | D[u] satisfies ϕ} and

Rr = {u | D[u] satisfies ¬ϕ}.
The satisfaction relation (denoted |�) can be concisely described by a set of linear equations
over the transition probabilities [13]. As in the parametric setting the transition probabilities
are no longer fixed, but rather defined over a set of parameters, the equations become non-
linear.
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Fig. 3 Verification via exact synthesis

Example 6 (Non-linear equations for reachability) Take the MC from Fig. 1a. To compute
the probability of eventually reaching, e.g., state , one introduces a variable ps for each
transient state s encoding that probability for s. For state s0 and variable ps0 , the corresponding
linear equation reads:

ps0 = 2/5 · ps1 + 3/5 · ps2 ,
where ps1 and ps2 are the variables for s1 and s2, respectively.

The corresponding equation for the pMC from Fig. 1b reads:

ps0 = p · ps1 + (1 − p) · ps2 .
The multiplication of parameters in the model and equation variables leads to a non-linear
equation system.

Thus, we can describe the sets Ra and Rr colloquially as:

Ra, Rr = {u | u satisfies a set of non-linear constraints}.
We provide further details on these constraint systems in Sect. 6.

Apractical drawback of the resulting equation system is the substantial number of auxiliary
variables ps , one for each state in the pMC. A viable possibility for pMCs is to simplify the
equations by (variants of) state elimination [64]. This procedure successively removes states
from the pMC until only a start and final state (representing the reachability objective) remain
that are connected by a transition whose label is (a mild variant of) the solution function fϕ
that exactly describes the probability to reach a target state:

Ra = {u | fϕ(u) > 0} and Rr = {u | f¬ϕ(u) > 0}.
We recapitulate state elimination and present several alternatives in Sect. 5.
Verification. The basic approach to the verification problem is depicted in Fig. 3. We use a
description of the accepting region as computed via the synthesis procedure above. Then, we
combine the description of the accepting region with the region R to be verified, as follows:
A region R accepts a specification, if R ∩ Ra = R, or equivalently, if R ∩ Rr = ∅. The
existence of a rejecting instance in R is thus of relevance; if such a point does not exist, the
region is accepting. Using Ra and Rr as obtained above, the query “is R ∩ Rr = ∅?” can
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be solved via satisfiability modulo theories (SMT) over non-linear arithmetic, checking the
conjunction over the corresponding constraints for unsatisfiability. With the help of SMT
solvers over this theory like Z3 [93], MathSAT [31], or SMT-RAT [52], this can be solved
in a fully automated manner. This procedure is complete, and is computationally involved.
Details of the procedure are discussed in Sect. 6.

Parameter lifting [122] is an alternative, approximative solution to the verification prob-
lem. Intuitively, this approach over-approximates Rr for a given R, by ignoring parameter
dependencies. Region R is accepted if the intersection with the over-approximation of Rr is
empty. This procedure is sound butmay yield false negatives as a rejecting pointmay lie in the
over-approximation but not in Rr . Tightening the over-approximation makes the approach
complete. A major benefit of parameter lifting (details in Sect. 7 and Sect. 8) is that the
intersection with the over-approximation of Rr can be investigated by standard probabilistic
model-checking procedures. This applicability of mature tools results—as will be shown in
Sect. 11—in a practically efficient procedure.
Approximate synthesis.We solve the approximate synthesis problemwith an iterative synthe-
sis loop. Here, the central issue is to obtain representations of Ra and Rr by simple regions.
Our approach for this parameter space partitioning therefore iteratively obtains partial par-
titions of the parameter space. The main idea is to compute a sequence

(
Ri
a

)
i of simple

accepting regions that successively extend each other. Similarly, an increasing sequence(
Ri
r

)
i of simple rejecting regions is computed. The typical approach is to let Ri+1

a be the
union of Ri

a , the approximations in the previous iteration, together with some accepting
region with a simple representation. Rejecting regions are handled analogously. At the i-th
iteration, Ri

a ∪ Ri
r is the covered fragment of the parameter space. The iterative approach

halts when this fragment forms at least c% of the entire parameter space. Termination is
guaranteed. In the limit, the accepting and rejecting regions converge to the exact solution,
limi→∞ Ri

a = Ra and limi→∞ Ri
r = Rr , under some mild constraints on the ordering of the

regions Ri .
Figure 4 outlines a procedure to address the approximate synthesis problem. As part of

our synthesis method, we algorithmically guess a (candidate) region R and guess whether it
is accepting or rejecting. We then exploit one of our verification methods to verify whether R
is indeed accepting (or rejecting). If it is not accepting (rejecting), we exploit this information
together with any additional information obtained during verification to refine the candidate
region. This process is repeated until an accepting or rejecting region results. We discuss the
method and essential improvements in Sect. 9.

Example 7 Consider the pMC D and the specification ϕ as in Example 2. The parameter
space in Figure 2 is partitioned into regions. The green (dotted) area—the union of a number
of smaller rectangular accepting regions—indicates the parameter values for which ϕ is
satisfied, whereas the red (hatched) area indicates the set of rejecting regions for ϕ. Checking
whether a region is accepting, rejecting, or inconsistent is done by verification. The small
white area consists of regions that are unknown (i.e., not yet considered) or inconsistent.

1.3 Overview of the paper

Section 2 introduces the required formalisms and concepts. Section 3 defines the notion of
a region and formalises the three problems: the verification problem and the two synthesis
problems. It ends with a bird’s eye view of the verification approaches that are later discussed
in detail. Section 4 details specific region structures and procedures to check elementary
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Fig. 4 Approximate synthesis process using verification as black box

region properties such as well-definedness and graph-preservedness, two prerequisites for
the verification procedures. Section 5 shows how to do exact synthesis by computing the
solution function. Sections 6–8 present algorithms for the verification problem. Section 9
details the approach to reduce the synthesis problem to a series of verification problems.
Sections 10 and 11 contain information about the implementation of the approaches, as well
as an extensive experimental evaluation. Section 12 contains a discussion of the approaches
and related work. Section 13 concludes with an outlook.

1.4 Contributions of this paper

The paper is loosely based on the conference papers [65] and [122] and extends these works
in the following ways. It gives a uniform treatment of the solution techniques to the synthe-
sis problem, and treats all techniques uniformly for all different objectives—bounded and
unbounded reachability aswell as expected reward specifications. Thematerial onSMT-based
region verification has been extended in the following way: The paper gives the complete
characterisations of the SMT encoding with or without solution function. Furthermore, it
is the first to extend this encoding to MDPs under angelic and demonic non-determinism
and includes an explicit and in-depth discussion on exact region checking via SMT check-
ers. It presents a uniform treatment of the linear equation system for Markov chains and
its relation to state elimination and Gaussian elimination. It presents a novel and simplified
description of state elimination for expected rewards, and a version of state elimination that
is targeted towards MTBDDs. The paper contains a correctness proof of approximate verifi-
cation for a wider range of pMDPs and contains proofs for expected rewards. It also supports
expected-time properties for parametric continuous-time MDPs (via the embedded pMDP).
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Novel heuristics have been developed to improve the iterative synthesis loop. All presented
techniques, models, and specifications are realised in the state-of-the-art tool PROPhESY1.

2 Preliminaries

2.1 Basic notations

We denote the set of real numbers by R, the rational numbers by Q, and the natural numbers
including 0 byN. Let [0, 1] ⊆ R denote the closed interval of all real numbers between 0 and
1, including the bounds; (0, 1) ⊆ R denotes the open interval of all real numbers between 0
and 1 excluding 0 and 1.

Let X , Y denote arbitrary sets. If X ∩ Y = ∅, we write X � Y for the disjoint union of
the sets X and Y . We denote the power set of X by 2X = {X ′ | X ′ ⊆ X}. Let X be a finite
or countably infinite set. A probability distribution over X is a function μ : X → [0, 1] ⊆ R

with
∑

x∈X μ(x) = μ(X) = 1.

2.2 Polynomials, rational functions

Let V denote a finite set of parameters over R and dom(p) ⊆ R denote the domain of
parameter p ∈ V .

Definition 1 (Polynomial, rational function) For a finite set V = {p1, . . . , pn} of n parame-
ters, a monomial m is

m = pe11 · . . . · penn with ei ∈ N.

LetMon[V ] denote the set of monomials over V . A polynomial g (over V ) with t terms is a
weighted sum of monomials:

g =
t∑

j=1

a j · m j with a j ∈ Q \ {0}, m j ∈ Mon[V ].

Let Q[V ] be the set of polynomials over V . A rational function f = g1
g2

over V is a fraction
of polynomials g1, g2 ∈ Q[V ] with g2 �≡ 0 (where ≡ states equivalence). Let Q(V ) be the
set of rational functions over V .

A monomial is linear, if
∑|V |

i=1 ei ≤ 1, and multi-linear, if ei ≤ 1 for all 1 ≤ i ≤ |V |. A
polynomial g is (multi-)linear, if all monomials occurring in g are (multi-)linear.

Instantiations replace parameters by constant values in polynomials or rational functions.

Definition 2 (Parameter instantiations) A (parameter) instantiation u of parameters V is a
function u : V → R.

We abbreviate the parameter instantiation u with u(pi ) = ai ∈ R by the n-dimensional vector
(a1, . . . , an) ∈ R

n for ordered parameters p1, . . . , pn . Applying the instantiation u on V to
polynomial g ∈ Q[V ] yields g[u] which is obtained by replacing each p ∈ V in g by u(p),
with subsequent application of + and ·. For rational function f = g1

g2
, let f [u] = g1[u]

g2[u] ∈ R

if g2[u] �≡ 0, and otherwise f [u] = ⊥.

1 PROPhESY is available on https://github.com/moves-rwth/prophesy.
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2.3 Probabilistic models

Let us now introduce the probabilistic models used in this paper. We first define parametric
Markov models and present conditions such that their instantiations result in Markov models
with constant probabilities. Then, we discuss how to resolve non-determinism in decision
processes.

2.3.1 Parametric Markov models

The transitions in parametric Markov models are equipped with rational functions over the
set of parameters. Although this is the general setting, for some of our algorithmic techniques
we will restrict ourselves to linear polynomials2. We consider parametric MCs and MDPs
as sub-classes of a parametric version of classical two-player stochastic games [128]. The
state space of such games is partitioned into two parts, S© and S�. At each state, a player
chooses an action upon which the successor state is determined according to the (parametric)
probabilities. Choices in S© and S� are made by player © and �, respectively. pMDPs and
pMCs are parametric stochastic one- and zero-player games respectively.

Definition 3 (Parametric models) A parametric stochastic game (pSG) is a tuple G =
(S, V , sI ,Act,P) with a finite set S of states with S = S© � S�, a finite set V of
parameters over R, an initial state sI ∈ S, a finite set Act of actions, and a transition
function P : S × Act × S → Q(V ) ∪ R ∪ {⊥} with |Act(s)| ≥ 1 for all s ∈ S, where
Act(s) = {α ∈ Act | ∃s′ ∈ S.P(s, α, s′) �≡ 0} is the set of enabled actions at state s.

– A pSG is a parametric Markov decision process (pMDP) if S© = ∅ or S� = ∅.
– A pMDP is a parametric Markov chain (pMC) if |Act(s)| = 1 for all s ∈ S.

A parametric state-action reward function rew : S×Act → Q(V )∪R∪{⊥} associates rewards
with state-action pairs3. It is assumed that deadlock states are absent, i.e., Act(s) �= ∅ for
all s ∈ S. Entries in R ∪ {⊥} in the co-domains of the functions P and rew ensure that the
model is closed under instantiations, see Definition 5 below. Throughout the rest of this paper,
we silently assume that any given pSGs only uses constants from Q and rational functions
Q(V ), but no elements from R \Q or⊥. A model is called parameter-free if all its transition
probabilities are constant.

A pSG intuitivelyworks as follows. In state s ∈ S©, player© non-deterministically selects
an action α ∈ Act(s). With (parametric) probability P(s, α, s′) the play then evolves to state
s′. On leaving state s via action α, the reward rew(s, α) is earned. If s ∈ S�, the choice is
made by player �, and as for player ©, the next state is determined in a probabilistic way.
As by assumption no deadlock states occur, this game goes on forever. A pMDP is a game
with one player, whereas a pMC has no players; a pMC thus evolves in a fully probabilistic
way. Let D denote a pMC, M a pMDP, and G a pSG.

Example 8 Figure 5a–c depict a pSG, a pMDP, and a pMC respectively over parameters V =
{p, q}. The states of the players © and � are drawn as circles and rectangles, respectively.
The initial state is indicated by an incoming arrow without source. We omit actions in state
s if |Act(s)| = 1. In state s0 of Fig. 5a, player © can select either action α or β. On selecting
α, the game moves to state s1 with probability p, and to s2 with probability 1−p. In state s2,
player � can select α or β; in s1 there is a single choice only.

2 Most models use only simple polynomials such as p and 1−p, and benchmarks available e.g., at the PRISM
benchmark suite [103] or at the PARAM [77] web page are of this form.
3 Recall that ⊥ represents, e.g., 1/0.
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Fig. 5 The considered types of parametric probabilistic models (a)–(c) and an instantiated model (d)

A transition (s, α, s′) exists if P(s, α, s′) �≡ 0. As pMCs have a single enabled action
at each state, we omit this action and just write P(s, s′) for P(s, α, s′) if Act(s) = {α}. A
state s′ is a successor of s, denoted s′ ∈ succ(s), if P(s, α, s′) �≡ 0 for some α; in this case,
s ∈ pred(s′) is a predecessor of s′.

Remark 1 Parametric stochastic games are the most general model used in this paper. They
subsume pMDPs and pMCs and parameter-free SGs, which are used throughout this paper.
We concisely introduce the formal foundations on this general class and indicate how these
apply to subclasses. Most algorithmic approaches in this paper are not directly applicable
to pSGs, but tailored to either pMDPs or pMCs. This is indicated when introducing these
techniques.

Definition 4 (Stochastic game) A pSG G = (S, V , sI ,Act,P) is a stochastic game (SG) if
P : S × Act × S → [0, 1] and ∑

s′∈S P(s, α, s′) = 1 for all s ∈ S and α ∈ Act(s).

A state-action reward function rew : S×Act → R≥0 associates (non-negative, finite) rewards
to outgoing actions. Analogously, Markov chains (MCs) and Markov decision processes
(MDPs) are defined as special cases of pMCs and pMDPs, respectively. We use D to denote
a MC, M for an MDP and G for an SG.
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2.3.2 Paths and reachability

An infinite path of a pSG G is an infinite sequence π = s0α0s1α1 . . . of states si ∈ S and
actions αi ∈ Act(si ) with P(si , αi , si+1) �≡ 0 for i ≥ 0. A finite path of a pSG G is a non-
empty finite prefix s0α0 . . . sn of an infinite path s0α0 . . . snαn . . . of G for some n ∈ N. Let
PathsG denote the set of all finite or infinite paths of G while PathsGfin ⊆ PathsG denotes the

set of all finite paths. For paths in (p)MCs, we omit the actions. The set PathsG(s) contains
all paths that start in state s ∈ S. For a finite path π ∈ PathsGfin, last(π) = sn denotes the last

state of π . The length |π | of a path π is |π | = n for π ∈ PathsGfin and |π | = ∞ for infinite
paths. The accumulated reward along the finite path s0α0 . . . αn−1sn is given by the sum of
the rewards rew(si , αi ) for 0 ≤ i < n.

We denote the set of states that can reach a set of states T as follows:♦T = {s ∈ S | ∃π ∈
PathsGfin(s). last(π) ∈ T }. A set of states T ⊆ S is reachable from s ∈ S, written s ∈ ♦T ,
iff there is a path from s to some s′ ∈ T . A state s is absorbing iff P(s, α, s) = 1 for all
α ∈ Act(s).

Example 9 The pMC in Fig. 5c has a path π = s0s1s3s3 with |π | = 3. Thus s0 ∈ ♦{s3}.
There is no path from s4 to s3, so s4 /∈ ♦{s3}. States s3 and s4 are the only absorbing states.

2.3.3 Model instantiation

Instantiated parametric models are obtained by instantiating the rational functions in all
transitions as in Definition 2.

Definition 5 (Instantiated pSG) For a pSG G = (S, V , sI ,Act,P) and instantiation u of
V , the instantiated pSG at u is given by G[u] = (S, sI ,Act,P[u]) with P[u](s, α, s′) =
P(s, α, s′)[u] for all s, s′ ∈ S and α ∈ Act.

The instantiation of the parametric reward function rew at u is rew[u] with rew[u](s, α) =
rew(s, α)[u] for all s ∈ S, α ∈ Act. Instantiating pMDP M and pMC D at u is denoted by
M[u] and D[u], respectively.
Remark 2 The instantiation of a pSG at u is a pSG, but not necessarily an SG. This is due
to the fact that an instantiation does not ensure that P(s, α, ·) is a probability distribution.
In fact, instantiation yields a transition function of the form P : S × Act × S → R ∪ {⊥}.
Similarly, there is no guarantee that the rewards rew[u] are non-negative. Therefore, we
impose restrictions on the parameter instantiations.

Definition 6 (Well-defined instantiation) An instantiation u is well-defined for a pSG G if the
pSG G[u] is an SG.

The reward function rew is well-defined on u if it does only associate non-negative reals to
state-action pairs.

Example 10 Consider again the pMC in Fig. 5c. The instantiation u with u(p) = 4/5 and
u(q) = 3/5 is well-defined and induces the MC D[u] depicted in Fig. 5d.

From now on, we silently assume that every pSG we consider has at least one well-
defined instantiation. This condition can be assured through checking the satisfiability of the
conditions in Def. 4, which we discuss in Sect. 4.2.
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Our methods necessitate instantiations that are not only well-defined, but also preserve
the topology of the pSG. In particular, we are interested in the setting where reachability
between two states coincides for the pSG and the set of instantiations u we consider. We
detail this discussion in Sect. 4.2.

Definition 7 (Graphpreserving)Awell-defined instantiationu for pSGG = (S, V , sI ,Act,P)

is graph preserving if for all s, s′ ∈ S and α ∈ Act,

P(s, α, s′) �≡ 0 �⇒ P(s, α, s′)[u] ∈ R \ {0}.
Example 11 The well-defined instantiation u with u(p) = 1 and u(q) = 3/5 for the pMC in
Fig. 5c is not graph preserving.

2.3.4 Resolving non-determinism

Strategies4 resolve the non-deterministic choices in stochastic games with at least one player.
For the objectives considered here, it suffices to consider so-called deterministic strategies
[136]; more general strategies can be found in [13, Ch. 10]. We define strategies for pSGs
and assume well-defined instantiations as in Definition 6.

Definition 8 (Strategy) A (deterministic) strategy σi for player i ∈ {©,�} in a pSG G with
state space S = S© � S� is a function

σi : {π ∈ PathsGfin | last(π) ∈ Si } → Act

such that σi (π) ∈ Act(last(π)). Let StrG denote the set of strategies σ = (σ©, σ�) for pSG
G and StrGi the set of strategies of player i .

A pMDP has only a player-i strategy for the player with Si �= ∅; in this case the index i is
omitted. A player-i strategy σi is memoryless if last(π) = last(π ′) implies σi (π) = σi (π

′)
for all finite pathsπ, π ′. Amemoryless strategy can thus bewritten in the form σi : Si → Act.
A pSG-strategy σ = (σ©, σ�) is memoryless if both σ© and σ� are memoryless.

Remark 3 From now on, we only consider memoryless strategies and refer to them as strate-
gies.

A strategy σ for a pSG resolves all non-determinism and results in an induced pMC.

Definition 9 (Induced pMC) The pMC Gσ induced by strategy σ = (σ©, σ�) on pSG G =
(S, V , sI ,Act,P) equals (S, V , sI , Pσ ) with:

Pσ (s, s′) =
{
P(s, σ©(s), s′) if s ∈ S©
P(s, σ�(s), s′) if s ∈ S�.

Example 12 Let σ be a strategy for the pSG G in Fig. 5a with σ©(s0) = α and σ�(s2) = β.
The induced pMC Gσ equals pMC D in Fig. 5c. Analogously, imposing strategy σ ′ with
σ ′(s0) = α on the pMDP in Fig. 5b yields Mσ ′ = D.

The notions of strategies for pSGs and pMDPs and of induced pMCs naturally carry over to
non-parametric models; e.g., the MC Gσ is induced by strategy σ ∈ StrG on SG G.

4 Also referred to as policies, adversaries, or schedulers.
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2.4 Specifications and solution functions

2.4.1 Specifications

Specifications constrain themeasures of interest for (parametric) probabilisticmodels. Before
considering parameters, let us first consider MCs. Let D = (S, sI ,P) be anMC and T ⊆ S a
set of target states that (without loss of generality) are assumed to be absorbing. Let♦T denote
the path property to reach T 5. Furthermore, the probability measure Prs over sets of paths
can be defined using a cylinder construction with Prs(s0α0 . . . sn) = 	n−1

i=0P(si , αi , si+1),
see [13, Ch. 10].
We consider three kinds of specifications:

1. Unbounded probabilistic reachability A specification P≤λ(♦ T ) asserts that the proba-
bility to reach T from the initial state sI shall be at most λ, where λ ∈ Q ∩ [0, 1]. More
generally, specification ϕr is satisfied by MC D, written:

D |� P∼λ(♦ T ) iff PrDsI (♦ T ) ∼ λ,

where PrDsI (♦ T ) is the probability mass of all infinite paths that start in sI and visit any
state from T .

2. Bounded probabilistic reachability In addition to reachability, these specifications impose
a bound on the maximal number of steps until reaching a target state. Specification
ϕb = P∼λ(♦≤n T ) asserts that in addition to P∼λ(♦ T ), states in T should be reached
within n ∈ N steps. The satisfaction of P∼λ(♦≤n T ) is defined similar as above.

3. Expected reward until a target The specification E≤κ (♦ T ) asserts that the expected
reward until reaching a state in T shall be at most κ ∈ R. Let ERD

sI (♦ T ) denote the
expected accumulated reward until reaching a state in T ⊆ S from state sI . We obtain
this reward by multiplying the probability of every path reaching T with the accumulated
reward of that path, up until reaching T . Details are given in [13, Chapter 10]. 6. Then
we define

D |� E∼κ (♦ T ) iff ERD
sI (♦ T ) ∼ κ,

We do not treat the accumulated reward to reach a target within n steps, as this is not a
very useful measure. In case there is a possibility to not reach the target within n steps,
this yields ∞.

We omit the superscript D if it is clear from the context. We write ¬ϕ to invert the relation:
D |� ¬P≤λ(♦ T ) is thus equivalent to D |� P>λ(♦ T ). An SG G satisfies specification ϕ

under strategy σ if the induced MC Gσ |� ϕ. Unbounded reachability and expected rewards
are prominent examples of indefinite-horizon properties – theymeasure behaviour up-to some
specified event (the horizon) which may be reached after arbitrarily many steps.

Remark 4 Bounded reachability in MDPs can be reduced to unbounded reachability by a
technique commonly referred to as unrolling [5]. For performance reasons, it is sometimes
better to avoid this unrolling, and present dedicated approaches.

5 Thereby overloading the earlier notation to denote the set of states for which there exists a path on which
this property holds.
6 As standard, if PrDsI (♦ T ) < 1 then we set ERD

sI (♦ T ) := ∞. The rationale is that an infinite amount of
reward is collected on visiting a state (with positive reward) infinitely often from which all target states are
unreachable.
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Fig. 6 Two sample parametric models

2.4.2 Solution functions

Computing (unbounded) reachability probabilities and expected rewards for MCs reduces to
solving linear equation systems [13] over the field of reals (or rationals). For parametricMCs,
we obtain a linear equation system over the field of the rational functions over V instead.
The solution to this equation system is a rational function. (See Examples 4 and 6 on pages 6
and 7). More details on the the solution function and the equation system follow in Sects. 5
and 6, respectively.

Definition 10 (Solution functions) For a pMC D = (S, V , sI ,P), T ⊆ S and n ∈ N, a
solution function for a specification ϕ is a rational function

f rD,T ∈ Q(V ) for ϕ = P∼λ(♦ T )

f bD,T ,n ∈ Q(V ) for ϕ = P∼λ(♦≤n T ) , and
f eD,T ∈ Q(V ) for ϕ = E∼κ (♦ T ),

such that for every well-defined graph-preserving instantiation u:

f rD,T [u] = PrD[u]
sI (♦ T ),

f bD,T ,n[u] = PrD[u]
sI (♦≤n T ), and

f eD,T [u] = ERD[u]
sI (♦ T ).

Example 13 Consider the reachability probability to reach s2 for the pMC in Fig. 6a. Any
instantiation u with u(p), u(q) ∈ (0, 1) is well-defined and graph-preserving. As the only
two finite paths to reach s2 are s0s2 and s0s1s2, we have f rD,{s2} = 1 − p + p · q .

For pSGs (and pMDPs), the solution function depends on the resolution of non-determinism
by strategies, i. e., they are defined on the induced pMCs. Formally, a solution function for
a pSG G, a reachability specification ϕr = P≤λ(♦ T ), and a strategy σ ∈ StrG is a function
f rG,σ,T ∈ Q(V ) such that for each well-defined graph-preserving instantiations u it holds:

f rG,σ,T [u] = PrG
σ [u]

sI (♦ T ).

These notions are defined analogously for bounded reachability (denoted f bG,σ,T ,n) and
expected reward (denoted f eG,σ,T ) specifications.

Example 14 For the pMDP in Fig. 6b, the solution functions for reaching s2 are 1−p+ p ·q ,
for the strategy σα = {s0 �→ α}, and 1 for the strategy σβ = {s0 �→ β}.
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Remark 5 We define solution functions only for graph-preserving valuations. For the more
general well-defined solutions, a similar definition can be given [94] where (solution) func-
tions are no longer rational functions but instead a collection of solution functions obtained
on the graph-preserving subsets. In particular, unless a pMC is acyclic, such a function is
only semi-continuous [97]. A key reason for the discontinuity is the change of states that are
in ♦T , e.g., consider instantiations with q = 1 in Fig. 5c. We provide the decomposition into
graph-preserving subsets in Sect. 4.3.

2.5 Constraints and formulas

We consider (polynomial) constraints of the form g ∼ g′ with g, g′ ∈ Q[V ] and ∼∈ {<,≤
,=,≥,>}. We denote the set of all constraints over V with C[V ]. A constraint g ∼ g′ can be
equivalently formulated as g − g′ ∼ 0. A formula ψ over a set of polynomial constraints is
recursively defined: Each polynomial constraint is a formula, and the Boolean combination
of formulae is also a formula.

Example 15 Let p, q be variables. 1− p · q > 0 and p2 < 0 are constraints, ¬ (
p2 < 0

)
and

(1 − p · q > 0) ∨ (
p2 < 0

)
are formulae.

The semantics of constraints are standard: i.e., an instantiation u satisfies g ∼ g′ if g[u] ∼
g′[u]. An instantiation satisfies ψ ∧ ψ ′ if u satisfies both ψ and ψ ′. The semantics for other
Boolean connectives are defined analogously. Moreover, we will write g �= g′ to denote the
formula g < g′ ∨ g > g′.

Checking whether there exists an instantiation that satisfies a formula is equivalent to
checkingmembership of the existential theory of the reals [21]. Such a check canbe automated
using SMT-solvers capable of handling quantifier-free non-linear arithmetic over the reals
[93], such as [52, 63].

Statements of the form f ∼ f ′ with f , f ′ ∈ Q(V ) are not necessarily polynomial
constraints: however, we are not interested in instantiations u with f [u] = ⊥, and thus later
(in Sect. 4.2.2) we can transform such constraints into formulae over polynomial constraints.

3 Formal problem statements

This section formalises the three problem statements mentioned in the introduction: the
verification problem and two synthesis problems.We start off bymaking precise what regions
are and how to represent them. We then define what it means for a region to satisfy a given
specification. This puts all in place to making the three problem statements precise. Finally,
it surveys the verification approaches that are detailed later in the paper.

3.1 Regions

Instantiated parametric models are amenable to standard probabilistic model checking. How-
ever, sampling an instantiation is very restrictive—verifying an instantiated model gives
results for a single point in the (uncountably large) parameter space. A more interesting
problem is to determine which parts of the parameter space give rise to a model that com-
plies with the specification. Such sets of parameter values are, inspired by their geometric
interpretation, called regions. Regions are solution sets of conjunctions of constraints over
the set V of parameters.
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Definition 11 (Region) A region R over V is a set of instantiations of V (or dually a subset
of R

|V |) for which there exists a set C(R) ⊆ C[V ] of polynomial constraints such that for
their conjunction Φ(R) = ∧

c∈C(R) c we have

R = {u | Φ(R)[u]}.
We call C(R) the representation of R.

Any region which is a subset of a region R is called a subregion of R.

Example 16 Let the region R over V = {p, q} be described by
C(R) = {p2 + q2 − 1 ≤ 0, p + q − 1 ≤ 0}.

Thus, R = { u | (p2+q2−1)[u] ≤ 0 ∧ (p+q−1)[u] ≤ 0 }. The region R contains the
instantiation u = (2/5, 3/5) as (2/5)2 + (3/5)2 − 1 ≤ 0 and 2/5+ 3/5− 1 ≤ 0. The instantiation
u′ = (1/2, 3/5) /∈ R as 1/2 + 3/5 − 1 > 0. Regions do not have to describe a contiguous
area of the parameter space; e.g., consider the region R′ described by {−p2 + 1 < 0} is
R′ = (−∞,−1] ∪ [1,+∞).

Regions are semi-algebraic sets [21] which yield the theoretical formalisation of notions such
as distance, convexity, etc. It also ensures that regions are well-behaved: Informally, a region
in the space R

n is given by a finite number of connected semialgebraic sets (cells7), and (the
boundaries of) each cell can be described by a finite set of polynomials. The size ‖R‖ of a
region R is given by the Lebesgue measure. All regions are Lebesgue measurable.

A region is called well-defined if all its instantiations are well defined.

Definition 12 (Well-defined region) Region R is well defined for pSG G if for all u ∈ R, u is
a well-defined valuation for G.

3.2 Angelic and demonic satisfaction relations

As a next step towards our formal problem statements, we have to define what it means for
a region to satisfy a specification. We first introduce two satisfaction relations—angelic and
demonic—for parametric Markov models for a single instantiation. We then lift these two
notions to regions.

Definition 13 (Angelic and demonic satisfaction relations) For pSG G, well-defined instan-
tiation u, and specification ϕ, the satisfaction relations |�a and |�d are defined by:

G, u |�a ϕ iff ∃σ ∈ StrG . G[u]σ |� ϕ (angelic)

G, u |�d ϕ iff ∀σ ∈ StrG . G[u]σ |� ϕ (demonic).

The angelic relation |�a refers to the existence of a strategy to fulfil the specification ϕ,
whereas the demonic counterpart |�d requiresall strategies to fulfilϕ. Observe thatG, u �|�a ϕ

if and only if G, u |�d ¬ϕ. Thus, demonic and angelic can be considered to be dual. By |�♥
we denote the dual of |�♣, that is, if ♣ = a then ♥ = d and vice versa. For pMCs, the
relations |�a and |�d coincide and the subscripts a and d are omitted.

7 Connected here intuitively refers to the fact that you can draw a path from two points in a cell that never
leaves the cell.
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Example 17 Consider the pMDP M in Fig. 6b, instantiation u = (1/2, 1/2) and ϕ =
P>4/5(♦{s2}).We haveM, u |�a ϕ, as for strategy σβ = {s0 �→ β} the state s2 is reachedwith
probability one; thus, M[u]σβ |� ϕ. However, M, u �|�d ϕ, as for strategy σα = {s0 �→ α},
we have (1−p + p · q)[u] = 3/4 �> 4/5; thus, M[u]σα �|� ϕ. By duality, M, u |�a ¬ϕ.

We now lift these two satisfaction relations to regions. The aim is to consider specifications
ϕ that hold for all instantiations represented by a region R of a parametric model G. This is
captured by the following satisfaction relation.

Definition 14 (Satisfaction relation for regions) For pSG G, well-defined region R, and spec-
ification ϕ, the relation |�♣, ♣ ∈ {a, d}, is defined as:

G, R |�♣ ϕ iff G, u |�♣ ϕ for all u ∈ R.

Before we continue, we note the difference between G, R �|�♣ ϕ and G, R |�♣ ¬ϕ:

G, R |�♣ ¬ϕ implies G, u |�♣ ¬ϕ for all u ∈ R,

whereas in constrast,

G, R �|�♣ ϕ implies G, u �|�♣ ϕ for some u ∈ R.

Definition 15 (Accepting/rejecting/inconsistent region) Awell-defined region R is accepting
(for G, ϕ, ♣) if G, R |�♣ ϕ. Region R is rejecting (for G, ϕ, ♣) if G, R |�♥ ¬ϕ. Region R is
inconsistent if it is neither accepting nor rejecting.

By the duality of |�a and |�d , a region is thus rejecting iff ∀u ∈ R. G, u �|�♣ ϕ. Note that
this differs from G, R �|�♣ ϕ.

Example 18 Reconsider the pMDP in Fig. 6b, with R = [2/5, 1/2] × [2/5, 1/2] and ϕ =
P>4/5(♦{s2}). The corresponding solution functions are given in Example 14. It follows that:

– M, R |�a ϕ, as for strategy σβ = {s0 �→ β}, we have Mσβ , u |� ϕ for all u ∈ R.
– M, R �|�d ϕ, as for strategy σα = {s0 �→ α}, Mσα , u �|� ϕ for u = (1/2, 1/2).
– M, R |�a ¬ϕ using strategy σα .

Regions can be inconsistent w. r. t. a relation, and consistent w. r. t. its dual relation. The region
(0, 1) × (0, 1) is inconsistent for M and |�d , as for both ϕ and ¬ϕ, there is a strategy that
is not accepting. For |�a , there is a single strategy which accepts ϕ; other strategies do not
affect the relation.

As an example of an accepting region under the demonic relation, consider R′ =
[4/5, 9/10] × [2/5, 9/10]. We have M, R′ |�d ϕ, as for both strategies, the induced probability
is always exceeding 4/5.

3.3 Formal problem statements

We are now in a position to formalise the two synthesis problems and the verification problem
from the introduction, page 5. We present the formal problem statements in the order of
treatment in the rest of the paper.
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The formal synthesis problem. Given pSG G, specification ϕ, and well-defined region
R, the synthesis problem is to partition R into Ra and Rr such that:

G, Ra |�♣ ϕ and G, Rr |�♥ ¬ϕ.

This problem is the topic of Section 5.

Remark 6 The solution function for pMCsprecisely describes how (graph-preserving) instan-
tiations map to the relevant measure. Therefore, comparing the solution function with the
threshold divides the parameter space into an accepting region Ra and a rejecting region Rr

and defines the exact result for the formal synthesis problem. Recall also Example 4.

The formal verificationproblem.GivenpSGG, specificationϕ, andwell-defined region
R, the verification problem is to check whether:

G, R |�♣ ϕ (R is accepting)

or G, R |�♥ ¬ϕ (R is rejecting)

or G, R �|�♣ ϕ ∧ G, R �|�♥ ¬ϕ (R is inconsistent)

where |�♥ denotes the dual satisfaction relation of |�♣.
This problem is the topic of Section 6–8.

The verification procedure allows us to utilise an approximate synthesis problem in which
verification procedures are used as a backend.

The formal approximate synthesis problem.Given pSG G, specification ϕ, percentage
c, and well-defined region R, the approximate synthesis problem is to partition R into
regions Ra , Ro, and Rr such that:

G, Ra |�♣ ϕ and G, Rr |�♥ ¬ϕ,

where Ra � Rr cover at least c% of the region R.
This problem is the topic of Section 9.

Note that no requirements are imposed on the (unknown, open) region Ro.

Remark 7 By definition, the angelic satisfaction relation for region R and pSG G is equivalent
to:

G, R |�a ϕ if and only if ∀u ∈ R. ∃σ ∈ StrG . Gσ , u |� ϕ.

An alternative notion in parameter synthesis is the existence of a robust strategy:

∃σ ∈ StrG . ∀u ∈ R. Gσ , u |� ϕ.

Note the swapping of quantifiers compared to |�a . That is, G, R |�a ϕ considers poten-
tially different strategies for different parameter instantiations u ∈ R. The notion of robust
strategies leads to a series of quite orthogonal challenges. For instance, the notion is not com-
positional, i.e., if robust strategies exist in R1 and R2, then we cannot conclude the existence
of a robust strategy in R1 ∪ R2. Moreover, memoryless strategies are not sufficient, see [9].
Robust strategies are outside the scope of this paper and are only shortly mentioned in Sect. 8.
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3.4 A bird’s eye view on the verification procedures

In the later sections, we will present several techniques that decide the verification problem
for pMCs and pMDPs. (Recall that stochastic games were only used to define the general
setting.)

The verification problem is used to analyse the regions of interest. The assumption that
this region contains only well-defined instantiations is therefore natural. It can be checked
algorithmically as described in Sect. 4.2 below. Many verification procedures require that
the region is graph preserving. A decomposition result of well-defined into graph-preserving
regions is given in Sect. 4.3.

Section 6 presents two verification procedures. The first one directly solves the non-linear
equation system, see Example 6, as an SMT query. The second procedure reformulates the
SMT query using the solution function. While this reformulation drastically reduces the
number of variables in the query, it requires an efficient computation of the solution function,
as described in Sect. 5.

Section 7 covers an approximate and more efficient verification procedure, called param-
eter lifting, which is tailored to multi-linear functions and closed rectangular regions. Under
these mild restrictions, the verification problem for pMCs (pMDPs) can be approximated
using a sequence of standard verification analyses on non-parametric MDPs (SGs) of simi-
lar size, respectively. The key steps here are to relax the parameter dependencies, and consider
lower- and upper-bounds of parameters as worst and best cases.

4 Regions

Section 3.1 already introduced regions. This section details specific region structures such as
linear, rectangular and graph-preserving regions. It then presents procedures to checkwhether
a region is graph preserving. Finally, we describe how well-defined but not graph-preserving
regions can be turned into several regions that are graph preserving.

4.1 Regions with specific structure

As defined before, a region R is a (typically uncountably infinite) set of parameter valuations
described by a set C(R) of polynomial constraints. Two classes of regions are particularly
relevant: linear and rectangular regions.

Definition 16 (Linear region) A region with representation C(R) is linear if for all g ∼ 0 ∈
C(R), the polynomial g is linear.

Linear regions describe convex polytopes. We refer to the vertices (or angular points) of the
polytope as the region vertices.

Definition 17 (Rectangular region) A region R with representation

C(R) =
|V |⋃

i=1

{−pi + ai �1
i 0, pi + bi �2

i 0 }

with ai ≤ bi ∈ Q and � j
i ∈ {<,≤} for 0 < i ≤ |V | and j ∈ { 1, 2 } is called rectangular. A

rectangular region is closed if all inequalities � j
i in the constraints in C(R) are non-strict.
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Rectangular regions are hyper-rectangles and a subclass of linear regions. A closed rectan-
gular region R can be represented as R =×p∈V [ap, bp] with parameter intervals [ap, bp]
described by the bounds ap and bp for all p ∈ V . For a region R, we refer to the bounds of
parameter p by BR(p) = {ap, bp} and to the interval of parameter p by IR(p) = [ap, bp].
We may omit the subscript R, if it is clear from the context. For a rectangular region R, the
size ‖R‖ equals

∏
p∈V (bp − ap).

Regions represent sets of instantiations G[u] of a pSG G. The notion of graph-preservation
from Definition 7 lifts to regions in a straightforward manner:

Definition 18 (Graph-preserving region) Region R is graph preserving for pSG G if for all
u ∈ R, u is a graph-preserving valuation for G.
By this definition, all instantiations from graph-preserving regions have the same topology as
the parametricmodel, cf. Remark 8 below. In addition, all such instantiations arewell-defined.

Example 19 LetD be the pMC in Fig. 5c, R = [1/10, 4/5]×[2/5, 7/10] be a (closed rectangular)
region, and instantiation u = (4/5, 3/5) ∈ R. Figure 5d depicts the instantiation D[u], an MC
with the same topology as D. As the topology is preserved for all possible instantiations
D[u′] with u′ ∈ R, the region R is graph preserving. The region R′ = [0, 1] × [0, 1] is not
graph preserving as, e.g., the instantiation (0, 0) ∈ R′ results in an MC that has no transition
from state s1 to s2.

Remark 8 Graph-preserving regions have the nice property that if

∃u ∈ R,G, u |�♣ P=1(♦ T ) implies G, R |�♣ P=1(♦ T ).

This property can be checked by standard graph analysis [13,Ch. 10]. It is thus straightforward
to check G, R |�♣ P=1(♦T ), an important precondition for computing expected rewards. In
the rest of this paper when considering expected rewards, it is assumed that within a region
the probability to reach a target is one.

The following two properties of regions are frequently (and often implicitly) used in this
paper.

Lemma 1 (Characterisation for inconsistent regions) For any inconsistent region R it holds
that R = Ra ∪ Rr for some accepting Ra �= ∅ and rejecting Rr �= ∅.
Lemma 2 (Compositionality) Region R = R1 ∪ R2 is accepting (rejecting) if and only if
both R1 and R2 are accepting (rejecting).

The statements follow from the universal quantification over all instantiations in the definition
of |�♣.

4.2 Checking whether a region is graph preserving

The verification problem for region R requires R to be well-defined. We first address the
problem on how to check this condition. In fact, we present a procedure to check graph
preservation which is slightly more general and useful later, see also Remark 8. To show
that region R is not graph preserving, a point in R suffices that violates the conditions in
Definition 7. Using the representation of region R, the implication

Φ(R) �⇒ R graph preserving

needs to be valid since any violating assignment corresponds to a non-graph-preserving
instantiation inside R. Technically, we consider satisfiability of the conjunction of:
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– the inequalities C(R) representing the candidate region, and
– a disjunction of (in)equalities describing violating graph-preserving.

This conjunction is satisfiable if and only if the region is not graph preserving.

4.2.1 Graph preservation for polynomial transition functions

Let us consider the above for pSGs with polynomial transition functions. The setting for
pSGs with rational functions is discussed at the end of this section. The following constraints
(1)–(4), which we denote GP, capture the notion of graph preservation:

∧

s,s′∈S,α∈Act(s)
P(s,α,s′)�≡0

0 ≤ P(s, α, s′) ≤ 1 (1)

∧
∧

s∈S,α∈Act(s)

∑

s′∈S
P(s, α, s′) = 1 (2)

∧
∧

s∈S,α∈Act(s)
rew(s, α) ≥ 0 (3)

∧
∧

s,s′∈S,α∈Act(s)
P(s,α,s′)�≡0

0 < P(s, α, s′). (4)

The constraints ensure that (1) all non-zero entries are evaluated to a probability, (2) transition
probabilities are probability distributions, (3) rewards are non-negative, and (4) non-zero
entries remain non-zero. The constraints (1)–(3) suffice to ensure well-definedness. The
constrains (1)–(4) can be simplified to:

∧

s,s′∈S,α∈Act(s)
P(s,α,s′)�≡0

P(s, α, s′) > 0

∧
∧

s∈S,α∈Act(s)

∑

s′∈S
P(s, α, s′) = 1

∧
∧

s∈S,α∈Act(s)
rew(s, α) ≥ 0.

Example 20 Recall the pMC from Fig. 5c.

GP = p > 0 ∧ 1−p > 0 ∧ p+1−p = 1 ∧ q > 0 ∧ 1−q > 0 ∧ q+1−q = 1.

This equation simplifies to 0 < p < 1∧0 < q < 1. To check whether the region R described
by Φ(R) = 1/10 ≤ p ≤ 4/5 ∧ 2/5 ≤ q ≤ 7/10 is graph preserving, we check whether the
conjunction Φ(R) ∧ ¬GP is satisfiable, with

¬GP = p ≤ 0 ∨ p ≥ 1 ∨ q ≤ 0 ∨ q ≥ 1.

As the conjunction is not satisfiable, the region R is graph preserving. Contrary, R′ =
[0, 1] × [0, 1] is not graph preserving as u = (0, 0) satisfies the conjunction Φ(R′) ∧ ¬GP.

Satisfiability of GP, or equivalently, deciding whether a region is graph preserving, is as hard
as the existential theory of the reals [21], if no assumptions are made about the transition
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probability and reward functions. This checking can be automated using SMT-solvers capable
of handling quantifier-free non-linear arithmetic over the reals [93]. The complexity drops to
polynomial time once both the region R and all transition probability (and reward) functions
are linear as linear programming has a polynomial complexity and the formula is then a
disjunction over linear programs (with trivial optimisation functions).

4.2.2 Graph preservation for rational transition functions

In case the transition probability and reward function of a pSG are not polynomials, the
left-hand side of the statements in (1)–(4) are not polynomials, and the statements would not
be constraints. We therefore perform the following transformations on (1)–(4):

– Transforming equalities:

g1
g2

= c becomes g1 − c · g2 = 0 ∧ g2 �= 0 with c ∈ Q.

– Transforming inequalities � ∈ {>,≥}:
g1
g2

� c becomes g2 �= 0 ∧
(
(g2 > 0 ∧ g1 � c · g2) ∨ (g2 < 0 ∧ g1 � � c · g2)

)

with c ∈ Q, and � � equals < for �> and ≤ for �.
– Transforming <,≤ is analogous.
– Transforming g �= g′ (i.e., g < g′ ∨ g > g′) involves transforming both disjuncts.

The result is a formulawith polynomial constraints that correctly describes graph preservation
(or well-definedness).

Example 21 Consider a state with outgoing transition probabilities q and p
1+p . The graph

preservation statements are (after some simplification):

q > 0 and
p

1 + p
> 0 and q + p

1 + p
= 1.

Transforming the second item as explained above yields:

1 + p �= 0 ∧
(
(1 + p > 0 ∧ p > 0) ∨ (1 + p < 0 ∧ p < 0)

)

while transforming the third item yields:

(1 + p �= 0) ∧ q · (1+p) − 1 = 0.

Finally, we obtain the following formula (after some further simplifications):

q > 0 ∧ (p > 0 ∨ p < −1) ∧ q · (1 + p) − 1 = 0.

4.3 Reduction to graph-preserving regions

In this section, we show how we can partition a well-defined region into a set of
graph-preserving regions. This is useful, e.g., as we only define solution functions for graph-
preserving regions. The decomposition in this section allows to define solution functions on
each of these partitions, see also Remark 5. Before we illustrate the decomposition, we define
sub-pSGs: Given two pSGs G = (S, V , sI ,Act,P) and G′ = (S′, V ′, sI ′,Act′,P ′), G′ is a
sub-pSG of G if S′ ⊆ S, V ′ ⊆ V , s′I = sI ∈ S′, Act′ ⊆ Act, andP ′(s, α, s′) ∈ {P(s, α, s′), 0}
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Fig. 7 Ensuring graph-preservation on subregions

for all s, s′ ∈ S′ and α ∈ Act′. Note that for a given state s ∈ S and action α ∈ Act(s), the
sub-pSG might not contain s or α might not be enabled in s, but it is also possible that the
sub-pSG omits some but not all successors of α in s.

Example 22 Reconsider the pMC D from Fig. 5c, and let R = [0, 1] × [0, 1], which is well-
defined but not graph preserving. Region R can be partitioned into 9 regions, see Fig. 7awhere
each dot, line segment, and the inner region are subregions of R. All subregions are graph
preserving on some sub-pMC ofD. Consider, e.g., the line-region R′ = {u ∈ R | p[u] = 0}.
The subregion R′ is not graph preserving on pMCD, as the transition s0

p−→ s1 vanishes when
p = 0. However, R′ is graph preserving on the sub-pMC D′ in Fig. 7b, which is obtained
from D by removing the transitions on the line-region p=0.

Let us formalise the construction from this example. For a given well-defined region R,
and pSG G, let ZR describe the set of constraints:

{P(s, α, s′)=0 |s, s′ ∈ S ∧ α ∈ Act(s) ∧ P(s, α, s′) �≡ 0 ∧ ∃u ∈ R.P(s, α, s′)[u] = 0}.
For X ⊆ ZR , the subregion RX ⊆ R is defined as:

Φ(RX ) = Φ(R) ∧
∧

c∈X
c ∧

∧

c∈ZR\X
¬c.

It follows that X uniquely characterises which transition probabilities in G are set to zero. In
fact, each instance in RX is graph preserving for the unique sub-pSG G′ of G obtained from G
by removing all zero-transitions in RX . The pSG G′ is well-defined as R on G is well-defined.
By construction, it holds that G[u] = G′[u] for all instantiations u ∈ R′.

5 Exact synthesis by computation of the solution function

This section discusses how to compute the solution function. The solution function for pMCs
describes the exact accepting and rejecting regions, as discussed in Sect. 3.38. This section

8 For pMDPs, one may compute a solution function for every strategy, but this has little practical relevance
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Fig. 8 Essential ideas for state elimination

thus provides an algorithmic approach to the exact synthesis problem. In Sect. 6, we will also
see that the solution function may be beneficial for the performance of SMT-based (region)
verification.

The original approach to compute the solution function of pMCs is via state elimination
[64, 78], and is analogous to the computation of regular expressions from nondeterministic
finite automata (NFAs) [90]. It is suitable for a range of indefinite-horizon properties. The
core idea behind state elimination and the related approaches presented here is based on two
operations:

– Adding short-cuts: Consider the pMC-fragment in Fig. 8a. The reachability probabilities
from any state to t are as in Fig. 8b, where we replaced the transition from s to s′ by
shortcuts from s to t and all other successors of s′, bypassing s′. By successive application
of shortcuts, any path from the initial state to the target state eventually has length 1.

– Elimination of self-loops: A prerequisite for introducing a short-cut is that the bypassed
state is loop-free. Recall that the probability of staying forever in a non-absorbing state
is zero, and justifies elimination of self-loops by rescaling all other outgoing transitions,
as depicted in the transition from Fig. 8c, d.

The remainder of this section is organised as follows: Sect. ?? recaps the original state elim-
ination approach in Sect. 5.1, albeit slightly rephrased. The algorithm is given for (indefinite)
reachability probabilities, expected rewards, and bounded reachability probabilities. In the
last part, we present alternative, equivalent formulations which sometimes allow for superior
performance. In particular, Sect. 5.2 clarifies the relation to solving a linear equation system
over a field of rational functions, and Sect. 5.3 discusses a variation of state elimination
applicable to pMCs described by multi-terminal binary decision diagrams.

5.1 Algorithm based on state elimination

Let T ⊆ S be a set of target states and assume w. l. o. g. that all states in T are absorbing and
that sI /∈ T .
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Algorithm 1 State elimination for pMCs

reachability(pMC D = (S, V , sI ,P), T ⊆ S)
S? := {s ∈ S | s �= sI ∧ s ∈ ♦T \ T }
while S? �= ∅ do

select s ∈ S?

eliminate_selfloop(P, s)
eliminate_state(P, s)
S? := S? \ {s}

eliminate_selfloop(P, sI )
// All S? eliminated. Only direct transitions to target.
return

∑

t∈T
P(sI , t)

eliminate_selfloop(P, s ∈ S)
assert P(s, s) �= 1
for each s2 ∈ succ(s), s �= s2 do

P(s, s2) := P(s,s2)
1−P(s,s)

P(s, s) := 0

eliminate_transition(P, s1 ∈ S, s ∈ S)
assert s1 ∈ pred(s), P(s, s) = 0
for each s2 ∈ succ(s) do

P(s1, s2) := P(s1, s2) + P(s1, s) · P(s, s2)
P(s1, s) := 0

eliminate_state(P, s ∈ S)
assert P(s, s) = 0
for each s1 ∈ pred(s) do

eliminate_transition(P, s1, s)

5.1.1 Reachability probabilities

We describe the algorithm to compute reachability probabilities based on state elim-
ination in Algorithm 1. In the following, P is the transition matrix. The function
eliminate_selfloop(P, s) rescales all outgoing probabilities of a non-absorbing state s by
eliminating its self-loop. The function eliminate_transition(P, s1, s2) adds a shortcut from
s1 to the successors of s2. Both operations preserve reachability to T . The function elimi-
nate_state(P, s) “bypasses” a state s by adding shortcuts from all its predecessors. More
precisely, we eliminate the incoming transitions of s, and after all incoming transitions are
removed, the state s is unreachable. It is thereby effectively removed from the model.

After removing all non-absorbing, non-initial states S?, the remainingmodel contains only
self-loops at the absorbing states and transitions emerging from the initial state. Eliminating
the self-loop on the initial state (by rescaling) yields a pMC. In this pMC, after a single step,
an absorbing state is reached. These absorbing states are either a target or a sink. The solution
function is then the sum over all (one-step) transition probabilities to target states.

Example 23 Consider again the pMC from Example 8, also depicted in Fig. 9a. Assume
state s2 is to be eliminated. Applying the function eliminate_state(P, s2), we first eliminate
the transition s1 → s2, which yields Fig. 9b, and subsequently eliminate the transition
s0 → s2 (Fig. 9c). State s2 is nowunreachable, sowe can eliminate s2, reducing computational
effort when eliminating state s1. For state s1, we first eliminate the self-loop (Fig. 9e) and
then eliminate the transition s0 → s1. The final result, after additionally removing the now
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Fig. 9 State elimination exemplified

unreachable s1, is depicted in Fig. 9f. The result, i.e., the probability to eventually reach s3
from s0 in the original model, can now be read from the single transition between these two
states.

As for computing of regular expressions from NFAs, the order in which the states are
eliminated is essential. Computing an optimal order with respect to minimality of the result,
however, is already NP-hard for acyclic NFAs, see [84]. For state elimination on pMCs,
the analysis is more intricate, as the cost of every operation crucially depends on the size
and the structure of the rational functions. We briefly discuss the implemented heuristics in
Sect. 10.2.1.

Remark 9 The elimination of self-loops yields a rational function. In order to keep these
functions as small as possible, it is natural to eliminate common factors of the numerator and
the denominator. Such a reduction, however, involves the computation of greatest common
divisors (gcds). This operation is expensive for multivariate polynomials. In [91], data struc-
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Algorithm 2 State elimination with one-step probabilities

reachability(pMC D = (S, V , sI ,P), T ⊆ S)
S? := {s ∈ S | s ∈ ♦T \ T }
// x : S? → [0, 1]
x(s) := ∑

t∈T P(s, t) for each s ∈ S?

P(s, t) := 0 for all s ∈ S, t ∈ T
while S? �= ∅ do

eliminate_state(P, x, s) for some s ∈ S?

S? := S? \ {s}
// All S? eliminated. One-step probability is reachability probability.
return x(sI )

eliminate_transition(P, x, s1 ∈ S, s ∈ S)
// Algorithm modifies P assert s1 �= s, P(s, s) �= 1

x(s1) := x(s1) + P(s1,s)·x(s)
1−P(s,s)

for each s2 ∈ succ(s), s �= s2 do
P(s1, s2) := P(s1, s2) + P(s1,s)·P(s,s2)

1−P(s,s)
P(s1, s) := 0

eliminate_state(P, x, s ∈ S)
// Algorithm modifies P assert P(s, s) = 0
for each s1 ∈ pred(s) do

eliminate_transition(P, x, s1, s)

tures to avoid their computation are introduced, in [17] a method is presented that mostly
avoids introducing common factors.

5.1.2 Expected rewards

The state elimination approach can also be adapted to compute expected rewards [78]. When
eliminating a state s, in addition to adjusting the probabilities of the transitions from all
predecessors s1 of s to all successors s2 of s, it is also necessary to “summarise” the reward
that would have been gained from s1 to s2 via s. The presentation in [78] describes these
operations on so-called transition rewards. Observe that for the analysis of expected rewards
inMCs,we can always reformulate transition rewards in termsof state rewards.Wepreprocess
pMCs to only have rewards at the states: this adjustment simplifies the necessary operations
considerably.

The treatment of the expected reward computation is easiest from an adapted (and more
performant) implementation of state elimination, as outlined in Algorithm 2. Here, we elimi-
nate the probabilities to reach a target state in exactly one step, and collect these probabilities
in a vector x which we refer to as one-step-probabilities. Then, we proceed similar as before.
However, the elimination of a transition from s1 to s now has two effects: it updates the
probabilities within the non-target states as before, and (potentially) updates the probability
x(s1) to reach the target within one step from s1 (with the probability that the target was
reached via s in two steps). Upon termination of the outer loop, the vector x contains the
probabilities from all states to reach the target, that is, x(si ) = xsi .

Finally, when considering rewards, the one-step-probabilities contain initially the rewards
for the states. Eliminating a transition then moves the (expected) reward to the predecessors
by the same sequence of arithmetic operations.
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5.1.3 Bounded reachability

As discussed in Remark 4, bounded reachability can typically be considered by an unfolding
of the Markov model and considering an unbounded reachability property on that (acyclic)
unfolding. In combination with state elimination, that yields the creation of many states that
are eliminated afterwards, and does not take into account any problem-specific properties.
Rather, and analogous to the parameter-free case [13], it is better to do the adequate matrix-
vector multiplication (# number of steps often). The matrix originates from the transition
matrix, the vector (after i multiplications) encodes the probability to reach a state within i
steps.

5.2 Algorithm based on solving the linear equation system

The following set of equations is a straightforward adaption of the Bellman linear equation
system for MCs found in, e.g., [13, 121] to pMCs. For each state s, a variable xs is used
to express the probability Prs(♦T ) to reach a state in T from the state s. Recall that we
overloaded ♦T to also denote the set of states from which T is reachable (with positive
probability). Analogously, we use ¬♦T to denote the set of states from which T is not
reachable, i. e., ¬♦T = S \ ♦T . We have:

xs = 0 ∀s ∈ ¬♦T (5)

xs = 1 ∀s ∈ T (6)

xs =
∑

s′∈S
P(s, s′) · xs′ ∀s ∈ ♦T \ T . (7)

This system of equations has a unique solution for every well-defined parameter instan-
tiation. In particular, the set of states satisfying ¬♦T is the same for all well-defined
graph-preserving parameter instantiations, as instantiations that maintain the graph of the
pMC do not affect the reachability of states in T .

For pMCs, the coefficients are no longer from the field of the real numbers, but rather
from the field of rational functions.

Example 24 Consider the equations for the pMC from Fig. 9a.

x0 = p · x1 + (1 − p) · x2
x1 = q · x2 + (1 − q) · x3
x2 = q · x1 + (1 − q) · x4
x3 = 1

x4 = 0.

Bringing the system in normal form yields:

x0 − p · x1 − (1 − p) · x2 = 0

x1 − q · x2 − (1 − q) · x3 = 0

−q · x1 + x2 − (1 − q) · x4 = 0

x3 = 1

x4 = 0.
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Adding q times the second equation to the third equation (concerning state s2) brings the
left-hand side matrix in upper triangular form:

x0 − p · x1 − (1 − p) · x2 = 0

x1 − q · x2 − (1 − q) · x3 = 0

(1 − q2) · x2 − q(1 − q) · x3 − (1 − q) · x4 = 0

x3 = 1

x4 = 0.

The equation system yields the same result as the elimination of the transition from s2 to s1
(notice the symmetry between s1 and s2).

The example illustrates that there is no elementary advantage in doing state elimination
over resorting to solving the linear equation sytem by (some variant of) Gaussian elimination.
If we are only interested in the probability from the initial state, we do not need to solve the
full equation system. The state-elimination algorithm, in which we can remove unreachable
states, optimises for this observation, in contrast to (standard) linear equation solving. As in
state elimination, the elimination order of the rows has a significant influence.

5.3 Algorithm based on set-based transition elimination

To succinctly represent large state spaces, Markov chains are often represented by multi-
terminal binary decision diagrams (or variants thereof) [14]. Such a symbolic representation
handles sets of states instead of single states (and thus also sets of transitions), and thereby
exploits symmetries and similarities in the underlying graph of a model. To support efficient
elimination, we describe how to eliminate sets of transitions at once. The method is similar to
the Floyd-Warshall algorithm for all-pair shortest paths [51]. The transition matrix contains
one-step probabilities for every pair of source and target states. Starting with a self-loop-free
pMC (obtained by eliminating all self-loops from the original pMC), we iterate two opera-
tions until convergence. By doing a matrix-matrix multiplication, we effectively eliminate
all transitions emanating from all non-absorbing states simultaneously. As this step may
reintroduce self-loops, we eliminate them in a second step. As before, eventually only direct
transitions to absorbing states remain, which effectively yield the unbounded reachability
probabilities. The corresponding pseudo-code is given in Algorithm 3.

The approach of this algorithm can conveniently be explained in the equation system
representation. Let us therefore conduct one step of the algorithm as an example, where
we use the observation that the matrix-matrix multiplication corresponds to replacing the
variables xs by their defining equations in all other equations.

Example 25 Reconsider the equations from Example 24:

x0 = p · x1 + (1 − p) · x2
x1 = q · x2 + (1 − q) · x3
x2 = q · x1 + (1 − q) · x4
x3 = 1

x4 = 0.

Using the equations for x0, x1, x2 to replace their occurrences in all other equations yields:

x0 = p · (q · x2 + (1 − q) · x3) + (1 − p)(q · x1 + (1 − q) · x4)
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Fig. 10 One step of set-based transition elimination exemplified

Algorithm 3 Set-based transition elimination for pMCs

reachability(pMC D = (S, V , sI ,P), T ⊆ S)
S? := {s ∈ S | s �= sI ∧ s ∈ ♦T \ T }
for each s ∈ S? do

// can be done in parallel for all s
eliminate_selfloop(P, s)

while ∃s, s′ ∈ S?. P(s, s′) �= 0 do
for each s ∈ S?, s′ ∈ S do

// can be done in parallel for all s, s′
P ′(s, s′) := ∑

s′′ P(s, s′′) · P(s′′, s′)
for each s ∈ S? do

// can be done in parallel for all s
eliminate_selfloop(P ′, s)

P := P ′
// All S? eliminated. Only direct paths to target.
return

∑

t∈T
P(sI , t)

x1 = q · (q · x1 + (1 − q) · x4) + (1 − q) · x3
x2 = q · (q · x2 + (1 − q) · x3) + (1 − q) · x4
x3 = 1

x4 = 0

which simplifies to

x0 = (1 − p) · q · x1 + p · q · x2 + p · (1 − q) · x3
+ (1 − p)(1 − q) · x4

x1 = 1

1 + q
· x3 + q

1 + q
· x4

x2 = q

1 + q
· x3 + 1

1 + q
· x4

x3 = 1

x4 = 0.

We depict the pMC which corresponds to this equation system in Fig. 10a. Again, notice the
similarity to state elimination. For completeness, the result after another iteration is given in
Fig. 10b.
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Fig. 11 Toy-examples (repeated from Fig. 6)

The correctness follows from the following argument: After every iteration, the equations
describe a pMC over the same state space as before. As all absorbing states have defining
equations xi ∈ {0, 1}, the equation system is known to have a unique solution [13].Moreover,
as the equation system in iteration i implies the equation system in iteration i+1, they preserve
the same (unique) solution.

6 SMT-based region verification

In this section, we discuss a complete procedure to verify regions by encoding them as queries
for an SMT solver, ormore precisely, in the existential theory of the reals (theQF_NRA theory
in the SMT literature). We first introduce the constraints for verifying regions on pMCs in
Sect. 6.1. The constraints are either based on the equation system encoding from Sect. 5.2 or
use the solution function, which yields an equation system with less variables at the cost of
precomputing the solution function. In Sect. 6.2, we then introduce the encodings for region
verification on pMDPs under angelic and demonic strategies.

Throughout the section, we focus on unbounded reachability, that is, we assume ϕ =
P≤λ(♦T ). As expected rewards can be described by a similar equation system, lifting the
concepts is straightforward. We assume a graph-preserving region R: Assuming that R is
graph preserving eases the encodings significantly, but is not strictly necessary: In [94, Ch. 4],
we provide encodings for well-defined regions R.

6.1 Satisfiability checking for pMC region checking

Recall from Sect. 5.2 the equation system for pMCs, exemplified by the following running
example.

Example 26 Reconsider the pMC D from Fig. 6a, repeated in Fig. 11a for convenience. The
concrete equation system of (5)–(7) on page 32 for reaching T = {s2}, using xi to denote
xsi , is given by:

x0 = p · x1 + (1−p) · x2
x1 = q · x2 + (1−q) · x3
x2 = 1

x3 = 0.

The conjunction of the equation system for the pMC, (5)–(7) on page 32, is an implicitly
existential quantified formula to which we refer by Φ(D)—consider the remark below. By
construction, this formula is satisfiable.
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Remark 10 If transitions in the pMC are not polynomial but rational functions, the equations
are not polynomial constraints, hence their conjunction is not a formula (Sect. 2.5). Instead,
each x = ∑P(s, s′) has to be transformed by the rules in Sect. 4.2.2: then, their conjunction
is a formula. This transformation can always be applied, in particular, in the equalities we
are never interested in the evaluation of instantiations u ∈ R with P(s, s′)[u] = ⊥: Recall
that we are interested in analysing this equation system on a well-defined parameter region
R: Therefore, for any u ∈ R, P(s, s′)[u] �= ⊥ for each s, s′ ∈ S. Thus, when Φ(D) is used
in conjunction with Φ(R), we do not need to consider this special case.

We consider the conjunction of the equation system, a property and a region. Concretely,
let us first consider the conjunction of:

– the equation system Φ(D),
– a comparison of the initial state sI with the threshold λ, and
– a formula Φ(R) describing the parameter region R.

Satisfiability of this conjunction means that—for some parameter instantiation within the
region R—the reachability probability from the initial state sI satisfies the bound. Unlike
Φ(D), this conjunction may be unsatisfiable.

Example 27 We continue with Example 26. Let ϕ = P≤0.4(♦{s2}) and R = {(p, q) ∈
[0.4, 0.6] × [0.2, 0.5]}. We have Φ(R) = 0.4 ≤ p ∧ p ≤ 0.6 ∧ 0.2 ≤ q ∧ q ≤ 0.5. We
obtain the following conjunction:

Φ(D) ∧ x0 ≤ 0.4 ∧ Φ(R) (8)

where Φ(D) is the conjunction of the equation system, i.e.:

Φ(D) =
(
x0 = p · x1 + (1−p) · x2 ∧
x1 = q · x2 + (1−q) · x3 ∧
x2 = 1 ∧ x3 = 0

)
.

Formula (8) is unsatisfiable, thus, no instance of p and q within the region R induces a
reachability probability of at most 2/5.

Towards region verification, consider that the satisfaction relations |�a
9 as defined in

Definition 13, we have to certify that all parameter values within a region yield a reachability
probability that satisfies the threshold. Thus, we have to quantify over all instantiations u,
(roughly) leading to a formula of the form ∀u . . . |� ϕ. By negating this statement, we obtain
the proof obligation ¬∃u . . . |� ¬ϕ: no parameter value within the region R satisfies the
negated comparison with the initial state. This intuition leads to the following conjunction
of:

– the equation system Φ(D),
– a comparison of the initial state with the threshold, by inverting the given threshold-

relation, and
– a formula Φ(R) describing the parameter region.

This conjunction is formalised in the following definition.

9 Recall that |�d coincides with |�a for pMCs.
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Definition 19 (Equation system formula) Let D be a pMC, ϕ = P∼λ(♦T ), and R a region.
The equation system formula is given by:

Φ(D) ∧ xsI � λ ∧ Φ(R).

Theorem 1 The equation system formula is unsatisfiable iff D, R |� ϕ.

Otherwise, a satisfying solution is a counterexample.

Example 28 We continue Example 27. We invert the relation x0 ≤ 0.4 and obtain:

Φ(D) ∧ x0 > 0.4 ∧ Φ(R).

By SMT-checking, we determine that the formula is satisfiable, e.g., with p = 0.5 and q =
0.3. Thus,D, R �|� ϕ. If we consider instead the region R′ = {(p, q) ∈ [0.8, 0.9]×[0.1, 0.2]}
with Φ(R′) = 0.8 ≤ p ∧ p ≤ 0.9 ∧ 0.1 ≤ q ∧ q ≤ 0.2, we obtain:

Φ(D) ∧ x0 > 0.4 ∧ Φ(R′)

which is unsatisfiable. Hence, no point in R′ induces a probability larger than 2/5 and, equiv-
alently, all points in R′ induce a probability of at most 2/5. Thus, D, R′ |� ϕ.

We observe that the number of variables in this encoding is |S| + |V |. In particular, we
are often interested in systems with at least thousands of states. The number of variables is
therefore often too large for SMT-solvers dealing with non-linear real arithmetic. However,
many of the variables are auxiliary variables that encode the probability to reach target states
from each individual state. We can get rid of these variables by replacing the full equation
system by the solution function (Definition 10).

Definition 20 (Solution function formula) Let D be a pMC, ϕ = P∼λ(♦T ), and R a region.
The solution function formula10 is given by:

f rD,T � λ ∧ Φ(R).

Corollary 1 The solution function formula is unsatisfiable iff D, R |� ϕ.

Example 29 We consider the same scenario as in Example 27. The solution function is given
in Example 13. The solution function formula is:

1 − p + p · q > 0.4 ∧ Φ(R).

By construction, the equation system formula and the solution function formula for pMC D
and reachability property ϕ are equisatisfiable.

6.2 Existentially quantified formula for parametric MDPs

Wecan also utilise anSMTsolver to tackle the verificationproblemonpMDPs. For parametric
MDPs, we distinguish between the angelic and the demonic case, cf. Definition 14. We use
the fact that optimal strategies for unbounded reachability objectives are memoryless and
deterministic [121].

10 Remark 10 applies also here.
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6.2.1 Demonic strategies

The satisfaction relation |�d is defined by two universal quantifiers, ∀u∀σ . . . |� ϕ. We
therefore try to refute satisfiability of ∃u∃σ . . . |� ¬ϕ. Put in a game-theoretical sense, the
same player can choose both the parameter instantiation u and the strategy σ to resolve the
non-determinism. We generalise the set of linear equations from the pMC to an encoding for
pMDPs, where we define a disjunction over all possible nondeterministic choices:

xs = 0 ∀s ∈ ¬♦T (9)

xs = 1 ∀s ∈ T (10)
∨

α∈Act(s)

(
xs =

∑

s′∈S
P(s, α, s′) · xs′

)
∀s ∈ ♦T \ T . (11)

Wedenote the conjunction of (9)–(11) asΦd(M) for pMDPM11. Instead of a single equation
for the probability to reach the target from state s, we get one equation for each action. The
solver can now freely choose which (memoryless deterministic) strategy it uses to refute the
property.

Definition 21 (Demonic equation system formula) Let M be a pMDP, ϕ = P≤λ(♦T ), and
R a region. The demonic equation system formula is given by:

Φd(M) ∧ xsI > λ ∧ Φ(R).

Theorem 2 The demonic equation system formula is unsatisfiable iff M, R |�d ϕ.

Example 30 LetM be the pMDP from Fig. 11b. Let R, ϕ be as in Example 27. The demonic
equation system formula is

Φd(M) ∧ x0 > 0.4 ∧ Φ(R)

with Φ(R) as before, and

Φd(M) =
((
x0 = p · x1 + (1−p) · x2 ∨ x0 = x2

) ∧
x1 = q · x2 + (1−q) · x3 ∧
x2 = 1 ∧ x3 = 0

)
.

Similarly, when using the (potentially exponential) set of solution functions, we let the
solver choose:

Definition 22 (Demonic solution function formula) Let M be a pMDP, ϕ = P∼λ(♦T ), and
R a region. The demonic solution function formula is given by:

∨

σ∈StrM
f rMσ ,T � λ ∧ Φ(R).

Corollary 2 The demonic solution function formula is unsatisfiable iff M, R |�d ϕ.

As the set of solution functions can be exponential, the demonic solution function formula
can grow exponentially.

11 Recall again Remark 10.
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Example 31 The demonic solution function formula forM, ϕ, R as in Example 30, is given
by:

(
1 > 0.4 ∨ 1 − p + p · q > 0.4

)
∧ Φ(R).

6.2.2 Angelic strategies

The satisfaction relation |�a has two different quantifiers, ∀u∃σ . . . |� ϕ. Again, we equiv-
alently try to refute the satisfiability of ∃u∀σ . . . |� ¬ϕ. The quantifier alternation can be
circumvented by lifting the linear programming (LP) formulation for MDPs [121], where for
each nondeterministic choice an upper bound on the probability variables xs is obtained:

xs = 0 ∀s ∈ ¬♦T (12)

xs = 1 ∀s ∈ T (13)
∧

α∈Act(s)

(
xs ≤

∑

s′∈S
P(s, α, s′) · xs′

)
∀s ∈ ♦T \ T . (14)

Intuitively, the conjunction in constraint (14) eliminates the freedom of choosing any strategy
from the solver and forces it to use the strategy that minimises the reachability probability.
This means that the constraint system is only satisfiable if all strategies violate the probability
bound. We denote the conjunction of (12)–(14) asΦa(M). Notice that, as for parameter-free
MDPs, the optimisation objective of the LP formulation can be substituted by a constraint
on probability in the initial state.

Definition 23 (Angelic equation system formula) Let M be a pMDP, ϕ = P≤λ(♦T ), and R
a region. The angelic equation system formula is given by:

Φa(M) ∧ xsI > λ ∧ Φ(R).

Theorem 3 The angelic equation system formula is unsatisfiable iff M, R |�a ϕ.

Example 32 Let M, ϕ, R as in Example 30. The angelic equation system formula is given
by

Φa(M) ∧ x0 > 0.4 ∧ Φ(R)

with

Φa(M) =
((
x0 ≤ p · x1 + (1−p) · x2 ∧ x0 ≤ x2

) ∧
x1 ≤ q · x2 + (1−q) · x3 ∧
x2 = 1 ∧ x3 = 0

)
.

When using the set of solution functions, all strategies have to be considered. Again, for
most pMDPs, this set is prohibitively large.

Definition 24 (Angelic solution function formula) LetM be a pMDP, ϕ = P≤λ(♦T ), and R
a region. The angelic solution function formula is given by:

∧

σ∈StrM
f rMσ ,T > λ ∧ Φ(R).
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Fig. 12 A pMC D and its substitution subR(D) and its relaxation rel(D)

Corollary 3 The angelic solution function formula is unsatisfiable iff M, R |�a ϕ.

Example 33 The angelic solution function formula for M, ϕ, R as in Example 30 is given
by:

(
1 > 0.4 ∧ 1 − p + p · q > 0.4

)
∧ Φ(R).

7 Model-checking-based region verification of parametric MCs

This section discusses an abstraction (and refinement) procedure for region verification of
pMCs. Intuitively, in order to bound the probability in a region from above, we bound the
value induced by any instantation from above. We aim to do this by finding an instantiation
that maximises the reachability probability in the region. This problem is particularly hard,
as there are dependencies between the different parameters:

Example 34 Consider the pMC D in Fig. 12a—repeating Fig. 5c— and region R =
[1/10, 4/5] × [2/5, 7/10]. We again aim to reach s3. We make two observations: s4 is the only
state from which we cannot reach s3, furthermore, s4 is only reachable via s2. Hence, it is
best to avoid s2. From state s0, it is thus beneficial if the transition probability to s2 is as
small as possible. Equivalently, it is beneficial if p is as large as possible, as this minimises
the probability of reaching s2 and as p does not occur elsewhere. Now we consider state s1:
As we want to reach s3, the value of q should be preferably low. However, q occurs also at
transitions leaving s2. From s2, q should be assigned a high value as we want to avoid s4. In
particular, the optimal value for q depends on the probability that we ever visit s2, which is
directly influenced by the value of p.

In a nutshell, the abstraction we propose in this section ignores the dependencies between
the same occurence of a parameter. Conveniently, the abstraction transforms a pMC
into an (parameter-free!) MDP whose minimal (maximal) reachability probability under-
approximates (over-approximates) the reachability probability of the pMC. This result is
formalised in Theorem 5, below.

Example 35 Consider the pMC in Fig. 12a and a region R = [1/10, 4/5] × [2/5, 7/10]. The
method creates theMDP in Fig. 12b, where different types of arrows reflect different actions.
The MDP is created by adding in each state two actions: One reflecting the lower bound of
the parameter range, one reflecting the upper bound. Model checking on this MDP yields a
maximal probability of 47/60. From this result, we infer that maxu∈R PrD[u](♦T ) ≤ 47/60.
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The essence of this construction is to consider parameter values as a local, discrete choice
that we can capture with nondeterminism. To support the discretisation, we must ensure that
the optimal values are taken at the bounds of the region. While this is not true in general due
to the nonlinearity of the solution function, creating a suitable over-approximation, called
the relaxation, enforces this property, as we show in Theorem 4, also below.

In the remainder of this section, we first clarify helpful assumptions on the type of pMCs
we support in Sect. 7.1. We then construct so-called relaxed pMCs in Sect. 7.2. In Sect. 7.3,
we translate relaxed pMCs to parameter-free MDPs to allow off-the-shelf MDP analysis for
region verification of pMCs.

7.1 Preliminaries

We formalise the perspective that underpins our approach to region verification and introduce
some assumptions.

7.1.1 A perspective for region verification

The probability PrD(♦T ) can be expressed as a rational function f = g1/g2 with polynomials
g1, g2 due toDefinition 10. Recall that we assume region R to be graph preserving. Therefore,
g2[u] �= 0 for all u ∈ R and f is continuous on any closed region R. Hence, there is an
instantiation u ∈ R that induces the maximal (or minimal) reachability probability:

sup
u∈R

PrD[u](♦T ) = max
u∈R PrD[u](♦T ) and inf

u∈R Pr
D[u](♦T ) = min

u∈R PrD[u](♦T ).

To infer that R is accepting (i.e. all instantiations u ∈ R induce probabilities at most λ), it
suffices to show that the maximal reachability probability over all instantiations is at most λ:

D, R |� P≤λ(♦T ) ⇐⇒ (
max
u∈R PrD[u](♦T )

) ≤ λ, and

D, R |� ¬P≤λ(♦T ) ⇐⇒ (
min
u∈R PrD[u](♦T )

)
> λ.

Oneway to determine themaximum reachability probability is to first determinewhich u ∈ R
induces the maximum, and then compute the probability on the instantiated model D[u].
While we only discuss upper-bounded specifications here, the results can be analogously
described for lower-bounded specifications.

Example 36 Consider D depicted in Fig. 11a, ϕ = P≤9/10(♦{s2}), and R′ = {(p, q) ∈
[2/5, 3/5]× [1/5, 1/2]} as in Example 27. The maximum is obtained at u = (2/5, 1/2) (via some
oracle). We have D[u] |� P≤9/10(♦{s2}), and thus, D, R′ |� P≤9/10(♦{s2}).
However, constructing an oracle that determines the u that induces the maximum is difficult
in general. We focus on the essential idea an therefore make the following assumptions
throughout the rest of this section:

Assumption 1 – We restrict the (graph-preserving) region R to be (i) rectangular, and
(ii) closed. This restriction makes the bounds of the parameters independent of other
parameter instantiations, and ensures that the maximum over the region exists.

– We restrict the pMC D to be locally monotone—explained in Sect. 7.1.2—to exclude
difficulties from analysing single transitions.
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The first assumption can be a nuisance. In particular, it is not always clear how to create an
adequate closed region from an open region. The second assumption is very mild and can be
accomodated for using adequate preprocessing [94, Section 5.1] that introduced additional
states.

7.1.2 Locally monotone pMCs

Recall that the solution function is nonlinear. We aim to approximate this u and therefore
want to exploit the structure of the pMC. Therefore, we want to make an assumption on the
transition relation.

Example 37 Consider a three-state pMC where the probability from initial state sI to target
state t is a non-linear, non-monotone transition function, as, e.g., the transition probability
from s0 to s3 of the pMC in Fig. 9f. Finding themaximum requires an analysis of the derivative
of the solution function, and is (approximately) as hard as the exact verification problem.

Instead, we assumemonotonic transition probabilities, and consider a slightly restricted class
of pMCs.

Definition 25 (Locally monotone pMCs) A pMC D = (S, V , sI ,P) is locally monotone iff
for all s ∈ S there is a multilinear polynomial gs ∈ Q[V ] satisfying

P(s, s′) ∈ { f/gs | f ∈ Q[V ] is multilinear}
for all s′ ∈ S.

Locally monotone pMCs include most pMCs from the literature [122]12. Examples of the
egligible transition probabilities are p, pq, 1/p and their complements formed by 1 − p etc.

Thanks to monotonicity, for a locally monotone pMC D = (S, V , sI ,P), and a closed
rectangular region R we have that for all s, s′ ∈ S :

max
u∈R P(s, s′) = max

u∈B(V )
P(s, s′)

where B(V ) = {u | ∀p ∈ V .u(p) ∈ BR(p)}, i.e., all maxima of the individual transi-
tion probabilities are attained at the bounds of the region. However, the restriction to local
monotonicity does not immediately overcome the challenge of constructing an oracle. The
resulting solution function may still be highly nonlinear. In particular, Example 34 uses a
locally monotone pMC and a closed rectangular region. However, as the example indicates,
trade-offs in locally monotone pMCs occur due to dependencies where parameters occur at
multiple states.

7.2 Relaxation

The idea of our approach, inspired by [30], is to drop the aforementioned dependencies
between parameters by means of a relaxation of the pMC. We want to highlight that this
relaxed pMC is very similar to so-called interval MCs, a detailed discussion is given in [94,
Section 5.1.1.3]. Intuitively, the relaxation rel(D) is a pMC that arises from D to a pMC
with the same state space but an updated transition relation. In particular, it introduces a

12 It even includes the embedded pMCs of parametric continuous-time Markov chains with multilinear exit
rates.
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fresh copy of every parameter in every state, thereby eliminating parameter dependencies
between different states (if any). This step simplifies finding an optimal instantiation (in the
relaxation). However, the set of instantiated pMCs grows: some of the instantiations cannot
be obtained from the original pMC. In this subsection, we first formalize the relaxation, then
clarify the relation between properties being satisfied on the pMC and properties satisfied on
the relaxation. We finish the subsection by discussing how to efficiently analyze a relaxed
pMC.

Definition 26 (Relaxation) The relaxation of pMC D = (S, V , sI ,P) is the pMC
rel(D) = (S, relD(V ), sI ,P ′) with relD(V ) = {psi | pi ∈ V , s ∈ S} and P ′(s, s′) =
P(s, s′)[p1, . . . , pn/ps1, . . . , psn].

We extend an instantiation u for D to the relaxed instantiation relD(u) for rel(D) by
relD(u)(psi ) = u(pi ) for every s. We have that for all u,D[u] = rel(D)[relD(u)]. We lift the
relaxation to regions such that B(psi ) = B(pi ) for all s, i. e., relD(R) =×psi ∈relD(V ) I (pi ).
We drop the subscript D, whenever it is clear from the context.

Example 38 Figure 12c depicts the relaxation rel(D) of the pMC D from Fig. 12a. For
R = [1/10, 4/5] × [2/5, 7/10] and u = (4/5, 3/5) ∈ R from Example 19, we obtain
rel(R) = [1/10, 4/5] × [2/5, 7/10] × [2/5, 7/10] and rel(u) = (4/5, 3/5, 3/5). An instantiation
rel(D)[rel(u)] corresponds to D[u] as depicted in Fig. 5d. The relaxed region rel(R) con-
tains also instantiations, e.g., (4/5, 1/2, 3/5) which are not realisable in R.

For a pMC D and a graph-preserving region R, relaxation increases the set of possible
instantiations: {D[u] | u ∈ R} ⊆ {rel(D)[u] | u ∈ rel(R)}. Thus, the maximal reachabil-
ity probability over all instantiations of D within R is bounded by the maximum over the
instantiations of rel(D) within rel(R).

Lemma 3 For pMC D and region R:

max
u∈R

(
PrD[u](♦T )

) = max
u∈R

(
Prrel(D)[rel(u)](♦T )

) ≤ max
u∈rel(R)

(
Prrel(D)[u](♦T )

)
.

Consequently, if rel(D) satisfies a reachability property, so does D.

Corollary 4 For pMC D and region R:

max
u∈rel(R)

(
Prrel(D)[u](♦T )

) ≤ λ implies D, R |� P≤λ(♦T ).

We now formalise the earlier observation:Without parameter dependencies, finding opti-
mal instantiations in a pMC is simpler. Although rel(D) has (usually) more parameters than
D, finding an instantiation u ∈ rel(R) that maximises the reachability probability is simpler
than in u ∈ R: For any psi ∈ rel(V ), we can in state s pick a value in I (psi ) that maximises the
probability to reach T from state s. There is no (negative) effect for the reachability proba-
bility at the other states as psi only occurs at s. Optimal instantiations can thus be determined
locally (at the states).

Furthermore, as both D is locally monotone, and there are no parameter dependencies,
the maximum reachability probability is relatively easy to find: We only need to consider
instantiations u that set the value of each parameter to either the lowest or highest possible
value, i. e., u(psi ) ∈ B(psi ) for all p

s
i ∈ rel(V ):
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Theorem 4 Let D be a pMC with states S and T ⊆ S and R a region subject subject to
Assumption 1. There exists an instantiation u ∈ rel(R) satisfying u(psi ) ∈ B(psi ) for all
psi ∈ rel(V ) such that:

Prrel(D)[u](♦T ) = max
v∈rel(R)

Prrel(D)[v](♦T ).

To prove this statement, we consider an instantiation which assigns a value to a parameter
strictly between its bounds. Any such instantiation can be modified such that all parame-
ters are assigned to its bound, without decreasing the induced reachability probability. The
essential statement is the monotonicity of a parameter without any further dependencies. The
number of instantiations that must be analysed is therefore finite, compared for infinitely
many candidates for non-relaxed pMCs.

Lemma 4 Let D be a locally monotone pMC with a single parameter p that only occurs at
one state s ∈ S, i.e. P(ŝ, s′) ∈ [0, 1] for all ŝ, s′ ∈ S with ŝ �= s. For region R and T ⊆ S,
the probability PrD(♦T ) is monotonic on R.

Proof W.l. o. g. let s /∈ T be the initial state ofD and let T be reachable from s. Furthermore,
let U denote the standard until-modality and ¬T denote S \ T . Using the characterisation
of reachability probabilities as linear equation system (cf. [13]), the reachability probability
w. r. t. T (from the initial state) in D is given by:

PrD(♦T )

=
∑

s′∈S
P(s, s′) · PrDs′ (♦T )

=
∑

s′∈S
P(s, s′) ·

(
PrDs′ (¬s U T ) + PrDs′ (¬T U s) · PrD(♦T )

)

=
∑

s′∈S
P(s, s′) · PrDs′ (¬s U T ) +

∑

s′∈S
P(s, s′) · PrDs′ (¬T U s) · PrD(♦T ).

Transposing the equation yields

PrD(♦T ) =
∑

s′∈S P(s, s′) · PrDs′ (¬s U T )

1 − ∑
s′∈S P(s, s′) · PrDs′ (¬T U s)

.

The denominator can not be zero as T is reachable from s. Since D is locally monotone, we
have P(s, s′) = fs′/gs for s′ ∈ S and multilinear functions fs′ , gs ∈ Q[p]. We obtain:

PrD(♦T ) =
∑

s′∈S fs′ ·
constant︷ ︸︸ ︷

PrDs′ (¬s U T )

gs − ∑
s′∈S fs′ · PrDs′ (¬T U s)

︸ ︷︷ ︸
constant

.

Hence, PrD(♦T ) = f1/ f2 is a fraction of two multilinear functions f1, f2 ∈ Q[p] and
therefore monotonic on R. ��
Proof of Theorem 4 We prove the statement by contraposition. Let u ∈ rel(R) with
Prrel(D)[u](♦T ) = maxv∈rel(R)

(
Prrel(D)[v](♦T )

)
. For the contraposition, assume that there

exists a parameter p ∈ rel(V ) with u(p) ∈ IR(p) \ BR(p) such that all instantiations
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u′ ∈ rel(R) that set p to a value in BR(p) induce a smaller reachability probability, i.e.
u′(p) ∈ BR(p) and u′(q) = u(q) for q �= p implies

Prrel(D)[u′](♦T ) < Prrel(D)[u](♦T ).

Consider the pMC D̂ = (S, {p}, s, P̂) with the single parameter p that arises from rel(D) by
replacing all parameters q ∈ rel(V ) \ {p} with u(q). We have D̂[u] = rel(D)[u]. Moreover,

PrD̂(♦T ) is monotonic on I (p) according to Lemma 4. Thus, there is an instantiation u′ ∈
rel(R) with u′(p) ∈ BR(p) and u′(q) = u(q) for q �= p satisfying

PrD̂[u](♦T ) ≤ PrD̂[u′](♦T ) = Prrel(D)[u′](♦T ).

This contradicts our assumption for parameter p. ��

7.3 Replacing parameters by nondeterminism

In order to determine maxu∈rel(R) Prrel(D)[u](♦T ), it suffices to make a discrete choice over
instantiations u : rel(V ) → R with u(psi ) ∈ B(pi ). This choice can be made locally at every
state, which brings us to the key idea of constructing a (non-parametric) MDP out of the
pMC D and the region R, where nondeterministic choices represent all instantiations that
have to be considered. In the following, it is convenient to refer to the parameters in a given
state s by:

Vs = { p ∈ V | p occurs in D(s, s′) for some s′ ∈ S }.

Definition 27 (Substitution (pMCs)) For pMC D = (S, V , sI ,P) and region R, let the MDP
subR(D) = (S, sI ,Actsub,Psub) with

– Actsub = ⊎
s∈S Acts where

Acts = {u : Vs → R | ∀p ∈ Vs . u(p) ∈ B(p) }, and

–

Psub(s, u, s′) =
{
P(s, s′)[u] if u ∈ Acts,

0 otherwise.

be the (parameter-)substitution of D and R.

Thus, choosing action u in s corresponds to assigning one of the extremal values B(pi ) to
the parameters psi . The number of outgoing actions from state s is therefore 2|Vs |.

Example 39 Consider pMC D—depicted in Fig. 12a—with R = [1/10, 4/5] × [2/5, 7/10] as
before. The substitution of D and R is shown in Fig. 13a. In D, each outgoing transition
of states s0, s1, s2 is replaced by a nondeterministic choice in MDP subR(D). That is, we
either pick the upper or lower bound for the corresponding variable. The solid (dashed) lines
depict transitions that belong to the action for the upper (lower) bound. For the states s3 and
s4, the choice is unique as their outgoing transitions in D are constant. Figure 13b depicts
the MC subR(D)σ which is induced by the strategy σ on MDP subD(R) that chooses the
upper bounds at s0 and s2, and the lower bound at s1. Notice that subR(D)σ coincides with
rel(D)[v] for a suitable instantiation v, as depicted in Fig. 12c.
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Fig. 13 Illustrating
parameter-substitution

The substitution encodes the local choices for a relaxed pMC.That is, for an arbitrary pMC,
there is a one-to-one correspondence between strategies σ in the MDP subrel(R)(rel(D)) and
instantiations u ∈ rel(R) for rel(D) with u(psi ) ∈ B(pi ). For better readability, we will omit
the superscripts for sets of strategies Str. Combining these observations with Theorem 4,
yields the following.

Corollary 5 For a pMC D, a graph-preserving region R, and a set T of target states of D:

max
u∈R PrD[u](♦T ) ≤ max

σ∈StrPr
subrel(R)(rel(D))σ (♦T )

min
u∈R PrD[u](♦T ) ≥ min

σ∈StrPr
subrel(R)(rel(D))σ (♦T ).

Furthermore, the nondeterministic choices introduced by the substitution only depend on the
values B(pi ) of the parameters pi in R. Since the ranges of the parameters psi in rel(R) agree
with the range of pi in R, we have

subrel(R)(rel(D)) = subR(D) for all graph-preserving R. (15)

A direct consequence of these statements yields:

Theorem 5 LetD be a pMC, R a graph-preserving region, ϕ a reachability property, subject
to Assumption 1. Then it holds:

∀σ ∈ Str. subR(D)σ |� ϕ �⇒ D, R |� ϕ ∧
∀σ ∈ Str. subR(D)σ |� ¬ϕ �⇒ D, R |� ¬ϕ.

Hence, we can deduce via Algorithm 4 whether D, R |� ϕ by applying standard techniques
for MDP model checking to subR(D), such as value- and policy iteration, cf. [13, 121]. We
stress that while the relaxation is key for showing the correctness, equation (15) proves that
this step does not actually need to be performed.

Example 40 Reconsider Example 39. From subR(D) in Fig. 13a, we can derive
maxσ∈Str PrsubR(D)σ (♦T ) = 47/60 and, by Theorem 5, D, R |� P≤4/5(♦T ) follows. Despite
the large region R, we establish a non-trivial upper bound on the reachability probability
over all instantiations in R.

If the over-approximation by region R is too coarse for a conclusive answer, region R
can be refined, meaning that we split R into a set of smaller regions13 [30]. We discuss

13 Strictly speaking, these regions will overlap as we always consider closed regions. This is not a concern
for correctness. When splitting, we may take this information into account, see Sect. 9.2.2.
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Algorithm 4 Parameter lifting

reachability(pMC D, T ⊆ S, region R, specification P≤λ(♦T ) )
// Check whether D, R |� P≤λ(♦T )

Construct subR(D)

if ∀σ ∈ Str subR(D) |� P≤λ(♦T ) then
// via standard MDP model checking procedures
return true

else if ∀σ ∈ Str subR(D) |� P>λ(♦T ) then
// via standard MDP model checking procedures
return false

else
return unknown

splitting strategies in Sect. 9. Intuitively, as more potential parameter values are excluded
by reducing the region size, the actual choice of the parameter value has less impact on
reachability probabilities. The smaller the region gets, the smaller the over-approximation:
The optimal instantiation on the pMCD is over-approximated by some strategy on subR(D).
The approximation error originates from choices where an optimal strategy on subR(D)

chooses actions u1 and u2 at states s1 and s2, respectively, with u1(p
s1
i ) �= u2(p

s2
i ) for

some parameter pi , and therefore intuitively disagree on its value. The probability mass that
is affected by these choices decreases the smaller the region is. For infinitesimally small
regions, the error from the over-approximation vanishes, as the actions for the upper and
the lower bound of a parameter become equal up to an infinitesimal. More formally, the
difference in reachability probability between two MCs corresponding to instantiations in a
region tends is bounded and tends to zero if the region gets smaller [45, Lemma 9].

7.4 Expected reward properties

The reduction of bounding reachability probabilities on pMCs to off-the-shelf MDP model
checking can also be applied to bound expected rewards. To see this, we have to extend the
notion of locally monotone parametric Markov chains.

Definition 28 (Locally monotone reward pMC) A pMC D = (S, V , sI ,P) with reward
function rew : S → Q(V ) is locally monotone iff for all s ∈ S, there is a multilinear
polynomial gs ∈ Q[V ] with

{rew(s),P(s, s′) | s′ ∈ S} ⊆ { f/gs | f ∈ Q[V ] multilinear} .

We now generalise relaxation and substitution to the reward models, and obtain analogous
results.

Definition 29 (Substitution for reward pMCs) Let D = (S, V , sI ,P) be a pMC, rew : S →
Q(V ) a reward function, T ⊆ S a set of target states, and R a region. For s ∈ S, let

V rew
s = Vs ∪ {pi ∈ V | pi occurs in rew(s)}.

The MDP subrewR (D) = (S, sI ,Actrewsub,P rew
sub) with reward function rewsub is the (parameter-

)substitution of D, rew on R, where

– Actrewsub and P rew
sub are analogous to Definition 27, but over V rew

s .
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– rewsub is given by:

(s, u) �→
{
rew(s)[u] if u ∈ Actrews ,

0 otherwise,

where Actrews is defined analogously to Acts in Definition 27.

The reward approximation of a pMC can be used to identify regions as accepting or rejecting
for expected reward properties.

Theorem 6 Let D be a pMC with locally monotone rewards rew, R a region, and ϕ an
expected reward property, subject to Assumption 1:

∀σ ∈ Str. subrewR (D) |� ϕ implies D, R |� ϕ and

∀σ ∈ Str. subrewR (D) |� ¬ϕ implies D, R |� ¬ϕ.

The proof is analogous to the proof of Theorem 5.

8 Model-checking-based region verification of parametric MDPs

In the previous section, we approximated reachability probabilities in (locally-monotone)
pMCs by considering the substitution MDP, see Definition 27. The non-determinism in
the MDP encodes the finitely many parameter valuations that approximate the reachability
probabilities in the pMC. By letting an adversary player resolve the non-determinism in the
MDP, we obtain bounds on the reachability probabilities in the pMC. These bounds can
efficiently be computed by standard MDP model checking.

In this section, we generalise the approach to pMDPs, which already contain non-
determinism. The result naturally leads to a 2-player stochastic game: One player controls the
nondeterminism inherent to the MDP, while the other player controls the (abstracted) param-
eter values. Letting the two players adequately minimise and/or maximise the reachability
probabilities in the SG yields bounds on theminimal (andmaximal) reachability probabilities
in the pMDP. For example, if the player for the original non-determinism maximises and the
parameter player minimises, we obtain a lower bound on the maximal probability. These
bounds can efficiently be computed by standard SG model checking procedures.

In our presentation below, we discuss the interplay of the two sources of non-determinism.
In particular, we show how the generalisation of the method yields an additional source of
(over-)approximation. Then, we formalise the construction of the substitution with nonde-
terminism, analogous to the pMCs from the previous section. In particular, Definition 30
is analogous to Definition 27 and Theorem 7 is analogous to Theorem 5. We do not repeat
relaxation, described in Sect. 7.2, as—as also discussed in the previous section—it is not a
necessary ingredient for the correctness of the approach.

8.1 Two types of approximation

In the following, let M = (S, V , sI ,Act,P) be a pMDP and R a graph-preserving, rectan-
gular, closed region.
Demonic strategies We analyse R with respect to the demonic relation |�d . We have:

M, R |�d ϕ ⇐⇒ ∀u ∈ R. ∀σ ∈ StrM. M[u]σ |� ϕ.
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Fig. 14 Illustration of the substitution of a pMDP

The two universal quantifiers can be reordered, and in additionM[u]σ = Mσ [u]. We obtain:

M, R |�d ϕ ⇐⇒ ∀σ ∈ StrM. ∀u ∈ R. Mσ
︸︷︷︸
a pMC

[u] |� ϕ

Intuitively, the reformulation states that we have to apply pMC region verification on Mσ

and R for all σ ∈ StrM. We nowwant to employ parameter lifting for each strategy. Thus, we
want to consider the verification of the substituted pMCs subR(Mσ ). As these substituted
pMCs share most of their structure, the set of all such substituted pMCs can be concisely
represented as an SG, in which both players cooperate (as witnessed by the same quantifiers).
In the scope of this paper, an SG with cooperating players can be concisely represented as
an MDP. Consequently, for the demonic relation, pMDP verification can be approximated
by MDP model checking.

Angelic strategies We now turn our attention to the angelic relation |�a , cf. Definition 14.

M, R |�a ϕ ⇐⇒ ∀u ∈ R. ∃σ ∈ StrM. M[u]σ |� ϕ.

Here, we cannot simply reorder the quantifiers. However:

∃σ ∈ StrM. ∀u ∈ R. Mσ [u] |� ϕ �⇒ M, R |�a ϕ.

Now, the left-hand side expresses again that we want to do region verification for pMCs
induced by a strategy, as in the demonic case, and that we likewise want to represent by a
stochastic game. As witnessed by the quantifier alternation, this SG does not reduce to an
MDP; the two players have opposing objectives. Nevertheless, we can efficiently analyse this
SG (with a variant of value iteration), and thus the left-hand side of the implication above.

Observe that the over-approximation actually computes a robust strategy, as discussed in
Remark 7. In particular, we now have two sources of approximation:

– The approximation that originates from dropping parameter dependencies (as also in the
demonic case).

– The application of the substitution of parameters with non-determinism on robust strate-
gies rather than of the actual angelic relation.

Both over-approximations vanish with declining region size.

8.2 Replacing parameters by nondeterminism

Example 41 Consider the pMDP M in Fig. 14a, where the state s has two enabled actions
α and β. The strategy σ given by {s �→ α} applied to M yields a pMC, which is subject to
substitution, cf. Fig. 14b.
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The parameter substitution of a pMDP (cf. Fig. 14a) yields an SG—as in Fig. 14d. It rep-
resents, for all strategies of the pMDP, the parameter-substitution (as in Definition 27) of
each induced pMC. To ensure that in the SG each state can be assigned to a unique player,
we split states in the pMDP which have both (parametric) probabilistic branching and non-
determinism, such that states have either probabilistic branching or non-determinism, but not
both. The reformulation is done as follows: After each choice of actions, auxiliary states are
introduced, such that the outcome of the action becomes deterministic and the probabilistic
choice is delayed to the auxiliary state. This construction is similar to the conversion of
Segala’s probabilistic automata into Hansson’s alternating model [127]. More precisely, we

– split each state s ∈ S into {s} � {〈s, α〉 | α ∈ Act(s)},
– add a transition with probability one for each s ∈ S and α ∈ Act(s). The transition leads

from s to 〈s, α〉, and
– move the probabilistic choice at s w. r. t. α to 〈s, α〉.

Applying this to the pMDP from Fig. 14a, we obtain the pMDP M′ in Fig. 14c, where
the state s has only nondeterministic choices leading to states of the form 〈s, α〉 with only
probabilistic choices. The subsequent substitution on the probabilistic states yields the SG
subR(M′), where one player represents the nondeterminism of the original pMDPM, while
the other player decides whether parameters should be set to their lower or upper bound in
the region R. For the construction, we generalise Vs to state-action pairs: For a pMDP, a state
s and action α, let

Vs,α = { p ∈ V | p occurs in P(s, α, s′) for some s′ ∈ S }.
Definition 30 (Substitution (pMDPs)) For pMDPM = (S, V , sI ,Act,P) and region R, let
SG

subR(M) = (S© � S�, sI ,Actsub,Psub)

with

– S© = S
– S� = {〈s, α〉 | α ∈ Act(s)},
– Actsub = Act � ( ⊎

〈s,α〉∈S� Actαs
)
where

Actαs = {u : Vs,α → R | u(p) ∈ B(p) ∀p ∈ Vs,α},
and,

–

Psub(t, β, t ′) =

⎧
⎪⎨

⎪⎩

1 if t ∈ S©, β ∈ Act(t), t ′=〈t, β〉 ∈ S�,

P(s, α, t ′)[β] if t=〈s, α〉 ∈ S�, β ∈ Actαs , t ′ ∈ S©,

0 otherwise.

be the (parameter-)substitution of M and R.

We relate the SG subR(M) under different strategies for player © with the substitution in
the strategy-induced pMCs of M. We observe that the strategies for player © in subR(M)

coincide with strategies in M. Consider the induced MDP (subR(M))σ with a strategy σ

for player ©. The MDP (subR(M))σ is obtained from subR(M) by erasing transitions not
agreeing with σ . In (subR(M))σ player ©-state have a single enabled action, while player
�-states have multiple available enabled actions.
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Example 42 Continuing Example 41, applying strategy σ to subR(M) yields (subR(M))σ ,
see Fig. 14e. The MDP (subR(M))σ matches the MDP subR(Mσ ) apart from intermediate
states of the form 〈s, α〉: The outgoing transitions of s in subR(Mσ ) coincide with the
outgoing transitions of 〈s, α〉 in (subR(M))σ , where 〈s, α〉 is the unique successor of s.
The following corollary formalises that (subR(M))σ and subR(Mσ ) induce the same reach-
ability probabilities.

Corollary 6 For pMDP M, graph-preserving region R, target states T ⊆ S, and strategies
σ ∈ StrsubR(M)

© and ρ ∈ StrsubR(Mσ ), it holds that

Pr(subR(Mσ ))ρ (♦T ) = PrsubR(M)σ,ρ̂

(♦T )

with ρ̂ ∈ StrsubR(M)

� satisfies ρ̂(〈s, σ (s)〉) = ρ(s).

Instead of performing the substitution on the pMC induced byM and σ , we can perform the
substitution on M directly and preserve the reachability probability.

Consequently, and analogously to the pMC case (cf. Theorem 5), we can derive whether
M, R |�♣ ϕ by analysing a stochastic game. For this, we consider various standard variants
of model checking on stochastic games.

Definition 31 (Model-relation on SGs) For an SG G, property ϕ, and quantifiersQ1,Q2, we
define G |�Q1,Q2 ϕ as:

Q1σ© ∈ StrsubR(M)
© . Q2σ� ∈ StrsubR(M)

� Gσ©,σ� |� ϕ

The order of players, for these games, does not influence the outcome [48, 128].

Theorem 7 LetM be a pMDP, R a region, and ϕ a reachability property, subject to Assump-
tion 114. Then:

subR(M) |�∀,∀ ϕ implies M, R |�d ϕ, and

subR(M) |�∃,∀ ϕ implies M, R |�a ϕ.

Proof Weonly prove the second statement using ϕ = P>λ(♦T ), other reachability properties
are similar. A proof for the (simpler) first statement can be derived in an analogous manner.
We have that M, R |�a P>λ(♦T ) iff for all u ∈ R there is a strategy σ of M for which the
reachability probability in the MC Mσ [u] exceeds the threshold λ, i. e.,

M, R |�a P>λ(♦T ) ⇐⇒ min
u∈R max

σ∈StrM
PrM

σ [u](♦T ) > λ.

A lower bound for this probability is obtained as follows:

min
u∈R max

σ∈StrM
(
PrM

σ [u](♦T )
)

≥ max
σ∈StrM

min
u∈R

(
PrM

σ [u](♦T )
)

∗≥ max
σ∈StrM

min
ρ∈StrsubR (Mσ )

(
Pr(subR(Mσ ))ρ (♦T )

)

∗∗= max
σ∈StrsubR (M)

©
min

ρ∈StrsubR (M)

�

(
PrsubR(M)σ,ρ

(♦T )
)
.

14 Straightforwardly lifting locally monotone pMCs to locally monotone pMDPs
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The inequality ∗ is due to Corollary 5. The equality ∗∗ holds by Corollary 6. Then:

subR(M) |�∃,∀
P>λ(♦T )

⇐⇒ ∃σ ∈ StrsubR(M)
© . ∀ρ ∈ StrsubR(M)

�
Gσ,ρ |� P>λ(♦T )

⇐⇒ max
σ∈StrG©

(
min

ρ∈StrG�

(
PrG

σ,ρ

(♦T )
))

> λ

�⇒ min
u∈R max

σ∈StrM
(
PrM

σ [u](♦T )
)

> λ

⇐⇒ M, R |�a P>λ(♦T ).

��

9 Approximate synthesis by parameter space partitioning

Parameter space partitioning is our iterative approach to the approximate synthesis problem.
It builds on top of region verification, discussed above, and is, conceptually, independent of
the methods used for verification discussed later.

Parameter space partitioning is best viewed as a counter-example guided abstraction refine-
ment (CEGAR)-like [47] approach to successively divide the parameter space into accepting
and rejecting regions. The main idea is to compute a sequence

(
Ri
a

)
i of simple accepting

regions that successively extend each other. Similarly, an increasing sequence
(
Ri
r

)
i of simple

rejecting regions is computed. At the i-th iteration, Ri = Ri
a ∪ Ri

r is the covered fragment
of the parameter space. The iterative approach halts when Ri is at least c% of the entire
parameter space. Termination is guaranteed: in the limit a solution to the exact synthesis
problem is obtained as limi→∞ Ri

a = Ra and limi→∞ Ri
r = Rr .

Let us describe the synthesis loop for the approximate synthesis as depicted in Fig. 4 in
detail. In particular, we discuss how to generate candidate regions that can be dispatched to
the verifier along with a hypothesis whether the candidate region is accepting or rejecting.
We focus on rectangular regions for several reasons:

– the automated generation of rectangular regions is easier to generalise to multiple dimen-
sions,

– earlier experiments [65] revealed that rectangular regions lead to a more efficient SMT-
based verification of regions (described in Sect. 6), and

– model-checking based region verification (described in Sect. 7) requires rectangular
regions.

A downside of rectangular regions is that they are neither well-suited to approximate a region
partitioning given by a diagonal, nor to cover well-defined regions that are not rectangular
themselves.

Remark 11 In the following, we assume that the parameter space is given by a rectangular
well-defined region R. If the parameter space is not rectangular, we over-approximate R by
a rectangular region R̂ ⊇ R. If the potential over-approximation of the parameter space R̂
is not well-defined, then we iteratively approximate R̂ by a sequence of well-defined and
ill-defined15 regions. The regions in the sequence of well-defined regions are then subject

15 A region R is ill-defined if no instantiation in R is well-defined.
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Fig. 15 Parameter space
partitioning into safe and unsafe
regions

to the synthesis problem. Constructing the sequence of regions is done analogously to the
partitioning into accepting and rejecting regions.

Before we present the procedure in full detail, we first outline a naive refinement procedure
by means of an example.

Example 43 (Naive refinement loop) Consider the parametric die from Example 5. Suppose
we want to synthesise the partitioning as depicted in Fig. 2. We start by verifying the full
parameter space R against ϕ. The verifier returns false, as R is not accepting. Since R
(based on our knowledge at this point) might be rejecting, we invoke the verifier with R and
¬ϕ, yielding false too. Thus, the full parameter space R is inconsistent. We now split R
into four equally-sized regions, all of which are inconsistent. Only after splitting again, we
find the first accepting and rejecting regions. After various iterations, the procedure leads to
the partitioning in Fig. 15.

Algorithm 5 describes this naive region partitioning procedure. It takes a pSG, a region R,
a specification ϕ, and a (demonic or angelic) satisfaction relation as input. It first initialises a
(priority) queue Q with R. In each iteration, a subregion R′ of R is taken from the queue, the
counter i is incremented, and the sequence of accepted and rejected regions is updated. There
are three possibilities. Either R′ is accepting (or rejecting), and Ri

a (R
i
r ) extends R

i−1
a (Ri−1

r )
with R′, or R′ is inconsistent. In the latter case, we split R′ into a finite set of subregions that
are inserted into the queue Q. Regions that are not extended are unchanged.

The algorithmonly terminates if Ra and Rr are a finite union of hyper-rectangles.However,
the algorithm can be terminated after any iteration yielding a sound approximation. The
algorithm ensures limi→∞ Ri = R, if we order Q according to the size of the regions.
We omit the technical proof here; the elementary property is that the regions are Lebesgue-
measurable (and have a positive measure by construction).

The naive algorithm has a couple of structural weaknesses:

– It invokes the verification algorithm twice to determine that the full parameter space is
inconsistent.

– It does not provide any (diagnostic) information from a verification invocation yielding
false.

– It checks whether a region is accepting before it checks whether it is rejecting. This order
is suboptimal if the region is rejecting.
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Algorithm 5 Naive refinement loop

naive-refinement(pSG G, rectangular region R, ♣ ∈ {a, d}, specification ϕ)
i := 0
Q := {R}, Ria := ∅, Rir := ∅
while Q �= ∅ do

i := i + 1
R′ := Q.pop
if G, R′ |�♣ ϕ then

Ria := Ri−1
a ∪ R′, Rir := Ri−1

r
else if G, R′ |�♣ ¬ϕ then

Ria := Ri−1
a , Rir := Ri−1

r ∪ R′
else

Ria := Ri−1
a , Rir := Ri−1

r
Q := Q ∪ split(R′)

return Accepting region Ria , Rejecting region Rir

– If the region is inconsistent, it splits the region into 2n equally large regions. Instead, it
might be beneficial to select a smaller number of regions (only split in one dimension).

– Uninformed splitting yields many inconsistent subregions. Splitting in only one dimen-
sion even increases the number of verification calls yielding false.

In the remainder of this section, we discuss ways to alleviate these weaknesses. The
proposed improvements are based on empirical observations about the benchmarks and are
in line with the implementation in our tool PROPhESY. In particular, we tailor the heuristics
to “well-behaved” models and specifications, which reflect the benchmarks from various
domains. The notion of being well-behaved refers to

– a limited number of connected accepting and rejecting regions with smooth (albeit highly
non-linear) borders between these regions.

– a limited number of accepting (rejecting) instantiations that are close to a rejecting
(accepting) instantiations. We call instantiations that form a border between Ra and
Rr border instantiations.

The parameter space depicted in Fig. 15 is well-behaved. It features only two connected
regions, with a smooth border between them. Furthermore, the regions have a considerable
interior, or equivalently, many instantiations are not too close to the border. We remark that
we do rely on these assumptions to hold, but PROPhESY will be slow on models that are not
well-behaved.

9.1 Sampling

A simple but effective improvement is to verify an instantiated model G[u] for some instanti-
ation (a sample) u ∈ R. The verification result either reveals that the region is not accepting,
if G[u] �|�♣ ϕ, or not rejecting, if G[u] |�♣ ϕ. Two samples within a region R may suffice
to conclude that R is inconsistent. In order to quickly find inconsistent regions by sampling,
it is beneficial to seek for border instantiations. To this end, a good strategy is to start with
a coarse (random) sampling to get a first indication of border instantiations. We then select
additional instantiations by intra-/extrapolation between these samples.

Example 44 We discuss how sampling may improve the naive refinement loop as discussed
in Example 43. Fig. 16a shows a uniform sampling. Red crosses indicate that the instanti-
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Fig. 16 Parameter space partitioning in progress: Images generated by PROPhESY

Fig. 17 Creating region
candidates based on samples

ated pMC satisfies ¬ϕ, while green dots indicate that the instantiation satisfies ϕ. The blue
rectangle is a candidate region (with the hypothesis ¬ϕ, indicated by the hatching), which is
consistent with all samples.

9.2 Finding region candidates

We use the sampling results to steer the selection of a candidate region that may either be
accepting or rejecting. A simple strategy is to split regions that we found to be inconsistent
via sampling.

Example 45 Consider the parameter space with six samples depicted in Fig. 17a. After veri-
fying only six instantiated models, we conclude that the parameter space is inconsistent.

The use of samples allows to improve the naive refinement scheme as given inAlgorithm5.
This improvement is given in Algorithm 6. For each region R, we have a finite set X of
samples. For each sample u ∈ X , it is known whether G[u] |�♣ ϕ. The queue Q now
contains pairs (R, X).

In each iteration, a pair (R′, X ′)where R′ is (as before) a subregion of R is taken from the
queue. Then, we distinguish (again) three possibilities. Only when all samples in X ′ satisfy ϕ,
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Algorithm 6 Sampling-based refinement loop

sampling-refinement(pSG G, rectangular region R, ♣ ∈ {a, d}, specification ϕ)
i := 0, Q := {(R, sample(R))}, Ria := ∅, Rir := ∅
while Q �= ∅ do

i := i + 1
(R′, X ′) := Q.pop
if G, X ′ |�♣ ϕ and G, R′ |�♣ ϕ then

Ria := Ri−1
a ∪ R′, Rir := Ri−1

r
else if G, X ′ |�♣ ¬ϕ and G, R′ |�♣ ¬ϕ then

Ria := Ri−1
a , Rir := Ri−1

r ∪ R′
else

Ria := Ri−1
a , Rir := Ri−1

r
Q := Q ∪ split(R′, X ′)

return Accepting region Ria , Rejecting region Rir

it is verified whether R′ is accepting. If R′ is accepting, we proceed as before: Ri
a is extended

by R′ while Ri
r remains unchanged. In the symmetric case that all samples in X ′ refute ϕ,

we proceed in a similar way by verifying whether R′ rejects ϕ. Otherwise, R′ is split into a
finite set of subregions with corresponding subsets of X ′, and added to the queue Q. In case
the verification engine provides a counterexample, we can add this counterexample as a new
sample. We thus ensure that for all (R′, X ′) ∈ Q, u ∈ X ′ implies u ∈ R′. The algorithm can
be easily extended such that sampling is also done once a region without samples is obtained:
rather than inserting (R′,∅) into Q, we insert the entry (R′, sample(R′)).

Example 46 After several more iterations, the refinement loop started in Example 44 has
proceeded to the state in Fig. 16b. First, we see that the candidate region from Fig. 16a was
not rejecting. The verification engine gave a counterexample in form of an accepting sample
(around p �→ 0.45, q �→ 0.52). Further iterations with smaller regions had some successes,
but some additional samples were generated as counterexamples. The current blue candidate
is to be checked next. In Fig. 16c, we see a further continuation, with even smaller regions
being verified. Note thewhite box on the right border: It has been checked, but the verification
timed out without a conclusive answer. Therefore, we do not have a counterexample in this
subregion.

It remains to discuss some methods to split a region, and how we may discard some of
the constructed regions. We outline more details below.

9.2.1 How to split

Splitting of regions based on the available samples can be done using different strategies. We
outline two basic approaches. These approaches can be easily mixed and extended, and their
performance heavily depends on the concrete example at hand.

Equal splitting. This approach splits regions in equally-sized regions; the main rationale is
that this generates small regions with concise bounds (the bounds are typically powers of
two). Splitting in equally sized regions can be done recursively: One projects all samples
down to a single dimension, and splits if both accepting and rejecting samples are in the
region. The procedure halts if all samples in a region are either accepting or rejecting. The
order in which parameters are considered plays a crucial role. Typically, it is a good idea to
first split along the larger dimensions.
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Example 47 A split in equally-sized regions is depicted in Fig. 17b, where first the left region
candidate is created. The remaining region can be split either horizontally or vertically to
immediately generate another region candidate. A horizontal split in the remaining region
yields a region without any samples.

The downside of equal splitting is that the position of the splits are not adapted based on the
samples. Therefore, the number of splits might be significantly larger than necessary, leading
to an increased number of verification calls.

Growing rectangles. This approach attempts to gradually obtain a large region candidate16.
The underlying rationale is to quickly cover vast amounts of the parameter space. This
is illustrated in Fig. 17d (notice that we adapted the samples for a consistent but concise
description) where from an initial sampling a large rectangle is obtained as region candidate.

Example 48 Consider the shaded regions in Fig. 17c. Starting from vertex v = (1, 1), the
outer rectangle ismaximised to not contain any accepting samples. Taking this outer rectangle
as candidate region is very optimistic, it assumes that the accepting samples are on the border.
A more pessimistic variant of growing rectangles is given by the inner shaded region. It takes
a rejecting sample as vertex v′ such that the v and v′ span the largest region.
The growing rectangles algorithm iterates over a subset of the hyper-rectangle’s vertices: For
each vertex (referred to as anchor), among all possible sub-hyper-rectangles containing the
anchor and only accepting or only rejecting samples, the largest is constructed.

Example 49 The growing rectangles approach pessimistically takes anchor (0, 0) as anchor
and yields the candidate region in Fig. 17d.

The verification fails more often on large regions (either due to time-outs or due to the over-
approximation). Consequently, choosing large candidate regions comes at the risk of failed
verification calls, and fragmentation of the parameter space in more subregions.

Furthermore, growing rectangles requires a fall-back splitting strategy: To see why, con-
sider Fig. 15. The accepting (green) region does not contain any anchors of the full parameter
space, therefore the hypothesis for any created subregion is always rejection. Thus, no sub-
region containing a (known) accepting sample is ever considered as a region candidate.

9.2.2 Neighbourhood analysis

Besides considering samples within a region, we would like to illustrate that analysis of a
region R can and should take information from outside of R into account. First, take Fig. 17b,
and assume that the left region is indeed accepting. The second generated region contains
only rejecting samples, but it is only rejecting if all points, including all those on the border to
the left region, are rejecting. In other words, the border between the accepting and rejecting
regions needs to exactly follow the border between the generated region candidates. The latter
case does not occur often, so it is reasonable to shrink or split the second generated region.
Secondly, a sensible hypothesis for candidate regions without samples inside is helpful,
especially for small regions or in high dimensions. Instead of spawning new samples, we
take samples and decided regions outside of the candidate region into account to create a
hypothesis. Concretely, we infer the hypothesis for regions without samples via the closest
known region or sample.

16 The approach shares its rationale with the approach formerly implemented in PROPhESY [65], but is
realised slightly differently to overcome challenges for n-dimensional hyper-rectangles.
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9.3 Requirements on verification back-ends

In this section, we have described techniques for iteratively partitioning the parameter space
into accepting and rejecting regions. The algorithms rely on verifying regions (and sets of
samples) against the specification ϕ. The way in which verification is used in the iterative
parameter space partitioning scheme imposes the following requirements on the verification
back-end:

(i) The verification should work incrementally. That is to say, verification results from pre-
vious iterations should be re-used in successive iterations. Verifying different regions
share the same model (pMC or pMDP). A simple example of working incrementally is to
reuse minimisation techniques for the model over several calls. If a subregion is checked,
the problem is even incremental in a more narrow sense: any bounds etc. obtained for
the super-region are also valid for the subregion.

(ii) If the verification procedure fails, i.e. if the verifier returns false, obtaining additional
diagnostic information in the form of a counterexample is beneficial. A counterexample
here is a sample which refutes the verification problem at hand.

Thiswish list is very similar to the typical requirements that theory solvers in lazy SMT frame-
works should fulfil [23]. Therefore, SMT-based verification approaches naturally match the
wish-list. Parameter-lifting can work incrementally: it reuses the graph-structure to avoid
rebuilding the MDP, and it may use previous model checking results to improve the time
until the model checker converges. Parameter-lifting, due to its approximative nature, does
provide only limited diagnostic information: In particular, it provides information which
parameters would be assigned with the upper or lower bounds based on the strategy that
optimizes the MDP/SG.

10 Implementation

All the algorithms and constructions in this paper have been implemented, and are publicly
available via PROPhESY17. In particular, PROPhESY supports algorithms for:

– the exact synthesis problem: via computing the solution function, using either of the
three variants of state elimination, discussed in Sect. 5.

– the verification problem: via an encoding to an SMT-solver as in Sect. 6 or by employing
the parameter lifting method as in Sects. 7 and 8.

– the approximate synthesis problem: via parameter space partitioning, that iteratively
generates verification calls as described in Sect. 9.

PROPhESY is implemented in python, and designed as a flexible toolbox for developing
and experimenting with parameter synthesis. PROPhESY internally heavily relies on high-
performance routines of the probabilistic model checker Storm [66] and the SMT Z3.
PROPhESY is built in a modular way, such that it is easy to use different backend solvers. The
computation of the solution function and the parameter lifting presented in the experiments
have been implemented in Storm.

PROPhESY can be divided in three parts:

(i) First and foremost, it presents a library consisting of: (a) data structures for param-
eter spaces and instantiations, solution functions, specifications, etc., built around the

17 https://github.com/moves-rwth/prophesy, archived at https://doi.org/10.5281/zenodo.7697154.
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Fig. 18 High-level architecture of PROPhESY and its backends

python bindings of the library carl18 (featuring computations with polynomials and
rational functions), (b) algorithms such as guided sampling, various candidate region gen-
eration procedures, decomposition of regions, etc., methods that require tight integration
with the model are realised via the python bindings of Storm19, (c) abstract interfaces
to backend tools, in particular probabilistic model checkers, and SMT-checkers, together
with some concrete adapters for the different solvers, see Fig. 18.

(ii) An extensive command-line interface which provides simple access to the different core
functionalities of the library, ranging from sampling to full parameter synthesis.

(iii) A prototypical web-service running on top of the library, which allows users to interact
with the parameter synthesis via a web-interface.

PROPhESY is constructed in a modular fashion: besides the python bindings for carl,
all non-standard packages and tools (in particular model checkers and SMT solvers) are
optional. Naturally, the full power of PROPhESY can only be used if these packages are
available. Besides the methods presented in this paper, PROPhESY contains two further
mature parameter synthesis methods: (i) particle-swarm optimisation inspired by [43], and
(ii) convex optimisation from [57].

The information in the remainder details the implementation and the possibilities provided
by PROPhESY. The section contains some notions from probabilistic model checking [13,
16, 98]. We refrain from providing detailed descriptions of these notions, as it would go
beyond the scope of this paper.

10.1 Model construction and preprocessing (Realised inStorm)

The model checker Storm supports the creation of pMCs and pMDPs from both PRISM-
language model descriptions [102] and JANI-specifications [32]. The latter can be used as
intermediate format to support, e.g., digital-clock PTAs with parameters written in Modest
[80], or to support expected time properties of generalised stochastic Petri nets [109] with
parametric rates and/or weights. Parametric models can be built using the matrix-based,
explicit representation, as well as the symbolic, decision diagram (dd)-based engine built
on top of sylvan [135]. Both engines support the computation of qualitative properties,
an essential preprocessing step, and bisimulation minimisation on parametric models, as
described in [78]. We advocate the use of the Storm-python API adapter: Its interactive

18 https://moves-rwth.github.io/pycarl/.
19 https://moves-rwth.github.io/stormpy/.
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nature avoids the repetition of expensive steps. In particular, it allows for the incremental
usage of parameter lifting and sampling.

The support for rational functions is realised via the library carl20. The rational function
is stored as a tuple consisting of multivariate polynomials. These polynomials are by default
stored in a partially factorised fashion, cf. [91]. Each factor (a polynomial) is stored as an
ordered sparse sum of terms, each term consists of the coefficient and a sparse representation
of variables with their non-zero exponents. For manipulating the (rational) coefficients, we
exploit gmp21 or cln22. The former is thread-safe, while the latter performs slightly better
with single-thread usage. Computation of GCDs in multivariate polynomials is done either
via ginac [22] or cocoa [2].

10.2 Solution function computation (Realised inStorm)

The computation of solution functions for pMCs as discussed in Sect. 5 is implemented for
a variety of specifications:

– reachability and reach-avoid probabilities,
– expected rewards, including expected time of continuous-time Markov chains,
– step-bounded reachability probabilities, and
– long-run average probabilities and rewards.

The computation is realised either via state elimination, or via Gaussian elimination. An
implementation of set-based transition elimination is available for symbolic representations
of the pMC.

10.2.1 State elimination

As the standard sparse matrix representation used by Storm is not suitable for fast removal
and insertion of entries, a flexible sparse matrix with faster delete and insert operations is
used.

The order in which states are eliminated has a severe impact on the performance [65].
Storm supports a variety of static (pre-computed) and dynamic orderings for the elimination:

– several static orders (forward (reversed), backward (reversed)) based on the order of state-
generation by themodel construction algorithms. This latter order is typically determined
by a depth-first search through the high-level model description23,

– orders based on the topology of the pMC, e.g., based on the decomposition in strongly
connected components,

– orders (Regex) which take into account the in-degree (the number of incoming transitions
at a state), inspired by [84, 125],

– orders (SPen, DPen) which take into account the complexity of the rational function
corresponding to the transition probability. The complexity is defined by the degree and
number of terms of the occurring polynomials.

The orders are computed as penalties for states, and the order prefers states with a low penalty.
For dynamic orderings (Regex, DPen), the penalties are recomputed as the in-degree of states
and complexity of transition probabilities change during state elimination.

20 https://github.com/moves-rwth/carl-storm.
21 https://gmplib.org/.
22 https://www.ginac.de/CLN/.
23 This order is destroyed during the computation of a bisimulation quotient.
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10.2.2 Gaussian elimination

Storm supports Eigen [76] as a linear equation system solver over the field of rational
functions. It uses the “supernodal” (supernodes) LU factorisation. The matrix is permuted
by the column approximate minimum degree permutation (COLAMD) algorithm to reorder
the matrix. One advantage is that this solver is based on sparse model-checking algorithm
for parameter-free models. The solver therefore, in addition to the properties supported by
state elimination, supports the construction in [15] for conditional probabilities and rewards.

10.2.3 Set-based transition elimination

This elimination method is targeted for symbolic representations of the Markov chain.
Set-based transition elimination is implemented via matrix-matrix multiplications. In every
multiplication, a copy of the dd-representation of a matrix over variables ($s, $t) is made. The
copy uses renamed dd-variables ($t, $t ′). Then, a multiplication of the original matrix with the
copy can be done on the dd level yielding a matrix ($s, $t ′). Renaming $t ′ to $t yields a matrix
on the original dd-variables.

10.3 Parameter lifting (Realised inStorm)

For parameter lifting (Sects. 7 and 8), the major effort beyond calling standard model-
checking procedures is the construction of the substituted (lifted) model. As parameter lifting
for different regions does not change the topology of the lifted model, it is beneficial to create
a template of the lifted model once, and to substitute the values according to the region at
hand. The substitution operation can be sped up by exploiting the following observation:
Typically, transition probability functions coincide for many transitions. Thus, we evaluate
each occurring function once and substitute the outcome directly at all occurrences. More-
over, for a growing number of regions to be checked, any one-time preprocessing of the lifted
model eventually pays off. In particular, we apply minimisation techniques before construc-
tion of the lifted model. We use both bisimulation minimisation as well as state elimination
of parameter-free transitions. These minimisations drastically reduce the run-time of check-
ing a single region. We use numerical methods first: for regions that we want to classify as
accepting (or rejecting) we resort to the analysis of MDPs using policy iteration with rational
numbers. For that, we initialise the policy iterationwith a guess based on the earlier numerical
results.

10.4 SMT-based region verification (Realised inPROPhESY )

This complete region checking procedure is realised by constructing SMT queries, as elabo-
rated in Sect. 6.When invoking the SMT solver, we use some features of the SMT-lib standard
[18]. First of all, when checking several regions, we use backtrack-points to only partly reset
the solver: More precisely, the problem description is given by a conjunction of subformulae,
where the conjunction is represented by a stack. We first push the constraints for the problem
to the stack, save a backtrack point, and then store the region. Once we have checked a par-
ticular region, we backtrack to the backtrack point, that is, we remove the constraints for the
particular region from the problem description. This way, we reuse simplifications and data
structures the solver constructed for the problem description covering the model (and not the
region). To support both verifying the property and its negation, the problem description is
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slightly extended. We add two Boolean variables (accepting and rejecting). The following
gives an example of the encoding together with checking whether a region R1 is accepting,
and a region R2 is rejecting, using the notation of Sect. 6.

x = fD,ϕ ∧ (
accepting �⇒ x ≥ λ

) ∧ (
rejecting �⇒ x < λ

)

(push)

accepting ∧ Φ(R1)

(pop) (push)

rejecting ∧ Φ(R2)

10.5 Sampling (Realised inPROPhESY )

We accelerate the selection of regions by getting a rough picture through sampling, as dis-
cussed in Sect. 9. We support two engines for computing the samples: Either via model
checking, or by instantiating the solution function. Sampling on the solution function should
always be done exactly, as the evaluation of the typically highly-nonlinear solution func-
tions is (again typically) numerically unstable. In each iteration, based on the current set
of samples, a new set of sampling candidates is computed. The choice of the new samples
can be modified in several ways. The standard used here is via linear interpolation between
accepting and rejecting samples.

10.6 Partitioning (Realised inPROPhESY )

For the construction of region candidates, we split the initial regions according to our heuristic
(quads or growing rectangles, cf. Sect. 9.2) until none of the regions is inconsistent. We sort
the candidate regions based on their size in descending order. Furthermore, we prefer regions
where we deem verification to be less costly: Candidate regions that are supposed to be
accepting and are further away from samples or regions that are rejecting are preferred over
those regions which have rejecting samples or regions in their neighbourhood.

11 Experimental evaluation

In this section, we review the scalability of the presented approaches based on a selection of
benchmarks.

11.1 Set-up

11.1.1 Benchmarks

We consider five case studies from the literature. The selection represents various application
domains.

NAND multiplexing.With integrated circuits being built at ever smaller scale, they are more
prone to defects and/or to exhibit transient failures [85]. One way to overcome these deficien-
cies is the implementation of redundancy at gate-level. In particular, one aims to construct
reliable devices from unreliable components. NAND multiplexing is such a technique, orig-
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inally due to von Neumann [140]. Automated analysis of NAND multiplexing via Markov
chain model checking was considered first in [115]. They also studied the influence of gate
failures in either of the stages of the multiplexing by sampling various values. We use the
pMC from [65], that replaced fixed probabilities in the original formulation with parameters.
We analyse the effect of changing failure probabilities of the gates on the reliability of the
multiplexed NAND.

Herman’s self-stabilising protocol. In distributed systems, tokens are used to grant privileges
(e.g., access to shared memory) to processes. Randomisation is an essential technique to
break the symmetry among several processes [7]. Herman’s probabilistic algorithm [88] is a
token circulation algorithm for ring structures. In each step, every process possessing a token
passes the token along with probability p and keeps the token with probability 1−p. The
algorithm is self-stabilising, i.e., started from any illegal configuration with more than one
token the algorithm recovers to a legal configuration with a unique token. The recovery time
crucially depends on the probability of passing the token, and an optimal value for p depends
on the size of the system [105]. We investigate the expected recovery time by parameter
synthesis, inspired by [3].

Mean-time-to-failure of a computer system. In reliability engineering, fault trees are a promi-
nent model to describe how a system may fail based on faults of its various components
[24, 123]. Dynamic fault trees (DFTs, [71]) extend these fault trees with a notion of a state,
and allow to model spare management and temporal dependencies in the failure behaviour.
State-of-the-art approaches for dynamic fault trees translate such fault trees into Markov
chains [27, 50, 139]; evaluation of the mean-time-to-failure boils down to the analysis of
the underlying Markov chain. Probabilities and rewards originate from the failure rate of
the components in the described system. Such failure rates are often not known (precisely),
especially during design time. Therefore, theymay be represented by parameters.We take the
HECS DFT [137] benchmark describing the failure of a computer system with an unknown
failure rate for the software interface and the spare processor, as first described in [138]. We
analyse how this failure rate affects the expected time until the failure (mean-time-to-failure)
of the complete computer system.

Network scheduling. This benchmark [143] concerns the wireless downlink scheduling of
traffic to different users, with hard deadlines and prioritised packets. The system is time-
slotted: time is divided into periods and each period is divided into an equal number of slots.
At the start of each time period, a new packet is generated for each user with a randomly
assigned priority. The goal of scheduling is to, in each period, deliver the packets to each user
before the period ends. Packets not delivered by the end of a period are dropped. Scheduling
is non-trivial, as successful transmissions are not stochastically independent, i.e., channels
have a (hidden) internal state. The system is described as a partially observable Markov deci-
sion process [124], a prominent formalism in the AI community. We take the Networkmodel
from [116], and consider the pMC that describes randomised finite memory controllers that
solve this scheduling problem, based on a translation from [96]. Concretely, the parame-
ters represent how the finite memory controller randomises. We evaluate the effect of the
randomisation in the scheduling on the expected packet loss.

Bounded retransmission protocol. The bounded retransmission protocol (BRP, [61, 87]) is
a variant of the alternating bit protocol. It can be used as part of an OSI data link layer, to
implement retransmitting corrupted file chunks between a sender and a receiver. The system
contains two channels; from sender to receiver and vice versa. BRP is a famous benchmark
in (non-parametric) probabilistic model checking, based on a model in [62]. We consider
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the parametric version from [78]. The parameters naturally reflect the channel qualities. The
model contains non-determinism as the arrival of files on the link layer cannot be influenced.
This non-determinism hampers a manual analysis. The combination of parametric probabil-
ities and non-determinism naturally yields a pMDP. We analyse the maximum probability
that a sender eventually does not report a successful transmission.

Remark 12 Other benchmarks and a thorough performance evaluation have been presented
before in [65] (for state elimination andparameter space partitioning) and [122] (for parameter
lifting).

11.1.2 Benchmark statistics

Table 1 summarises relevant information about the concrete instances that we took from
the benchmarks. The id is used for reference. The benchmark refers to the name of the
benchmark-set, while the instance describes the particular instance from this benchmark set.
We give the total number of parameters |V | both in the transition matrix as well as in the
reward structurewhenever applicable. For the remainder of the columns,we give twonumbers
per benchmark instance: The upper row describes the original model, the latter describes the
(strong) bisimulation quotient. The columns give the number of states and transitions. The
last row gives the time (in seconds) required for constructing themodel (top) and constructing
the bisimulation quotient (bottom). We remark that all benchmarks have a limited number of
parameters: Systems with many parameters are beyond the reach of the methods discussed
here, but can be analysed with respect to simpler synthesis questions (such as finding one
suitable instantiation). We refer to the related work for a discussion of such methods.

11.1.3 Evaluation

We conducted the empirical evaluation on an HP BL685C G7 with Debian 9.6. Each evalua-
tion run could use 8 coreswith 2.1GHz each. However, unless specified otherwise, algorithms
use a single core. We set the timeout to 1 hour and the memory limit to 16GB. We used
PROPhESY version 2.0, together with the Storm-python bindings version 1.3.1, z3 version
4.8.4. All benchmark files are made available via PROPhESY24.

11.2 Exact synthesis via the solution function

To evaluate the exact synthesis approach, we use state elimination with 7 different heuristics,
set-based transition elimination, and Gaussian elimination. All configurations are evaluated
with and without strong bisimulation.

First, we show the sizes of the solution function: The results are summarised in Table 2.
The id references the corresponding benchmark instance in Table 1. The BRP pMDP is not
included. The set of all strategies prevents the computation of the solution function for all
induced pMCs. The next four columns display properties of the resulting rational function.
We give the degree of both the numerator (degree num) and denominator (degree denom),
as well as the number of terms in both polynomials (# terms num, # terms denom). The
next column gives the number of configurations (out of the 18) which successfully finished
within the time limit. The last two columns indicate timings. We give the times (in seconds)

24 Benchmarks are in the subfolder benchmark_files.
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Table 1 Detailed information for models in the benchmark set

Id Benchmark Instance |V | States Transitions Time

1 BRP MAX = 2, N = 16 2 1439 1908 0.06

664 928 0.22

2 MAX = 2, N = 256 20639 27348 0.57

10264 14368 370.83

3 MAX = 2, N = 512 41119 54484 1.11

20504 28704 197.69

4 MAX = 5, N = 16 2801 3783 0.10

1354 1912 1.23

5 MAX = 5, N = 256 40721 55143 1.15

21034 29752 3305.07

6 MAX = 5, N = 512 81169 109927 2.25

42026 59448 345.21

7 HECS m = 1, k = 1, i = 1 2 129 489 0.02

25 71 0.00

8 m = 1, k = 1, i = 2 145 589 0.02

49 173 0.00

9 Herman N = 3 1 9 36 0.02

3 5 0.00

10 N = 5 33 276 0.03

5 15 0.00

11 N = 7 129 2316 0.11

16 137 0.02

12 N = 9 513 20196 0.92

347 15009 0.12

13 NAND K = 2, N = 2 2 178 243 0.03

125 167 0.00

14 K = 2, N = 20 154942 239832 2.81

102012 154722 0.91

15 K = 2, N = 30 681362 1065797 12.56

474847 732768 4.65

16 K = 5, N = 10 35112 52647 0.63

23603 34093 0.21

17 K = 5, N = 20 384772 594792 7.04

288102 436332 3.17

18 K = 5, N = 30 1697732 2653937 31.45

1345507 2074758 18.49

19 Network c = 2, K = 2, T = 2 8 52 133 0.00

52 133 0.00

20 c = 2, K = 2, T = 3 16 106 269 0.01

106 269 0.00
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Table 1 continued

Id Benchmark Instance |V | States Transitions Time

21 c = 2, K = 2, T = 4 24 164 411 0.01

164 411 0.00

22 c = 2, K = 4, T = 2 20 136 365 0.01

136 365 0.00

23 c = 2, K = 4, T = 3 36 262 691 0.01

262 691 0.00

24 c = 2, K = 4, T = 4 52 392 1023 0.01

392 1023 0.00

to compute the solution function (time mc) and the total time including model building,
(optional) bisimulation minimisation and computing the solution function. For these timings
we give two numbers per benchmark instance: The upper row describes the median value
over all successful configurations and the lower row describes the best result obtained. Thus,
while functions often grow prohibitively large, medium-sized functions can still be computed.
Contrary to model checking for parameter-free models, model building is typically not the
bottleneck.

Furthermore, we see that the selected heuristic is indeed crucial. Consider instance 11: 11
heuristics successfully compute the solution function (and most of them within a second).
However, 7 others yield a timeout. That leads us to compare some heuristics in Fig. 19. The
plot depicts the cumulative solving times for selected configurations over all 18 benchmark
instances (excluding BRP). Gaussian and set-based refer to these approaches, respectively,
all other configurations are variants of state elimination, cf. Sect. 10.2.1, (bisim) denotes that
bisimulation minimisation is used. The x-axis represents the number of solved instances and
the (logarithmic) y-axis represents the time in seconds.A point (x, y) in the plot represents the
x fastest instances which could be solved within a total time of y seconds. For 15 instances,
one of the depicted configurations was the fastest overall. Regex based configurations were
the fastest eight times, DPen based ones four times and three times configurations based on
FwRev were fastest. From these numbers, we conclude that the selection of the heuristic is
essential, and depending on themodel to be analysed.From the graph, we further observe that
althoughusing aGaussian elimination yields goodperformance, state-elimination approaches
can (significantly) outperform the Gaussian elimination on some benchmarks. The DPen
solves all instances (the only configuration to do so), but Regex is overall (slightly) faster.
The uninformed FwRev with bisimulation works surprisingly well for these benchmarks (but
that is mostly coincidence). The set-based elimination is clearly inferior on the benchmarks
considered here, but allows to analyse somemodelswith a very regular structure and a gigantic
state space, e.g., a parametric Markov chain for the analysis of the bluetooth protocol [70].

11.3 Three types of region verification

We evaluate region verification using two SMT-based approaches (SF: based on first com-
puting the Solution Function, or ETR: encoding the equations into Existential Theory of
the Reals), and PLA. In particular, we present some results for the Herman benchmark: it
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Table 2 Empirical performance of computing the solution function

Id Degree Degree # terms # terms Success Time Time
num denom num denom mc total

7 23 24 234 247 16 2.00 2.09

0.64 0.72

8 31 32 408 425 16 9.12 9.21

3.00 3.08

9 0 2 1 2 18 0.00 0.09

0.00 0.08

10 4 6 5 6 17 0.04 1.55

0.00 0.10

11 28 30 29 30 11 0.62 0.82

0.37 0.56

12 150 152 151 152 8 247.00 248.14

114.49 115.64

13 10 0 32 1 18 0.00 0.11

0.00 0.09

14 100 0 2106 1 15 43.05 46.88

15.46 19.35

15 150 0 4653 1 13 469.29 486.74

110.54 128.48

16 110 0 1220 1 15 6.30 7.24

3.30 4.25

17 200 0 4640 1 13 245.47 256.05

88.18 98.71

18 330 0 10260 1 1 3031.34 3083.88

3031.34 3083.88

19 1 0 23 1 16 0.00 0.07

0.00 0.06

20 1 0 111 1 16 0.01 0.08

0.01 0.07

21 1 0 519 1 16 0.04 0.11

0.03 0.09

22 1 0 65 1 16 0.01 0.08

0.01 0.08

23 1 0 289 1 16 0.07 0.15

0.03 0.10

24 1 0 1377 1 16 0.40 0.48

0.12 0.20
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Fig. 19 Cumulative solving times for solution function computation

Fig. 20 Plot for Herman model with seven processes and parameter p (Benchmark Id: 11)

features a single parameter, and therefore is well-suited for the illustration of some concepts.
We visualised the results for instance 11 in Fig. 20.

The x-axis represents the probability p and the y-axis the expected recovery time. We
indicate the solution function in blue. The threshold in the following is set to λ = 5 and
indicated by the orange horizontal line. The black columns depict six different regions25 that
are evaluated with region checking. For each region we want to verify whether the expected
recovery time is at least 5. The results are summarised in (the upper part of) Table 3.The first
column id references the benchmark instance and the second column gives the threshold λ.
The next columns indicate the considered region and the technique. The last columns give
the result of the region verification and the time (in seconds) needed for the computation.
The timeout (TO) was set to 120 s.

For benchmark instance 11, Parameter lifting (PLA) computes a result within millisec-
onds and the computation time is independent of the considered region. The SMT-based
techniques take longer and the SF technique in particular does not terminate within two min-
utes. However, the ETR technique could yield a result for region [0.28, 0.35] whereas PLA
could not give a conclusive answer due to its inherent over-approximation.

We now consider the region verification on the NAND model with two parameters. We
visualised the solution function for instance 13 inFig. 21.The considered threshold isλ = 0.3.
Green coloured parts indicate parameter instantiations leading to probabilities above λ and
red parts lie below λ. The results of the verification for different regions are given in (the

25 Strictly speaking, regions are given by the intervals for the parameter, we depict the columns for better
visibility.
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Table 3 Empirical performance of region verification algorithms

Id λ Region Techn. Result Time

11 5 [0.20, 0.27] ETR Inconsistent 12,11

PLA Unknown 0.01

SF Unknown TO

[0.27, 0.28] ETR Reject 20.68

PLA Reject 0.01

SF Unknown TO

[0.28, 0.35] ETR Reject 53.47

PLA Unknown 0.01

SF Unknown TO

[0.35, 0.50] ETR Reject 23.41

PLA Reject 0.00

SF Unknown TO

[0.54, 0.55] ETR Reject 22.35

PLA Reject 0.01

SF Unknown TO

[0.80, 0.90] ETR Unknown TO

PLA Accept 0.01

SF Unknown TO

13 0.3 [0.01, 0.99] × [0.70, 0.90] ETR Accept 16.20

PLA Unknown 0.01

SF Accept 0.16

[0.01, 0.99] × [0.90, 0.99] ETR Inconsistent 19.41

PLA Unknown 0.01

SF Inconsistent 0.04

[0.01, 0.50] × [0.65, 0.70] ETR Accept 45.61

PLA Unknown 0.01

SF Accept 0.13

[0.01, 0.50] × [0.75, 0.90] ETR Accept 4.58

PLA Accept 0.01

SF Accept 0.12

[0.01, 0.99] × [0.40, 0.50] ETR Reject 19.82

PLA Reject 0.00

SF Reject 0.08

lower part of) Table 3. PLA is again the fastest technique, but for larger regions close to the
threshold PLA can often not provide a conclusive answer. Contrary to before, SF is superior
to ETR.

The performance of the SMT-based techniques (again) greatly depends on the considered
region. It is only natural that the size of the region, and the difference to the threshold have
a significant influence on the performance of region verification. These observations are
general and do hold on all other benchmarks. Furthermore, parameter lifting seems broadly
applicable, and in the setting evaluated here, clearly faster than SMT-based approaches.
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Fig. 21 Plotting the solution
function for NAND
K = 2, N = 2 (Benchmark Id:
13) and parameters prob1 and
perr

Fig. 22 Parameter space partitioning for Herman N = 5 (Benchmark Id: 10) with parameter p

Parameter lifting over-approximates and therefore might only give a decisive result in a
refinement loop such as parameter space partitioning. The SMT-based approaches are a
valuable fallback.When relying on the SMT techniques, it is heavily model-dependent which
performs better. Table 4 at the end of the next section gives some additional results, indicating
the performance of the different verification techniques.

11.4 Approximative synthesis via parameter space partitioning

We now evaluate the parameter space partitioning.We use the implementation in PROPhESY
with the three verification procedures evaluated above. Therefore, we focus here on the actual
parameter space partitioning.

First, consider again Herman for illustration purposes. Region verification is not appli-
cable for instance 10 (with threshold 5), as neither all instantiations accept nor all reject
the specification. Instead, parameter space partitioning delivers which of these instantia-
tions accept, and which reject the specification. The resulting parameter space partitioning
is visualised in Fig. 22.

Next, we compare the three verification techniques—each with two different methods for
selecting candidate regions—in Fig. 23. Figure 23a depicts the computation on the Herman
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Fig. 23 Covered areas for parameter space partitioning on different models and thresholds

model with 5 processes and threshold λ = 5. The plot depicts the covered area for all three
techniques with both quads (straight lines) and rectangles (dashed lines) as regions. The
x-axis represents the computation time (in seconds) on a logarithmic scale and the y-axis
represents the percentage of covered area. A point (x, y) in the plot represents y percent of
the parameter space which could be covered within x seconds.

For Herman, SMT-based techniques perform better than PLA. PLA was able to cover
64% of the parameter space within milliseconds. However, in the remaining hour only 2%
more space was covered. The SMT-based techniques were able to cover at least 99% of
the parameter space within 15 s. Moreover, the rectangles cover the parameter space faster
than quads. We also perform the parameter space partitioning on the NAND model with two
different thresholds: We compare the parameter space partitioning techniques for threshold
λ = 0.1 in Fig. 23b, and for threshold λ = 0.3 in Fig. 23c. For NAND, the PLA technique
performs better than the SMT-based techniques. For threshold λ = 0.1, PLA could cover
at least 99% of the parameter space within 1 s. The main reason is that the border is in a
corner of the parameter space. Additionally, the SMT-based techniques with rectangles are
significantly faster than the quads for this threshold. For threshold λ = 0.3, more region
verification steps were necessary. PLA still outperforms ETR and SF. However, the use of
rectangles over quads does not lead to a better performance for this threshold. At any point in
time, there can be very significant differences between the heuristics for candidate generation,
especially in settings where single region verification calls become expensive.

Finally, we summarise an overview of the performance in Table 4. For brevity, we pruned
some rows, especially if the present approaches already struggle with smaller instances. The
id is a reference to the benchmark instance. The technique is given in the next column. In
the next three columns we give for each technique the time (in seconds) needed to cover at
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Table 4 Empirical performance of parameter space partitioning variations

Id Techn. Time Time Time Area Area Percent Percent
50% 90% 98% cov safe reg gen analysis

1 ETR – – – 0.20 0.20 0.00% 99.82%

PLA 0.04 0.19 3.09 0.99 0.83 31.65% 12.36%

SF – – – 0.00 0.00 – –

2 ETR – – – 0.00 0.00 0.00% 89.50%

PLA 0.33 0.34 – 0.97 0.97 0.00% 81.18%

SF – – – 0.00 0.00 – –

4 ETR – – – 0.03 0.03 0.00% 99.61%

PLA 0.06 0.30 7.86 0.99 0.63 38.45% 10.83%

SF – – – 0.00 0.00 – –

5 ETR – – – 0.00 0.00 0.00% 9.73%

PLA 0.70 – – 0.87 0.87 0.00% 7.72%

SF – – – 0.00 0.00 – –

7 ETR – – – 0.47 0.00 0.00% 99.64%

PLA 0.00 0.00 0.00 1.00 0.00 0.00% 0.00%

SF – – – 0.00 0.00 – –

8 ETR – – – 0.00 0.00 0.00% 99.77%

PLA 0.01 0.01 0.01 1.00 1.00 0.00% 0.91%

SF – – – 0.00 0.00 – –

9 ETR 0.02 30.19 70.41 0.99 0.05 0.00% 98.89%

PLA 0.08 – – 0.55 0.06 0.15% 73.89%

SF 0.02 0.09 0.23 0.99 0.05 0.00% 18.60%

10 ETR 0.12 0.45 1.29 0.99 0.16 0.00% 57.09%

PLA 0.03 – – 0.66 0.17 0.15% 74.84%

SF 0.24 1.20 11.30 0.99 0.16 0.00% 90.63%

12 ETR – – – 0.00 0.00 0.00% 99.66%

PLA 1.75 – – 0.56 0.43 0.15% 75.39%

SF – – – 0.00 0.00 0.00% 96.20%

13 ETR – – – 0.28 0.28 0.00% 99.80%

PLA 0.05 0.09 0.49 0.99 0.98 8.22% 15.53%

SF 28.70 202.98 357.90 0.98 0.98 0.00% 96.26%

14 ETR – – – 0.00 0.00 0.00% 85.15%

PLA 3.08 16.08 152.36 0.99 0.15 32.01% 47.66%

SF – – – 0.00 0.00 0.00% 98.68%

15 ETR – – – 0.00 0.00 – –

PLA 20.27 91.18 854.48 0.99 0.14 30.27% 61.95%

SF – – – 0.00 0.00 0.00% 92.56%

16 ETR – – – 0.00 0.00 0.00% 98.95%

PLA 0.55 4.65 55.99 0.99 0.19 33.04% 25.99%

SF – – – 0.00 0.00 0.00% 99.42%
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Table 4 continued

Id Techn. Time Time Time Area Area Percent Percent
50% 90% 98% cov safe reg gen analysis

17 ETR – – – 0.00 0.00 0.00% 18.75%

PLA 8.79 40.99 326.12 0.99 0.16 33.23% 54.62%

SF – – – 0.00 0.00 0.00% 94.39%

18 ETR – – – 0.00 0.00 – –

PLA 53.69 254.13 1861.31 0.99 0.16 33.21% 60.37%

SF – – – 0.00 0.00 – –

19 ETR – – – 0.00 0.00 0.00% 99.28%

PLA – – – 0.12 0.12 0.00% 99.54%

SF – – – 0.32 0.32 0.00% 98.22%

least 50%, 90% and 98% of the complete parameter space. The next two columns give the
complete covered area—i.e. the sum of the sizes of all accepting or rejecting regions—when
terminating the parameter space partitioning after 1h, together with the safe area, i.e. the sum
of the sizes of all accepting regions. The last two columns indicate the percentage of the total
time spent in generating the regions (time reg gen) and verifying the regions (time analysis).
PLA is almost always superior, but not on all benchmarks (and not on all (sub)regions.
Depending on the model, SF or ETR are the best SMT-based technique. There might be
room for improvement by portfolios and machine-learned algorithm selection schemes.

12 Related work and discussion

We discuss related work with respect to various relevant topics.

Complexity. For graph-preserving pMCs, many complexity results are collected in [97],
including results from [45]. In particular, the complement of the verification problem, i.e., the
question whether there exists an instantiation in a region that satisfies a reachability property,
is ETR-complete for both pMDPs and pMCs26. For any fixed number of parameters, the
problem can be solved in polynomial time [17]. This paper also considers a richer fragment
of the logic PCTL.

Computing a solution function. This approach was pioneered by [64] and significantly
improved by [78]. Both PRISM [102] and PARAM [77] support the computation of a solution
function based on the latter method. It has been adapted in [91] to an elimination of SCCs
and a more clever representation of rational functions. This representation has been adapted
by Storm [66]. In [72], computing a solution function via a computer algebra system was
considered. That method targets small, randomly generated pMCs with many parameters.
Recently, [17] explored the use of one-step fraction-free Gaussian elimination to reduce the
number of GCD computations. For pMDPs, [79] experimented with the introduction of dis-
crete parameters to reflect strategy choices—this method, however, scales poorly. In [67] and
[68], variants of value iteration with a dd-based representation of the solution function are

26 It holds that P⊂ETR⊆PSPACE.AprominentETR-complete problem iswhether amultivariate polynomial
has a real-valued root.
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presented. Fast sampling on (concise representations of) the solution function is considered
in [73, 89].

Equation system formulation.Regarding pMDPs, instead of introducing a Boolean structure,
one can lift the linear program formulation for MDPs to a nonlinear program (NLP). This
lifting has been explored in [20], and shown to be not feasible in general. A string of results
rely on convex programming approaches. For instance, although the general NLP does not lie
in the class of convex problems, a variety of verification related problems can be expressed
by a sequence of geometric programs, which is exploited in [56]. Alternatively, finding
satisfying parameter instantiations in pMDPsunder demonic non-determinismandwith affine
transition probabilities can be approached by iteratively solving a convex-concave program
that approximates the original NLP [57]. A comprehensive overview of exploiting convex
programming is presented in [60]. Alternatively, more efficient solvers can be used [42]
for subclasses of pMDPs. An alternative parametric model with a finite set of parameter
instantiations, but without the assumption that these instantiations are graph preserving is
considered in [41].

Model repair. The problem of model repair is related to parameter synthesis. In particular, for
a Markov model and a refuted specification the problem is to transform the model such that
the specification is satisfied. In the special case where repair amounts to changing transition
probabilities, the underlying model is parametric as in this paper: the parameters are addive
factors to be added to the original transition probabilities. The problem was first defined
and solved either by a nonlinear program or parameter synthesis in [20]. A greedy approach
was given in [117] and efficient simulation-based methods are presented in [43]. In addition,
parametric models are used to rank patches in the repair of software [107].

Interval Markov chains. Instead of parametric transitions, interval MCs or MDPs feature
intervals at their transitions [10, 74, 92, 141]. Thesemodels do not allow for parameter depen-
dencies, but verification is necessarily “robust” against all probabilities within the intervals,
see for instance [120], where convex optimization is utilised, and [81, 82], where efficient
verification of multiple-objectives is introduced. In [6, 19], these models are extended to so-
called parametric intervalMCs, where interval bounds themselves are parametric. Extensions
to richer models such as partially observable MDPs are considered in [59, 132].

Derivatives and monotonicity.Many systems behave monotonically in some of their system
parameters. For example,most network protocols becomemore reliable if the communication
channel reliability increases. If the solution function is monotonic, then parameter space
partitioning can be accelerated [129]. Assessing monotonicity can be tightly integrated in a
loop that uses parameter lifting [130]. Finally, the derivative of the solution function can be
used for gradient descent whenever the goal is to find a counterexample for region verification
[86].

Sensitivity analysis. Besides analysing in which regions the system behaves correctly w. r. t.
the specification, it is often desirable to perform a sensitivity analysis [44, 131], i. e., to
determine in which regions of the parameter space a small perturbation of the system leads
to a relatively large change in the considered measure. In our setting, such an analysis can be
conducted with little additional effort. Given a rational function for a measure of interest, its
derivations w. r. t. all parameters can be easily computed. Passing the derivations with user-
specified thresholds to the SMT solver then allows for finding parameter regions in which
the system behaves robustly. Adding the safety constraints described earlier, the SMT solver
can find regions that are both safe and robust.
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Parameters with distributions. Rather than a model in which the parameter values are chosen
from a set, they can be equipped with a distribution. The verification outcome consists then
of confidence intervals rather than absolute guarantees. In [111], simulation based methods
are used, whereas [33, 34] use statistical methods on a solution function. pMDPs with a
distribution over the parameters are considered in [9]. Sampling-based methods that rely on
the so-called scenario-approach [36, 37] are presented in [11, 58].

Ensuring graph preservation. Checking graph-preservation is closely related to checking
whether a well-defined point instantiation exists, which has an exponential runtime in the
number of parameters [106]. For parametric interval Markov chains, the question whether
there exists a well-defined instantiation is referred to as consistency and received attention
in [6, 118].

Robust strategies. Robust strategies for pMDPs, as mentioned in Remark 7, are considered
in, among others, [108, 141]. These and other variants of synthesis problems on pMDPs
were compared in [8]. A variant where parameters are not non-deterministically chosen, but
governed by a prior over these parameters, has recently been considered [9]. In [119], data-
driven bounds on parameter ranges are obtained, and properties are validated using parameter
synthesis techniques.

Continuous time. Parametric CTMCs were first considered by [83]. A method using relax-
ations similarly to parameter lifting has been proposed in [30]. The method was improved in
[39] and implemented in PRISM-PSY [40]. A combination with sampling-based algorithms
to find good parameter instantiations is explored in [35]. Parameter synthesis with statistical
guarantees has been explored in [25, 26]. Moreover, a sampling-based approach for so-called
uncertain parametric CTMCs that have a distribution over the parameter values obtains sta-
tistical guarantees on reachability probabilities [12]. Finally, in [75], finding good parameter
instantiations is considered by identifying subsets of parameters that have a strictly positive
or negative influence on the property at hand.

Connection to other models. Furthermore, [96] establishes connections to the computation
of strategies in partially observable MDPs [124], a prominent model in AI. In [142], the
connection to concurrent stochastic games is shown. pMCs can be used to accelerate solving
hierarchical Markov models [95, 113] and for parameter synthesis in Bayesian networks
[126]. Finally, in [53], a method that maintains a belief over parameter values is introduced
in a robotics context.

13 Conclusion and future work

This paper gives an extensive account of parameter synthesis for discrete-time Markov chain
models. In particular, we considered three different variants of parameter synthesis questions.
For each problem variant, we give an account of the available algorithms from the literature,
togetherwith several extensions fromour side. All algorithms are available in the open-source
tool PROPhESY.
Future work Future work in various directions is possible. Many of the results here can be
ported to the more general setting of weighted automata over the adequate semiring [69],
which can be interesting from a theoretical perspective. Algorithmically, we would like to
developmethods which identify and exploit structural properties that are common to standard
benchmarks for Markov chains and Markov decision processes. First steps in this direction
have been taken, e.g., by exploitingmonotonicity [129].While graph-preservation is common
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in many applications, this restriction is not always natural. The decomposition presented in
this paper yields an exponential blow-up in the number of parameters that we would like to
avoid whenever possible. However, algorithms that do not rely on graph-preservation have
not yet been integrated. The techniques to cover the parameter space by sets of smaller
and easy-to-verify regions are still rather naive: This is true both for region verification,
where we split due to the approximation, and for parameter space partitioning. The above
mentioned monotonicity is one possibility to accelerate the way we split. In general, we
plan to exploit parametric models in a data-driven context, where the structure provided by
parameter dependencies can be exploited to accelerate learning of probabilistic models [133,
134].
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