
Vol.:(0123456789)

Formal Methods in System Design
https://doi.org/10.1007/s10703-023-00440-z

1 3

Termination of triangular polynomial loops

Marcel Hark1  · Florian Frohn1,2  · Jürgen Giesl1 

Received: 16 October 2021 / Accepted: 20 September 2023 
© The Author(s) 2023

Abstract
We consider the problem of proving termination for triangular weakly non-linear loops 
(twn-loops) over some ring S like ℤ , ℚ , or ℝ . The guard of such a loop is an arbitrary 
quantifier-free Boolean formula over (possibly non-linear) polynomial inequations, and the 

body is a single assignment of the form 
⎡
⎢
⎢
⎣

x1
…

xd

⎤
⎥
⎥
⎦
←

⎡
⎢
⎢
⎣

c1 ⋅ x1 + p1
…

cd ⋅ xd + pd

⎤
⎥
⎥
⎦
 where each xi is a variable, 

ci ∈ S , and each pi is a (possibly non-linear) polynomial over S and the variables 
xi+1,… , xd . 
We show that the question of termination can be reduced to the existential fragment of the 
first-order theory of S . For loops over ℝ , our reduction implies decidability of termination. 
For loops over ℤ and ℚ , it proves semi-decidability of non-termination.
Furthermore, we present a transformation to convert certain non-twn-loops into twn-form. 
Then the original loop terminates iff the transformed loop terminates over a specific subset 
of ℝ , which can also be checked via our reduction. Moreover, we formalize a technique to 
linearize (the updates of) twn-loops in our setting and analyze its complexity. Based on 
these results, we prove complexity bounds for the termination problem of twn-loops as well 
as tight bounds for two important classes of loops which can always be transformed into 
twn-loops.
Finally, we show that there is an important class of linear loops. where our decision proce-
dure results in an efficient procedure for termination analysis, i.e., where the parameterized 
complexity of deciding termination is polynomial.
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1 Introduction

Termination is one of the most important properties of a program. In this work, we study com-
plete approaches for analyzing termination of certain classes of polynomial loops. Compared 
to incomplete techniques, such approaches have the advantage that they always yield a definite 
result. In particular, we investigate decidability of termination for our classes of loops.

In the following, we give a short overview on the contributions of our article and high-
light how it extends our earlier conference paper [20]. There are already several decidability 
results for termination of linear loops [8, 10, 19, 31, 42, 45, 49, 62, 66], but only few results 
on the decidability of termination for certain forms of non-linear loops [43, 44, 47, 64, 65]. 
Moreover, these previous works only deal with loops whose guards only contain conjunc-
tions, besides [47] which is restricted to guards defining compact sets. In this work, we regard 
possibly non-linear loops with arbitrary guards, i.e., they may also contain disjunctions and 
define non-compact sets. More precisely, we consider so-called twn-loops, where the update 
is mildly restricted to be “triangular” and “weakly non-linear” (see Sect. 2 for a formal defini-
tion). We study such loops over ℤ , ℚ , ℝ𝔸 (the real algebraic numbers), and ℝ , whereas exist-
ing decidability results for non-linear loops are restricted to loops over the reals.

Most techniques for proving termination of loops rely on polynomial ranking functions, 
see, e.g., [1, 5–7, 9, 51]. However, such ranking functions are only sound for proving termi-
nation, i.e., in general, they cannot refute termination. In contrast to ranking functions, we 
use the computability of closed forms for the iterated update of the loop (Sect. 3). In this 
way, we can reduce termination of a loop to (in)validity of a certain formula. This reduc-
tion, which is a generalization of our earlier results for linear loops over ℤ with conjunctive 
guards [19], is sound and complete, i.e., validity of the resulting formula proves non-ter-
mination, whereas invalidity implies termination. Moreover, our reduction is computable. 
Analogously to our earlier work for linear loops [19], our decidability results on termina-
tion then follow from existing results on the decidability of certain theories. In this way, 
we show that termination of twn-loops is decidable over ℝ𝔸 and ℝ , and non-termination is 
semi-decidable over ℤ and ℚ (Sect. 4).

In Sect. 5 we use concepts from algebra to enlarge the classes of loops to which our 
reduction is applicable. This is done by transforming (certain) non-twn loops into twn-form 
without affecting their termination behavior (Sect. 5.1). In Sect. 5.2, we discuss for which 
loops our transformation is applicable. In this way, we generalize our results to a broader 
class of polynomial loops (Sect. 5.3).

In contrast to our earlier conference paper [20], in Sect. 6 we formalize the technique 
of [48] to linearize (the updates of) twn-loops in our setting. Using this formalization, we 
develop novel results on the complexity of linearization.

Afterwards, based on our decision procedure for termination in Sect. 4, on the transfor-
mation of Sect. 5, and on our complexity results for linearization from Sect. 6, we study the 
complexity of deciding termination in Sect. 7.

In Sect. 7.1 we show that deciding termination of linear loops with rational spectrum 
over ℤ , ℚ , ℝ𝔸 , and ℝ is Co-NP-complete. Moreover, we show that deciding termination 
of linear-update loops (where the update is linear but the guard may be non-linear) with 
real spectrum over ℝ𝔸 and ℝ is ∀ℝ-complete. Here, a loop has rational or real spectrum, 
respectively, if its update matrix has rational or real eigenvalues only, and ∀ℝ is the com-
plexity class of problems which can be reduced to validity of a universally quantified for-
mula of polynomial inequations over the reals. We also analyze the complexity of deciding 
termination for arbitrary twn-loops (with possibly non-linear updates) in Sect. 7.2. In our 
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conference paper [20, Thm. 45], we had only analyzed this case for a bounded number of 
variables. In contrast, we now extend our analysis to the general case where the number of 
variables is not restricted (Theorem 7.6). To this end, we need our new results from Sect. 6 
on the complexity of linearizing twn-loops.

Finally, in contrast to [20], we identify a class of linear loops (uniform loops) where termi-
nation can be interpreted as a parameterized problem which is decidable in polynomial time 
when fixing such a parameter (Sect. 7.3). Based on the transformation of Sect. 5, we show that 
the closed forms arising from uniform loops have a special structure. Therefore, here (in)valid-
ity of the formula from Sect. 4 which encodes termination can be checked in polynomial time.

Related work is discussed in Sect. 8 and all missing proofs can be found in App. A. So 
the current paper extends [20] by the following new material:

• Section 6 on the linearization of twn-loops and its complexity.
• Theorem 7.6 on the complexity of deciding termination for arbitrary twn-loops where 

the number of variables is not restricted.
• Section 7.3 on uniform loops where the parameterized complexity of deciding termina-

tion is polynomial.
• Several additional explanations and remarks.

2  Preliminaries

A (polynomial) loop over a ring S has the form in Fig.  1, where ℤ ≤ S ≤ ℝ𝔸 and ≤ 
denotes the subring relation. Here, x⃗ is a vector of d ≥ 1 pairwise different variables 
that range over S and u⃗ ∈

(
S[x⃗]

)d where S[x⃗] is the set of polynomials over x⃗ with coef-
ficients in S . To improve readability, we use row- and column-vectors interchangeably. 
The guard � is an arbitrary propositional (i.e., quantifier-free) formula over the atoms 
{p ⊳ 0 ∣ p ∈ S[x⃗],⊳ ∈ {≥,>}} . We denote the set of all such formulas by Th

qf
(S) . In our 

setting, negation is syntactic sugar as, e.g., ¬(p > 0) is equivalent to −p ≥ 0 . So w.l.o.g. the 
guard (or condition) � of a loop is built from atoms, ∧ , and ∨.

We require S ≤ ℝ𝔸 instead of S ≤ ℝ , as it is unclear how to represent transcendental 
numbers on computers. However, in Sect. 4 we will see that the loops considered in this work 
terminate over ℝ iff they terminate over ℝ𝔸 . Thus, our results immediately carry over to loops 
where the variables range over ℝ . Hence, we sometimes also consider loops over S = ℝ . 
However, even then we restrict ourselves to loops where all constants in � and u⃗ are algebraic.

We often represent a loop as in Fig. 1 by the tuple (𝜑, u⃗) of the condition � and the 
update u⃗ = (u1,… , ud) . Unless stated otherwise, (𝜑, u⃗) is always a loop over S using the 
variables x⃗ = (x1,… , xd) where ℤ ≤ S ≤ ℝ𝔸 . We use the following notions for certain 
classes of loops: A linear-update loop has the form (𝜑,A ⋅ x⃗ + b⃗) , and it has rational or 
real spectrum, respectively, if A has rational or real eigenvalues only. Then all eigen-
values of A are real algebraic numbers, since u⃗ ∈

(
ℝ𝔸[x⃗]

)d implies that all constants in 
u⃗ (and thus in A) are algebraic. A linear loop is a linear-update loop where � is linear 
(i.e., its atoms are only linear inequations). Here, “linear” refers to “linear polynomi-
als”, i.e., of degree at most 1, so it includes affine functions. A conjunctive loop is a 
loop (𝜑, u⃗) where � does not contain disjunctions.

Fig. 1  Polynomial loop
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For any entity s, s[x/t] results from s by replacing all free occurrences of x by t. Simi-
larly, if x⃗ = (x1,… , xd) and t⃗ = (t1,… , td) , then s[x⃗∕t⃗] results from s by replacing all free 
occurrences of xi by ti , for each 1 ≤ i ≤ d.

Any vector of polynomials u⃗ ∈

(
S[x⃗]

)d can also be regarded as a function 

u⃗ ∶

(
S[x⃗]

)d
→

(
S[x⃗]

)d where for any p⃗ ∈

(
S[x⃗]

)d , u⃗(p⃗) = u⃗[x⃗∕p⃗] results from apply-
ing the polynomials u⃗ to the polynomials p⃗ . Similarly, we can also apply a formula to 
polynomials p⃗ ∈

(
S[x⃗]

)d . To this end, we define 𝜓(p⃗) = 𝜓[x⃗∕p⃗] for first-order formulas 
� with the free variables x⃗ . As usual, function application associates to the left, i.e., 
u⃗(b⃗)(p⃗) stands for (u⃗(b⃗))(p⃗) . However, obviously (u⃗(b⃗))(p⃗) = u⃗(b⃗(p⃗)) since applying poly-
nomials only means that one instantiates variables.

Definition 2.1 formalizes the intuitive notion of termination for a loop (𝜑, u⃗) and the 
related notion of eventual termination [10, 62]. Here, u⃗n denotes the n-fold application 
of u⃗ , i.e., u⃗0(e⃗) = e⃗ and u⃗n+1(e⃗) = u⃗(u⃗n(e⃗)).

Definition 2.1 (Termination) Let (𝜑, u⃗) be a loop over S and e⃗ ∈ S
d.

If ∀n ∈ ℕ. 𝜑(u⃗n(e⃗)) holds, then e⃗ is a witness for non-termination.
If (𝜑, u⃗) does not have any witnesses for non-termination, it terminates (over S).
If u⃗n0 (e⃗) is a witness for non-termination for some n0 ∈ ℕ , then e⃗ is called a witness for 

eventual non-termination.
(E)NT

(𝜑,u⃗) denotes the set of witnesses for (eventual) non-termination of (𝜑, u⃗) and we 
define T

(𝜑,u⃗) = S
d⧵NT

(𝜑,u⃗).

For any entity s, V(s) is the set of all its free variables. Given an assign-
ment x⃗ ← u⃗ , the relation ≻u⃗ ∈ V(u⃗) × V(u⃗) is the transitive closure of 
{(xi, xj) ∣ i, j ∈ {1,… , d}, i ≠ j, xj ∈ V(ui)} , i.e., xi ≻u⃗ xj means that xi depends on xj . For 
example, if u⃗ = (x1 + x2

2
, x2 + 1) then we have ≻u⃗ = {(x1, x2)}.

Now we can introduce the class of twn-loops. A loop (𝜑, u⃗) is triangular if ≻u⃗ is well 
founded. It is weakly non-linear if there is no 1 ≤ i ≤ d such that xi occurs in a non-
linear monomial of ui , i.e., ui = ci ⋅ xi + pi where ci ∈ S and pi ∈ S[x⃗] does not contain 
xi . A twn-loop is triangular and weakly non-linear. We call a loop non-negative if it is 
weakly non-linear and the coefficient ci of the monomial xi in ui is non-negative for all 
1 ≤ i ≤ d . A tnn-loop is triangular and non-negative, i.e., a tnn-loop is a special form of 
a twn-loop.

The restriction to triangular loops prohibits “cyclic dependencies” of variables (e.g., 
where the new values of x1 and x2 both depend on the old values of x1 and x2 ). For 
example, the loop whose body consists of the assignment (x1, x2) ← (x1 + x2

2
, x2 + 1) 

is triangular since ≻ = {(x1, x2)} is well founded, whereas a loop with the body 
(x1, x2) ← (x1 + x2

2
, x1 + 1) is not triangular.

By the restriction to twn-loops we can compute a closed form for the n-fold applica-
tion of the update u⃗ by handling one variable after the other. A vector q⃗ of d arithme-
tic expressions over x⃗ and a distinguished variable n is a closed form for u⃗ ∈ (S[x⃗])d if 
q⃗[x⃗∕e⃗, n∕n�] = u⃗n

�

(e⃗) for all e⃗ ∈ S
d and n� ∈ ℕ , i.e., both vectors of expressions evaluate 

to the same element of Sd . Thus, q⃗ = u⃗n.
Triangular loops are very common in practice. For example, in [21], 1511 polyno-

mial loops were extracted from the Termination Problems Data Base (TPDB) [63], the 
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benchmark collection used at the annual Termination and Complexity Competition [25], 
and only 26 of them were non-triangular.

A loop with the body (x1, x2) ← (x1 + x2
2
, x2 + 1) is weakly non-linear, while a loop 

with (x1, x2) ← (x1 ⋅ x2, x2 + 1) is not. In particular, weak non-linearity excludes assign-
ments like x1 ← x2

1
 that need exponential space, as x1 grows doubly exponentially. By 

permuting variables, the update of every twn-loop can be transformed to the following 
form where ci ∈ S and pi ∈ S[xi+1,… , xd]:

Example 2.2 Consider the loop Lex over the ring ℤ in Fig. 2. This loop is triangular since 
≻u⃗ = {(x1, x2), (x1, x3), (x2, x3)} is well founded. Moreover, it is weakly non-linear. Since 
the coefficient of xi is 1 in the update of xi for all 1 ≤ i ≤ 3 , this loop is also non-negative, 
i.e., Lex is tnn.

Our twn-loops are a special case of solvable loops.

Definition 2.3 (Solvable Loops [56]) A loop (𝜑, u⃗) is solvable if there is a partitioning 
J = {J1,… , Jk} of {1,… , d} such that for each 1 ≤ i ≤ k we have u⃗Ji = Ai ⋅ x⃗Ji + p⃗i , where 
u⃗Ji is the vector of all uj with j ∈ Ji (and x⃗Ji is defined analogously), di = |Ji| , Ai ∈ S

di×di , 
and p⃗i ∈ (S[x⃗Ji+1 ,… , x⃗Jk ])

di.
The eigenvalues of a solvable loop are the union of the eigenvalues of all Ai.

So solvable loops allow for blocks of variables with linear dependencies, and twn-
loops correspond to the case that all blocks have size 1. While our approach could be 
generalized to solvable loops with real eigenvalues, Theorem 5.15 (Sect. 5) shows that 
this generalization does not increase its applicability.

For our decidability results in Sect. 4, we reduce termination to the existential frag-
ment Th

∃
(S) of the first-order theory of S (see, e.g., [52, 57]). Th

∃
(S) consists of all 

formulas ∃y⃗ ∈ S
k.𝜓 where k ∈ ℕ and the propositional formula � is built from ∧ and 

∨ over the atoms {p ⊳ 0 ∣ p ∈ ℚ[y⃗, z⃗], ⊳ ∈ {≥,>}} . Here, y⃗ and z⃗ are pairwise disjoint 
vectors of variables. The free variables z⃗ range over ℝ𝔸 and they are needed in Sect. 5 to 
characterize subsets of real (algebraic) numbers by formulas.

The existential fragment of the first-order theory of S and  ℝ𝔸 is the set 
Th

∃
(S,ℝ𝔸) of all formulas ∃y⃗ �

∈ ℝk�

𝔸
, y⃗ ∈ S

k.𝜓 , with a propositional formula � over 
{p ⊳ 0 ∣ p ∈ ℚ[y⃗ �, y⃗, z⃗], ⊳ ∈ {≥,>}} where k�, k ∈ ℕ and the variables y⃗ ′ , y⃗ , and z⃗ are 
pairwise disjoint. A formula without free variables is closed.

⎡
⎢
⎢
⎣

x1
…

xd

⎤
⎥
⎥
⎦
←

⎡
⎢
⎢
⎣

c1 ⋅ x1 + p1
…

cd ⋅ xd + pd

⎤
⎥
⎥
⎦

Fig. 2  Loop L
ex

 over ℤ
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In the following, we also consider formulas over inequations p ⊳ 0 where p’s coeffi-
cients are from ℝ𝔸 to be elements of Th

∃
(ℝ𝔸) (resp. Th

∃
(S,ℝ𝔸) ). The reason is that real 

algebraic numbers are Th
∃
(ℝ𝔸)-definable.

Validity of closed formulas from Th
∃
(S) or Th

∃
(S,ℝ𝔸) is decidable if S ∈ {ℝ𝔸,ℝ} and 

semi-decidable if S ∈ {ℤ,ℚ} [13, 61]. By undecidability of Hilbert’s Tenth Problem [46], 
it is undecidable for S = ℤ . While validity of full first-order formulas (i.e., also contain-
ing universal quantifiers) over S = ℚ is undecidable [53], it is still open whether validity 
of closed formulas from Th

∃
(ℚ) or Th

∃
(ℚ,ℝ𝔸) is decidable. However, validity of linear 

closed formulas from Th
∃
(S) or Th

∃
(S,ℝ𝔸) is decidable for all S ∈ {ℤ,ℚ,ℝ𝔸,ℝ} [15, 26, 

33, 37]. Here, a formula is linear if it only contains atoms p ⊳ 0 where p is linear.

3  Reducing termination of twn‑loops to termination of tnn‑loops

For analyzing termination of twn-loops, we can restrict ourselves to tnn-loops, as twn-loops 
can be (automatically) transformed into tnn-loops via chaining.

Definition 3.1 (Chaining) Chaining a loop (𝜑, u⃗) yields (𝜑 ∧ 𝜑(u⃗), u⃗(u⃗)).

So for example, chaining the loop (x1 > 0,−x1) (i.e., “while (x1 > 0) do x1 ← −x1 ”) 
yields (x1 > 0 ∧ −x1 > 0, x1) . Analogous to [19] where chaining was used for triangular 
linear loops, we obtain the following theorem.

Theorem 3.2 (Soundness of Chaining) Let (𝜑, u⃗) be a twn-loop on Sd . 

(a) (𝜑 ∧ 𝜑(u⃗), u⃗(u⃗)) is tnn, i.e., it is triangular and the coefficient of each xi in ui(u⃗) is non-
negative.

(b) (𝜑, u⃗) terminates on e⃗ ∈ S
d iff (𝜑 ∧ 𝜑(u⃗), u⃗(u⃗)) terminates on e⃗.

As chaining is clearly computable, we get the following corollary.

Corollary 3.3 Termination of twn-loops is reducible to termination of tnn-loops.

It is well known that closed forms for tnn-loops are computable (see, e.g., [35, 67]) 
since their bodies correspond to C-finite recurrences, which are known to be solvable [34]. 
The resulting closed forms may contain polynomial arithmetic and exponentiation w.r.t. n 
(as, e.g., x1 ← 2 ⋅ x1 has the closed form x1 ⋅ 2n ) as well as certain piecewise defined func-
tions. For example, the closed form x(n)

1
 of x1 ← 1 is x(0)

1
= x1 and x(n)

1
= 1 for all n ∈ ℕ with 

n > 0.
We represent closed forms using poly-exponential expressions [19], where instead of 

handling piecewise defined functions via disjunctions (as in [35]), we simulate them via 
Iverson brackets. For a formula � over n, its Iverson bracket [�] ∶ ℕ → {0, 1} evaluates to 
1 iff � is satisfied (i.e., [�](e) = 1 if �[n∕e] holds and [�](e) = 0 , otherwise). Later, Iver-
son brackets can be replaced by the constants 0 or 1, as we only use them for formulas � 
that are constantly false or true for large enough values of n, see Sect. 4. Poly-exponential 
expressions are sums of arithmetic terms over the variables x⃗ and the additional designated 
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variable n, where it is always clear which addend determines the asymptotic growth of the 
expression when increasing n. This is crucial for our reducibility proof in Sect. 4. Defini-
tion 3.4 slightly generalizes the poly-exponential expressions from [19, Def. 9] by allowing 
arbitrary polynomials over x⃗ (instead of just linear expressions) as coefficients. In the fol-
lowing, for any set X ⊆ ℝ , any k ∈ X , and ⊳ ∈ {≥,>} , let X⊳k = {x ∈ X ∣ x ⊳ k}.

Definition 3.4 (Poly-Exponential Expressions) Let C be the set of all finite conjunctions 
over {n = c, n ≠ c ∣ c ∈ ℕ} where n is a designated variable and let 

QS =

{
r

s
∣ r ∈ S, s ∈ S>0

}
 be the quotient field of S . Then the set of all poly-exponential 

expressions with the variables x⃗ over S is

An example for a poly-exponential expression over ℤ (with Qℤ = ℚ ) is

The restriction to tnn-loops ensures that for the closed form q⃗ of the update we indeed 
have q⃗ ∈

(
ℙ𝔼S[x⃗]

)d . For example, for arbitrary matrices A ∈ ℝ
d×d
𝔸

 , the update x⃗ ← A ⋅ x⃗ is 
known to admit a closed form as in Definition 3.4 with complex bj’s, whereas real numbers 
suffice for triangular matrices. Moreover, non-negativity is required to ensure bj > 0 (e.g., a 
non-tnn loop with the update x1 ← −x1 has the closed form x1 ⋅ (−1)n).

Example 3.5 For Lex in Fig. 2, the closed form is q⃗ ∈

(
ℙ𝔼ℤ[x⃗]

)3 with

4  Reducing termination of tnn‑loops to Th
∃
(S)

It is known that the bodies of tnn-loops can be linearized [48], i.e., one can reduce termina-
tion of a tnn-loop (𝜑, u⃗) to termination of a linear-update tnn-loop (𝜑�, u⃗�) , where �′ may be 
non-linear. See Sect. 6 for a discussion of linearization and novel results on the lineariza-
tion procedure. Moreover, [64, 65] showed decidability of termination for certain classes of 
conjunctive linear-update loops over ℝ , which cover conjunctive linear-update tnn-loops. 
So, by combining the results of [48] and [64, 65], one can conclude that termination of 
conjunctive tnn-loops over ℝ is decidable.

In contrast, we now present a reduction of termination of tnn-loops to Th
∃
(S) which 

applies to tnn-loops over any ring ℤ ≤ S ≤ ℝ and which can also handle disjunctions in the 
loop condition. Moreover, our reduction yields tight complexity results on termination of 
linear loops over ℤ , ℚ , ℝ𝔸 , and ℝ , and on termination of linear-update loops over ℝ𝔸 and ℝ 
(see Sect. 7.1).

ℙ𝔼S[x⃗] = {

∑
𝓁

j=1

[
𝜓j

]
⋅ 𝛼j ⋅ n

aj
⋅ bn

j
∣ 𝓁, aj ∈ ℕ, 𝜓j ∈ C, 𝛼j ∈ QS[x⃗], bj ∈ S>0}.

[n ≠ 0 ∧ n ≠ 1] ⋅
(

1

2
⋅ x2

1
+

3

4
⋅ x2 − 1

)
⋅ n3 ⋅ 3n + [n = 1] ⋅ (x1 − x2).

q⃗ =

⎡
⎢
⎢
⎢
⎣

4

3
⋅ x5

3
⋅ n3 +

�
−2 ⋅ x5

3
− 2 ⋅ x2 ⋅ x

3
3

�
⋅ n2 +

�
x2
2
⋅ x3 +

2

3
⋅ x5

3
+ 2 ⋅ x2 ⋅ x

3
3

�
⋅ n + x1

−2 ⋅ x2
3
⋅ n + x2
x3

⎤
⎥
⎥
⎥
⎦

.
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Similar to [19], our reduction exploits that for tnn-loops (𝜑, u⃗) there is a closed form q⃗ 
for u⃗ with q⃗ ∈

(
ℙ𝔼S[x⃗]

)d . However, in [19] we only considered conjunctive linear loops 
over ℤ . In contrast, we now analyze loops over S for any ℤ ≤ S ≤ ℝ𝔸 and allow non-lin-
earity and arbitrary propositional formulas in the condition. Thus, the correctness proofs 
differ substantially from [19].

More precisely, we show that there is a function with the following specification that is 
computable in polynomial time:

We use the concept of eventual non-termination, i.e., the condition of the loop may be 
violated finitely often, see Definition 2.1. Clearly, (𝜑, u⃗) is non-terminating iff it is eventu-
ally non-terminating [49]. The formula � in (1) will encode the existence of a witness for 
eventual non-termination. By the definition of q⃗ , eventual non-termination of (𝜑, u⃗) on Sd is 
equivalent to validity of

Example 4.1 Continuing Example 3, Lex is eventually non-terminating over ℤ iff there is a 
corresponding witness e⃗ ∈ ℤ3 , i.e., iff

Let q⃗norm be like q⃗ , but each factor [�] is replaced by 0 if it contains an equation and 
by 1, otherwise. The reason is that for large enough n, equations in � become false and 
negated equations become true . So (2) is equivalent to

In this way, we obtain normalized poly-exponential expressions.

Definition 4.2 (Normalized ℙ𝔼 s) We call p ∈ ℙ𝔼S[x⃗] normalized if it is in

where w.l.o.g. (bi, ai) ≠ (bj, aj) if i ≠ j . We define ℕℙ𝔼S = ℕℙ𝔼S[�].

As � is a propositional formula over S[x⃗]-inequations, 𝜑(q⃗norm) is a propositional for-
mula over ℕℙ𝔼S[x⃗]-inequations. By (4), we need to check whether ∃x⃗ ∈ S

d. 𝜑(q⃗norm) is 

(1)
Input ∶ a tnn-loop(𝜑, u⃗) over S with closed form q⃗ ∈

(
ℙ𝔼S[x⃗]

)d

Result ∶ a closed formula 𝜒 ∈ Th
∃
(S) such that

𝜒 is valid iff (𝜑, u⃗) does not terminate on S
d

(2)∃x⃗ ∈ S
d, n0 ∈ ℕ. ∀n ∈ ℕ>n0

. 𝜑(q⃗).

(3)∃x1, x2, x3 ∈ ℤ, n0 ∈ ℕ. ∀n ∈ ℕ>n0
. p > 0

is valid where p = (x1 + x2
2
) + (x2

2
⋅ x3 +

2

3
⋅ x5

3
+ 2 ⋅ x2 ⋅ x

3
3
− 4 ⋅ x2 ⋅ x

2
3
) ⋅ n

+ (−2 ⋅ x5
3
− 2 ⋅ x2 ⋅ x

3
3
+ 4 ⋅ x4

3
) ⋅ n2 + (

4

3
⋅ x5

3
) ⋅ n3.

(4)∃x⃗ ∈ S
d, n0 ∈ ℕ. ∀n ∈ ℕ>n0

. 𝜑(q⃗norm).

ℕℙ𝔼S[x⃗] =

{∑
𝓁

j=1
𝛼j ⋅ n

aj
⋅ bn

j
∣ 𝓁, aj ∈ ℕ, 𝛼j ∈ QS[x⃗], bj ∈ S>0

}
,
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valid for large enough n. To this end, we will examine the dominant terms in the inequa-
tions of 𝜑(q⃗norm).

Definition 4.3 (Asymptotic Domination [38]) A function g ∶ ℕ → ℝ dominates a func-
tion f ∶ ℕ → ℝ asymptotically ( f ∈ o(g) ) if for all m > 0 there is an n0 ∈ ℕ such that1 
|f (n)| < m ⋅ |g(n)| for all n ∈ ℕ>n0

.

Now we can state the following lemma which generalizes [19, Lemma 24].

Lemma 4.4 Let b1, b2 ∈ S>0 and a1, a2 ∈ ℕ . If (b2, a2) >lex (b1, a1) , then 
na1 ⋅ bn

1
∈ o(na2 ⋅ bn

2
) , where (b2, a2) >lex (b1, a1) iff b2 > b1 or b2 = b1 ∧ a2 > a1.

In the following, let p ≥ 0 or p > 0 occur in 𝜑(q⃗norm) . We can order the coefficients of 
p according to the asymptotic growth of their addends w.r.t. n.

Definition 4.5 (Ordering Coefficients) Marked coefficients are of the form �(b,a) where 
𝛼 ∈ QS[x⃗], b ∈ S>0 , and a ∈ ℕ . We define unmark (�(b,a)

) = � and 𝛼(b2,a2)

2
≻coef 𝛼

(b1,a1)

1
 if 

(b2, a2) >lex (b1, a1) . Let p =
∑

𝓁

j=1
𝛼j ⋅ n

aj
⋅ bn

j
∈ ℕℙ𝔼S[x⃗] , where �j ≠ 0 for all 1 ≤ j ≤ � . 

Then the marked coefficients of p are

Example 4.6 Continuing Example 4.1, coefs (p) is {�(1,0)

1
, �(1,1)

2
, �(1,2)

3
, �(1,3)

4
} where

Note that p(e⃗) ∈ ℕℙ𝔼S for any e⃗ ∈ S
d , i.e., the only variable in p(e⃗) is n. Now the 

≻coef -maximal addend determines the asymptotic growth of p(e⃗):

Note that (5) would be incorrect for the case k = 0 if we replaced o(p(e⃗)) = o(k ⋅ na ⋅ bn) 
with o(p(e⃗)) = o(na ⋅ bn) as o(0) = � ≠ o(1) . Obviously, (5) implies

where sign (0) = 0 , sign (k) = 1 if k > 0 , and sign (k) = −1 if k < 0 . This allows us 
to reduce eventual non-termination to Th

∃
(S) if � is an atom. In the following, let 

coefs (p) = {�
(b1,a1)

1
,… , �

(b
�
,a

�
)

�

} , where 𝛼(bi,ai)

i
≺coef 𝛼

(bj ,aj)

j
 for all 1 ≤ i < j ≤ � . Then we 

define

coefs (p) =

{
{0(1,0)}, if � = 0

{�
(bj ,aj)

j
∣ 1 ≤ j ≤ �}, otherwise.

�1 = x1 + x2
2

�2 = x2
2
⋅ x3 +

2

3
⋅ x5

3
+ 2 ⋅ x2 ⋅ x

3
3
− 4 ⋅ x2 ⋅ x

2
3

�3 = −2 ⋅ x5
3
− 2 ⋅ x2 ⋅ x

3
3
+ 4 ⋅ x4

3
�4 =

4

3
⋅ x5

3

(5)o(p(e⃗)) = o(k ⋅ na ⋅ bn) where k(b,a) = max≻coef

(
coefs

(
p(e⃗)

))
.

(6)∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. sign

(
p(e⃗)

)
= sign (k),

1 Our definition is slightly more general than the original definition of [38] (which requires 
limn→∞

f (n)

g(n)
= 0 ), but both definitions are equivalent if g(n) is positive for large enough n.
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Lemma 4.7 Given p ∈ ℕℙ𝔼S[x⃗] and ⊳ ∈ {≥,>} , validity of

can be reduced to validity of the closed formula ∃x⃗ ∈ S
d. red (p ⊳ 0) from Th

∃
(S) . This 

reduction takes polynomially many steps in the size of p.

To gain intuition for the formula red (p ⊳ 0) , note that by (6), we have p(e⃗) > 0 for large 
enough values of n iff the coefficient of the asymptotically fastest growing addend 𝛼(e⃗) ⋅ na ⋅ bn 
that does not vanish (i.e., where 𝛼(e⃗) ≠ 0 ) is positive. Similarly, we have p(e⃗) < 0 for large 
enough n iff 𝛼(e⃗) < 0 . If all addends of p vanish when instantiating x⃗ with e⃗ , then p(e⃗) = 0 . In 
other words, (8) holds iff there is an e⃗ ∈ S

d such that unmark
(
max≻coef

(
coefs

(
p(e⃗)

)))
⊳ 0 . 

The formula red (p ⊳ 0) expresses the latter in Th
∃
(S).

Example 4.8 We continue Example 4.6. By the construction in Lemma 4.7, (3) is valid iff 
∃x1, x2, x3 ∈ ℤ. red (p > 0) is valid, where red (p > 0) is

For example, [x1∕ − 4, x2∕2, x3∕1] satisfies 𝛼4 > 0 as 
(

4

3
⋅ x5

3

)
[x1∕ − 4, x2∕2, x3∕1] > 0 . 

Thus, (−4, 2, 1) witnesses eventual non-termination of Lex over ℤ.

Now we lift our reduction to propositional formulas. To handle disjunctions, the 
proof of Theorem  4.9 exploits the crucial insight that a tnn-loop (𝜑 ∨ 𝜑�, u⃗) terminates 
iff (𝜑, u⃗) and (𝜑�, u⃗) terminate, which is not true in general (as, e.g., witnessed by the loop 
(x1 > 0 ∨ −x1 > 0,−x1) ). In the following, the formula red (�) results from � by replacing 
each atom p ⊳ 0 in � by red (p ⊳ 0).

Theorem 4.9 (Reducing Eventual Non-Termination) For a propositional formula � over the 
atoms {p ⊳ 0 ∣ p ∈ ℕℙ𝔼S[x⃗],⊳ ∈ {≥,>}} , validity of

can be reduced to validity of the closed formula ∃x⃗ ∈ S
d. red (𝜉) ∈ Th

∃
(S) . This reduction 

takes polynomially many steps in the size of �.

The time needed to compute the formula (9) is polynomial in the sum of the sizes of all 
poly-exponential expressions in � . So the function (1) is computable in polynomial time w.r.t. 
the size of its input: q⃗norm can clearly be computed in polynomial time from q⃗ and we can then 
apply Theorem 4.9 to 𝜑(q⃗norm) . Combining Corollary 3.3, (4), and Theorem 4.9 leads to the 
main result of this section.

(7)
red (p > 0) =

⋁
�

i=1
(𝛼i > 0 ∧

⋀
�

j=i+1
𝛼j = 0)

and red (p ≥ 0) = red (p > 0) ∨
⋀

�

i=1
𝛼i = 0.

(8)∃x⃗ ∈ S
d, n0 ∈ ℕ. ∀n ∈ ℕ>n0

. p ⊳ 0

(
𝛼1 > 0 ∧ 𝛼2 = 0 ∧ 𝛼3 = 0 ∧ 𝛼4 = 0

)
∨

(
𝛼2 > 0 ∧ 𝛼3 = 0 ∧ 𝛼4 = 0

)

∨

(
𝛼3 > 0 ∧ 𝛼4 = 0

)
∨ 𝛼4 > 0.

(9)∃x⃗ ∈ S
d, n0 ∈ ℕ. ∀n ∈ ℕ>n0

. 𝜉
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Theorem 4.10 (Reducing Termination) Termination of tnn-loops (resp. twn-loops) on Sd is 
reducible to Th

∃
(S).

However, if the update contains non-linear terms, then its closed form and hence this 
reduction are not always computable in polynomial space (and thus, also not in polynomial 
time). Consider the following tnn-loop Lnon−pspace:

The closed form for xi (i.e., the value of xi after n loop iterations) is qi = d(d
d−i

⋅(n−d+i))
⋅ x

(dd−i)

d
 

for all n ≥ d . Thus, the closed form q1 for x1 contains constants like d(dd−1) whose logarithm 
grows faster than any polynomial in d. Hence, q1 cannot be computed in polynomial space.

Instead of computing closed forms directly, one could first linearize the loop (see [48] 
and Sect.  6) and then compute the closed form for the resulting linear-update loop. How-
ever, this approach cannot be computed in polynomial space either, because the linearization 
of Lnon−pspace contains the constant d(dd−1) as well (see Example 6.14 in Sect. 6). We refer to 
Sect. 7 for an analysis of the complexity of deciding termination for twn-loops.

Our reduction also works if S = ℝ , i.e., termination over ℝ is reducible to Th
∃
(ℝ) , since ℝ 

and ℝ𝔸 are elementary equivalent (i.e., a first-order formula is valid over ℝ iff it is valid over 
ℝ𝔸 , see, e.g., [2]). Thus, we get the following corollary by using that validity of closed formu-
las from Th

∃
(S) is decidable for S ∈ {ℝ𝔸,ℝ} and semi-decidable for S ∈ {ℤ,ℚ} [13, 61].

Corollary 4.11 ((Semi-)Deciding (Non-)Termination) Let (𝜑, u⃗) be a twn-loop. 

(a) The loop (𝜑, u⃗) terminates over ℝ𝔸 iff it terminates over ℝ.
(b) Termination of (𝜑, u⃗) on Sd is decidable if S = ℝ𝔸 or S = ℝ.
(c) Non-termination of (𝜑, u⃗) on Sd is semi-decidable if S = ℤ or S = ℚ.

Our technique does not yield witnesses for non-termination, but the formula constructed by 
Theorem 4.9 describes the set of all witnesses for eventual non-termination. So this set can be 
characterized by a formula from Th

∃
(S) (i.e., it is Th

∃
(S)-definable, see Sect. 5.1), while in 

general the set of witnesses for non-termination cannot be characterized in this way (see [14]).

Lemma 4.12 Let 𝜉 = 𝜑(q⃗norm) . Then e⃗ ∈ S
d witnesses eventual non-termination of (𝜑, u⃗) on 

S
d iff red (𝜉)(e⃗) holds.

In [28], we show how to compute witnesses for non-termination from witnesses for even-
tual non-termination of twn-loops. Thus, combining Lemma 4.12 with [28] shows that NT

(𝜑,u⃗) 

(10)while (true) do
(
x1, x2,… , xd−1, xd

)
←

(
xd
2
, xd

3
,… , xd

d
, d ⋅ xd

)

Algorithm 1  Checking Termination
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is recursively enumerable for twn-loops over ℤ ≤ S ≤ ℝ𝔸 . Algorithm 1 summarizes our tech-
nique to check termination of twn-loops. 

5  Transformation to triangular weakly non‑linear form

In this section, we show how to handle loops that are not yet twn. To this end, we introduce 
a transformation of loops via polynomial automorphisms in Sect.  5.1 and show that our 
transformation preserves (non-)termination (Theorem  5.10). In Sect.  5.2, we use results 
from algebraic geometry to show that the question whether a loop can be transformed into 
twn-form is reducible to validity of Th

∃
(ℝ𝔸)-formulas (Theorem  5.19). Moreover, we 

show that it is decidable whether a linear automorphism can transform a loop into a special 
case of the twn-form (Theorem 5.22). Finally, based on the transformation of Sects. 5.1 and 
5.2 we generalize our results from Sect. 4 to certain non-twn loops in Sect. 5.3.

5.1  Transforming loops

Clearly, the polynomials x1,… , xd are generators of the S-algebra S[x⃗] , i.e., every polyno-
mial from S[x⃗] can be obtained from x1,… , xd and the operations of the algebra (i.e., addi-
tion and multiplication). So far, we have implicitly chosen a special “representation” of the 
loop based on the generators x1,… , xd.

We now change this representation, i.e., we use d different polynomials which are also 
generators of S[x⃗] . Then the loop has to be modified accordingly to adapt it to this new 
representation. This modification does not affect the loop’s termination behavior, but it 
may transform a non-twn-loop into twn-form. This change of representation is described  
by S-automorphisms of S[x⃗].

Definition 5.1 (S-Endomorphisms) A mapping 𝜂 ∶ S[x⃗] → S[x⃗] is an S-endomorphism of 
S[x⃗] if it is S-linear and multiplicative, i.e., for all c, c� ∈ S and all p, p� ∈ S[x⃗] we have 
�(c ⋅ p + c� ⋅ p�) = c ⋅ �(p) + c� ⋅ �(p�) , �(1) = 1 , and �(p ⋅ p�) = �(p) ⋅ �(p�) . We denote 
the set of all S-endomorphisms of S[x⃗] by EndS

(
S[x⃗]

)
 . The set AutS

(
S[x⃗]

)
 of S-automor-

phisms of S[x⃗] consists of those 𝜂 ∈ EndS
(
S[x⃗]

)
 which are invertible, i.e., there exists an 

𝜂−1 ∈ EndS
(
S[x⃗]

)
 with 𝜂◦𝜂−1 = 𝜂−1◦𝜂 = idS[x⃗] , where idS[x⃗] is the identity function on S[x⃗] . 

AutS
(
S[x⃗]

)
 is a group under function composition ◦ with identity idS[x⃗].

Example 5.2 Let � ∈ EndS
(
S[x1, x2]

)
 with �(x1) = x2 and �(x2) = x1 − x2

2
 . Then 

� ∈ AutS
(
S[x1, x2]

)
 , where �−1(x1) = x2

1
+ x2 and �−1(x2) = x1.

As S[x⃗] is free on the generators x⃗ , an endomorphism 𝜂 ∈ EndS
(
S[x⃗]

)
 is uniquely deter-

mined by the images of the variables, i.e., by �(x1),… , �(xd) . Hence, we have a one-to-
one correspondence between elements of 

(
S[x⃗]

)d and EndS
(
S[x⃗]

)
 . In particular, every 

tuple u⃗ = (u1,… , ud) ∈
(
S[x⃗]

)d corresponds to the unique endomorphism �u ∈ EndS
(
S[x⃗]

)
 

which is defined as follows:
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So for any p ∈ S[x⃗] we have �u(p) = p(u⃗) . Thus, the update of a loop induces an endomor-
phism which operates on polynomials.

Example 5.3 Consider the loop Laut = (𝜑, u⃗) where u⃗ = (u1, u2):

Then u⃗ induces the endomorphism ũ with ũ(x1) = u1 and ũ(x2) = u2 . So we have 
�u(2 ⋅ x1 + x3

2
) = (2 ⋅ x1 + x3

2
)(u⃗) = 2 ⋅ u1 + u3

2
.

Therefore, for a tuple of numbers like ⃗e = (5, 2) , the induced endomorphism ̃e is ̃e(x1) = 5 
and ẽ(x2) = 2 . Thus, we have ẽ(x3

2
+ x1 − x2

2
) = (x3

2
+ x1 − x2

2
)(5, 2) = 23 + 5 − 22 = 9.

We extend the application of endomorphisms 𝜂 ∶ S[x⃗] → S[x⃗] to vectors of polynomi-
als u⃗ = (u1,… , ud) by defining 𝜂(u⃗) = (𝜂(u1),… , 𝜂(ud)) and to formulas � ∈ Th

∃
(S,ℝ𝔸) 

by defining 𝜂(𝜑) = 𝜑(𝜂(x⃗)) , i.e., �(�) results from � by applying � to all polynomials that 
occur in � . This allows us to transform (𝜑, u⃗) into a new loop Tr 𝜂(𝜑, u⃗) using any auto-
morphism 𝜂 ∈ AutS

(
S[x⃗]

)
.

Definition 5.4 (Tr ) For 𝜂 ∈ AutS
(
S[x⃗]

)
 , we define Tr 𝜂(𝜑, u⃗) = (𝜑�, u⃗ �

) where

In other words, we have u⃗ �
= (𝜂(x⃗)) (u⃗) (𝜂−1(x⃗)) since (𝜂−1◦�u◦𝜂)(x⃗) = 𝜂−1(𝜂(x⃗)[x⃗∕u⃗]) =

𝜂(x⃗)[x⃗∕u⃗][x⃗∕𝜂−1(x⃗)] = (𝜂(x⃗))(u⃗)(𝜂−1(x⃗)).

Example 5.5 We transform the loop Laut in (11) with the automorphism � from Example 
5.2. We obtain Tr 𝜂(𝜑, u⃗) = (𝜑�, u⃗ �

) where

So the resulting transformed loop is (x3
1
+ x2 > 0, (x1 + x2

2
, 2 ⋅ x2)) . Note that while the 

original loop (𝜑, u⃗) is neither triangular nor weakly non-linear, the resulting transformed 
loop is twn. Also note that we used a non-linear automorphism with �(x2) = x1 − x2

2
 for the 

transformation.

While the above example shows that our transformation can indeed transform non-
twn-loops into twn-loops, it remains to prove that this transformation preserves (non-)
termination. Then we can use our techniques for termination analysis of twn-loops for 
twn-transformable-loops as well, i.e., for all loops (𝜑, u⃗) where Tr 𝜂(𝜑, u⃗) is twn for some 
automorphism � . (The question how to find such automorphisms will be addressed in 
Sect. 5.2.)

ũ(xi) = ui for all 1 ≤ i ≤ d

(11)while (x3
2
+ x1 − x2

2
> 0) do

[
x1
x2

]
←

[
((−x2

2
+ x1)

2
+ x2)

2
− 2 ⋅ x2

2
+ 2 ⋅ x1

(−x2
2
+ x1)

2
+ x2

]

𝜑�
= 𝜂−1(𝜑) and u⃗ �

= (𝜂−1◦�u◦𝜂)(x⃗).

𝜑�
= 𝜂−1(𝜑) = ((𝜂−1(x2))

3
+ 𝜂−1(x1) − (𝜂−1(x2))

2 > 0)

= (x
3

1
+ x

2

1
+ x2 − x

2

1
> 0) = (x

3

1
+ x2 > 0) and

u⃗
�
= ((𝜂−1◦�u◦𝜂)(x1), (𝜂

−1
◦�u◦𝜂)(x2)) = (𝜂−1(�u(x2)), 𝜂

−1
(�u(x1 − x

2

2
)))

= (𝜂−1(u2), 𝜂
−1
(u1 − u

2

2
)) = (x1 + x

2

2
, 2 ⋅ x2).
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As a first step, by Lemma 5.6, our transformation is “compatible” with the operation 
◦ of the group AutS

(
S[x⃗]

)
 , i.e., it is an action.

Lemma 5.6 AutS
(
S[x⃗]

)
 acts via Tr on loops, i.e., for 𝜂1, 𝜂2 ∈ AutS

(
S[x⃗]

)
 , we have 

Tr idS[x⃗]
(𝜑, u⃗) = (𝜑, u⃗) and Tr 𝜂1◦𝜂2 (𝜑, u⃗) = Tr𝜂2 ( Tr 𝜂1 (𝜑, u⃗)).

The following lemma will enable us to generalize our results on witnesses for (even-
tual) non-termination to loops which can be transformed into twn-form.

Lemma 5.7 Let Tr 𝜂(𝜑, u⃗)=(𝜑�, u⃗ �
) and let �̂∶Sd

→S
d map e⃗ to �𝜂(e⃗) = �e(𝜂(x⃗)) = (𝜂(x⃗))(e⃗) . 

Then 𝜑(u⃗n(e⃗)) = 𝜑�
((u⃗ �

)
n
(�𝜂(e⃗))) for all e⃗ ∈ S

d and n ∈ ℕ.

Lemma 5.7 yields the following corollary which shows that 𝜂(x⃗) transforms witnesses 
for (eventual) non-termination of (𝜑, u⃗) into witnesses for Tr 𝜂(𝜑, u⃗).

Corollary 5.8 If e⃗ witnesses (eventual) non-termination of (𝜑, u⃗) , then �𝜂(e⃗) witnesses (even-
tual) non-termination of Tr 𝜂(𝜑, u⃗).

Example 5.9 For the tuple e⃗ = (5, 2) from Example 5.3 and the automorphism � from 
Example 5.2 with �(x1) = x2 and �(x2) = x1 − x2

2
 , we obtain

As e⃗ = (5, 2) witnesses non-termination of the loop Laut = (𝜑, u⃗) in (11), �𝜂(e⃗) = (2, 1) wit-
nesses non-termination of Tr 𝜂(𝜑, u⃗) due to Corollary 5.8.

Finally, Theorem 5.10 states that transforming loops preserves (non-)termination.

Theorem 5.10 (Tr Preserves Termination) If 𝜂 ∈ AutS
(
S[x⃗]

)
 , then �̂  is a bijection between 

the respective sets of witnesses for (eventual) non-termination, i.e., for Tr 𝜂(𝜑, u⃗) = (𝜑�, u⃗ �
) 

we have e⃗ ∈ (E)NT
(𝜑,u⃗) iff �𝜂(e⃗) ∈ (E)NT

(𝜑� ,u⃗ �)
 . Therefore, (𝜑, u⃗) terminates iff 

Tr 𝜂(𝜑, u⃗) = (𝜑�, u⃗ �
) terminates.

Up to now, we only transformed a loop (𝜑, u⃗) on Sd using elements of AutS
(
S[x⃗]

)
 . To 

see that this is a limitation, consider a linear-update loop where u⃗ = A ⋅ x⃗ and A only has 
real eigenvalues. In Sect. 7.1 we will show that these loops can always be transformed into 
twn-form and a suitable automorphism � can be obtained by computing the Jordan normal 
form of A. This automorphism � is only an element of AutS

(
S[x⃗]

)
 if the eigenvalues of A 

are from S . So if S = ℤ , then this transformation is only applicable if all eigenvalues of A 
are integers.

However, we can also transform (𝜑, u⃗) into the loop Tr 𝜂(𝜑, u⃗) on ℝd
𝔸
 using an auto-

morphism 𝜂 ∈ Autℝ𝔸

(
ℝ𝔸[x⃗]

)
 . Nevertheless, our goal remains to prove termination on Sd 

instead of ℝd
𝔸
 , which is not equivalent in general. Thus, in Sect. 5.3 we will show how to 

analyze termination of loops on certain subsets F of ℝd
𝔸
 . This allows us to analyze termina-

tion of (𝜑, u⃗) on Sd by checking termination of Tr 𝜂(𝜑, u⃗) on the subset �𝜂(Sd
) ⊆ ℝd

𝔸
 instead.

�𝜂(e⃗) = (𝜂(x1), 𝜂(x2)) (e⃗) = (2, 5 − 22) = (2, 1).
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By our definition of loops over a ring S , we have u⃗(e⃗) ∈ S
d for all e⃗ ∈ S

d ,  
i.e., Sd is u⃗-invariant. This property is preserved by our transformation.

Definition 5.11 (u⃗-Invariance) Let (𝜑, u⃗) be a loop on S
d and let F ⊆ S

d .  
We call F u⃗-invariant or update-invariant if for all e⃗ ∈ F we have u⃗(e⃗) ∈ F.

Lemma 5.12 Let (𝜑, u⃗) be a loop on Sd , F ⊆ S
d be u⃗-invariant, 𝜂 ∈ Autℝ𝔸

(
ℝ𝔸[x⃗]

)
 , and let 

Tr 𝜂(𝜑, u⃗) = (𝜑�, u⃗ �
) . Then �̂(F) is u⃗ ′-invariant.

Our goal is to reduce termination to a Th
∃
(S,ℝ𝔸)-formula. Clearly, termination on F 

cannot be encoded with such a formula if F cannot be defined via Th
∃
(S,ℝ𝔸) . Thus, we 

require that F is Th
∃
(S,ℝ𝔸)-definable, i.e., that there is a � ∈ Th

∃
(S,ℝ𝔸) with free vari-

ables x⃗ such that we have e⃗ ∈ F iff 𝜓(e⃗) is valid. Then we also say that � defines F. An 
example for a Th

∃
(ℤ,ℝ𝔸)-definable set is {(a, 0, a) ∣ a ∈ ℤ} , which is characterized by the 

formula ∃a ∈ ℤ. x1 = a ∧ x2 = 0 ∧ x3 = a.
To analyze termination of (𝜑, u⃗) on Sd , we can analyze termination of Tr 𝜂(𝜑, u⃗) on 

�𝜂(Sd
) ⊆ ℝd

𝔸
 instead. The reason is that e⃗ ∈ S

d is a witness for (eventual) non-termination of 
(𝜑, u⃗) iff �𝜂(e⃗) is a witness for Tr 𝜂(𝜑, u⃗) due to Corollary 5.8, i.e., Sd contains a witness for 
(eventual) non-termination of (𝜑, u⃗) iff �̂(Sd

) contains a witness for Tr 𝜂(𝜑, u⃗) . While Sd is 
clearly Th

∃
(S,ℝ𝔸)-definable, Lemma 5.13 shows that �̂(Sd

) is Th
∃
(S,ℝ𝔸)-definable, too. 

More precisely, Th
∃
(S,ℝ𝔸)-definability is preserved by polynomial endomorphisms.

Lemma 5.13 Let ℤ ≤ S ≤ ℝ𝔸 and let 𝜂 ∈ Endℝ𝔸

(
ℝ𝔸[x⃗]

)
 . If F ⊆ ℝd

𝔸
 is Th

∃
(S,ℝ𝔸)-defin-

able then so is �̂(F).

Example 5.14 The set ℤ2 is Th
∃
(ℤ,ℝ𝔸)-definable as we have (x1, x2) ∈ ℤ2 iff

Let 𝜂 ∈ Endℝ𝔸

(
ℝ𝔸[x⃗]

)
 with �(x1) =

1

2
⋅ x2

1
+ x2

2
 and �(x2) = x2

2
.

Then �̂(ℤ2
) is also Th

∃
(ℤ,ℝ𝔸)-definable because for x1, x2 ∈ ℝ𝔸 we have 

(x1, x2) ∈ �(ℤ2
) iff

Theorem 5.15 shows that instead of regarding solvable loops [56], w.l.o.g. we can restrict 
ourselves to twn-loops. The reason is that every solvable loop with real eigenvalues can be 
transformed into a twn-loop by a linear automorphism � , i.e., the degree deg(�) of � is 1, 
where deg(�) = max{deg(�(xi)) ∣ 1 ≤ i ≤ d}.

Theorem 5.15 (twn-Transformability of Solvable Loops) Let (𝜑, u⃗) be a solvable loop with 
real eigenvalues. Then one can compute a linear automorphism 𝜂 ∈ Autℝ𝔸

(
ℝ𝔸[x⃗]

)
 such 

that Tr 𝜂(𝜑, u⃗) is twn.

∃a, b ∈ ℤ. x1 = a ∧ x2 = b.

∃y1, y2 ∈ ℝ𝔸, a, b ∈ ℤ. y1 = a ∧ y2 = b ∧ x1 =
1

2
⋅ y2

1
+ y2

2
∧ x2 = y2

2
.
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We recapitulate our most important results on Tr in the following corollary. Here, we 
generalize the result of Theorem  5.10 to the setting where we consider termination on 
some update-invariant and Th

∃
(S,ℝ𝔸)-definable set.

Corollary 5.16 (Properties of Tr ) Let (𝜑, u⃗) be a loop, 𝜂 ∈ Autℝ𝔸

(
ℝ𝔸[x⃗]

)
 , 

Tr 𝜂(𝜑, u⃗) = (𝜑�, u⃗ �
) , and F ⊆ S

d be u⃗-invariant and Th
∃
(S,ℝ𝔸)-definable. 

(a) �𝜂(F) ⊆ ℝd
𝔸
 is u⃗ ′-invariant and Th

∃
(S,ℝ𝔸)-definable.

(b) (𝜑, u⃗) terminates on F iff (𝜑�, u⃗ �
) terminates on �̂(F).

(c) e⃗ ∈ F witnesses (eventual) non-termination of (𝜑, u⃗) iff �𝜂(e⃗) ∈ �𝜂(F) witnesses (eventual) 
non-termination of (𝜑�, u⃗ �

).

5.2  Finding automorphisms to transform loops into twn‑form

The goal of Tr � from Sect. 5.1 is to transform (𝜑, u⃗) into twn-form such that our techniques 
from Sect. 4 can be used to decide termination. So the two remaining challenges are to find 
a suitable automorphism 𝜂 ∈ Autℝ𝔸

(
ℝ𝔸[x⃗]

)
 such that Tr 𝜂(𝜑, u⃗) is twn, and to adapt our 

techniques from Sect. 4 such that they can be applied to twn-loops where one only wants 
to show termination on an update-invariant Th

∃
(S,ℝ𝔸)-definable subset. We discuss the 

latter challenge in Sect. 5.3. In this section, we present two techniques to check the exist-
ence of automorphisms for the transformation into twn-form constructively, i.e., these tech-
niques can also be used to compute such automorphisms.

The search for suitable automorphisms is closely related to the question if a polynomial 
automorphism can be conjugated into a “de Jonquiéres”-automorphism, a difficult ques-
tion from algebraic geometry [18]. So future advances in this field may help to improve the 
results of the current section.

The first technique (Theorem 5.19) reduces the search for a suitable automorphism of 
bounded degree to Th

∃
(ℝ𝔸) . For any automorphism, the degree of its inverse is bounded 

in terms of the length d of x⃗.

Theorem 5.17 (Degree of Inverse [18, Corollary 2.3.4]) Let 𝜂 ∈ Autℝ𝔸

(
ℝ𝔸[x⃗]

)
 . Then we 

have deg(�−1) ≤ (deg(�))d−1.

By Theorem 5.17, checking if an endomorphism is an automorphism can be reduced 
to Th

∃
(ℝ𝔸) . To do so, one encodes the existence of coefficients for the polynomials 

�−1(x1),… , �−1(xd) , which all have at most degree (deg(�))d−1.

Lemma 5.18 Let 𝜂 ∈ Endℝ𝔸

(
ℝ𝔸[x⃗]

)
 . Then the question if 𝜂 ∈ Autℝ𝔸

(
ℝ𝔸[x⃗]

)
 holds is 

reducible to Th
∃
(ℝ𝔸).

Based on Lemma 5.18, we now present our first technique to find an automorphism � 
that transforms a loop into twn-form.

Theorem 5.19 (Tr With Automorphisms of Bounded Degree) For any � ≥ 0 , the question 
whether there exists an 𝜂 ∈ Autℝ𝔸

(
ℝ𝔸[x⃗]

)
 with deg(�) ≤ � such that Tr 𝜂(𝜑, u⃗) is twn is 

reducible to Th
∃
(ℝ𝔸).
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So if the degree of � is bounded a priori, it is decidable whether there exists an 
𝜂 ∈ Autℝ𝔸

(
ℝ𝔸[x⃗]

)
 such that Tr 𝜂(𝜑, u⃗) is twn since Th

∃
(ℝ𝔸) is decidable.

We call a loop twn -transformable if there is an 𝜂 ∈ Autℝ𝔸

(
ℝ𝔸[x⃗]

)
 such that Tr 𝜂(𝜑, u⃗) 

is twn. By Theorem 5.19, twn-transformability is semi-decidable since one can increment � 
until a suitable automorphism is found. So in other words, any loop which is transformable 
to a twn-loop can be transformed via Theorem 5.19.

We call our transformation Tr complete for a class of loops if every loop from this class 
is twn-transformable. For such classes, a suitable automorphism is computable by Theo-
rem 5.19. Together with Theorem 5.15, we get Corollary 5.20.

Corollary 5.20 Tr is complete for solvable loops with real eigenvalues.

Note that for solvable loops (𝜑, u⃗) , instead of computing � using Theorem  5.19, the 
proof of Theorem 5.15 yields a more efficient way to compute a linear automorphism � 
such that Tr 𝜂(𝜑, u⃗) is twn. For this, one computes the Jordan normal form of each Ai (see 
Definition 2.3), which is possible in polynomial time (see, e.g., [23, 54]).

Our second technique to find suitable automorphisms for our transformation is restricted 
to linear automorphisms. In this case, it is decidable whether a loop can be transformed 
into a twn-loop (𝜑�, u⃗�) where the monomial for xi has the coefficient 1 in each u′

i
 . The deci-

sion procedure checks if a certain Jacobian matrix is strongly nilpotent, i.e., it is not based 
on a reduction to Th

∃
(ℝ𝔸).

Definition 5.21 (Strong Nilpotence) Let J ∈

(
ℝ𝔸[x⃗]

)d×d be a matrix of polynomi-
als. For all 1 ≤ i ≤ d , let y⃗(i) be a vector of fresh variables. J is strongly nilpotent if 
∏d

i=1
J[x⃗∕y⃗(i)] = 0d×d , where 0d×d is the zero matrix.

Our second technique is formulated in the following theorem which follows from an 
existing result in linear algebra [17, Thm. 1.6.].

Theorem 5.22 (Tr With Linear Automorphisms [17]) Let (𝜑, u⃗) be a loop. The Jacobian 

matrix 
(

𝜕(ui−xi)

𝜕xj

)

1≤i,j≤d
∈

(
ℝ𝔸[x⃗]

)d×d is strongly nilpotent iff there exists a linear automor-

phism 𝜂 ∈ Autℝ𝔸

(
ℝ𝔸[x⃗]

)
 with

and pi ∈ ℝ𝔸[xi+1,… , xd] for all 1 ≤ i ≤ d. Thus, Tr 𝜂(𝜑, u⃗) is twn.

(12)Tr 𝜂(𝜑, u⃗) = (𝜑�, (x1 + p1,… , xd + pd))

Fig. 3  Loop L
non−twn
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As strong nilpotence of the Jacobian matrix is clearly decidable, Theorem 5.22 gives 
rise to a decision procedure for the existence of a linear automorphism that transforms 
(𝜑, u⃗) to the form (12).

Example 5.23 The loop Lnon−twn on S3 in Fig. 3 shows how our results enlarge the class of 
loops where termination is reducible to Th

∃
(S,ℝ𝔸) . This loop is clearly not in twn-form. 

To transform it, we use Theorem 5.22. The Jacobian matrix J of (u1 − x1, u2 − x2, u3 − x3) 
is:

One easily checks that J is strongly nilpotent. Thus, by Theorem 5.22 the loop can be trans-
formed into twn-form by a linear automorphism. Indeed, consider the linear automorphism 

𝜂∈Autℝ𝔸

(
ℝ𝔸[x⃗]

)
 induced by the matrix M=

⎡
⎢
⎢
⎣

1 1 1

0 2 0

1 2 2

⎤
⎥
⎥
⎦
 , i.e.,

If we transform Lnon−twn with � , we obtain the twn-loop Lex in Fig. 2. If S = ℝ𝔸 , then Lex 
terminates on ℝ3

𝔸
 iff Lnon−twn terminates on ℝ3

𝔸
 by Theorem 5.10. Thus, as seen in Example 

4.8, Lnon−twn does not terminate on ℝ3
𝔸
 . Now assume S = ℤ , i.e., we analyze termination of 

Lnon−twn on ℤ3 instead of ℝ3
𝔸
 . Note that �̂  maps ℤ3 to the set of all ℤ-linear combinations of 

columns of M, i.e.,

By Corollary 5.16, Lex terminates on �̂(ℤ3
) iff Lnon−twn terminates on ℤ3 . Moreover, �̂(ℤ3

) 
is Th

∃
(ℤ,ℝ𝔸)-definable: We have (x1, x2, x3) ∈ �̂(ℤ3

) iff

We will discuss how to analyze termination of tnn-loops like Lex on update-invariant and 
Th

∃
(ℤ,ℝ𝔸)-definable sets like �̂(ℤ3

) in Sect. 5.3.

To summarize, if a loop is twn-transformable, then we can always find a suitable auto-
morphism via Theorem 5.19. So whenever Theorem 5.22 is applicable, a suitable linear 
automorphism can also be obtained by Theorem 5.19. Hence, our first technique from The-
orem 5.19 subsumes our second one from Theorem 5.22. However, while Theorem 5.19 
is always applicable, Theorem 5.22 is easier to apply. The reason is that for Theorem 5.19 
one has to check validity of a possibly non-linear formula over the reals, where the degree 
of the occurring polynomials depends on � and the update u⃗ of the loop, and the number 
of variables can be exponential in d, see Theorem 5.17 and Lemma 5.18. So even when 
searching for a linear automorphism, one may obtain a non-linear formula if the loop is 
non-linear. In contrast, Theorem 5.22 only requires linear algebra. So it is preferable to first 
check whether the loop can be transformed into a twn-loop (��, (x1 + p1,… , xd + pd)) with 
xi ∉ V(pi) via a linear automorphism. This check is decidable by Theorem 5.22.

⎡
⎢
⎢
⎢
⎢
⎣

8 ⋅ x2
2

16 ⋅ x1 ⋅ x2 + 48 ⋅ x2
2
+ 32 ⋅ x2 ⋅ x3 16 ⋅ x2

2

−2 ⋅ x1 − 4 ⋅ x2 − 4 ⋅ x3 − 4 ⋅ x1 − 8 ⋅ x2 − 8 ⋅ x3 − 4 ⋅ x1 − 8 ⋅ x2 − 8 ⋅ x3

−4 ⋅ x2
2
+ 2 ⋅ x1 + 4 ⋅ x2 + 4 ⋅ x3 − 8 ⋅ x1 ⋅ x2 − 24 ⋅ x2

2
− 16 ⋅ x2 ⋅ x3 + 4 ⋅ x1 + 8 ⋅ x2 + 8 ⋅ x3 − 8 ⋅ x2

2
+ 4 ⋅ x1 + 8 ⋅ x2 + 8 ⋅ x3

⎤
⎥
⎥
⎥
⎥
⎦

� ∶ x1 ↦ x1 + x2 + x3, x2 ↦ 2 ⋅ x2, x3 ↦ x1 + 2 ⋅ x2 + 2 ⋅ x3 and

�−1 ∶ x1 ↦ 2 ⋅ x1 − x3, x2 ↦
1

2
⋅ x2, x3 ↦ −x1 −

1

2
⋅ x2 + x3.

�̂(ℤ3
) = {a ⋅ (1, 0, 1) + b ⋅ (1, 2, 2) + c ⋅ (1, 0, 2) ∣ a, b, c ∈ ℤ}.

(13)∃a, b, c ∈ ℤ. x1 = a ⋅ 1 + b ⋅ 1 + c ⋅ 1 ∧ x2 = b ⋅ 2 ∧ x3 = a ⋅ 1 + b ⋅ 2 + c ⋅ 2.
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Note that the proof of Theorem 5.19 is constructive. Moreover, the proof of [17, Thm. 1.6.] 
which implies Theorem 5.22 is also constructive: the idea is to use basic results from linear 

algebra to compute an invertible matrix T ∈ ℝ
d×d
𝔸

 such that T ⋅ J ⋅ T−1 is triangular where J is 

the Jacobian matrix 
(

�(ui−xi)

�xj

)

1≤i,j≤d

 . Then � with 𝜂(x⃗) = T ⋅ x⃗ transforms the loop into the 

form (12). Hence, Theorem 5.22 is also constructive. Thus, we can not only check the exist-
ence of a suitable automorphism, but we can also compute it whenever it exists.

5.3  Analyzing twn‑transformable loops

In this section, we generalize our results from Sect.  4 to twn-transformable loops. Our  
transformation from Sect.  5.1 and 5.2 transforms twn-transformable loops over update-
invariant and Th

∃
(S,ℝ𝔸)-definable sets into twn-loops over update-invariant and 

Th
∃
(S,ℝ𝔸)-definable sets. Thus, in this section we fix a twn-loop (𝜑, u⃗) and such a set 

F ⊆ ℝd
𝔸
 . Let �F ∈ Th

∃
(S,ℝ𝔸) define F.

While in Sect. 4 we were concerned with the termination of loops on a set Sd for a ring 
S , we now show that termination of (𝜑, u⃗) on F can also be reduced to an existential for-
mula (from Th

∃
(S,ℝ𝔸) ). Here, we indeed rely on the update-invariance of F as otherwise 

eventual non-termination and non-termination of (𝜑, u⃗) on F would not be equivalent. In 
Sect. 4, this equivalence is crucial since we reduce non-termination via eventual non-termi-
nation to Th

∃
(S,ℝ𝔸).

Again, let q⃗norm be the normalized closed form of u⃗ . Similar to (4), (𝜑, u⃗) is eventually 
non-terminating on F iff

In Theorem  4.9, we have seen that given a propositional formula � over 
the atoms {p ⊳ 0 ∣ p ∈ ℕℙ𝔼S[x⃗],⊳ ∈ {≥,>}} , one can reduce validity of 
∃x⃗ ∈ S

d, n0 ∈ ℕ. ∀n ∈ ℕ>n0
. 𝜉 to validity of ∃x⃗ ∈ S

d. red (𝜉) ∈ Th
∃
(S) and the result-

ing formula can be computed in polynomial time from � . Thus, by using the formula 
∃x⃗ ∈ ℝd

𝔸
. 𝜓F ∧ red (𝜉) ∈ Th

∃
(S,ℝ𝔸) instead, we obtain Corollary 5.24.

Corollary 5.24 (Reducing Eventual Non-Termination on a Set) For a propositional formula 
� over {p ⊳ 0 ∣ p ∈ ℕℙ𝔼ℝ𝔸

[x⃗],⊳ ∈ {≥,>}} , validity of

can be reduced to validity of a closed formula in Th
∃
(S,ℝ𝔸) in polynomial time.

(14)∃x⃗ ∈ F, n0 ∈ ℕ. ∀n ∈ ℕ>n0
. 𝜑(q⃗norm).

∃x⃗ ∈ F, n0 ∈ ℕ. ∀n ∈ ℕ>n0
. 𝜉

Algorithm 2   Checking Termination on Sets
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By combining (14) and Corollary 5.24, one obtains the following refined version of 
Theorem 4.10.

Corollary 5.25 (Reducing Termination on Sets) Termination of tnn- or twn-loops, respec-
tively, on update-invariant Th

∃
(S,ℝ𝔸)-definable sets is reducible to Th

∃
(S,ℝ𝔸).

Example 5.26 Reconsider Example 5.23, where we have seen that Lnon−twn (see 
Fig.  3) terminates on ℤ3 iff Lex (see Fig.  2) terminates on the update-invariant 
and Th

∃
(ℤ,ℝ)-definable set �̂(ℤ3

) = F defined by the formula (13). In Exam-
ple 4.8, we showed that (−4, 2, 1) witnesses eventual non-termination of Lex . As 
�̂(−9, 1, 4) = (−9 + 1 + 4, 1 ⋅ 2,−9 + 1 ⋅ 2 + 4 ⋅ 2) = (−4, 2, 1) , we have (−4, 2, 1) ∈ F . 
Furthermore, (−9, 1, 4) witnesses eventual non-termination of Lnon−twn on ℤ3 by Corollary 
5.16 (c). Hence, Lnon−twn does not terminate on ℤ3.

In addition, we get the following refined version of Corollary 4.11.

Corollary 5.27 ((Semi-)Deciding (Non-)Termination on a Set) Let (𝜑, u⃗) be a twn-loop and 
let F ⊆ ℝd

𝔸
 be update-invariant and Th

∃
(S,ℝ𝔸)-definable. 

(a) The loop (𝜑, u⃗) terminates over ℝ𝔸 iff it terminates over ℝ.
(b) Termination of (𝜑, u⃗) on F is decidable if S = ℝ𝔸 or S = ℝ.
(c) Non-termination of (𝜑, u⃗) on F is semi-decidable if S = ℤ or S = ℚ.

Of course, Lemma 4.12 also holds in this setting.

Corollary 5.28 Let 𝜉 = 𝜑(q⃗norm) . Then e⃗ ∈ ℝd
𝔸
 witnesses eventual non-termination of (𝜑, u⃗) 

on F iff 𝜓F(e⃗) ∧ red (𝜉)(e⃗) holds.

Finally, Algorithm 2 generalizes Algorithm 1 to twn-transformable loops.

6  Linearization of tnn‑loops

In [48], a technique was proposed to linearize polynomial loops. As mentioned, by com-
bining the linearization with existing decidability results [64, 65], one can conclude decid-
ability of termination for conjunctive twn-loops over ℝ (whereas Corollary 4.11 (b) extends 
this result also to non-conjunctive loops).

In this section, we adapt the linearization technique of [48] to our setting and formalize 
it. This allows us to obtain novel results on the complexity of linearization which we use 
to analyze the complexity of deciding termination for arbitrary twn-loops in Sect. 7.2. We 
start with the definition of linearization.

Definition 6.1 (Linearization) Let u⃗ ∈ (S[x⃗])d and y⃗ be a vector of d′ fresh variables with 
d′ ≥ d . Let u⃗ �

∈ (S[y⃗])d
� be linear and w⃗ ∈ (S[x⃗])d

� with wi = xi for all 1 ≤ i ≤ d . Then u⃗ ′ is 
a linearization of u⃗ via w⃗ if w⃗(u⃗(e⃗)) = u⃗ �

(w⃗(e⃗)) holds for all e⃗ ∈ S
d , where u⃗ �

(w⃗(e⃗)) stands 
for u⃗ �

[y⃗∕w⃗(e⃗)] . Instead of yi we often write ywi
 for all 1 ≤ i ≤ d′.
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So y1,… , yd (i.e., yw1
,… , ywd

 ) correspond to the variables x1,… , xd , whereas 
yd+1,… , yd� are used to mimic the non-linear part of u⃗ in a linear way in u⃗ ′ . This non-linear 
behavior is captured by the polynomials wd+1,… ,wd�.

Example 6.2 Let u⃗ = (x2
2
, x2

3
, x3) ∈ (ℤ[x1, x2, x3])

3 . Then u⃗ �
= (yx2

2
, yx2

3
, yx3 , yx43

, yx2
3
, yx4

3
) over 

the variables (yx1 , yx2 , yx3 , yx22 , yx23 , yx43 ) is a linearization of u⃗ via w⃗ = (x1, x2, x3, x
2
2
, x2

3
, x4

3
) , 

since for all e⃗ = (e1, e2, e3) ∈ ℤ3 we have:

Here, the non-linear part of u⃗ is mimicked by the variables yx2
2
 , yx2

3
 , and yx4

3
.

The linearization of Definition 6.1 also works when applying the update repeatedly.

Corollary 6.3 (Iterated Update of Linearization) Let u⃗ ∈ (S[x⃗])d and u⃗ �
∈ (S[y⃗])d

� be its lin-
earization via w⃗ ∈ (S[x⃗])d

�.

Then for all e⃗ ∈ S
d and all n ∈ ℕ we have w⃗(u⃗n(e⃗)) = (u⃗ �

)
n
(w⃗(e⃗)).

We now define the linearization of a loop to be a linearization of its update where the 
loop guard is extended to ensure that the fresh variables ywd+1

,… , ywd�
 indeed correspond to 

wd+1,… ,wd�.

Definition 6.4 (Linearization of a Loop) Let (𝜑, u⃗) be a loop on Sd using the variables x⃗ . A 
loop (𝜑�, u⃗ �

) on Sd′ using the variables y⃗ is a linearization of (𝜑, u⃗) via w⃗ ∈ (S[x⃗])d
� if both 

(a) u⃗ ′ is a linearization of u⃗ via w⃗
(b) ��

= �[x1∕yx1 ,… , xd∕yxd ] ∧
⋀d�

i=d+1

�
ywi

− wi[x1∕yx1 ,… , xd∕yxd ] = 0
�
.

Example 6.5 Consider the loop (𝜑, u⃗) on ℤ3 where � is x2 > x3 and u⃗ = (x2
2
, x2

3
, x3) . Then the 

linearization of (𝜑, u⃗) via w⃗ is (𝜑�, u⃗ �
) where u⃗ ′ is as in Example 6.2 and �′ is

w⃗(u⃗(e⃗)) = (e2
2
, e2

3
, e3, e

4
3
, e2

3
, e4

3
) = u⃗ �

(e1, e2, e3, e
2
2
, e2

3
, e4

3
) = u⃗ �

(w⃗(e⃗)).

Algorithm 3  Linearizing tnn-Loops
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To illustrate the correspondence between (𝜑, u⃗) and (𝜑�, u⃗ �
) , consider the initial value 

e⃗ = (1, 3, 2) . Here, the original loop yields the trace (e⃗, u⃗(e⃗), u⃗2(e⃗), [2]…) =

((1, 3, 2), (9, 4, 2), (16, 4, 2), …) . The linearized loop operates over the variables 
(yx1 , yx2 , yx3 , yx22

, yx2
3
, yx4

3
) . Thus, the first three variables correspond to x1, x2, x3 and the latter 

ones correspond to x2
2
, x2

3
, x4

3
 . So the corresponding initial value is e⃗ �

= (1, 3, 2, 9, 4, 16) and 
the resulting trace is (e⃗

�, u⃗ �
(e⃗

�
), [2](u⃗ �

)
2
(e⃗),…) = ((1, 3, 2, 9, 4, 16), (9, 4, 2, 16, 4, 16),

(16, 4, 2, 16, 4, 16), …).

Lemma 6.6 shows that linearization preserves the termination behavior.

Lemma 6.6 Let (𝜑�, u⃗ �
) on Sd′ be a linearization of (𝜑, u⃗) on Sd via w⃗ . 

(a) (𝜑�, u⃗ �
) terminates on e⃗ �

∈ S
d� if there is no e⃗ ∈ S

d such that e⃗ �
= w⃗(e⃗).

(b) The loop (𝜑, u⃗) terminates on e⃗ ∈ S
d iff (𝜑�, u⃗ �

) terminates on w⃗(e⃗).

While Lemma 6.6 proves the soundness of linearization, we now show how to find u⃗ ′ 
and w⃗ automatically, where it suffices to only use monomials (instead of arbitrary poly-
nomials) in w⃗ . A monomial over x⃗ has the form xz1

1
⋅… ⋅ x

zd
d

 with zi ∈ ℕ for all 1 ≤ i ≤ d . 
Let x⃗z⃗ with z⃗ = (z1,… , zd) abbreviate xz1

1
⋅… ⋅ x

zd
d

.
The original update u⃗ consists of polynomials ui to update the variable xi , for all 

1 ≤ i ≤ d . The linearized update u⃗ ′ consists of polynomials u′
m

 to update the variables 
ym for all monomials m in w⃗ . Here, for any monomial m = x

z1
1
⋅… ⋅ x

zd
d

 , the polyno-
mial u′

m
 results from replacing each monomial p in uz1

1
⋅… ⋅ u

zd
d

 (i.e., the monomial p 
in each addend c ⋅ p of the polynomial uz1

1
⋅… ⋅ u

zd
d

 ) by the variable yp . More precisely, 
if uz1

1
⋅… ⋅ u

zd
d

 has the form c1 ⋅ p1 +…+ ck ⋅ pk for monomials p1,… , pk and numbers 
c1,… , ck ∈ S , then u�

m
= c1 ⋅ yp1 +…+ ck ⋅ ypk.

Algorithm 3 summarizes the linearization procedure. The vector v⃗ always contains 
those monomials p for which we still have to define the linearized update u′

p
 . So ini-

tially, v⃗ consists of the original variables, i.e., v⃗ = x⃗ . Whenever a new variable yp is 
introduced in the linearized update, p is inserted into v⃗ at the end.

Example 6.7 We apply Algorithm 3 to linearize the loop (𝜑, u⃗) from Example 6.5 where � 
is x2 > x3 and u⃗ = (x2

2
, x2

3
, x3) . In the beginning, we have v⃗ = (x1, x2, x3) . We start with x1 

and remove it from v⃗ . In u1 = x2
2
 we have to replace the monomial x2

2
 by the fresh variable 

yx2
2
 when constructing u′

x1
 . Hence, u�

x1
= yx2

2
 and we obtain v⃗ = (x2, x3, x

2
2
).

Next, we consider x2 , where u2 = x2
3
 . Thus, we obtain u�

x2
= yx2

3
 and v⃗ = (x3, x

2
2
, x2

3
) . Then 

we take x3 , where u3 = x3 . Hence, u�
x3
= yx3 , but we do not insert x3 into v⃗ again, since we 

just computed u′
x3

 . So we have v⃗ = (x2
2
, x2

3
).

We now handle x2
2
 . For the linearized update, we take u2

2
= x4

3
 but replace the monomial 

x4
3
 by a fresh variable yx4

3
 . Hence, u�

x2
2

= yx4
3
 and v⃗ = (x2

3
, x4

3
).

𝜑[x1∕yx1 , x2∕yx2 , x3∕yx3 ] ∧ yx2
2
− y2

x2
= 0 ∧ yx2

3
− y2

x3
= 0 ∧ yx4

3
− y4

x3
= 0

= yx2 > yx3 ∧ yx2
2
− y2

x2
= 0 ∧ yx2

3
− y2

x3
= 0 ∧ yx4

3
− y4

x3
= 0
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Next, we take the monomial x2
3
 and in u2

3
= x2

3
 we have to replace the monomial by yx2

3
 . 

This leads to the linearized update u�
x2
3

= yx2
3
 , but we do not insert x2

3
 into v⃗ again, since we 

just computed u′
x2
3

 . Hence, we have v⃗ = (x4
3
).

Finally, we treat x4
3
 and in u4

3
= x4

3
 we replace the monomial by yx4

3
 , i.e., u�

x4
3

= yx4
3
. Now 

v⃗ = ( ) . Hence, Algorithm 3 terminates and returns the loop with the guard �′ from Exam-
ple 6.5 and the (linear) update (yx2

2
, yx2

3
, yx3 , yx43

, yx2
3
, yx4

3
) over the variables 

(yx1 , yx2 , yx3 , yx22
, yx2

3
, yx4

3
) , as in Example 6.2.

Now we infer an upper bound on Algorithm 3’s complexity. To this end, we will show 
that the degrees of the monomials in w⃗ which are used for the linearization can be bounded 
by the maximal dependency degree of the loop’s update u⃗ . For 1 ≤ i ≤ d , the dependency 
degree depdeg u⃗(xi) is the degree of ui , but this degree is expressed in terms of those vari-
ables that are minimal w.r.t. ≻u⃗ . Recall that ui has the form ci ⋅ xi + pi where pi is a polyno-
mial which only contains variables that are smaller than xi w.r.t. ≻u⃗ . W.l.o.g. we may assume 
that xi ≻u⃗ xj implies i > j for all 1 ≤ i, j ≤ d . Then for every monomial xzi+1

i+1
⋅… ⋅ x

zd
d

 in pi , 
the corresponding dependency degree is zi+1 ⋅ depdeg u⃗(xi+1) +… + zd ⋅ depdeg u⃗(xd) . The 
dependency degree of pi is the maximal dependency degree of its monomials.

Definition 6.8 (Dependency Degree) Let (𝜑, u⃗) be a twn-loop with ui = ci ⋅ xi + pi for all 
1 ≤ i ≤ d , where pi only contains variables that are smaller than xi w.r.t. ≻u⃗ . We define the 
dependency degree w.r.t. u⃗ as follows:

• depdeg u⃗(xi) = max{1, depdeg u⃗(pi)} for all 1 ≤ i ≤ d.
• depdeg u⃗(p) = max{ depdeg u⃗(m) ∣ m is a monomial in p} for every non-zero p ∈ S[x⃗] 

and depdeg u⃗(0) = −∞.
• depdeg u⃗(x

z1
1
⋅… ⋅ x

zd
d
) =

∑d

i=1
zi ⋅ depdeg u⃗(xi) for all z1,… , zd ∈ ℕ.

Since ≻u⃗ is well founded by the triangularity of the loop, depdeg u⃗ is well defined: for 
the variables xi which are minimal w.r.t. ≻u⃗ , pi is a constant and thus, depdeg u⃗(xi) = 1 . 
For other variables xi with pi ≠ 0 , we can compute depdeg u⃗(pi) because depdeg u⃗(xj) is 
already known for all variables xj occurring in pi . Lemma 6.9 states three easy obser-
vations on depdeg . Here, deg denotes the degree of monomials or polynomials, i.e., 
deg(x

z1
1
⋅… ⋅ x

zd
d
) = z1 +…+ zd.

Lemma 6.9 Let (𝜑, u⃗) be a twn-loop. 

(a) For every monomial m over x⃗ , we have deg(m) ≤ depdeg u⃗(m).
(b) If deg is the maximum of 1 and the highest degree of any polynomial in u⃗ , then for any 

1 ≤ i ≤ d we have depdeg u⃗(xi) ≤ degd−i.
(c) For mdepdeg = max{ depdeg u⃗(xi) ∣ 1 ≤ i ≤ d} , we have mdepdeg ≤ degd−1.

Example 6.10 Again, we consider a loop as in Example 6.7 with update u⃗ = (x2
2
, x2

3
, x3) . Then, 

depdeg
u⃗
(x3) = max{1, depdeg

u⃗
(0)} = max{1,−∞} = 1 , depdeg

u⃗
(x2) = depdeg

u⃗
(x2

3
) = 2⋅ 

depdeg
u⃗
(x3) = 2 ⋅ 1 = 2 , and depdeg

u⃗
(x1) = depdeg

u⃗
(x2

2
) = 2 ⋅ depdeg

u⃗
(x2) = 2 ⋅ 2 = 4 . 

So intuitively, the update of x1 has degree 4 in terms of the ≻u⃗-minimal variable x3 since 
the update of x2 is quadratic in x3 and x2

2
 then has degree 4 w.r.t. x3 . Here, mdepdeg = 4 



 Formal Methods in System Design

1 3

and for the maximal degree deg = 2 occurring in the update, we indeed have 
mdepdeg = degd−1 = 23−1 . So the bound on mdepdeg in Lemma 6.9 (c) is tight.

As another example, consider the update u⃗ = (3 ⋅ x1 + 5 ⋅ x4
2
⋅ x6

3
+ 7 ⋅ x8

3
, x2

3
, 9) . Now  

we have depdeg
u⃗
(x3) = max{1, depdeg

u⃗
(9)} = max{1, 0} = 1 , depdeg

u⃗
(x2) = depdeg

u⃗
(x2

3
) = 

depdeg
u⃗
(x2

3
) = 2 ⋅ depdeg

u⃗
(x3) = 2 ⋅ 1 = 2 , and depdeg

u⃗
(x1) = depdeg

u⃗
(5 ⋅ x4

2
⋅ x

6
3
+ 7 ⋅ x8

3
)

= max{ depdeg
u⃗
(x4

2
⋅ x

6
3
), depdeg

u⃗
(x8

3
)}= max{4 ⋅ depdeg

u⃗
(x2) + 6 ⋅ depdeg

u⃗
(x3), 8 ⋅ depdeg u⃗

(x3)}

= max{4 ⋅ 2 + 6 ⋅ 1, 8 ⋅ 1} = 14.

Now we prove that Algorithm  3 only constructs updates u′
m

 for monomials m with 
depdeg (m) ≤ mdepdeg . Hence, this also proves termination of the algorithm since there 
are only finitely many such monomials, and it allows us to give a bound on the number 
of iterations of the algorithm’s while-loop.

Theorem 6.11 (Dependency Degree Suffices for Linearization)  

(a) Algorithm 3 only computes u′
m
 for monomials m with depdeg (m) ≤ mdepdeg.

(b) The while-loop of Algorithm 3 is executed at most 
(
d + mdepdeg

mdepdeg

)
− 1 times.

(c) Algorithm 3 terminates.

The following theorem summarizes the main properties of Algorithm 3.

Theorem 6.12 (Soundness of Algorithm 3)  

(a) For any tnn-loop (𝜑, u⃗) , Algorithm  3 computes a linearization (𝜑�, u⃗�) via 
w⃗ = (m1,… ,md� ) , where deg(mi) ≤ depdeg (mi) ≤ mdepdeg for all 1 ≤ i ≤ d′.

(b) The loop (𝜑, u⃗) terminates iff (𝜑�, u⃗�) does.
(c) The loop (𝜑�, u⃗�) is a linear-update tnn-loop.

As mentioned, the technique in this section is based on the linearization method of 
[48], where instead of tnn-loops as in Theorem 6.12, [48] works in the setting of solvable 
loops (Definition 2.3). But [48] has no notion like the dependency degree of Definition 
6.8. Instead they only consider the degree of the polynomials in the update u⃗ . However, 
Example 6.7 shows that the polynomials in w⃗ that are used for the linearization may have a 
higher degree than the ones in u⃗ . Here, the polynomials in u⃗ = (x2

2
, x2

3
, x3) only have degree 

2. However, x1 is (eventually) updated to x4
3
 . Thus, to linearize this loop, polynomials up to 

degree 2 do not suffice, but w⃗ must contain a polynomial of degree 4 like x4
3
.

As we showed in Theorem 6.11 (a), the dependency degree (and hence, also the degree) 
of the polynomials in w⃗ is bounded by mdepdeg = max{ depdeg u⃗(xi) ∣ 1 ≤ i ≤ d} . Indeed, 
in Example 6.7 we have depdeg u⃗(x1) = 4 . Hence, our new concept of the dependency 
degree was needed for the upper bound on the number of iterations of the linearization 
algorithm in Theorem 6.11 (b). Based on this, we can now infer the asymptotic complexity 
of Algorithm 3. As mentioned, we will need this in Sect. 7.2 to analyze the complexity of 
deciding termination of twn-loops.
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By Theorem  6.11 (b), the while-loop of Algorithm  3 is executed at most (
d + mdepdeg

mdepdeg

)
− 1 times. Since 

(
n

k

)
∈ O(nk) for any natural numbers n ≥ k , we have

By Lemma 6.9 (c), we have mdepdeg ≤ degd−1 where deg is the maximum of 1 and the 
highest degree of any polynomial in the update u⃗ . Hence,

For the expression (d + degd−1)d we have (see also App. A.23):

Here, as usual, ld denotes the logarithm to the base 2.
Thus, (d + degd−1)d is at most exponential in d, i.e., the number of iterations of Algo-

rithm 3 is at most exponential in d. In each such iteration, one has to compute a new poly-
nomial uz1

1
⋅… ⋅ u

zd
d

 . By Theorem  6.11 (a), this polynomial only contains monomials m 

with depdeg (m) ≤ mdepdeg and there are 
(
d + mdepdeg

mdepdeg

)
∈ O((d + degd−1)d) many 

such monomials (see Theorem 6.11 (b)). To compute their coefficients, one has to multiply 
up to z1 +…+ zd factors, where z1 +…+ zd ≤ mdepdeg ≤ degd−1 . This corresponds to a 
nested multiplication of two factors, where the result of one multiplication step is the input 
to the next multiplication, and the depth of the nesting is exponential in d. So the results 
and the factors of the multiplications grow at most doubly exponentially in d. Therefore, 
this proves Lemma 6.13 (a), i.e., the runtime of Algorithm 3 is at most double exponential.

However, if the number of variables d is bounded by a constant D, then the number of 
iterations of Algorithm  3 and the number of monomials in the linearized updates is 

bounded by 
(
d + mdepdeg

mdepdeg

)
∈ O((degD + D)D) , which is polynomial in deg . For their 

coefficients, one has to multiply up to mdepdeg ≤ degD−1 (i.e., polynomially) many factors, 
i.e., this corresponds to a nested multiplication where the depth of the nesting is polyno-
mial in deg . So the results and the factors of the multiplications grow at most exponentially 
in deg . Therefore, then linearization can be computed in exponential time. This proves 
Lemma 6.13 (b).

Lemma 6.13 Let D ∈ ℕ be fixed. The lineariza tion of a tnn-loop 

(a) can be computed in double exponential time.
(b) can be computed in exponential time if the number of variables d is at most D.

Example 6.14 While Lemma 6.13 only gives upper bounds on the complexity of lineariza-
tion, the loop Lnon−pspace from (10) can be used to infer lower bounds. Here, the linearized 
loop operates on the variables

(
d + mdepdeg

mdepdeg

)
=

(
d + mdepdeg

d

)
∈ O((d + mdepdeg)mdepdeg) ∩O((d + mdepdeg)d).

(
d + mdepdeg

mdepdeg

)
∈ O((d + degd−1)d) ∩O((d + degd−1)deg

d−1

) ⊆ O((d + degd−1)d).

(15)(d + degd−1)d ≤ 2 ⋅ 2d+ ld (deg)⋅(d−1)⋅d

yx1 ,… , yxd , yxd
2
,… , yxd

d
, y

x
(d2 )

3

,… , y
x
(d2 )

d

, … y
x
(dd−2 )

d−1

, y
x
(dd−2 )

d

, y
x
(dd−1 )

d



 Formal Methods in System Design

1 3

and the corresponding linearized update u⃗′ instantiates

• yx1 by yxd
2
,

• y
x
(di )

2

 with y
x
(d(i+1) )

3

 for all 0 ≤ i ≤ 1,
• ...
• y

x
(di )

d−1

 with y
x
(d(i+1) )

d

 for all 0 ≤ i ≤ d − 2 , and

• y
x
(di )

d

 with d(di) ⋅ y
x
(di )

d

 for all 0 ≤ i ≤ d − 1.

So in particular, the update contains the constant d(dd−1) which shows that this linearization 
requires exponential space if d is not bounded.

7  Complexity of deciding termination

In this section, we study the complexity of deciding termination for different classes of loops 
by using our results from Sects. 4 to 6. We first regard linear-update loops in Sect. 7.1, where 
the update is of the form x⃗ ← A ⋅ x⃗ + b⃗ with A ∈ S

d×d and b⃗ ∈ S
d . The reason for this restric-

tion is that such loops can always be transformed into twn-form by our transformation Tr 
from Sect. 5. More precisely, we show that termination of linear loops with rational spectrum 
is Co-NP-complete if S ∈ {ℤ,ℚ,ℝ𝔸} and that termination of linear-update loops with real 
spectrum is ∀ℝ-complete if S = ℝ𝔸 . Since our proof is based on a reduction to Th

∃
(S,ℝ𝔸) , 

and ℝ𝔸 and ℝ are elementary equivalent, our results also hold if the program variables range 
over ℝ . By combining these results with our observations on the complexity of linearization 
from Sect. 6, we then analyze the complexity of deciding termination for arbitrary twn-loops 
in Sect. 7.2. In Sect. 7.3, we show that there is an important subclass of linear loops where 
our decision procedure for termination works efficiently, i.e., when the number of eigenvalues 
of the update matrix is bounded, then termination can be decided in polynomial time. Here, 
we again use our transformation Tr from Sect. 5.

For our complexity results, we assume the usual dense encoding of univariate polynomi-
als, i.e., a polynomial of degree k is represented as a list of k + 1 coefficients. As discussed 
in [55], many problems which are considered to be efficiently solvable become intractable if 
polynomials are encoded sparsely (e.g., as lists of monomials where each monomial is a pair 
of its non-zero coefficient and its degree). With densely encoded polynomials, all common 
representations of algebraic numbers can be converted into each other in polynomial time [3].

7.1  Complexity of deciding termination for linear‑update loops

When analyzing linear-update loops, w.l.o.g. we can assume b⃗ = 0⃗ since a loop of the form 
in Fig. 4 terminates iff the loop in Fig. 5 terminates, where x

b⃗
 is a fresh variable (see [31, 

Fig. 4  Linear-update loop

Fig. 5  Homogeneous linear-update loop
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49]). Moreover, e⃗ witnesses (eventual) non-termination for the loop in Fig. 4 iff 
[
e⃗

1

]
 wit-

nesses (eventual) non-termination for the loop in Fig. 5. Note that the only eigenvalue of [
A b⃗

0⃗T 1

]

 whose multiplicity increases in comparison to A is 1. Thus, to decide termination of 

linear-update loops with rational or real spectrum, respectively, it suffices to decide termi-
nation of homogeneous loops of the form (𝜑,A ⋅ x⃗) where A has only rational or real 
eigenvalues.

Such loops can always be transformed into twn-form using our transformation Tr from 
Sect. 5. To compute the required automorphism � , we compute the Jordan normal form Q 
of A together with the corresponding transformation matrix T, i.e., T is an invertible real 
matrix such that A = T−1

⋅ Q ⋅ T  . Then Q is a triangular real matrix whose diagonal con-
sists of the eigenvalues � ∈ ℝ𝔸 of A. We define 𝜂 ∈ Endℝ𝔸

(
ℝ𝔸[x⃗]

)
 by 𝜂(x⃗) = T ⋅ x⃗ . Then 

𝜂 ∈ Autℝ𝔸

(
ℝ𝔸[x⃗]

)
 has the inverse 𝜂−1(x⃗) = T−1

⋅ x⃗ . Thus, Tr 𝜂(𝜑,A ⋅ x⃗) is a twn-loop with 
the update

To analyze termination of the loop on Sd , we have to consider termination of the trans-
formed loop on F = �̂(Sd

) = T ⋅ S
d (see Corollary 5.16).

The Jordan normal form Q as well as the matrices T and T−1 can be computed in poly-
nomial time [23, 54]. Hence, we can decide whether all eigenvalues are rational or real 
numbers in polynomial time by checking the diagonal entries of Q. Thus, we obtain the 
following lemma.

Lemma 7.1 Let (𝜑,A ⋅ x⃗) be a linear-update loop. 

(a) It is decidable in polynomial time whether A has only rational or real eigenvalues.
(b) If A has only real eigenvalues, we can compute a linear 𝜂 ∈ Autℝ𝔸

(
ℝ𝔸[x⃗]

)
 such that 

Tr 𝜂(𝜑,A ⋅ x⃗) is a linear-update twn-loop in polynomial time.
(c) If (𝜑,A ⋅ x⃗) is a linear loop, then so is Tr 𝜂(𝜑,A ⋅ x⃗).

So every linear(-update) loop with real spectrum can be transformed into a  
linear(-update) twn-loop, i.e., the transformation Tr from Sect.  5 is complete for such 
linear(-update) loops. Note that Lemma 7.1 (a) yields an efficient check whether a given  
linear\(-update)\ loop has rational or real spectrum.

As chaining (Definition 3.1) can clearly be done in polynomial time, w.l.o.g. we may 
assume that Tr 𝜂(𝜑,A ⋅ x⃗) = (𝜑�,Q ⋅ x⃗) is tnn. Next, to analyze termination of a tnn-loop, 
our technique of Sect. 4 (resp. Sect. 5.3) uses a closed form for the update. For tnn-loops 
(𝜑�,Q ⋅ x⃗) where Q is a triangular matrix with non-negative diagonal entries, a suitable 
(i.e., poly-exponential) closed form can be computed in polynomial time analogously to 
[35, Prop. 5.2]. This closed form is linear in x⃗ (we will discuss this closed form in Sect. 7.3, 
see Lemma 7.12).

According to our approach in Sect. 5.3, we now proceed as in Algorithm 2 and con-
struct the formula ∃x⃗ ∈ ℝd

𝔸
. 𝜓F ∧ red (𝜑(q⃗norm)) ∈ Th

∃
(S,ℝ𝔸) in polynomial time due to 

Corollary 5.24. Hence, we get the following lemma.

(𝜂(x⃗)) (A ⋅ x⃗) (𝜂−1(x⃗)) = T ⋅ A ⋅ T−1
⋅ x⃗ = Q ⋅ x⃗.
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Lemma 7.2 Let (𝜑,A ⋅ x⃗) be a linear-update loop with real spectrum. Then we can compute 
a closed formula � ∈ Th

∃
(S,ℝ𝔸) in polynomial time such that � is valid iff the loop is 

non-terminating. If � is linear, then so is �.

Note that � is existentially quantified. Hence, if the loop has rational spectrum and coef-
ficients, � (and thus also � ) is linear, and S ∈ {ℤ,ℚ,ℝ𝔸,ℝ} , then invalidity of � is in 
Co-NP as validity of such formulas is in NP, see [50]. Thus, we get the first main result 
of this section. Here, we fix an inaccuracy in [20, Thm. 42], where we also allowed irra-
tional eigenvalues and coefficients, and thus � may contain irrational coefficients. How-
ever, to the best of our knowledge, it is not known whether validity of linear formulas from 
Th

∃
(S,ℝ𝔸) with irrational algebraic coefficients is in NP.

Theorem  7.3 (Co-NP-Completeness) For linear loops (𝜑,A ⋅ x⃗ + b⃗) with rational spec-
trum where � ∈ Th

qf
(ℚ),A ∈ ℚd×d , and b⃗ ∈ ℚd , termination over ℤ , ℚ , ℝ𝔸 , and ℝ is 

Co-NP-complete.

Co-NP-hardness follows from Co-NP-hardness of unsatisfiability of proposi-
tional formulas: let � be a propositional formula over the variables x⃗ . Then the loop 
(𝜉[xi∕(xi > 0) ∣ 1 ≤ i ≤ d], x⃗) terminates iff � is unsatisfiable.

We now consider linear-update loops with real spectrum (and possibly non-linear condi-
tions) on ℝd

𝔸
 and ℝd . Here, non-termination is ∃ℝ-complete.

Definition 7.4 (∃ℝ [57, 58]) Let

The complexity class ∃ℝ is the closure of Th
∃
(ℝ)⊤ under poly-time-reductions.

We have �� ⊆ ∃ℝ ⊆ ������ (see [12]). By Lemma 7.2, non-termination of linear-
update loops over ℝ𝔸 with real spectrum is in ∃ℝ . It is also ∃ℝ-hard since (𝜑, x⃗) is non-
terminating iff ∃x⃗ ∈ ℝd

𝔸
.𝜑 is valid. So non-termination is ∃ℝ-complete, i.e., termination is 

Co-∃ℝ-complete (where Co-∃ℝ = ∀ℝ [58]).

Theorem  7.5 (∀ℝ-Completeness) Termination of linear-update loops with real spectrum 
over ℝ𝔸 and ℝ is ∀ℝ-complete.

7.2  Complexity of deciding termination for twn‑loops over S ∈ {ℝ𝔸,ℝ}

By Corollary 4.11 (b) termination is decidable for arbitrary twn-loops over ℝ𝔸 and ℝ . So 
in this section, we discuss the complexity of this decision problem. First of all, deciding 
termination of arbitrary twn-loops over ℝ𝔸 and ℝ is ∀ℝ-hard since termination of linear-
update loops with real spectrum over ℝ𝔸 and ℝ is ∀ℝ-hard by Theorem 7.5 and any such 
linear-update loop can be transformed into a twn-loop in polynomial time by Lemma 7.1 
(b). Thus, we have a lower bound on the complexity of deciding termination for arbitrary 
twn-loops.

Th
∃
(ℝ)⊤ = {𝜓 ∈ Th

∃
(ℝ) ∣ 𝜓 closed and valid}.
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To find an upper asymptotic bound for deciding termination of twn-loops, first note that 
we can restrict ourselves to tnn-loops again, as any twn-loop can be transformed into a tnn-
loop by chaining (Definition 3.1) in polynomial time.

The next step of our decision procedure in Algorithm 1 is to compute closed forms for 
the update. However, the loop Lnon−pspace in (10) showed that in general, the computation 
of closed forms cannot be done in polynomial space. On the other hand, as mentioned in 
Sect. 7.1, for linear-update loops, closed forms can be computed in polynomial time. To 
benefit from this upper bound, we therefore do not proceed directly as in Algorithm 1, but 
instead we first linearize the tnn-loop. While linearization cannot be computed in poly-
nomial space either (see Example 6.14), in Sect. 6 we formalized and analyzed the com-
plexity of the linearization technique from [48]. Given a tnn-loop (𝜑, u⃗) we can compute a 
linear-update tnn-loop (𝜑�, u⃗ �

) such that (𝜑, u⃗) terminates if and only if (𝜑�, u⃗ �
) does (Theo-

rem 6.12). Clearly, linear-update tnn-loops over ℝ𝔸 and ℝ always have real spectrum as the 
eigenvalues of a triangular matrix are its diagonal entries. So by using this linearization, 
we can give an upper complexity bound for deciding termination of arbitrary twn-loops.

As linearization can be computed in double exponential time and thus, also in double expo-
nential space, and termination of linear-update loops is in ∀ℝ ⊆ PSPACE ⊆ EXPTIME by 
Lemma 7.2 (where the size of the linear-update loop may be at most double exponential), we 
obtain that deciding termination of twn-loops is in 3-EXPTIME (i.e., it is between ∀ℝ and 
3-EXPTIME). Moreover, if the number of variables is bounded, checking validity of a for-
mula in Th

∃
(ℝ𝔸) is in P (see [2]). In this case, combining linearization which can be com-

puted in exponential time and thus, also in exponential space when d is bounded (Lemma 6.13 
(b)), and deciding termination of linear-update loops which is polynomial in this case (where 
the size of the linear-update loop may be at most exponential), we obtain Theorem 7.6 (b).

Theorem 7.6 (Membership in 3-EXPTIME) Let D ∈ ℕ be fixed. Termination of twn-loops 
over ℝ𝔸 and ℝ

(a) is in 3-EXPTIME.
(b) is in EXPTIME if the number of variables d is at most D.

7.3  Complexity of deciding termination for uniform loops

In Sect. 7.1, we showed that termination of linear loops with rational spectrum is Co-NP-
complete. For proving Co-NP-hardness, we used the trivial update x⃗ ← x⃗ induced by the 

Fig. 6  Uniform loop [7] via Polynomials

Fig. 7  Uniform loop [7] via Matrix



 Formal Methods in System Design

1 3

identity matrix. Therefore, the question arises whether imposing suitable restrictions to the 
update matrix (which exclude the identity matrix) leads to a “more efficient” decision pro-
cedure for termination (assuming P ≠ NP). We now analyze a special case of linear loops 
(so-called uniform loops) and show that for these loops deciding termination is polynomial, 
if one fixes the number of eigenvalues of the update matrix.

In Sect. 7.3.1, we introduce uniform loops and parameterized decision problems, and 
state the main result of Sect. 7.3 (Theorem 7.10). To prove it, we show that for uniform 
loops, instantiating the variables in the loop guard by q⃗norm (as required by our decision 
procedure from Sect. 4) results in formulas of a special structure (so-called interval condi-
tions, see Sects. 7.3.2 and 7.3.3). Validity of these formulas can be checked in polynomial 
time (Sect.  7.3.4) which proves Theorem  7.10 for uniform loops over ℚ , ℝ𝔸 , and ℝ . In 
Sect. 7.3.5 we show that our result holds for uniform loops over ℤ as well.

7.3.1  Uniform loops and the parameterized complexity class XP

Definition 7.7 (Uniform Loop) A linear loop (𝜑,A ⋅ x⃗) over S ∈ {ℤ,ℚ,ℝ𝔸} is uniform if 
each eigenvalue � of A is a non-negative number from S whose eigenspace w.r.t. A is one-
dimensional, i.e., � has geometric multiplicity 1.

The latter property is equivalent to requiring that there is exactly one Jordan block for each 
eigenvalue in A’s Jordan normal form. To grasp uniform loops intuitively, consider trian-
gular linear loops with updates xi ← � ⋅ xi + pi for all 1 ≤ i ≤ d , where the factor � ≥ 0 is 
the same for all i. These loops are uniform iff the relation ≻u⃗ is total (or equivalently, iff the 
variables can be ordered such that the super-diagonal of A does not contain zeros).

Lemma 7.8 A triangular linear loop (𝜑,A ⋅ x⃗) where all diagonal entries are identical and 
non-negative is uniform iff ≻u⃗ is a total ordering.

Thus, loops like the leading example from [7] in Fig. 6 which is equivalent to Fig. 7 
are uniform. In contrast, a loop is not uniform if each xi is updated to � ⋅ xi + ci for con-
stants ci ∈ S . The reason is that the xi do not occur in each other’s updates. Hence, we have 
xi ⊁u⃗ xj and xj ⊁u⃗ xi for all 1 ≤ i, j ≤ d.

So in particular, a uniform loop cannot have more than one update of the form xi ← xi . 
However, the loop condition can still be an arbitrary Boolean formula over linear inequa-
tions. Thus, our complexity result is quite surprising since it shows that for this class of 
loops, termination is easier to decide than satisfiability of the condition (e.g., unsatisfiabil-
ity of linear formulas over ℝ𝔸 is Co-NP-complete). Intuitively, the reason is that our class 
prohibits multiple updates like xi ← xi where variables “stabilize” and where termination is 
essentially equivalent to unsatisfiability of the condition.

To give an intuition how hard the restriction to uniform loops is, we analyzed the TPDB 
[63] used at the Termination and Complexity Competition [25]. In the category for “Termi-
nation of Integer Transition Systems (ITSs)” we identified 467 polynomial loops with non-
constant guard (i.e., termination is not trivial) and 290 (62 %) of them are uniform loops 
over ℤ . Similarly, in the category for “Complexity Analysis of ITSs” we found 1,258 such 
polynomial loops and 452 (36 %) are uniform. In fact, in practice one is often interested 
in termination of triangular loops where after chaining, all variables belong to the eigen-
values 0 or 1. The reason is that termination is usually easy to show if there are eigenval-
ues greater than 1, because they lead to exponential growth. Thus, if the loop terminates, 
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termination is usually reached after few steps (e.g., consider a loop (x ≤ c, 2 ⋅ x) for any 
constant c). Hence, the number of eigenvalues k is usually smaller than the number d of 
program variables. In this section we show that the complexity for deciding termination 
of uniform loops is exponential in k but not in d. More precisely, termination of uniform 
loops is in the parameterized complexity class XP, where the parameter is the number k of 
eigenvalues.

Definition 7.9 (Parameterized Decision Problem, XP [16]) A parameterized decision 
problem is a language L ⊆ Σ

∗
× ℕ , where Σ is a finite alphabet. The second component 

(from ℕ ) is called the parameter of the problem.
A parameterized problem L is slicewise polynomial if the time needed for deciding the 

question “ (x, k) ∈ L? ” is in O(|x|f (k)) where f is a computable function depending only on k.
The corresponding complexity class is called XP.

In the remainder of this section, we prove that for any fixed k ∈ ℕ , termination of uni-
form loops with k eigenvalues is decidable in polynomial time.

Theorem 7.10 (Parameterized Complexity of k-Termination) We define the parameterized 
decision problem k-termination as follows: ((𝜑,A ⋅ x⃗), k) ∈ Lk-termination iff the loop (𝜑,A ⋅ x⃗) 
terminates over S and A has k eigenvalues.

For uniform loops, k-termination is in XP. Moreover, for such loops, k-termination over 
ℝ is in XP as well.

7.3.2  Hierarchical expressions and partitions

We now elaborate on the closed forms arising from uniform loops. To this end, we 
fix a uniform loop (𝜑,A ⋅ x⃗) . Let spec (A) = {�1,… , �k} be A’s eigenvalues where 
0 ≤ 𝜆1 < … < 𝜆k , let Q be A’s Jordan normal form where the Jordan blocks are ordered 
such that the numbers on the diagonal are weakly monotonically increasing, and let T be 
the corresponding transformation matrix, i.e., A = T−1

⋅ Q ⋅ T  . Moreover, let � be the auto-
morphism defined by 𝜂(x⃗) = T ⋅ x⃗ and let Tr 𝜂(𝜑,A ⋅ x⃗) = (𝜂−1(𝜑),Q ⋅ x⃗) = (𝜑�,Q ⋅ x⃗) as in 
Sect. 7.1.

Fig. 8  Jordan block

Fig. 9  Multiplication of Jordan block
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Instead of termination of the original loop on Sd , we now have to prove termination of 
the transformed loop on �̂(Sd

) = T ⋅ S
d . For S ∈ {ℚ,ℝ𝔸} , if the eigenvalues of A are from 

S , then the transformation matrix T is an invertible matrix over S . Therefore, we obtain 
T ⋅ S

d
= S

d . Hence, we now have to analyze termination of (𝜑�,Q ⋅ x⃗) over S . In contrast, 
if S = ℤ , then even if the eigenvalues of A are integers, the transformation matrix T or its 
inverse may contain non-integer rational numbers. Thus, we first regard uniform loops over 
S ∈ {ℚ,ℝ𝔸} and discuss the case S = ℤ in Sect. 7.3.5.

By uniformity, Q = diag (Q�1
,… ,Q�k

) has k Jordan blocks Q�1
 , ..., Q�k

 where Q� is as in 
Fig. 8. For each eigenvalue � , let �(�) be the dimension of Q� . Since each eigenvalue has 
geometric multiplicity 1, �(�) is the algebraic multiplicity of � , i.e., the multiplicity as a 
root of the characteristic polynomial of A. For � = �(�) , Fig. 9 shows the form of Qn

�
 as in, 

e.g., [35, 49], where 
(
n

s

)
= 0 if n < s . This directly yields a closed form q⃗ for the n-fold 

application of the update Q ⋅ x⃗ of the transformed loop. Since our approach from Sect. 4 
works by analyzing eventual non-termination, we are only interested in validity of formulas 
for large enough n. Thus, we may assume that n is larger than the algebraic multiplicities 
�(�) of all eigenvalues � ∈ spec (A) . Then one obtains a resulting normalized closed form 
q⃗norm which consists of normalized poly-exponential expressions of a special form, so-
called hierarchical expressions. Here, for any 𝛼 ∈ QS[x⃗] , degxi (�) is the highest power of xi 
occurring in a monomial of � , i.e., it is the degree of � when interpreting all variables 
besides xi as constants.

Definition 7.11 (Hierarchical Expression) Let QS[x⃗]lin denote the set of linear poly-
nomials from QS[x⃗] , i.e., of degree at most 1. An expression h ∈ ℕℙ𝔼S[x⃗] for some ring 
ℤ ≤ S ≤ ℝ𝔸 is a hierarchical expression over the indices 1 ≤ i1 < … < i𝜈 ≤ d if there exist 
1 ≤ r ≤ � and 𝜆 ∈ S>0 such that

where �s ∈ QS[xis ,… , xi� ]lin , �s(0,… , 0) = 0 , and degxis (�s) = 1 for r ≤ s ≤ � . Here, 
�s(vs,… , v�) abbreviates �s[xis∕vs,… , xi�∕v�] for vs,… , v� ∈ ℝ𝔸 . We call off (h) = r the 
offset, � the order, and base (h) = � the base of h.

Lemma 7.12 states this observation on q⃗norm formally, where the index idx (�) is the 
sum of the algebraic multiplicities of all smaller eigenvalues than � , i.e.,

If A’s smallest eigenvalue �1 is 0, then all entries q1,… , q idx (�2)
 of q⃗norm are 0, i.e., when 

inserting q⃗norm into the loop condition, the variables x1,… , x idx (�2) vanish. So from now on 

h =

∑�

s=r
�s ⋅ n

s−r
⋅ �n,

idx (𝜆) =
∑

𝜆�∈ spec (A),𝜆�<𝜆
𝜈(𝜆�).

Fig. 10  Uniform loop and normalized closed form
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we assume that 0 is not an eigenvalue of A. (Note that since we just ignore the variables 
which belong to the eigenvalue zero, we can also permit uniform loops where the eigen-
value 0 may have a higher geometric multiplicity.)

Lemma 7.12 For all � ∈ spec (A) and 1 ≤ r ≤ �(�) , the ( idx (�) + r)-th element of q⃗norm is 
a hierarchical expression over the indices idx (�) + 1, idx (�) + 2,… , idx (�) + �(�) with 
offset r, order �(�) , and base �.

Example 7.13 Consider the uniform loop and its normalized closed form q⃗norm in Fig. 10, 
where the update matrix A has k = 2 eigenvalues �1 = 1 of algebraic multiplicity �1 = 2 
and �2 = 2 of algebraic multiplicity �2 = 3 , both of which have geometric multiplicity one. 
Moreover, idx (�1) = 0 and idx (�2) = 0 + �1 = 2 . Here, we have d = 5.

For q⃗norm in Fig.  10, h = q4 = x4 ⋅ 2
n
+

x5

2
⋅ n ⋅ 2n is a hierarchical expression over the 

indices i1 = 3 , i2 = 4 , i3 = 5 with offset 2, order 3, and base 2, as h =
∑3

s=2
�s ⋅ n

s−2
⋅ 2n for 

�2 = x4 ∈ ℝ𝔸[x4, x5] and �3 =
x5

2
∈ ℝ𝔸[x5].

To describe the form of the whole vector q⃗norm , we now introduce hierarchical parti-
tions. To this end, similar to the concept of solvable loops in Definition 2.3, we consider 
a partitioning of {1,… , d}.

Definition 7.14 (Hierarchical Partition) For k ≥ 1 , let �1,… , �k ∈ ℕ form a k-par-
tition of d, i.e., �1 +…+ �k = d and 𝜈i > 0 for all 1 ≤ i ≤ k. The blocks associated 
to the partition �1,… , �k are B1 = {1,… , �1} , B2 = {�1 + 1,… , �1 + �2} , ..., and 
Bk = {�1 +…+ �k−1 + 1,… , d}.

The hierarchical expressions h1,… , hd are a hierarchical k-partition via �1,… , �k with 
bases 0 < 𝜆1 < … < 𝜆k from S if for all 1 ≤ i ≤ k : 

(a) hj is a hierarchical expression over the indices Bi for all j ∈ Bi,
(b) base

(
hj
)
= �i for all j ∈ Bi,

(c) hj has order �i for all j ∈ Bi,
(d) off (hmin(Bi)

) = 1 , and
(e) If j, j + 1 ∈ Bi , then off (hj) + 1 = off (hj+1).

Indeed, when transforming the update of a uniform loop to Jordan normal form, then the 
normalized closed form is always a hierarchical partition.

Corollary 7.15 (q⃗norm is Hierarchical Partition) Let A be the update matrix of a uni-
form loop with eigenvalues 0 < 𝜆1 < … < 𝜆k and algebraic multiplicities �1,… , �k , 
and let Q be its Jordan normal form where the numbers on the diagonal are weakly 
monotonically increasing. Then the normalized closed form q⃗norm of the update Q is 
a hierarchical k-partition via �1,… , �k and bases 𝜆1 < … < 𝜆k . Here the i-th block is 
Bi = { idx (�i) + 1,… , idx (�i) + �i}.

Example 7.16 In Fig. 10, h⃗ = q⃗norm is a hierarchical 2-partition via �1 = 2 and �2 = 3 , blocks 
B1 = {1, 2} , B2 = {3, 4, 5} , and 𝜆1 = 1 < 2 = 𝜆2 . Moreover, off (h1) = 1 and off (h2) = 2 , 
while off (h3) = 1 , off (h4) = 2 , and off (h5) = 3.
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7.3.3  Interval conditions

Our decision procedure in Sect. 4 instantiates the variables in the polynomials f of the loop 
guard by q⃗norm = (h1,… , hd) , resulting in poly-exponential expressions p = f (h1,… , hd) . 
We now prove that in the setting of a hierarchical k-partition q⃗norm , the atoms in red (p ⊳ 0) 
(see Lemma 4.7 and (7)) are equivalent to so-called interval conditions, whose satisfiabil-
ity is particularly easy to check (Sect. 7.3.4). In Lemma 7.19, Lemma 7.21, and Corollary 
7.23, we introduce the different subformulas occurring in red (p ⊳ 0) . Here, it is convenient 
to define the active variables of polynomials.

Definition 7.17 (Active Variables) Let f = c0 +
∑d

i=1
ci ⋅ xi ∈ S[x⃗]lin . We define 

actVar (f ) =
{
xi ∣ ci ≠ 0

}
 . If xi ∈ actVar (f ) , then coeff (f , xi) = ci.

Example 7.18 Consider f = −x1 + 3 ⋅ x3 + 4 ∈ S[x1,… , x5]lin . Then actVar (f ) = {x1, x3} , 
coeff (f , x1) = −1 , and coeff (f , x3) = 3.

From the addends �j ⋅ naj ⋅ bnj  of p = f (h1,… , hd) with 𝛼j ∈ QS[x⃗]lin , aj ∈ ℕ , and 
bj ∈ S>0 , we again compute the set coefs (p) of marked coefficients as in Definition 4.5, 
which have the form �(bj ,aj)

j
 . For any b ∈ S>0 and a ∈ ℕ , we now define a formula zero (b, a) 

which is equivalent to requiring that all addends �j ⋅ naj ⋅ bnj  vanish where bj = b and where 
aj ≥ a.

Lemma 7.19 (Formulas for Vanishing of Addends) Let h1,… , hd be a hierarchical k-parti-
tion via �1,… , �k with bases 0 < 𝜆1 < … < 𝜆k , and let f ∈ S[x⃗]lin . For any 1 ≤ i ≤ k , let 
F(i) = {j ∈ Bi ∣ xj ∈ actVar (f )} . Let M =

−f (0,…,0)

coeff (f ,xminF(i))⋅cminF(i)

 if �i = 1 and F(i) ≠ � , where 

cminF(i) is the coefficient of xminF(i) in hminF(i).2

For any b ∈ S>0 and a ∈ ℕ , we define zero (b, a) : 

(a) If �i ≠ 1 for all 1 ≤ i ≤ k or �i = 1 for some 1 ≤ i ≤ k and F(i) = � , then zero (1, 0) is 
the formula f (0,… , 0) = 0.

(b) If �i = 1 for some 1 ≤ i ≤ k  and F(i) ≠ � , then zero (1, 0) is the formula 
xminF(i) = M ∧

⋀
j∈Bi,minF(i)<j (xj = 0).

(c) I f  �i = b  f o r  s o m e  1 ≤ i ≤ k  ,  F(i) ≠ �  ,  a n d  (b, a) ≠ (1, 0)  ,  t h e n 
zero (b, a) =

⋀
j∈Bi,a+minF(i)≤j (xj = 0).

(d) Otherwise, we define zero (b, a) = true.

Let p = f (h1,… , hd) ∈ ℕℙ𝔼S[x⃗] . As in Definition 4.5, let coefs (p) = {�
(b1,a1)

1
,… , �

(b
�
,a

�
)

�

} 
where 𝛼(bi,ai)

i
≺coef 𝛼

(bj ,aj)

j
 for all 1 ≤ i < j ≤ �.

Then zero (b, a) is equivalent to the requirement that �s = 0 holds for all 
�
(bs ,as)
s ∈ coefs (p) with bs = b and as ≥ a.

2 By Definitions 7.14 and 7.11, xminF(i) occurs only in a unique (linear) monomial of hminF(i) , whose coef-
ficient is not 0.
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Example 7.20 Consider f = −x1 + 3 ⋅ x3 + 4 from Example 7.18 and h⃗ = q⃗norm from 
Fig. 10.

We have p = f (h1,… , h5) = −h1 + 3 ⋅ h3 + 4 =

In the notation of Lemma 7.19, since B1 = {1, 2} , B2 = {3, 4, 5} , and 
actVar (f ) = {x1, x3} , we have F(1) = {j ∈ {1, 2} ∣ xj ∈ {x1, x3}} = {1} and 
F(2) = {j ∈ {3, 4, 5} ∣ xj ∈ {x1, x3}} = {3} . Thus, minF(1) = 1 , cminF(1) = 1 is the coeffi-
cient of x1 in h1 , coeff (f , xminF(1)) = −1 and thus M =

−4

−1
= 4 . Hence,

So v⃗ ∈ ℝ
5
𝔸
 satisfies zero (1, 0) or zero (2, 0) , respectively, iff all terms with base 1 or 2 van-

ish in f (h1,… , h5)[x⃗∕v⃗].

After introducing zero (b, a) , we are now ready to show that the formulas in Lemma 
4.7 and Theorem 4.9 have a special form when considering uniform loops. In the follow-
ing lemmas, corollaries, and definitions, let h1,… , hd , �1,… , �k , f, F(i), p, coefs (p) , and � 
always be as in Lemma 7.19.

Lemma 7.21 For any 1 ≤ s0 ≤ � , the formula 𝛼s0 > 0 ∧
⋀

�

s=s0+1

�
𝛼s = 0

�
 is equivalent to 

the following formula �f ,s0 , which can be computed in polynomial time from h1,… , hd and f: 

(a) If (bs0 , as0 ) = (1, 0) and either �i ≠ 1 for all 1 ≤ i ≤ k or �i0 = 1 for some 1 ≤ i0 ≤ k and 
F(i0) = � , then �f ,s0 is 

(b) If (bs0 , as0 ) = (1, 0) , �i0 = 1 for some 1 ≤ i0 ≤ k , and F(i0) ≠ � , then there is a3 C ∈ QS 
with C ≠ 0 such that �f ,s0 is 

(c) If bs0 < 1 , f (0,… , 0) ≠ 0 , and either �i ≠ 1 for all 1 ≤ i ≤ k or �i0 = 1 for some 
1 ≤ i0 ≤ k and F(i0) = � , then �f ,s0 is false.

(d) Otherwise, we have �i0 = bs0 for some 1 ≤ i0 ≤ k , F(i0) ≠ � , and there is a number4 
sg ∈ {1,−1} such that �f ,s0 is 

Example 7.22 For f , h⃗, p of Example 7.20, coefs (p) is

(−x1 + 4) − x2 ⋅ n + 3 ⋅ x3 ⋅ 2
n
+

(
3⋅x4

2
−

3⋅x5

8

)
⋅ n ⋅ 2n +

3⋅x5

8
⋅ n2 ⋅ 2n.

zero (1, 0) = (x1 = 4) ∧ (x2 = 0) and zero (2, 0) = (x3 = 0) ∧ (x4 = 0) ∧ (x5 = 0).

f (0,… , 0) > 0 ∧
⋀

i∈{1,…,k},𝜆i>1
zero (𝜆i, 0).

sign (C) ⋅ xminF(i0)
+

f (0,…,0)

|C|
> 0 ∧ zero (1, 1) ∧

⋀k

i=i0+1
zero (𝜆i, 0).

sg ⋅ xminF(i0)+as0
> 0 ∧ zero (𝜆i0 , as0 + 1) ∧

⋀k

i=i0+1
zero (𝜆i, 0).

3 C = coeff (f , xminF(i0)
) ⋅ cminF(i0)

 for the coefficient cminF(i0)
 of xminF(i0)

 in hminF(i0)
.

4 More precisely, sg = sign ( coeff (f , xminF(i0)
) ⋅ cminF(i0)+as0

) , where cminF(i0)+as0
 is the unique coefficient of 

xminF(i0)+as0
 in hminF(i0)

 ’s addend of the form � ⋅ n
as0 ⋅ bn

s0
 with � ∈ QS[xminF(i0)+as0

,… , x�1+…+�i0
]lin.
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Let us compute �f ,4 . For �(2,1)

4
 , we have i0 = 2 , minF(i0) = 3 , and a4 = 1 .  

Moreover, we have sg = sign
(
coeff (f , x3) ⋅ c4

)
= sign

(
3 ⋅

1

2

)
= 1 and 

zero (2, 2) =
⋀

j∈{3,4,5}, 2+3≤j(xj = 0) = (x5 = 0) and hence by Lemma 7.21:

For �(1,0)

1
 , as �1 = 1 and F(1) = {1} ≠ � , by Lemma 7.21 we use C = coeff (f , x1) ⋅ 1 = −1 , 

f (0,… , 0) = 4 , and zero (1, 1) =
⋀

j∈{1,2},1+1≤j(xj = 0) = (x2 = 0) to obtain �f ,1 , where 
zero (2, 0) =

⋀5

j=3
(xj = 0) by Example 7.20:

In addition to the formulas �f ,s for 1 ≤ s ≤ � , we also introduce a formula �f ,0 which 
expresses that all coefficients of p vanish.

Corollary 7.23 
�⋀
s=1

�
�s = 0

�
 is equivalent to �f ,0 : zero (1, 0) ∧

⋀
�∈{1,…,k},�≠1

zero (�, 0)

Example 7.24 Reconsider Example 7.22. By Corollary 7.23, 
⋀5

s=1
(�s = 0) is equiva-

lent to �f ,0 = zero (1, 0) ∧ zero (2, 0) , where zero (1, 0) = (x1 = 4) ∧ (x2 = 0) and 
zero (2, 0) = (x3 = 0) ∧ (x4 = 0) ∧ (x5 = 0) by Example 7.20.

We can now combine Lemma 7.21 and Corollary 7.23 with Lemma 4.7 to obtain the 
following result. Here, “ ic ” stands for interval conditions.

Corollary 7.25 For ⊳ ∈ {≥,>} , red (p ⊳ 0) is equivalent to the formula ic (p ⊳ 0) , where 
ic (p > 0) =

⋁
�

s=1
𝜌f ,s and ic (p ≥ 0) = ic (p > 0) ∨ 𝜌f ,0.

Example 7.26 Reconsider Examples 7.22 and 7.24. By Corollary 7.25, red (p > 0) is equiv-
alent to ic (p > 0) = 𝜌f ,1 ∨ 𝜌f ,2 ∨ 𝜌f ,3 ∨ 𝜌f ,4 ∨ 𝜌f ,5 =

red (p ≥ 0) is equivalent to ic (p ≥ 0) = ic (p > 0) ∨ ( zero (1, 0) ∧ zero (2, 0)).

The formulas �f ,s in Lemma 7.21 and Corollary 7.23 are so-called interval conditions.

Definition 7.27 (Interval Condition) For 1 ≤ i, i′ ≤ d , i ≠ i′ , I ⊆ {1,… , d} , sg ∈ {−1, 1} , 
and 0 ≠ c ∈ QS , an interval condition has the following forms:

{�(1,0)

1
, �(1,1)

2
, �(2,0)

3
, �(2,1)

4
, �(2,2)

5
} where

�1 = −x1 + 4, �2 = −x2, �3 = 3 ⋅ x3, �4 =
3⋅x4

2
−

3⋅x5

8
, �5 =

3⋅x5

8
.

(𝛼4 > 0) ∧ (𝛼5 = 0) ⟺ (sg ⋅ xa4+minF(i0)
> 0) ∧ zero (2, a4 + 1)

⟺ (x4 > 0) ∧ (x5 = 0)

(𝛼1 > 0) ∧
⋀5

s=2
(𝛼s = 0) ⟺ (−x1 + 4 > 0) ∧ (x2 = 0) ∧ zero (2, 0)

(
−x1 + 4 > 0 ∧ x2 = 0 ∧ zero (2, 0)

)
∨

(
−x2 > 0 ∧ zero (2, 0)

)

∨

(
x3 > 0 ∧ x4 = 0 ∧ x5 = 0

)
∨(x4 > 0 ∧ x5 = 0) ∨(x5 > 0),and
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Example 7.28 The formulas 𝜌f ,4 = (x4 > 0) ∧ (x5 = 0) and 𝜌
f ,1 = (−x1 + 4 > 0)∧

⋀5

j=2
(x

j
= 0) from Example 7.22 are interval conditions as in Definition 7.27 (b) and (e).

7.3.4  Checking satisfiability of interval conditions

We now show that to decide satisfiability of the formulas ic (p ⊳ 0) , we only have to regard 
instantiations of the variables with values from {0, 1 , −1 , ⋆ } , where ⋆ stands for one 
additional non-zero value. There are only polynomially many such instantiations and the 
particular value for ⋆ is later determined by SMT solving. This SMT solving only takes 
polynomial time, because the resulting SMT problem only contains a single variable. 
Definition 7.29 instantiates variables accordingly and performs Boolean simplifications as 
much as possible.

Definition 7.29 (Evaluation) Let � be a propositional formula built from the connectives 
∧ and ∨ over atoms of the form sg ⋅ x + c > 0 and x = c for sg ∈ {1,−1} , c ∈ QS , and 
x ∈ {x1,… , xd} . Moreover, let v⃗ ∈ {0, 1 , −1 , ⋆ }

d . The evaluation of  � w.r.t. v⃗ (written 
𝜌(v⃗)↓ ) results from 𝜌(v⃗) = 𝜌[x⃗∕v⃗] by simplifying (in)equations without ⋆ to true or false , 
and by simplifying conjunctions and disjunctions with true resp. false . We write v⃗ ⊨? 𝜌 if 
𝜌(v⃗)↓ ≠ false.

For example, if � is the formula (x1 −
5

2
> 0) ∧ (x2 = 0) and v⃗ = (⋆ , 0) , then 𝜌(v⃗)↓ is 

⋆ −
5

2
> 0 . Hence, v⃗ ⊨? 𝜌 . So in general, v⃗ ⊨? 𝜌 means that 𝜌(v⃗)↓ = true or that there could 

be a value w for ⋆ such that 𝜌[x⃗∕v⃗, ⋆ ∕w]↓ = true.
Now we define candidate assignments cndAssg (�f ,s) for the formulas �f ,s in Lemma 

7.21 and Corollary 7.23 which contain all v⃗ ∈ {0, 1 , −1 , ⋆ }
d that may satisfy �f ,s (if a 

suitable value for ⋆ is found). However, for each Block Bi , at most one variable xj with 
j ∈ Bi may be assigned a non-zero value (i.e., 1 , −1 , or ⋆ ). Moreover, the value ⋆ may only 
be used in the block for the eigenvalue �i = 1.

Definition 7.30 (Sets of Candidate Assignments) For all 0 ≤ s ≤ � , we define:

Example 7.31 In Examples 7.22 and 7.24, for 𝜌f ,4 = (x4 > 0) ∧ (x5 = 0) , v⃗ ⊨? 𝜌f ,4 implies 
v4 = 1 and v5 = 0 . Here, v4 = ⋆ is not possible, because 4 does not belong to the block 
B1 = {1, 2} for the eigenvalue 1. Since at most one value for each block may be non-zero, 

(a)
⋀

j∈I (xj = 0)

(b) sg ⋅ xi > 0 ∧
⋀

j∈I⧵{i} (xj = 0)

(c) xi� = c ∧
⋀

j∈I⧵{i�} (xj = 0)

(d) sg ⋅ xi > 0 ∧ xi� = c ∧
⋀

j∈I⧵{i,i�} (xj = 0)

(e) sg ⋅ xi + c > 0 ∧
⋀

j∈I⧵{i} (xj = 0)

cndAssg (𝜌f ,s) = {v⃗ ∈ {0, 1 , −1 , ⋆ }
d
∣ v⃗ ⊨? 𝜌f ,s,

∀ 1 ≤ i ≤ k. there is at most one j ∈ Bi with vj ≠ 0,

vj = ⋆ ⟹ j ∈ Bi0
where 𝜆i0 = 1}
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we have v3 = 0 . In contrast, v1 and v2 can be arbitrary, but at most one of them may be non-
zero. Hence, we obtain the following for �f ,4 and for �f ,0 = (x1 = 4) ∧

⋀5

j=2
(xj = 0):

Lemma 7.32 | cndAssg (�f ,s)| ≤
(
3⋅max{�i ∣ 1 ≤ i ≤ k} + 1

)k for all 0≤s≤�.

Lemma 7.32 is crucial for our algorithm to decide k-termination for uniform loops: 
| cndAssg (�f ,s)| is bounded by a polynomial in d if k is assumed to be a parameter. This 
is because the �i form a k-partition of d, i.e., �i ≤ d for 1 ≤ i ≤ k . Hence, computing 
cndAssg (�f ,s) can be done in polynomial time for fixed k.

Example 7.33 In Example 7.31, we have �1 = 2 and �2 = 3 , and thus, k = 2 and 
max{�i ∣ 1 ≤ i ≤ k} = 3 . Here, | cndAssg (�f ,4)| = 7 ≤ 100 = 102 = (3 ⋅ 3 + 1)2.

This example shows that the bound in Lemma 7.32 is coarse, but it suffices for our 
analysis. We now combine Corollary 7.25 and Definition 7.30 to obtain the sets of can-
didate assignments for the disjunctions ic (p > 0) and ic (p ≥ 0).

Corollary 7.34 We lift cndAssg to inequations by defining

Then we have

For a uniform loop with condition � and normalized closed form q⃗norm = h⃗ , let 𝜑(h⃗) 
contain the atoms f (h⃗) ⊳ 0 , where f ∈ S[x⃗]lin . To decide termination, our algorithm 
computes cndAssg ( ic (f (h⃗) ⊳ 0)) for all these atoms f (h⃗) ⊳ 0 , and then checks for each 
of the candidate assignments whether it is a witness for eventual non-termination. We 
first lift ic and cndAssg to linear formulas.

cndAssg (𝜌f ,4) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

⎡
⎢
⎢
⎢
⎢
⎣

1

0

0

1

0

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

⋆
0

0

1

0

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

−1

0

0

1

0

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0

1

0

1

0

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0

⋆
0

1

0

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0

−1

0

1

0

⎤
⎥
⎥
⎥
⎥
⎦

,

⎡
⎢
⎢
⎢
⎢
⎣

0

0

0

1

0

⎤
⎥
⎥
⎥
⎥
⎦

⎫
⎪
⎪
⎬
⎪
⎪
⎭

, cndAssg (𝜌f ,0) =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

⎡
⎢
⎢
⎢
⎢
⎣

⋆
0

0

0

0

⎤
⎥
⎥
⎥
⎥
⎦

⎫
⎪
⎪
⎬
⎪
⎪
⎭

cndAssg ( ic (p > 0)) =
⋃

�

s=1
cndAssg (𝜌f ,s)

and cndAssg ( ic (p ≥ 0)) = cndAssg ( ic (p > 0)) ∪ cndAssg (𝜌f ,0).

| cndAssg ( ic (p ⊳ 0))| ≤ (d + 2) ⋅
(
3 ⋅max{𝜈i ∣ 1 ≤ i ≤ k} + 1

)k
.

Algorithm 4  Checking Interval Conditions
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Definition 7.35 (ic and cndAssg for Linear Formulas) Let � be a linear formula 
over the atoms {f ⊳ 0 ∣ f ∈ S[x⃗]lin,⊳ ∈ {>,≥}} and let h⃗ = (h1,… , hd) be a hier-
archical k-partition. Then the formula ic (𝜑(h⃗)) results from replacing each atom 
f (h⃗) ⊳ 0 in 𝜑(h⃗) = 𝜑[x⃗∕h⃗] by ic (f (h⃗) ⊳ 0) . By cndAssg ( ic (𝜑(h⃗))) we denote the set 
⋃

f (h⃗)⊳0 atom in 𝜑(h⃗) cndAssg ( ic (f (h⃗) ⊳ 0)).

To analyze termination of uniform loops, we now present an algorithm to decide 
whether for a hierarchical k-partition h⃗ and a linear formula �,

is valid. Our algorithm calls a method SMT(�,V,S ) which checks whether the linear for-
mula � in the variables V is satisfiable. Here, the variables V range over S ∈ {ℤ,ℚ,ℝ𝔸} 
and the coefficients of the polynomials are from QS . (So for S = ℤ , one can first multi-
ply all inequations in � by the main denominator to result in coefficients from ℤ .) In our 
case, V = {⋆ } and thus, |V| = 1 . With these restrictions, the method SMT has polynomial  
runtime (see [2, 41]). More precisely, SMT is called in Algorithm 4 to determine whether 
⋆ can be assigned a non-zero value such that 𝜓(v⃗)↓ is satisfiable. Here, we have to assign 
all occurrences of ⋆ in the formula 𝜓(v⃗)↓ the same value.

Let us discuss the complexity of Algorithm  4. The formula ic (𝜑(h⃗)) and each ele-
ment of cndAssg ( ic (𝜑(h⃗))) can be computed in polynomial time. By Corollary 7.34, 
cndAssg ( ic (𝜑(h⃗))) has at most |�| ⋅ (d + 2) ⋅

(
3 ⋅max{�i ∣ 1 ≤ i ≤ k} + 1

)k elements, 
where |�| is the number of atoms in � and �i ≤ d for all 1 ≤ i ≤ k . Thus, when consider-
ing k to be a parameter, cndAssg ( ic (𝜑(h⃗))) can be computed in polynomial time. More-
over, evaluating a formula w.r.t. v⃗ according to Definition 7.29 is possible in polynomial 
time, too. Finally, SMT has polynomial runtime as discussed before. So the runtime of 
the algorithm is polynomial when regarding k as a parameter. We now prove that Algo-
rithm 4 is sound and complete.

Theorem 7.36 Algorithm 4 returns ⊤ iff ∃x⃗ ∈ S
d. ic (𝜑(h⃗)) is valid.

Example 7.37 Consider the uniform loop in Fig.  10 where 𝜑 = f > 0 ∧ f � > 0 for 
f = −x1 + 3 ⋅ x3 + 4 and f � = 2 ⋅ x1 − 5 . Let h⃗ = q⃗norm as in Fig. 10 and let p = f (h⃗) and 
p� = f �(h⃗) = (2 ⋅ x1 − 5) + 2 ⋅ x2 ⋅ n . Here, 𝜓 = ic (𝜑(h⃗)) = ic (p > 0) ∧ ic (p� > 0) , where 
ic (p > 0) =

⋁5

s=1
𝜌f ,s is stated in Example 7.26. Note that coefs (p�) = {��

1

(1,0)
, ��

2

(1,1)
} 

with ��

1
= 2 ⋅ x1 − 5 and ��

2
= 2 ⋅ x2 . Hence, ic (p� > 0) = 𝜌f � ,1 ∨ 𝜌f �,2 . To com-

pute �f ′,1 , for C = coeff (f �, x1) ⋅ c1 = 2 ⋅ 1 = 2 and f �(0,… , 0) = −5 , 
Lemma 7.21 (b) results in 𝜌f �,1 = (x1 −

5

2
> 0) ∧ (x2 = 0) . For �f ′,2 , with 

sg = sign
(
coeff (f �, x1) ⋅ c2

)
= sign (2 ⋅ 1) = 1 , Lemma 7.21 (d) results in 𝜌f �,2 = (x2 > 0) . 

Now from ic (p > 0) let us choose the disjunct 𝜌f ,1 = (−x1 + 4 > 0) ∧
⋀5

j=2
(xj = 0) and 

from ic (p� > 0) let us choose the disjunct 𝜌f �,1 = (x1 −
5

2
> 0) ∧ (x2 = 0) . We consider 

v⃗ = (⋆ , 0, 0, 0, 0) . Then

∃x⃗ ∈ S
d, n0 ∈ ℕ. ∀n ∈ ℕ>n0

. 𝜑(h⃗) (see (9))
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is satisfiable with the model ⋆ = 3 . Hence, this model also satisfies 𝜓(v⃗)↓ ∧ ⋆ ≠ 0 . Thus, 
for both S ∈ {ℚ,ℝ𝔸} , Algorithm  4 proves validity of ∃x⃗ ∈ S

d. ic (𝜑(h⃗)) and therefore, 
non-termination of the uniform loop over S.

So for a uniform loop over S ∈ {ℚ,ℝ𝔸} , non-termination is equivalent to validity of 
∃x⃗ ∈ S

d. ∀n ∈ ℕ>n0
. 𝜑(q⃗norm) , which in turn is equivalent to a formula only containing 

interval conditions. This insight reduces the search space for proving validity drastically. 
Thus, we can now prove Theorem 7.10 for S ∈ {ℚ,ℝ𝔸,ℝ}.

Proof of Theorem 7.10 For S ∈ {ℚ,ℝ𝔸} , we first transform the uniform loop such that the 
update matrix is in Jordan normal form and then compute the normalized closed form as in 
Lemma 7.12 in polynomial time. This closed form is a hierarchical partition by Corollary 
7.15. By combining Corollary 7.25 and Theorem 7.36, Algorithm 4 can decide validity of 
the formula from Theorem 4.9, i.e., termination of the transformed loop (which is equiva-
lent to termination of the original loop by Corollary 5.16).

As the computation of the equivalent interval conditions in Corollary 7.25 clearly works 
in polynomial time and we have discussed that Algorithm 4 runs in polynomial time when 
k is assumed to be a parameter, this proves the statement.

Finally, these loops terminate over ℝ𝔸 iff they terminate over ℝ by Corollary 4.11.  
 ◻

For Theorem 7.10, it was crucial to transform the loop such that the update matrix is in 
Jordan normal form. Here we relied on a special closed form for the Jordan normal form, 
while in Sect. 7.1 we only used the transformation to argue why the closed form is comput-
able in polynomial time. Thus, the transformation from Sect. 5 does not only generalize 
our results from Sect. 4 to a wider class of loops but it also gives rise to novel results like 
Theorem 7.10.

The approach in the proof of Theorem 7.10 also works for uniform loops over ℤ if the 
update matrix is already in Jordan normal form. But otherwise, in addition to 𝜑(q⃗norm) we 
also have an update-invariant and Th

∃
(S,ℝ𝔸)-definable subset F which stems from the 

transformation into Jordan normal form (see Sect. 5). Thus, to decide termination we have 
to decide validity of ∃x⃗ ∈ ℝd

𝔸
. ∀n ∈ ℕ>n0

. 𝜑(q⃗norm) ∧ 𝜓F . We will discuss this in the next 
section.

7.3.5  Termination of uniform loops over the integers

Now we show that deciding termination of uniform loops (𝜑,A ⋅ x⃗) over the integers is 
also in XP. Let A ∈ ℤd×d with k integer eigenvalues each of geometric multiplicity one. 
Then there is a matrix T ∈ ℚd×d such that A = T−1

⋅ Q ⋅ T  for a matrix Q in Jordan normal 
form. However, in general we do not have T , T−1

∈ ℤd×d (see, e.g., [59]). As before, let 
𝜂(x⃗) = T ⋅ x⃗ and ��

= �−1(�) . Then termination of (𝜑,A ⋅ x⃗) on ℤd is equivalent to termina-
tion of (𝜑�,Q ⋅ x⃗) on �̂(ℤd

) = T ⋅ ℤd by Corollary 5.16. Here, LT = T ⋅ ℤd is the set of all 
integer linear combinations of T’s columns, i.e., their lattice. In general, we have LT ≠ ℤd.

(𝜌f ,1 ∧ 𝜌f �,1)(v⃗)↓ = (−⋆ + 4 > 0) ∧ (⋆ −
5

2
> 0)
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Hence, we now call Algorithm  4 with the input (𝜑�, h⃗,ℚ) , where h⃗ = q⃗norm is the 
normalized closed form for the update Q ⋅ x⃗ . For 𝜓 = ic (𝜑�

(h⃗)) , we want to find out if 
𝜓(v⃗) holds for some v⃗ ∈ LT . Such a v⃗ ∈ LT would witness eventual non-termination of 
(𝜑�,Q ⋅ x⃗) , and since LT is update-invariant under Q ⋅ x⃗ by Lemma 5.12, this is equivalent 
to non-termination of (𝜑�,Q ⋅ x⃗) on LT.

We modify Algorithm  4 such that it computes all v⃗ ∈ cndAssg (𝜓) where 
𝜓(v⃗)↓ ∧ ⋆ ≠ 0 is satisfied by some v⃗′ that results from v⃗ by instantiating ⋆ with a suitable 
number from ℚ . As shown in Corollary 7.34, for a fixed number of eigenvalues k, there are 
only polynomially many such candidate assignments v⃗ . Note that the formula �′ is only 
built from the connectives ∧ and ∨ , and � results from �′ by replacing each atom f ⊳ 0 by 
ic (f (h⃗) ⊳ 0) . Hence, for every such v⃗ there is a subset { ic (f1(h⃗) ⊳1 0),… , ic (fe(h⃗) ⊳e 0)} 
of these formulas such that v⃗′ satisfies them all and such that satisfying these formulas is 
sufficient for satisfying � . For each 1 ≤ r ≤ e , let �r = | coefs (fr(h⃗))| . By Corollary 7.25, 
ic (fr(h⃗) ⊳r 0) has the form 

⋁
�r

s=1
�fr ,s or 

⋁
�r

s=0
�fr ,s . So for every r there is at least one s where 

𝜌fr ,s(v⃗
�
) is true. But due to the construction of �fr ,s in Lemma 7.21 and Corollary 7.23, there 

is at most one 0 ≤ s ≤ �r where 𝜌fr ,s(v⃗
�
) is true. Thus, for every 1 ≤ r ≤ e , there is a unique 

0 ≤ sr ≤ �r where 𝜌fr ,sr (v⃗
�
) is true.

By Lemma 7.21 and Corollary 7.23, all �fr ,sr are interval conditions. Thus, for each entry 
vj of v⃗′ we can find out whether xj = vj is required by some �fr ,sr , or whether vj = 0 is just 
due to setting variables to zero by default, i.e., the formula would still hold when assigning 
an arbitrary value from ℚ to vj . So every v⃗ ∈ cndAssg (𝜓) gives rise to a certain set of for-
mulas {�f1,s1 ,… , �fe,se} , which in turn results in a certain abstract assignment that indicates 
for each entry of v⃗′ whether its actual value is necessary to be a model.

Definition 7.38 (Abstract Assignment) Let � be the set of all intervals of the forms [c, c], 
(−∞, c) , (c,∞) , (−∞,∞) , or (c, d) for c, d ∈ ℚ with c ≤ d . Then an abstract assignment is 
an element of �d.

For each of the obtained abstract assignments, we now have to check whether it 
is satisfied by some value from LT . Let N ⊆ {1,… , d} be those indices where j ∈ N 
iff the j-th component of the abstract assignment is [0,  0], i.e., iff the j-th compo-
nent must be 0 in order to satisfy all �fs,ms

 . Then we compute a basis of the sublattice 
LN = {w⃗ ∈ LT ∣ wj = 0 for j ∈ N} . To this end, we solve the system of linear equations 
⋀

j∈N(T ⋅ x⃗)j = 0 where x⃗ ∈ ℤd . Here as usual, (T ⋅ x⃗)j denotes the j-th component of the 
vector T ⋅ x⃗ . This problem can be solved in polynomial time (see, e.g., [22, 60]). Since in 
general this system contains more variables than equations, the solutions yield a certain 
linear dependence between the variables. This dependence can then be used to reduce the 
number of variables in the system, i.e., it gives rise to a basis of LN , where each basis vec-
tor is represented by a ℤ-linear combination of the columns of T. Let d′ ≤ d be the rank 
of the sublattice LN (i.e., the number of its basis vectors) and let P ∈ ℚd×d� be the matrix 
whose columns form the basis of LN.

Let N� ⊆ {1,… , d} be those indices where j ∈ N� iff the j-th component of the abstract 
assignment is neither [0, 0] nor (−∞,∞) . So the j-th component must be from a certain 
interval in order to satisfy all �fs,ms

 . To ease notation, we define Ij = (−∞,∞) if j ∉ N� and 



 Formal Methods in System Design

1 3

let K =
∏d

j=1
Ij ⊆ ℚd . Now we have to decide whether there exists an X ∈ ℤd� such that 

P ⋅ X ∈ K.
Let B1,… ,Bk again be the blocks from the k-partition h1,… , hd . Note that if there is 

a block Bi where some �fr ,sr requires xj with j ∈ Bi to be non-zero (i.e., j ∈ N� ), then �fr ,sr 
requires all xj′ with j′ > j and j� ∈ Bi to be zero (i.e., j� ∈ N ). Thus, since v⃗′ satisfies all 
formulas �fr ,sr for 1 ≤ r ≤ e , for each block Bi there can be at most one r ∈ Bi where some 
�fr ,sr requires xj to be non-zero. Hence, for each block Bi there is at most one j ∈ Bi where 
j ∈ N� . Note that containment in an interval can be described by at most 2 inequations, 
where the strict inequations can be turned into weak ones since the variables only range 
over the integers. Thus, to describe the required containment in the intervals for all xj with 
j ∈ N� , we need at most 2 ⋅ k inequations. In other words, the requirement P ⋅ X ∈ K can be 
described by 2 ⋅ k linear inequations where the coefficients are from ℚ . Since linear integer 
programming with rational coefficients and a fixed number of constraints is possible in pol-
ynomial time (see [41]), this shows that checking whether a candidate assignment v⃗ gives 
rise to a solution in LT can be done in XP. As | cndAssg (�)| is also polynomial for fixed k, 
k-termination of uniform loops over ℤ is in XP as well.

8  Conclusion and related work

In this work, we studied termination of twn-loops, i.e., loops where the update x⃗ ← u⃗ is 
a triangular system of polynomial equations and the use of non-linearity in u⃗ is mildly 
restricted. We first presented a reduction from termination of twn-loops to Th

∃
(S) in 

Sects. 3 and 4. This implies decidability of termination over S ∈ {ℝ𝔸,ℝ} and semi-decida-
bility of non-termination over S ∈ {ℤ,ℚ}.

In addition, we showed how to transform certain non-twn-loops into twn-form in Sect. 5, 
and discussed how this generalizes our results to a wider class of loops. We also showed 
that twn-transformability is semi-decidable.

Afterwards, we analyzed the complexity of deciding termination for different subclasses 
of twn-loops. In Sect. 6, we first showed that linearizing twn-loops can be done in double 
exponential time. In Sect. 7, we used our transformation and decision procedure to prove 
Co-NP-completeness ( ∀ℝ-completeness) of termination of linear (linear-update) loops 
with rational (real) spectrum, and based on linearization, that deciding termination of arbi-
trary twn-loops over ℝ𝔸 or ℝ is in 3-EXPTIME.

Finally, we showed that for the subclass of uniform loops over S ∈ {ℤ,ℚ,ℝ𝔸,ℝ} , ter-
mination can be decided in polynomial time, if the number of eigenvalues of the update 
matrix is fixed. So here our decision procedure can be used as an efficient technique for 
termination analysis.

8.1  Related work

In contrast to automated termination analysis (see e.g., [1, 6, 7, 9, 11, 24, 25, 39, 40, 51]), 
we investigated decidability of termination for certain classes of loops in Sect. 4. As ter-
mination is undecidable in general, decidability results can only be obtained for very 
restricted classes of programs.
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Nevertheless, many techniques used in automated tools for termination analysis (e.g., 
ranking functions [1, 5–7, 9, 51]) focus on similar classes of loops, since such loops occur 
as sub-programs in (abstractions of) real programs. Tools based on these techniques have 
turned out to be very successful, also for larger classes of programs. Thus, these tools 
could benefit from integrating our (semi-)decision procedures and applying them instead of 
incomplete techniques for any sub-program that can be transformed into a twn-loop.

Related work on decidability of termination also considers similar (and often more 
restricted) classes of loops. For linear conjunctive loops, termination over ℝ [42, 45, 62, 
66] and ℚ [10] is decidable. Decidability of termination of linear conjunctive loops over ℤ 
was conjectured to be decidable in [62]. After several partial results [8, 19, 49] this con-
jecture was confirmed recently in [31]. However, [4] shows that for slight generalizations 
of linear conjunctive loops over ℤ , where a non-deterministic update or a single piecewise 
update of a variable are allowed, termination is undecidable. Tiwari [62] uses the special 
case of our twn-transformation from Sect. 5 where the loop and the automorphism are lin-
ear. In contrast to these results, our approach applies to non-linear loops with arbitrary 
conditions over various rings.

Linearization is another attempt to handle non-linearity, see Sect. 6. While the update of 
solvable loops can be linearized [48], the condition cannot. Otherwise, one could linearize 
any loop (p = 0, x⃗) , which terminates over ℤ iff p has no integer root. By [31], this would 
imply decidability of Hilbert’s Tenth Problem.

In the non-linear case, [43] proves decidability of termination for conjunctive loops on 
ℝd for the case that the condition defines a compact and connected subset of ℝd . In [65], 
decidability of termination of conjunctive linear-update loops on ℝd with the non-zero min-
imum property is shown, which covers conjunctive linear-update loops with real spectrum. 
For general conjunctive linear-update loops on ℝd undecidability is conjectured. Moreover, 
[64] shows that termination of conjunctive linear-update loops where the update matrix has 
only periodic real eigenvalues is decidable, which also covers conjunctive linear-update 
loops with real spectrum. Here, a special case of our transformation from Sect. 5 with lin-
ear automorphisms is used. In combination with [48], the papers [64, 65] both yield a deci-
sion procedure for termination of conjunctive twn-loops over ℝ . Furthermore, [47] proves 
that termination of (not necessarily conjunctive) linear-update loops is decidable if the con-
dition describes a compact set. Finally, [67] gives sufficient criteria for (non-)termination 
of solvable loops and [44] presents sufficient conditions under which termination of non-
deterministic non-linear loops on ℝd can be reduced to satisfiability of a semi-algebraic 
system.

For linear-update loops with real spectrum over ℝ , we prove ∀ℝ-completeness of ter-
mination, whereas [64, 65] do not give tight complexity results. The approach from [67] 
is incomplete, whereas we present a complete reduction from termination to the respective 
existential fragment of the first-order theory. The work in [44] is orthogonal to ours as 
it only applies to loops that satisfy certain non-trivial conditions. Moreover, we consider 
loops with arbitrary conditions over various rings, while [43, 44, 64, 65] only consider 
conjunctive loops over ℝ and [47] only considers loops over ℝ where the condition defines 
a compact set.

Regarding complexity, [49] proves that termination of conjunctive linear loops over ℤ 
with update x⃗ ← A ⋅ x⃗ + b⃗ is in PSPACE if |x⃗| ≤ 4 resp. in EXPSPACE if A is diagonaliz-
able. Moreover, in [5] it is shown that existence of a linear (lexicographic) ranking function 
for linear conjunctive loops over ℚ or ℤ is Co-NP-complete.

Our Co-NP-completeness result is orthogonal to those results as we allow disjunctions 
in the condition. Moreover, Co-NP-completeness also holds for termination over ℤ , while 



 Formal Methods in System Design

1 3

[10, 62] only consider termination over ℚ resp. ℝ . Additionally, we showed that k-termina-
tion of uniform loops over ℤ , ℚ , ℝ𝔸 , and ℝ is in XP, where the parameter k is the number 
of eigenvalues. This result is also orthogonal to [10, 62] since we again allow disjunctions 
in the condition. Furthermore, existence of a linear (lexicographic) ranking function is not 
necessary for termination of linear loops. We refer to [29] for further discussion on pos-
sible extensions of our results to uniform loops over S , where however the eigenvalues are 
not from S.

Several works exploit the existence of closed forms for solvable (or similar classes of) 
loops, e.g., to analyze termination on a given input, to infer runtime bounds, or to reason 
about invariants [28, 32, 35, 36, 48, 56]. While our approach covers solvable loops with 
real eigenvalues (by Corollary 5.20), it also applies to loops which are not solvable, see 
Example 5.23. Our transformation of Sect. 5 may also be of interest for other techniques 
for solvable or other sub-classes of polynomial loops, as it may be used to extend the appli-
cability of such approaches.

Appendix

A Proofs

A.1 Proof of Theorem 3.2

Proof 

(a) By weak non-linearity, ui = ci ⋅ xi + pi with xi ∉ V(pi) for all 1 ≤ i ≤ d . Then 

 Assume xi ∈ V(pi(u⃗)) . As xi ∉ V(pi) by weak non-linearity, there is an xj ∈ V(pi) with 
xj ≠ xi and xi ∈ V(uj) , which implies xj ≻u⃗ xi . But xj ∈ V(pi) also implies xi ≻u⃗ xj , 
which violates well-foundedness of ≻u⃗ , i.e., it contradicts the triangularity of (𝜑, u⃗) . 
Hence, c2

i
 is the coefficient of xi in ui(u⃗) . Since c2

i
≥ 0 , (𝜑 ∧ 𝜑(u⃗), u⃗(u⃗)) is non-nega-

tive. Note that xi ≻u⃗(u⃗) xj implies xj ∈ V(pi) (then we also have xi ≻u⃗ xj ) or it implies 
that there is an xk ∈ V(pi) with xj ∈ V(uk) (then we have xi ≻u⃗ xk and xk ⪰u⃗ xj ). So in 
both cases, xi ≻u⃗(u⃗) xj implies xi ≻u⃗ xj . Thus, ≻u⃗(u⃗) ⊆ ≻u⃗ . As ≻u⃗ is well founded, this 
means that ≻u⃗(u⃗) is well founded, too. Hence, (𝜑 ∧ 𝜑(u⃗), u⃗(u⃗)) is triangular.

(b) Now we prove that (𝜑, u⃗) does not terminate on e⃗ ∈ S
d iff (𝜑 ∧ 𝜑(u⃗), u⃗(u⃗)) does not 

terminate on e⃗ . 

ui(u⃗) = ci ⋅ (ci ⋅ xi + pi) + pi(u⃗) = c2
i
⋅ xi + ci ⋅ pi + pi(u⃗).

(𝜑, u⃗) does not terminate on e⃗

⟺ ∀n ∈ ℕ. 𝜑(u⃗n(e⃗)) (by Definition 2.1)

⟺ ∀n ∈ ℕ. 𝜑(u⃗2⋅n(e⃗)) ∧ 𝜑(u⃗2⋅n+1(e⃗))
⟺ ∀n ∈ ℕ. 𝜑(u⃗2⋅n(e⃗)) ∧ 𝜑(u⃗)(u⃗2⋅n(e⃗))
⟺ ∀n ∈ ℕ. (𝜑 ∧ 𝜑(u⃗)) (u⃗(u⃗))n(e⃗)
⟺ (𝜑 ∧ 𝜑(u⃗), u⃗(u⃗)) does not terminate on e⃗
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A.2 Proof of Lemma 4.4

Proof Recall that for f , g ∶ ℕ → ℝ , f (n) ∈ o(g(n)) means

First consider the case b2 > b1 . We have bn
2
= bn

1
⋅ (

b2

b1
)
n , where b2

b1
> 1 . As na1 ∈ o((

b2

b1
)
n
) , 

we obtain na1 ⋅ bn
1
∈ o((

b2

b1
)
n
⋅ bn

1
) = o(bn

2
) ⊆ o(na2 ⋅ bn

2
) , i.e., na1 ⋅ bn

1
∈ o(na2 ⋅ bn

2
).

Now consider the case b2 = b1 and a2 > a1 . Then na1 ⋅ bn
1
∈ o(na2 ⋅ bn

2
) trivially holds.

A.3 Proof of Equation (5)

Proof If p(e⃗) = 0 , then k = 0 by Definition 4.5 and hence o(p(e⃗)) = o(k ⋅ na ⋅ bn) = o(0) . 
Otherwise, p(e⃗) has the form

for k ≠ 0 and m ≥ 0 . We have k(bi,ai)
i

∈ coefs
(
p(e⃗)

)
 and hence (b, a) >lex (bi, ai) for all 

1 ≤ i ≤ m . Thus, Lemma 4.4 implies nai ⋅ bn
i
∈ o(na ⋅ bn) and we get

A.4 Proof of Equation (6)

Proof If k = 0 , the claim is trivial, so assume k ≠ 0 , i.e., p(e⃗) = k ⋅ bn ⋅ na + p� for some 
p� ∈ ℕℙ𝔼S . By Lemma 4.4 we have

Assume k > 0 . Then

If k < 0 , then

∀m > 0. ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. |f (n)| < m ⋅ |g(n)|.

k ⋅ na ⋅ bn +

m∑

i=1

ki ⋅ n
ai
⋅ bn

i

o(p(e⃗)) = o
�
k ⋅ na ⋅ bn +

∑m

i=1
ki ⋅ n

ai
⋅ bn

i

�
= o(na ⋅ bn) = o(k ⋅ na ⋅ bn).

p� ∈ o(k ⋅ bn ⋅ na)

⟺ ∀m > 0. ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. |p�| < m ⋅ |k ⋅ bn ⋅ na|

⟹ ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. |p�| < |k ⋅ bn ⋅ na|.

∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. |p�| < |k ⋅ bn ⋅ na|

⟹ ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. − p� < |k ⋅ bn ⋅ na|

⟺ ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. − p� < k ⋅ bn ⋅ na

⟺ ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. 0 < k ⋅ bn ⋅ na + p�

⟺ ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. 0 < p(e⃗)

⟺ ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. sign

(
p(e⃗)

)
= sign (k).
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A.5 Proof of Lemma 4.7

Proof We have p ∈ ℕℙ𝔼S[x⃗] , so p(e⃗) ∈ ℕℙ𝔼S for any e⃗ ∈ S
d . Hence,

Let coefs (p) = {�
(b1,a1)

1
,… , �

(b
�
,a

�
)

�

} , where 𝛼(bi,ai)

i
≺coef 𝛼

(bj ,aj)

j
 for all 1 ≤ i < j ≤ � . If 

p(e⃗) = 0 , then 𝛼1(e⃗) = … = 𝛼
�
(e⃗) = 0 and thus coefs

(
p(e⃗)

)
= {0(1,0)} and 

unmark (max≻coef

(
coefs

(
p(e⃗)

))
) = 0 . Otherwise, there is an 1 ≤ i ≤ � with

So when defining red (p > 0) and red (p ≥ 0) as in (7), we obviously have

Hence, (8) is equivalent to

The time needed to compute and sort coefs (p) is polynomial. Furthermore, red (p ⊳ 0) is 
a disjunction of at most � + 1 subformulas, where each subformula is a conjunction of at 
most � (in-)equations over coefs (p) . Thus, the time needed to compute red (p ⊳ 0) resp. 
(16) is polynomial in the size of p.

A.6 Proof of Theorem 4.9

Proof We have to prove

where red (�) results from replacing each atom p ⊳ 0 in � by red (p ⊳ 0) . Since each 
red (p ⊳ 0) can be computed in polynomial time due to Lemma 4.7, the computation of the 
formula “ ∃x⃗ ∈ S

d. red (𝜉) ” clearly works in polynomial time, too.
To prove (17), we introduce the notion of a fundamental set. Let p1 ⊳1 0,… , pk ⊳k 0 

denote the atoms in � . We call a subset I ⊆ {1,… , k} fundamental if 
⋀

i∈I pi ⊳i 0 ⟹ 𝜉 . 
Recall that w.l.o.g., we can assume that � does not contain any connectives except ∧ and ∨ . 
Thus, whenever � ≠ false , the formula � must have fundamental sets. Clearly, we have

∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. |p�| < |k ⋅ bn ⋅ na|

⟹ ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. p� < |k ⋅ bn ⋅ na|

⟺ ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. p� < −k ⋅ bn ⋅ na

⟺ ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. k ⋅ bn ⋅ na + p� < 0

⟺ ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. p(e⃗) < 0

⟺ ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. sign

(
p(e⃗)

)
= sign (k).

∃n0∈ℕ.∀n∈ℕ>n0
.p(e⃗) ⊳ 0 iff unmark (max≻coef

(
coefs

(
p(e⃗)

))
) ⊳ 0 (by (6)).

unmark (max≻coef

(
coefs

(
p(e⃗)

))
) = 𝛼i(e⃗) ≠ 0 and 𝛼j(e⃗) = 0 for all i + 1 ≤ j ≤ �.

unmark (max≻coef

(
coefs

(
p(e⃗)

))
) ⊳ 0 iff ( red (p ⊳ 0)) (e⃗) holds.

(16)∃x⃗ ∈ S
d. red (p ⊳ 0).

(17)(9) ⟺ ∃x⃗ ∈ S
d. red (𝜉)
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Thus, to prove (17), it suffices to show the following:

For the “ ⟸”-direction, assume there is such a fundamental set and e⃗ ∈ S
d , i.e.,

is valid. Then as in the proof of Lemma 4.7, for each i ∈ I , there is an ni ∈ ℕ such that

As I is finite, nmax = max
{
ni|i ∈ I

}
 exists. Hence, we get

Since I is fundamental, this implies (9).
For the “ ⟹”-direction, assume (9). Then there is an e⃗ ∈ S

d and an n0 ∈ ℕ such that for 
each n ∈ ℕ>n0

 , there is a fundamental set In such that 
⋀

i∈In
pi(e⃗) ⊳i 0 holds. As there are 

only finitely many fundamental sets, there is some fundamental set I that occurs infinitely 
often in (In)n∈ℕ>n0

 . Hence we get

By definition of poly-exponential expressions, each pi(e⃗) is weakly monotonic in n for large 
enough n. Thus, (19) implies5

As e⃗ ∈ S
d , there is a fundamental set I such that ∃x⃗ ∈ S

d.
⋀

i∈I red (pi ⊳i 0) holds.

A.7 Proof of Theorem 4.10

Proof By Corollary 3.3, termination of twn-loops is reducible to termination of tnn-
loops. Given a tnn-loop (𝜑, u⃗) , we obtain q⃗norm ∈

(
ℕℙ𝔼S[x⃗]

)d such that (𝜑, u⃗) is (even-
tually) non-terminating iff (4) holds, where � is a propositional formula over the atoms 
{𝛼 ≥ 0, 𝛼 > 0 ∣ 𝛼 ∈ S[x⃗]} . Hence, 𝜑(q⃗norm) is a propositional formula over the atoms 

∃x⃗ ∈ S
d. red (𝜉) ⟺ ∃ fundamental set I. ∃x⃗ ∈ S

d.
⋀

i∈I
red (pi ⊳i 0).

(18)(9) ⟺ ∃ fundamental set I. ∃x⃗ ∈ S
d.

⋀
i∈I

red (pi ⊳i 0).

⋀
i∈I

red (pi ⊳i 0)(e⃗)

∃x⃗ ∈ S
d. ∀n ∈ ℕ>ni

. pi ⊳i 0.

∃x⃗ ∈ S
d. ∀n ∈ ℕ>nmax

.
⋀

i∈I
pi ⊳i 0.

(19)∃n0 ∈ ℕ. ∃∞n ∈ ℕ>n0
.
⋀

i∈I
pi(e⃗) ⊳i 0.

∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
.
⋀

i∈I
pi(e⃗) ⊳i 0.

5 This corresponds to the observation that if the loop condition is a disjunction (and hence also � is a dis-
junction of the form �1 ∨ �2 ), then non-termination of the original loop implies non-termination of one 
of the loops where instead of the disjunction one only takes one of the disjuncts as the loop guard. The 
reason is that for every fundamental set I and every e⃗ ∈ S

d , 
⋀

i∈I pi(e⃗) ⊳i 0 ⟹ (𝜉1(e⃗) ∨ 𝜉2(e⃗)) implies ⋀
i∈I pi(e⃗) ⊳i 0 ⟹ 𝜉1(e⃗) or 

⋀
i∈I pi(e⃗) ⊳i 0 ⟹ 𝜉2(e⃗) . The restriction to tnn-loops implies that the 

closed forms are poly-exponential expressions and hence, that the pi(e⃗) are weakly monotonic in n for large 
enough n. Therefore, the above argumentation in the proof shows that there is a fundamental set I such that ⋀

i∈I pi(e⃗) ⊳i 0 holds for all large enough n and thus, for some j ∈ {1, 2} , 𝜉j(e⃗) holds for all large enough n 
as well. Hence, the loop would also be non-terminating if one only takes the corresponding disjunct as the 
loop guard.
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{p ⊳ 0 ∣ p ∈ ℕℙ𝔼S[x⃗],⊳ ∈ {≥,>}} . Thus, by Theorem  4.9, validity of (4) resp. (9) is 
reducible to Th

∃
(S).

A.8 Proof of Corollary 4.11

Proof Again, by Corollary 3.3, termination of twn-loops is reducible to termination of tnn-
loops. By Theorem  4.10, termination of tnn-loops is reducible to invalidity of a closed 
formula � ∈ Th

∃
(S) . If S = ℝ𝔸 , then validity of � is decidable, and if S = ℤ or S = ℚ , 

then validity of � is semi-decidable [13, 61]. But � is valid iff the loop is non-terminating. 
Hence, non-termination is decidable for S = ℝ𝔸 and semi-decidable if S = ℤ or S = ℚ . 
The claim (b) for S = ℝ𝔸 follows since deciding non-termination is equivalent to deciding 
termination. Finally, (a) and the claim (b) for S = ℝ follow due to elementary equivalence 
of ℝ𝔸 and ℝ.

A.9 Proof of Lemma 4.12

Proof We have:

A.10 Proof of Lemma 5.6

Proof Let (𝜑, u⃗) be a loop. Since id−1
S[x⃗]

= idS[x⃗] , we obtain Tr idS[x⃗] (𝜑, u⃗) = (𝜑�, u⃗ �
) with

Now we take 𝜂1, 𝜂2 ∈ AutS
(
S[x⃗]

)
 . Note that (�1◦�2)

−1
= �−1

2
◦ �−1

1
 . Let 

Tr 𝜂1◦𝜂2
(𝜑, u⃗) = (𝜑�, u⃗ �

) , Tr 𝜂1 (𝜑, u⃗) = (𝜑��, u⃗ ��
) , and Tr𝜂2 (𝜑

��, u⃗ ��
) = (𝜑���, u⃗ ���

) . We have

Moreover, we have

e⃗ witnesses eventual non-termination of (𝜑, u⃗)
⟺ ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0

.
(
𝜑(q⃗norm)

)
(e⃗) (by (4))

⟺ ∃n0 ∈ ℕ. ∀n ∈ ℕ>n0
. 𝜉(e⃗)

⟺ red (𝜉)(e⃗) (as in the proof of Theorem 4.9)

𝜑�
= id−1

S[x⃗]
(𝜑) = 𝜑

u⃗ �
= (id−1

S[x⃗]
◦�u◦idS[x⃗])(x⃗) = �u(x⃗) = u⃗

��
= (�−1

2
◦�−1

1
)(�)

���
= �−1

1
(�)

����
= �−1

2
(���

)

= �−1
2
(�−1

1
(�))

= (�−1
2
◦�−1

1
)(�)

= ��



Formal Methods in System Design 

1 3

A.11 Proof of Lemma 5.7

Proof Let e⃗ ∈ S
d and n ∈ ℕ . Then

A.12 Proof of Theorem 5.10

Proof In Corollary 5.8, we have seen that if e⃗ is a witness for (eventual) non-termination 
of (𝜑, u⃗) , then �𝜂(e⃗) witnesses (eventual) non-termination of Tr 𝜂(𝜑, u⃗) . Now let e⃗ ′ be a wit-
ness for (eventual) non-termination of Tr 𝜂(𝜑, u⃗) . Then by Corollary 5.8, �𝜂−1(e⃗ �

) witnesses 

(eventual) non-termination of Tr𝜂−1 ( Tr 𝜂(𝜑, u⃗))
Lemma 5.6

= Tr 𝜂◦𝜂−1 (𝜑, u⃗) = (𝜑, u⃗) . Hence, �̂  
maps witnesses for (eventual) non-termination of (𝜑, u⃗) to witnesses for (eventual) non-
termination of Tr 𝜂(𝜑, u⃗) and �̂−1 maps witnesses for (eventual) non-termination of Tr 𝜂(𝜑, u⃗) 
to witnesses for (𝜑, u⃗) . These two mappings are inverse to each other: For e⃗ �

∈ S
d we have

u⃗ �
= (𝜂−1

2
◦𝜂−1

1
◦�u◦𝜂1◦𝜂2)(x⃗)

= (𝜂2(x⃗)) (𝜂1(x⃗)) (u⃗) (𝜂
−1
1
(x⃗)) (𝜂−1

2
(x⃗))

u⃗ ��
= (𝜂−1

1
◦�u◦𝜂1)(x⃗)

= (𝜂1(x⃗)) (u⃗) (𝜂
−1
1
(x⃗))

u⃗ ���
= (𝜂−1

2
◦
�⃗u ��

◦𝜂2)(x⃗)
= (𝜂2(x⃗)) (𝜂1(x⃗)) (u⃗) (𝜂

−1
1
(x⃗)) (𝜂−1

2
(x⃗))

= u⃗ �

𝜑�
((u⃗ �

)
n
((𝜂(x⃗)) (e⃗)))

= 𝜂−1(𝜑) ((u⃗ �
)
n
((𝜂(x⃗)) (e⃗)))

= 𝜑 [x⃗∕𝜂−1(x⃗)] [x⃗∕u⃗ �
]

���
n times

[x⃗∕𝜂(x⃗)] [x⃗∕e⃗]

= 𝜑 [x⃗∕𝜂−1(x⃗)] [x⃗∕𝜂(x⃗)] [x⃗∕u⃗]
���
n times

[x⃗∕𝜂−1(x⃗)] [x⃗∕𝜂(x⃗)] [x⃗∕e⃗]

= 𝜑 [x⃗∕u⃗]
���
n times

[x⃗∕e⃗]

= 𝜑(u⃗n(e⃗))
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Hence, �̂  is indeed a bijection with inverse mapping �̂−1.

A.13 Proof of Lemma 5.12

Proof Let e⃗ �
∈ �𝜂(F) . Then e⃗ �

= �𝜂(e⃗) for some e⃗ ∈ F . As F is u⃗-invariant, we have u⃗(e⃗) ∈ F . 
We obtain

A.14 Proof of Lemma 5.13

Proof Let F be defined by �F ∈ Th
∃
(S,ℝ𝔸) . Consider the following formula 

� ∈ Th
∃
(S,ℝ𝔸):

Then 𝜓(e⃗) holds for e⃗ ∈ ℝd
𝔸
 iff e⃗ = �𝜂(u⃗) for some u⃗ ∈ ℝd

𝔸
 with 𝜓F(u⃗) , i.e., with u⃗ ∈ F.

A.15 Proof of Theorem 5.15

Proof As (𝜑, u⃗) is solvable, there is a partitioning J = {J1,… , Jk} as in Definition 2.3, i.e., 
{1,… , d} =

⨄k

i=1
Ji and u⃗Ji = Ai ⋅ x⃗Ji + p⃗i for all 1 ≤ i ≤ k , where p⃗i ∈ (S[x⃗Ji+1 ,… , x⃗Jk ])

di . 
W.l.o.g., x⃗ is ordered according to J  , i.e., if xi1 ∈ Jj1 and xi2 ∈ Jj2 for j1 < j2 , then i1 < i2.

For each Ai , let Qi = Ti ⋅ Ai ⋅ T
−1
i

 be its Jordan normal form, where Ti is the corre-
sponding transformation matrix. Since Ai has only real eigenvectors, this means that 
the entries of Qi , Ti , and T−1

i
 are real algebraic numbers. Let � be the endomorphism 

defined by 𝜂(x⃗Ji ) = Ti ⋅ x⃗Ji . This means that � is induced by the block diagonal matrix 

�𝜂(�𝜂−1(e⃗ �
))

= �𝜂((𝜂−1(x⃗))(e⃗ �
)) (by definition of �𝜂−1)

= (𝜂(x⃗))((𝜂−1(x⃗))(e⃗ �
)) (by definition of �𝜂)

= 𝜂(x⃗)[x⃗∕𝜂−1(x⃗)][x⃗∕e⃗ �
]

= e⃗ �

�𝜂−1(�𝜂(e⃗))

=
�𝜂−1((𝜂(x⃗))(e⃗)) (by definition of �𝜂)

= (𝜂−1(x⃗))((𝜂(x⃗))(e⃗)) (by definition of �𝜂−1)
= 𝜂−1(x⃗)[x⃗∕𝜂(x⃗)][x⃗∕e⃗]
= e⃗.

u⃗ �
(e⃗ �

) = (𝜂(x⃗)) (u⃗) (𝜂−1(x)) (e⃗ �
)

= (𝜂(x⃗)) (u⃗) (𝜂−1(x)) (𝜂(x⃗)) (e⃗)
= (𝜂(x⃗)) (u⃗) (e⃗)
= �𝜂(u⃗(e⃗)) ∈ �𝜂(F).

∃y⃗ ∈ ℝ
d
𝔸
. 𝜓F(y⃗) ∧ x⃗ =

(
𝜂(x⃗)

)
(y⃗).
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Diag(T1, T2,… , Tk) . Then � is an automorphism and its inverse satisfies 𝜂−1(x⃗Ji ) = T−1
i

⋅ x⃗Ji . 
Furthermore, the degree of � is obviously 1. Moreover, � and �−1 are compatible with the 
partition, i.e., the images of the variables in x⃗Ji under � and �−1 are polynomials only using 
the variables x⃗Ji . For each 1 ≤ i ≤ k we have:

We have Ti ⋅ p⃗i ∈ S[x⃗Ji+1 ,… , x⃗Jk ]
di . Therefore, 

(
Ti ⋅ p⃗i

)
[x⃗∕𝜂−1(x⃗)] ∈ S[x⃗Ji+1 ,… , x⃗Jk ]

di as 
well, since �−1 is compatible with the partitioning. This implies that Tr 𝜂(𝜑, u⃗) is weakly 
non-linear. As we assumed that x⃗ is ordered w.r.t. the partitioning and each Qi is triangular, 
Tr 𝜂(𝜑, u⃗) is triangular, too. Thus, Tr 𝜂(𝜑, u⃗) is in twn-form.

A.16 Proof of Lemma 5.18

Proof Let � = deg(�) . For any k ∈ ℕ , there is only a finite number of monomials over x⃗ of 

degree k. (The number of monomials of exactly degree k is 
(
d + k − 1

k

)
 , see the proof of 

Theorem  6.11 (b).) Hence, for any 1 ≤ i ≤ d we can construct the following term that 
stands for �−1(xi):

Here, the monomials m contain the variables x⃗ and the ai,m are variables that stand for the 
unknown coefficients of the polynomial �−1(xi).

Hence, for any 1 ≤ i ≤ d we now build a formula �r,i which stands for the requirement 
“ 
(
𝜂◦𝜂−1

)
(xi) =

(
𝜂−1(xi)

)
(𝜂(x⃗)) = xi ” (i.e., that �−1 is a right inverse of �):

Similarly, for any 1 ≤ i ≤ d we construct a formula �l,i which stands for the requirement 
“ 
(
𝜂−1◦𝜂

)
(xi) = (𝜂(xi))

(
𝜂−1(x⃗)

)
= xi ” (i.e., that �−1 is a left inverse of �):

Thus, the formula

(𝜂−1◦�u◦𝜂)(x⃗Ji )
= 𝜂(x⃗Ji )[x⃗∕u⃗][x⃗∕𝜂

−1
(x⃗)]

=

(
Ti ⋅ x⃗Ji

)
[x⃗∕u⃗][x⃗∕𝜂−1(x⃗)]

= (Ti ⋅ u⃗Ji )[x⃗∕𝜂
−1
(x⃗)]

=

(
Ti ⋅

(
Ai ⋅ x⃗Ji + p⃗i

))
[x⃗∕𝜂−1(x⃗)]

=

(
Ti ⋅ Ai ⋅ x⃗Ji + Ti ⋅ p⃗i

)
[x⃗∕𝜂−1(x⃗)]

=

(
Ti ⋅ Ai ⋅ x⃗Ji

)
[x⃗∕𝜂−1(x⃗)] +

(
Ti ⋅ p⃗i

)
[x⃗∕𝜂−1(x⃗)]

=

(
Ti ⋅ Ai ⋅ T

−1
i

⋅ x⃗Ji

)
+

(
Ti ⋅ p⃗i

)
[x⃗∕𝜂−1(x⃗)]

=

(
Qi ⋅ x⃗Ji

)
+

(
Ti ⋅ p⃗i

)
[x⃗∕𝜂−1(x⃗)]

∑
m is a monomial of (at most) degree �d−1

ai,m ⋅ m

�r,i ∶
∑

m is a monomial of (at most) degree �d−1
ai,m ⋅ �(m) = xi

�l,i ∶ �(xi)
(∑

m is a monomial of (at most) degree �d−1
ai,m ⋅ m

)
= xi
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is valid iff � has an inverse of degree at most �d−1 . By Theorem 5.17, this is equivalent to 
the question whether � has an inverse, i.e., whether � is an automorphism. Unfortunately, 
(20) ∉ Th

∃
(ℝ𝔸) . However, 

⋀d

i=1
�r,i ∧

⋀d

i=1
�l,i has to hold for all x⃗ ∈ ℝd

𝔸
 . So, we can 

reduce this formula to a system of equations: one simply has to check whether there is an 
instantiation of the unknown coefficients ai,m such that all monomials in �r,i and �l,i except 
xi get the coefficient 0 and the monomial xi gets the coefficient 1. When building the con-
junction of these equations and existentially quantifying the unknown coefficients ai,m , one 
indeed obtains a formula from Th

∃
(ℝ𝔸).

A.17 Proof of Theorem 5.19

Proof For every 1 ≤ i ≤ d , let

where the bi,m are variables that stand for unknown coefficients. By Lemma 5.18 there is a 
Th

∃
(ℝ𝔸)-formula that contains both bi,m and the variables ai,m (for the coefficients of �−1 ) 

which expresses that � is an automorphism.
Furthermore, using these coefficients we can construct a formula from Th

∃
(ℝ𝔸) 

which expresses that the update u⃗� = (u�
1
,… , u�

d
) = (𝜂−1◦�u◦𝜂)(x⃗) is twn: We have 

deg(u⃗�) = deg((𝜂−1◦�u◦𝜂)(x⃗)) ≤ deg(𝜂−1) ⋅ deg(�u) ⋅ deg(𝜂) ≤ 𝛿d−1 ⋅ deg(�u) ⋅ 𝛿 . So there is 
a bound on the degree of the polynomials in the transformed loop Tr 𝜂(𝜑, u⃗) . For every 
1 ≤ i ≤ d , let

where the variables ci,m stand again for unknown coefficients. Now we can build a  
Th

∃
(ℝ𝔸)-formula which is valid iff u⃗′ is in twn-form by requiring that certain coef-

ficients ci,m are zero. Moreover, we can construct a Th
∃
(ℝ𝔸)-formula which is valid iff 

u⃗� = (𝜂−1◦�u◦𝜂)(x⃗).

A.18 Proof of Corollary 6.3

Proof The proof is by induction on n. The induction base n = 0 is trivial. In the induction 
step n > 0 we obtain

(20)∀x⃗ ∈ ℝ
d
𝔸
.

⋀d

i=1
𝜌r,i ∧

⋀d

i=1
𝜌l,i

�(xi) =
∑

m is a monomial of (at most) degree �
bi,m ⋅ m,

u�
i
=

∑
m is a monomial of (at most) degree �d−1⋅deg(ũ)⋅�

ci,m ⋅ m,

w⃗(u⃗n+1(e⃗))

= w⃗(u⃗n(u⃗(e⃗)))

= (u⃗ �
)
n
(w⃗(u⃗(e⃗))) (by the induction hypothesis for u⃗(e⃗) ∈ S

d
)

= (u⃗ �
)
n
(u⃗ �

(w⃗(e⃗))) (by Definition 6.1)

= (u⃗ �
)
n+1

(w⃗(e⃗))



Formal Methods in System Design 

1 3

A.19 Proof of Lemma 6.6

Proof 

(a) If there is no e⃗ ∈ S
d such that e⃗ �

= w⃗(e⃗) , then 𝜑�
[y⃗∕e⃗ �

] is false by Definition 6.4.
(b) For any n ∈ ℕ , we have 

 Hence, (𝜑, u⃗) terminates on e⃗ ∈ S
d iff (𝜑�, u⃗ �

) terminates on w⃗(e⃗).

A.20 Proof of Lemma 6.9

Proof The claim (a) is obvious. The claim (b) is proved by induction on i. In the induction 
base, let i = d . Since xd is minimal w.r.t. ≻u⃗ , we have depdeg u⃗(xd) = 1 ≤ deg0 = degd−d.

In the induction step i < d , the claim is obviously true if pi = 0 . Otherwise, we obtain:

The claim in (c) immediately follows from (b).

A.21 Proof of Theorem 6.11

Proof Let z1,… , zd ∈ ℕ . We first show that for all monomials m in uz1
1
⋅… ⋅ u

zd
d

 we have

To prove (21), note that m must have the form m1,1 ⋅… ⋅ m1,z1
⋅… ⋅ md,1 ⋅… ⋅ md,zd

 
where the monomial mi,j occurs in ui for all 1 ≤ i ≤ d and 1 ≤ j ≤ zi . Therefore, we have 
depdeg (mi,j) ≤ depdeg (xi) . This is clear for mi,j = xi and for mi,j ≠ xi it follows directly 
from the definition of the dependency degree in Definition 6.8. Hence, we can now prove 
(21):

𝜑�
[y⃗∕(u⃗ �

)
n
(w⃗(e⃗))]

⟺ 𝜑�
[y⃗∕w⃗(u⃗n(e⃗))] (by Corollary 6.3)

⟺ 𝜑[x⃗∕u⃗n(e⃗)] ∧
⋀d�

i=d+1

�
ywi

[y⃗∕w⃗(u⃗n(e⃗))] − wi[x⃗∕u⃗
n
(e⃗)] = 0

�
(by Definition 6.4)

⟺ 𝜑[x⃗∕u⃗n(e⃗)] ∧
⋀d�

i=d+1

�
wi(u⃗

n
(e⃗)) − wi(u⃗

n
(e⃗)) = 0

�

⟺ 𝜑[x⃗∕u⃗n(e⃗)] ∧
⋀d�

i=d+1
(0 = 0)

⟺ 𝜑[x⃗∕u⃗n(e⃗)].

depdeg u⃗(xi)

= max{1, depdeg u⃗(pi)}

= max({1} ∪ { depdeg u⃗(m) ∣ m is a monomial in pi})

= max({1} ∪ {
∑d

j=i+1
zj ⋅ depdeg u⃗(xj) ∣ x

zi+1
i+1

⋅… ⋅ x
zd
d
occurs in pi})

≤ max({1} ∪ {
∑d

j=i+1
zj ⋅ deg

d−j
∣ x

zi+1
i+1

⋅… ⋅ x
zd
d
occurs in pi}) (by induction hypothesis)

≤ max({1} ∪ {degd−i−1 ⋅
∑d

j=i+1
zj ∣ x

zi+1
i+1

⋅… ⋅ x
zd
d
occurs in pi})

≤ max({1} ∪ {degd−i−1 ⋅ deg}) (as
∑d

j=i+1
zj ≤ deg)

= degd−i

(21)depdeg (m) ≤ depdeg (x
z1
1
⋅… ⋅ x

zd
d
).
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Now assume that (a) were not true. Then consider the first execution of Line 4 where we 
compute an update u′

m
 for a monomial m with depdeg u⃗(m) > mdepdeg . The monomial m 

resulted from taking a monomial xz1
1
⋅… ⋅ x

zd
d

 from v⃗ and constructing uz1
1
⋅… ⋅ u

zd
d

 , where 
m occurs in uz1

1
⋅… ⋅ u

zd
d

 . Since m is the first monomial whose dependency degree is greater 
than mdepdeg , we have depdeg u⃗(x

z1
1
⋅… ⋅ x

zd
d
) ≤ mdepdeg . But by (21), this implies 

depdeg u⃗(m) ≤ depdeg u⃗(x
z1
1
⋅… ⋅ x

zd
d
) ≤ mdepdeg , which contradicts our assumption.

For (b), since we do not build any update u′
m
 for the constant monomial m, (a) 

implies that the number of non-constant monomials m over the variables x⃗ with 
depdeg (m) ≤ mdepdeg is an upper bound on the number of executions of the while-loop. 
As we have deg(m) ≤ depdeg (m) for any monomial by Lemma 6.9 (a), this number is 
bounded by the number of monomials over the variables x⃗ with a degree between 1 and 
mdepdeg.

The number of monomials over d variables with the exact degree mdepdeg is (
d + mdepdeg − 1

mdepdeg

)
 (this is the number of so-called weak compositions of mdepdeg into d 

parts) and the number of monomials over d variables with a degree between 1 and mdepdeg 

is 
(
d

1

)
+

(
d + 1

2

)
+…+

(
d + mdepdeg − 1

mdepdeg

)
=

(
d + mdepdeg

mdepdeg

)
− 1.

Termination of Algorithm  3 follows from (b) since the while-loop is only executed 
finitely often.

A.22 Proof of Theorem 6.12

Proof The statement in (a) is obvious from Algorithm 3 and Theorem 6.11, the claim in 
(b) follows from Lemma 6.6, and the linearity of the update in (c) is again obvious from 
Algorithm 3.

It remains to show that (𝜑�, u⃗�) is triangular and non-negative (i.e., it is weakly non-
linear and the coefficient of the monomial ym in u′

m
 is always non-negative).

For triangularity, we again assume that xi ≻u⃗ xj implies i > j for all 1 ≤ i, j ≤ d . Then we 
show that ym′ ≻u⃗′ ym implies m′ ≻ m , where ≻ is the lexicographic ordering on monomials. 
Thus, if m�

= x⃗z⃗
� and m = x⃗z⃗ , then m′ ≻ m holds iff z⃗ ′ >lex z⃗ . Since ≻ is well founded, this 

implies the well-foundedness of ≻u⃗′ , i.e., the loop (𝜑�, u⃗�) is triangular.
So let m′ ≠ m and ym occur in u′

m′
 . If m�

= x
z1
1
⋅… ⋅ x

zd
d

 , then this means that m occurs 
in uz1

1
⋅… ⋅ u

zd
d

 . Thus, m = m1,1 ⋅… ⋅ m1,z1
⋅… ⋅ md,1 ⋅… ⋅ md,zd

 where mi,j occurs in ui 
for all 1 ≤ i ≤ d and 1 ≤ j ≤ zi . Hence, we have mi,j = xi or mi,j only contains variables xj 
with xi ≻u⃗ xj . Thus, xi ⪰ mi,j , where ⪰ is the reflexive closure of ≻ . Hence, this implies 
m�

= x
z1
1
⋅… ⋅ x

zd
d
⪰ m1,1 ⋅… ⋅ m1,z1

⋅… ⋅ md,1 ⋅… ⋅ md,zd
= m . Since m′ ≠ m , we have 

m′ ≻ m . As ≻u⃗′ is the transitive closure of {(ym� , ym) ∣ m occurs in u�
m�
} , the claim follows.

depdeg (m) = depdeg (m1,1) +… + depdeg (md,zd
)

≤ z1 ⋅ depdeg (x1) +… + zd ⋅ depdeg (xd)

= depdeg (x
z1
1
⋅… ⋅ x

zd
d
).
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For non-negativity, note that u�
x
z1
1
⋅…⋅x

zd
d

 results from uz1
1
⋅… ⋅ u

zd
d

 , where ui = ci ⋅ xi + pi for 
all 1 ≤ i ≤ d , and where ci ≥ 0 since (𝜑, u⃗) is a tnn-loop. Hence, yxz1

1
⋅…⋅x

zd
d
 only occurs in 

u�
x
z1
1
⋅…⋅x

zd
d

 in the addend c1 ⋅… ⋅ cd ⋅ yxz1
1
⋅…⋅x

zd
d
 . Since this is a linear monomial and since 

c1 ⋅… ⋅ cd ≥ 0 , this implies non-negativity of (𝜑�, u⃗�).

A.23 Proof of Equation (15)

Proof We have

A.24 Proof of Lemma 7.8

Proof In the following, let u⃗ = A ⋅ x⃗.
⇐ : Let ≻u⃗ be a total ordering and � the unique eigenvalue of A, i.e., the diagonal of A 

only contains � . We now prove that the matrix A − � ⋅ Id×d has rank at least d − 1 , i.e., its 
kernel, which is the eigenspace of A w.r.t. � , has dimension at most 1. As � is an eigenvalue 
of A, its eigenspace then must be exactly one-dimensional.

Since A is triangular, so is A − � ⋅ Id×d . As ≻u⃗ is a total ordering, the super-diagonal 
of A − � ⋅ Id×d contains only non-zero values, whereas its diagonal contains only zeros. 
Thus, by deleting the first row and the last column of this matrix, we obtain a triangu-
lar (d − 1) × (d − 1) submatrix B whose diagonal is the super-diagonal of A − � ⋅ Id×d , i.e., 
it contains only non-zero values. Thus, the product of the diagonal entries of B is non-
zero, i.e., det(B) ≠ 0 . But B is a submatrix of A − � ⋅ Id×d , i.e., A − � ⋅ Id×d has a non-zero 
(d − 1) × (d − 1) minor. Hence, rank(A − � ⋅ Id×d) ≥ d − 1.

⟹ : Let us assume that ≻u⃗ is not a total ordering. In this case, the super-diagonal of 
A − � ⋅ Id×d contains a zero and its diagonal contains only zeros. Due to triangularity, its 
rank can be at most d − 2 . Thus, A has at least two linear independent eigenvectors.

(d + degd−1)d

=
∑d

i=0

�
d

i

�
⋅

�
degd−1

�i
⋅ dd−i

≤
∑d

i=0

�
d

i

�
⋅max

�
degd−1, d

�d

=
∑d

i=0

�
d

i

�
⋅max

��
degd−1

�d
, dd

�

≤
∑d

i=0

�
d

i

�
⋅

��
degd−1

�d
+ dd

�

= 2d ⋅
��

degd−1
�d

+ dd
�

= 2d+ ld (deg)⋅(d−1)⋅d
+ 2d+ ld (d)⋅d

≤ 2 ⋅ 2d+ ld (deg)⋅(d−1)⋅d
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A.25 Proof of Lemma 7.12

Proof Let Q be the Jordan normal form of A. From the form of Qn
�
 in Fig. 9, we directly 

obtain the following observation:

For s − r ∈ ℕ , in general 
(

n

s − r

)
 is not a polynomial in the variable n, as one has to dis-

tinguish the cases n < s − r and n ≥ s − r . But since our approach from Sect. 4 analyzes 
eventual non-termination, we are only interested in validity of formulas for large enough n. 

Thus, we may assume n ≥ s − r . Then, 
(

n

s − r

)
 is indeed a polynomial from ℚ[n] of 

degree s − r , i.e., there are coefficients cs−r,j ∈ ℚ such that for all n ≥ s − r we have �
n

s − r

�
=
∑s−r

j=0
cs−r,j ⋅ n

j.

In fact, cs−r,j =
stir (s−r,j)

(s−r)!
 where stir is the signed Stirling number of the first kind (see, 

e.g., [27, Ch. 6]). While stir ’s formal definition is not of interest for us, we use 
stir (s − r, s − r) = 1 ≠ 0 . We obtain the following from (22).

Re-arranging the order of summation of the closed form in (23) yields

Here, �s is a linear polynomial in the variables x idx (�)+s,… , x idx (�)+�(�) . Note that the coef-
ficient of x idx (�)+s in �s is cs−r,s−r ⋅ �r−s =

stir (s−r,s−r)

(s−r)!
⋅ �r−s = 1

(s−r)!
⋅ �r−s ≠ 0.

By (23) and (24), the elements of q⃗norm are hierarchical expressions. Note that here we 
indeed need stir (s − r, s − r) = 1 ≠ 0 , i.e., degx idx (�)+s(�s) = 1.

A.26 Proof of Lemma 7.19

Proof We have

Moreover, for every 1 ≤ i ≤ k and every r ∈ Bi , the hierarchical expression hr has the form

(22)
For all 𝜆 ∈ spec (A) and 1 ≤ r ≤ 𝜈(𝜆), the ( idx (𝜆) + r)-th element of q⃗

= Q
n
⋅ x⃗ is

∑𝜈(𝜆)

s=r

(
n

s − r

)
⋅ 𝜆n−s+r ⋅ x idx (𝜆)+s.

(23)
For all 𝜆 ∈ spec (A) and 1 ≤ r ≤ 𝜈(𝜆), the ( idx (𝜆) + r)-th element of q⃗

norm
is

∑𝜈(𝜆)

s=r
(

∑s−r

j=0
c
s−r,j ⋅ x idx (𝜆)+s ⋅ 𝜆

r−s
⋅ n

j
⋅ 𝜆n) ∈ ℕℙ𝔼S[x⃗].

(24)

∑�(�)
s=r

�∑s−r

j=0
cs−r,j ⋅ x idx (�)+s ⋅ �

r−s
⋅ nj ⋅ �n

�

=
∑�(�)

s=r
(

��(�)−s

j=0
cs−r+j,s−r ⋅ x idx (�)+s+j ⋅ �

r−s−j
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=�s

⋅ns−r ⋅ �n.

(25)p = f (0,… , 0) +
∑

1≤i≤k, r∈F(i)
coeff (f , xr) ⋅ hr.
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(d) Here, �i ≠ b for all 1 ≤ i ≤ k or �i = b for some 1 ≤ i ≤ k but F(i) = � . Moreover, b ≠ 1 
or a ≥ 1 . Hence, (25) and (26) imply that there is no �s with bs = b and as ≥ a.

(a) If �i ≠ 1 for all 1 ≤ i ≤ k or �i = 1 for some 1 ≤ i ≤ k and F(i) = � , then in (d) we 
already showed that there is no �s with bs = 1 and as ≥ 1 . However, there is an �s with 
bs = 1 and as = 0 , viz. �s = f (0,… , 0) . Thus, we have �s = 0 iff f (0,… , 0) = 0.

(c) The largest number in Bi is �1 +…+ �i . So if a > 𝜈1 +…+ 𝜈i −minF(i) then we have 
zero (b, a) = true . This is sound because then there is no �s with bs = b and as = a . 
Hence, we now consider the case a ≤ �1 +…+ �i −minF(i) . Since �i = b and 
F(i) ≠ 0 , there is an �m with bm = b . Let 1 ≤ s0 ≤ � be the largest number with 
bs0 = b = �i . By (25) and (26), the corresponding addend �s0 ⋅ n

as0 ⋅ bn
s0

 of p has the 
form coeff (f , xr) ⋅ �r,�1+…+�i

⋅ n�1+…+�i−r
⋅ �n

i
 for the smallest possible r ∈ F(i) . So we 

get 

 Here, �minF(i),�1+…+�i
∈ QS[x�1+…+�i

]lin and in fact, �minF(i),�1+…+�i
= c ⋅ x�1+…+�i

 for 
some c ≠ 0 . Hence, �s0 = 0 is equivalent to x�1+…+�i

= 0 .  
Now consider the second largest number s1 = s0 − 1 ≤ � such that bs1 = b = �i . By 
(25) and (26), for as1 = �1 +…+ �i −minF(i) − 1 we obtain 

 where �r,r+as1 ∈ QS[xr+as1
,… , x�1+…+�i

]lin . By taking into account that x�1+…+�i
= 0 , 

this simplifies to 

 Here, �minF(i),�1+…+�i−1
∈ QS[x�1+…+�i−1

, x�1+…+�i
]lin . But when again taking into 

account that x�1+…+�i
= 0 , in fact we have �minF(i),�1+…+�i−1

= c� ⋅ x�1+…+�i−1
 for some 

c′ ≠ 0 . Hence, �s1 = 0 is equivalent to x�1+…+�i−1
= 0 , or in other words (as 

�1 +…+ �i − 1 = minF(i) + as1 ) to xminF(i)+as1
= 0.

  We repeat this reasoning until we reach an s′ ≤ � with as� = a . Thus, 
�s = 0 for all s ≤ � with bs = b = �i and as ≥ a is equivalent to xj = 0 for all 
minF(i) + a ≤ j ≤ �1 +…+ �i , i.e., to 

⋀
j∈Bi, a+minF(i)≤j (xj = 0).

(b) To ensure that �s = 0 for all 1 ≤ s ≤ � where bs = 1 and as ≥ 0 , we have to 
show that this holds if as ≥ 1 and if as = 0 . The former case is equivalent to 
zero (1, 1) =

⋀
j∈Bi, minF(i)<j (xj = 0) according to (c). 

 If bs = 1 and as = 0 , then (25) and (26) imply 

(26)hr =

�1+…+�i∑

s=r

�r,s ⋅ n
s−r

⋅ �n
i
, where �r,s ∈ QS[xs,… , x�1+…+�i

]lin.

�s0 ⋅ n
as0 ⋅ bn

s0
= coeff (f , xminF(i)) ⋅ �minF(i),�1+…+�i

⋅ n�1+…+�i−minF(i)
⋅ �n

i
.

�s1 ⋅ n
as1 ⋅ bn

s1
=

∑

r∈F(i), minF(i)≤r≤minF(i)+1

coeff (f , xr) ⋅ �r,r+as1
⋅ n

as1 ⋅ �n
i
,

�s1 ⋅ n
as1 ⋅ bn

s1
= coeff (f , xminF(i)) ⋅ �minF(i),�1+…+�i−1

⋅ n�1+…+�i−minF(i)−1.
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 where �r,r ∈ QS[xr,… , x�1+…+�i
]lin . Clearly r ∈ F(i) implies r ≥ minF(i) . Taking 

into account that xj = 0 for all minF(i) < j ≤ 𝜈1 +…+ 𝜈i , we therefore obtain 

 where �minF(i),minF(i) = cminF(i) ⋅ xminF(i) . Therefore, 

A.27 Proof of Lemma 7.21

Proof 

(a) As in the proof of Case (a) of Lemma 7.19, we have �s0 = f (0,… , 0) and thus 
𝛼s0 > 0 ⟺ f (0,… , 0) > 0 . In this case, for all s0 < s ≤ � we must have bs > 1 . 
Hence, 

⋀
�

s=s0+1

�
𝛼s = 0

�
⟺

⋀
i∈{1,…,k},𝜆i>1

zero (𝜆i, 0) by Lemma 7.19.
(b) Now (bs0 , as0 ) = (1, 0) , �i0 = 1 for some 1 ≤ i0 ≤ k , and F(i0) ≠ � . By Lemma 7.19 we 

obtain that �s = 0 for all s0 < s ≤ � with bs = 1 is equivalent to zero (1, 1) , and �s = 0 
for all s0 < s ≤ � with bs > 1 is equivalent to 

⋀k

i=i0+1
zero (�i, 0).

  Finally, as in the proof of Case (b) of Lemma 7.19, we get 

 with �minF(i0),minF(i0)
= cminF(i0)

⋅ xminF(i0)
 . For C = coeff (f , xminF(i0)

) ⋅ cminF(i0)
 , 

(c) If bs0 < 1 , f (0,… , 0) ≠ 0 , and either �i ≠ 1 for all 1 ≤ i ≤ k or �i0 = 1 for some 
1 ≤ i0 ≤ k and F(i0) = � , then 

⋀
�

s=s0+1

�
�s = 0

�
 is false . The reason is that coefs (p) 

contains �(1,0)
s

 with s0 < s and since there is either no �i = 1 , or �i0 = 1 for some 
1 ≤ i0 ≤ k but F(i0) = � , we have �s = f (0,… , 0) ≠ 0.

(d) In the remaining case, since bs0 ≠ 1 , there must be an 1 ≤ i0 ≤ k with �i0 = bs0 and 
F(i0) ≠ � . By Lemma 7.19, �s = 0 for all s0 < s ≤ � with bs = bs0 = �i0 is equivalent 
to zero (�i0 , as0 + 1) , and �s = 0 for all s0 < s ≤ � with bs ≠ bs0 is equivalent to 
⋀k

i=i0+1
zero (�i, 0) . Finally, (25) and (26) from the proof of Lemma 7.19 imply 

�s = f (0,… , 0) +
∑

r∈F(i)
coeff (f , xr) ⋅ �r,r,

�s = f (0,… , 0) + coeff (f , xminF(i)) ⋅ �minF(i),minF(i),

�s = 0

⟺ f (0,… , 0) + coeff (f , xminF(i)) ⋅ cminF(i) ⋅ xminF(i) = 0

⟺ xminF(i) = M.

�s0 = f (0,… , 0) + coeff (f , xminF(i0)
) ⋅ �minF(i0),minF(i0)

,

𝛼s0 > 0

⟺ f (0,… , 0) + C ⋅ xminF(i0)
> 0

⟺
C

|C|
⋅ xminF(i0)

+
f (0,…,0)

|C|
> 0

⟺ sign (C) ⋅ xminF(i0)
+

f (0,…,0)

|C|
> 0.
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 for �r,r+as0 ∈ QS[xr+as0
,… , x�1+…+�i0

]lin . Clearly r ∈ F(i0) implies r ≥ minF(i0) . 
Considering that xj = 0 for all minF(i0) + as0 < j ≤ 𝜈1 +…+ 𝜈i0 , we therefore obtain 

 where �minF(i0),minF(i0)+as0
 is cminF(i0)+as0

⋅ xminF(i0)+as0
 . Let sg = sign ( coeff

(f , xminF(i0)
) ⋅ cminF(i0)+as0

) . Thus, 𝛼s0 > 0 is equivalent to sg ⋅ xminF(i0)+as0
> 0.

A.28 Proof of Lemma 7.32

Proof For any 0 ≤ s ≤ � we have cndAssg (𝜌f ,s) ⊆ cA , where

Now we over-approximate the cardinality of cA . If v⃗ ∈ cA , then for every 1 ≤ i ≤ k , we 
have vj ≠ 0 for at most one j ∈ Bi . So for the values vj with j ∈ Bi , there are 3 ⋅ ||Bi

|| + 1 pos-
sibilities: either exactly one of them is 1 , −1 , or ⋆ , or we have vj = 0 for all j ∈ Bi . When 
combining this result for all 1 ≤ i ≤ k by multiplication, we obtain | cndAssg (�f ,m)| ≤

A.29 Proof of Corollary 7.34

Proof We show that � ≤ d + 1 for | coefs (p)| = � . Then the result follows from Lemma 
7.32 and the definition of cndAssg , since cndAssg ( ic (p ⊳ 0)) ⊆

⋃
�

s=0
cndAssg (𝜌f ,s) . The 

number of coefficients of p is determined by the number of terms of the form � ⋅ na ⋅ bn 
occurring in p. But these terms are connected to the bases 0 < 𝜆1 < … < 𝜆k of the hierar-
chical k-partition: either b = �i for some 1 ≤ i ≤ k and 0 ≤ a ≤ �i − 1 or a = 0 and b = 1 . 
So we have at most 1 +

∑k

i=1
�i = 1 + d such terms in p, i.e., � ≤ d + 1.

A.30 Proof of Theorem 7.36

Proof Soundness: If Algorithm  4 returns ⊤ , then there is a v⃗ ∈ cndAssg ( ic (𝜑(h⃗))) 
where ic (𝜑(h⃗))(v⃗) is satisfiable, i.e., a w ∈ S where v⃗[⋆ ∕w] is a model of ic (𝜑(h⃗)) . So 
∃x⃗ ∈ S

d. ic (𝜑(h⃗)) is valid.

Completeness: Let 𝜓 = ic (𝜑(h⃗)) and let ∃x⃗ ∈ S
d. 𝜓 be valid, i.e., there is a v⃗ ∈ S

d such 
that 𝜓(v⃗) holds.

We have to prove that there is a v⃗� ∈ cndAssg ( ic (𝜑(h⃗))) where 𝜓(v⃗�)↓ is satisfiable. 
Then the claim follows as the algorithm calls SMT on 𝜓(v⃗�)↓ and thus returns ⊤.

Note that � is a propositional formula only built from the connectives ∧ and ∨ , i.e., it 
does not contain ¬ . By construction, ic (𝜑(h⃗)) results from � by replacing each atom f ⊳ 0 

�s0 =
∑

r∈F(i0),r≤�1+…+�i0−as0
coeff (f , xr) ⋅ �r,r+as0

⋅ n
as0 ⋅ �n

i0
,

�s0 = coeff (f , xminF(i0)
) ⋅ �minF(i0),minF(i0)+as0

⋅ n
as0 ⋅ �n

i0
,

cA = {v ∈ {0, 1 , −1 , ⋆ }
d
∣ ∀ 1 ≤ i ≤ k. there is at most one j ∈ Bi with vj ≠ 0}.

|cA| =
k∏

i=1

(
3 ⋅ ||Bi

|| + 1
)
=

k∏

i=1

(
3 ⋅ �i + 1

)
≤
(
3 ⋅max{�i ∣ 1 ≤ i ≤ k} + 1

)k
.
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by ic (f (h⃗) ⊳ 0) . So similar to the concept of fundamental sets in the proof of Theorem 4.9, 
there is a subset { ic (f1(h⃗) ⊳1 0),… , ic (fe(h⃗) ⊳e 0)} of these formulas such that v⃗ satisfies 
them all and such that satisfying these formulas is sufficient for satisfying �.

Let �1 , ..., �e be the numbers of coefficients in the poly-exponential expressions f1(h⃗) , 
..., fe(h⃗) . By Corollary 7.25, ic (fr(h⃗) ⊳r 0) has the form 

⋁
�r

s=1
�fr ,s or 

⋁
�r

s=0
�fr ,s for each 

1 ≤ r ≤ e . So for every r there is at least one s where 𝜌fr ,s(v⃗) is true. But due to the construc-
tion of �fr ,s in Lemma 7.21 and Corollary 7.23, for every v⃗ there is at most one 0 ≤ s ≤ �r 
where 𝜌fr ,s(v⃗) is true. Thus, for every 1 ≤ r ≤ e , there is a unique 0 ≤ sr ≤ �r where 𝜌fr ,sr (v⃗) 
is true.

Let B1,… ,Bk again be the blocks from the k-partition h1,… , hd . Note that if there is a 
block Bi and some �fr ,sr requires xj with j ∈ Bi to be non-zero, then �fr ,sr requires all xj′ with 
j′ > j and j� ∈ Bi to be zero. Thus, since v⃗ satisfies all formulas �fr ,sr for 1 ≤ r ≤ e , for each 
Bi there is at most one r ∈ Bi where some �fr ,sr requires xj to be non-zero. Hence, we can 
assume that for each block Bi there is at most one j ∈ Bi where vj ≠ 0 . 

 (i) Case �i0 = 1 for some 1 ≤ i0 ≤ k∶ In this case, for the non-zero entries in v⃗ belong-
ing to indices in Bi with i ≠ i0 , only their sign is important since the formulas 
requiring them to be non-zero are interval conditions according to Definition 7.27 
(b) resulting from Lemma 7.21 (d). So these entries can be chosen to be 1 or −1 .  
If there is a (unique) non-zero value vj with j ∈ Bi0

 , its value is indeed important: 
the formulas requiring this value to be non-zero have the form of Definition 7.27 (e) 
(in Lemma 7.21 (b)) or Definition 7.27 (d) (in Lemma 7.21 (d)) or Definition 7.27 
(c) (in Corollary 7.23). Thus, let 

 As discussed before, 𝜓(v⃗�)↓ is satisfiable as (𝜌f1,s1 ∧… ∧ 𝜌fe,se )(v⃗
�
)↓ is satisfiable by 

construction: If the formula contains ⋆ , then assigning ⋆ the unique non-zero value 
vj ≠ 0 for j ∈ Bi0

 is a satisfying assignment.
 (ii) Case�i0 ≠ 1 for all 1 ≤ i0 ≤ k∶ In this case, �f1,s1 , ..., �fe,se are interval conditions 

according to Definition 7.27 (a) or (b). Thus, only the sign of the non-zero values in 
v⃗ is important to satisfy these formulas. Hence we define 

 Thus, 𝜓(v⃗�)↓ is satisfiable since (𝜌f1,s1 ∧… ∧ 𝜌fe,se )(v⃗
�
)↓ is true by construction.

So in both cases v⃗� ∈
⋃

1≤r≤e cndAssg
�
𝜌fr ,sr

�
⊆ cndAssg (𝜓), i.e., Algorithm 4 returns ⊤.
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