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Abstract
Parameterized programs are composed of an arbitrary number of concurrent, infinite-state 
threads. Automated safety and liveness proofs of such parameterized software are hard; 
state-of-the-art methods for their formal verification rely on intricate abstractions and com-
plicated proof techniques that impede automation. In this paper, we introduce thread-mod-
ular counter abstraction (TMCA), a lean new abstraction technique to replace the existing 
heavy proof machinery. TMCA is a structured abstraction framework built from a novel 
combination of counter abstraction, thread-modular reasoning, and predicate abstraction. 
Its major strength lies in reducing the parameterized verification problem to the sequen-
tial setting, for which powerful proof procedures, efficient heuristics, and effective auto-
mated tools have been developed over the past decades. In this work, we first introduce 
the TMCA abstraction paradigm, then present a fully automated method for parameter-
ized safety proofs, and finally discuss its application to automated termination and liveness 
proofs of parameterized software.

Keywords Parameterized program · Parameterized safety · Parameterized termination · 
Counter abstraction · Thread-modular reasoning · Predicate abstraction

1 Introduction

In this paper, we present a novel abstraction method for so-called parameterized programs, 
i.e., infinite-state programs that are executed by an unbounded number of concurrent 
threads. Our abstraction allows us to automatically prove safety and termination of such 
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programs. In this section, we describe the main obstacles to finding computational safety 
and liveness proofs for parameterized programs.

{s = t = 0}
t++;
assert(0 < t− s ≤ N);
s++;

(a) Source code of program template T [N ].
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{s = t = 0}
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[¬(0 < t− s ≤ N)]

(b) Control-flow graph of template T [N ].
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[¬(0 < t− s ≤ n)]

(c) Program P = T [N/n].

{s = t = 0}
t++;
assert(0 < t− s ≤ n);
s++;
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. . .
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∥
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t++;
assert(0 < t− s ≤ n);
s++;

︸ ︷︷ ︸
n copies of P

(d) Parameterized program P (n) = P1 ‖ · · · ‖ Pn.

{s = t = 0}
t++;
assert(0 < t− s ≤ 3);
s++;

∥
∥
∥
∥
∥

t++;
assert(0 < t− s ≤ 3);
s++;

∥
∥
∥
∥
∥

t++;
assert(0 < t− s ≤ 3);
s++;

︸ ︷︷ ︸
3 copies of P

(e) Instance P (3) = P1 ‖ P2 ‖ P3 of size n = 3 of the parameterized program P (n).

Fig. 1  Safety running example. Adapted from the introductory example of [25] by extending the assertion 
with an upper bounds check t − s ≤ N on the parameter
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1.1  Safety proofs of parameterized programs

Running example (Safety) Consider the program template T[N] over global variables 
s and t and parameter N whose source code and control-flow graph are shown in Fig. 1a, 
b, respectively.1 Assume that T is executed by an arbitrary number of n threads, where each 
thread runs the program P = T[N∕n] obtained by replacing parameter N by the number 
of threads n > 0 in program template T (Fig.  1c). We write P(n) = P1 ∥ ⋯ ∥ Pn for this 
parameterized program (Fig. 1d). Figure 1e shows the instance P(3) of parameterized pro-
gram P(n) for size n = 3 . In this paper, we show how to automatically prove that the error 
location �err is unreachable for all threads from an initial state of, e.g., s = t = 0 for all sys-
tem sizes n > 0 . That is, we prove safety of the infinite family {P(1),P(2),…} of instances 
induced by the parameterized program P(n).

1.1.1  Ingredients of a safety proof

Despite the seemingly simple structure of the program, automatically constructing such a 
safety proof is hard: it needs to relate the unboundedly many local states of all threads, the 
arbitrary number of threads n, and the global variables s and t in a meaningful way. For 
example, note that the value of global variable t equals the number of threads at either con-
trol location �1 , �2 , or �err . Similarly, the value of s equals the number of threads at control 
location �2 . Indeed, the safety proof of the assertion’s lower bound 0 < t − s requires find-
ing the invariant

As a further complication, the assertion not only refers to variables, but also to the param-
eter n.

1.1.2  Role of our abstraction

Our abstraction TMCA provides a concise way to find proofs relating the unboundedly 
many local states of all threads, the parameter n, and the global variables of the parameter-
ized program. Additionally, TMCA does not prescribe a specific way of finding these argu-
ments: It yields its abstraction of the parameterized program as a single sequential program 
that is amenable (in theory) to all existing software verification approaches for sequential 
software. Thus, TMCA allows us to verify the infinitely-many instances of the parameter-
ized program all at once by checking a single thread-modular summary program using an 
off-the-shelf safety prover for sequential software. In addition, we benefit from the wealth 
of knowledge and automation for sequential software verification built over the past dec-
ades [22, 45].

(1)(number of threads in control-state �1) ≤ t − s.

1 This slightly abstracted version of a ticket lock is adapted from the introductory example of [25]. We 
extend their version with an upper bounds check t − s ≤ N on the parameter N. This allows us to bound 
t − s from above by the number of actual concurrent threads n whereas [25] only check the lower bound 
0 < t − s , i.e, that s < t.
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1.2  Termination proofs of parameterized programs

In addition to safety properties, we consider termination, a foundational liveness property 
and important stepping stone towards the verification of general liveness properties [15, 
71].

Running example (Termination) Consider the program P shown in Fig. 2. First, var-
iable x and then variable d are assigned positive integer values ( �0 → �1 and �1 → �2 , 
respectively). The subsequent loop subtracts the value of d from x ( �3 → �2 ) until x 
becomes non-positive ( �2 → �3).

Our goal is to check that—starting from an arbitrary initial program state—the param-
eterized program P(n) terminates, i.e., that all its instances P(1),P(2),… take only finitely-
many program steps.

1.2.1  Ingredients of a termination argument

We consider the arguments that lead to a successful termination proof of our example pro-
gram P(n).

Sequential termination It is easy to see that a single copy of program P terminates: 
Because the value of variable d is always positive, the value of x strictly decreases in the 
loop �2 → �3 → �2 → … . Eventually, the value of x becomes non-positive. The loop’s 
execution is guarded by the assume statement [� > 0] , i.e., once the value of x falls below 
one, the program stops executing and terminates.

Unbounded interference However, the induced parameterized program P(n) of n > 0 
threads executing the same program template is more evolved: Consider a reference thread 
currently executing the loop �2 → �3 → �2 → … . An unbounded number of environment 
threads can execute transition �0 → �1 to reset the value of x an unbounded number of 
times. The value of x may never become non-positive, causing the reference thread’s loop 
to diverge.

Fixed‑size terminiation The termination argument for a concrete instance (i.e., for a fixed 
system size n), is that this reset of x happens at most a fixed number (viz. n − 1 ) of times 
while some thread is within the loop. Still, to prove termination of the infinite family of 
fixed-size instances {P(1),P(2),…} induced by the parameterized program P(n) , a naive 
approach would need to repeat this argument for each of the infinite number of system 

�0 �1 �2 �3
x = *; [x > 0] d = *; [d > 0]

[x > 0]

x = x - d

Fig. 2  Termination running example. This is the introductory example of [27]
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sizes n > 0 . In addition, such a proof needs to keep track of the progress of unboundedly-
many threads, and thus may need to refer to their unboundedly-many local states.

Need for abstraction It is clear that we need a stronger argument that allows us to treat 
all n > 0 instances of the parameterized program at the same time. Indeed, our TMCA 
abstraction from Sect. 6 allows us to do this by folding the infinitely-many stances into a 
single thread-modular summary program.

1.2.2  Role of our abstraction

Our abstraction TMCA provides a concise way to capture the finiteness argument from 
above while preserving the behavior of all infinitely-many instances of the parameterized 
program. As for safety properties in Sect. 6, TMCA yields a thread-modular summary pro-
gram that can be verified in a single run of an off-the-shelf termination prover for sequen-
tial software, and implies termination of all infinitely-many instances of the parameter-
ized program at once. Role of our abstraction. Our abstraction TMCA provides a concise 
way to capture the finiteness argument from above while preserving the behavior of all 
infinitely-many instances of the parameterized program. Again, TMCA yields a thread-
modular summary program that

• can be verified in a single run of an off-the-shelf termination prover for sequential soft-
ware, and

• implies termination of all infinitely-many instances of the parameterized program at 
once.

1.3  Parameterized programs: two dimensions of infinity

Parameterized programs—like the ones above—induce an infinite family of concurrent 
programs, one for each instantiation of the parameter n. Together, this family of concurrent 
programs exhibits the following Dimensions of Infinity that any automated procedure has to 
deal with: 

 (I) Unbounded replication of local state The program template’s control structure 
and local variables are replicated for each of the unboundedly many threads.

 (II) Infinite data domain As with sequential software, we use a standard approach in 
software verification, where finite domains (e.g., machine integers) are abstracted 
to idealized infinite domains (e.g., the mathematical integers). [45]

Relation to sequential program verification The addition of Dimension (I) makes parame-
terized program verification significantly harder than the sequential case. It is not sufficient 
to merely find a suitable abstraction for this added dimension; as we demonstrated on the 
examples above, the complex interaction between Dimensions  (I) and  (II) makes param-
eterized program verification highly complex and requires meticulous abstraction design to 
capture the interactions between Dimensions (I) and (II) in a meaningful way.
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Relation to sequential program verification State-of-the-art methods rely on heavy proof 
machinery to tackle these Dimensions of Infinity (cf. Related Work in Sect. 2). In contrast, 
our method is a novel combination of well-known techniques. Significantly improving the 
state of the art, we build a powerful and cleanly structured two-step abstraction framework. 
Our method is fully automated and treats the infinity dimensions in dedicated abstraction 
layers, thus providing a clear interface for abstracting their interactions.

Structure of our approach The first step of our method, thread-modular counter abstrac-
tion (TMCA), deals with Infinity Dimension  (I) and is inspired by the well-known tech-
niques counter abstraction [63] and thread-modular reasoning [29, 40, 47]. TMCA uses 
symmetry reduction to track the number of threads in a specific local state, encodes this 
information in the (already infinite) data domain (i.e, Infinity Dimension (II)), and abstracts 
the unbounded local state into a (local-)stateless thread-modular summary. TMCA models 
are sequential programs that can be checked using off-the-shelf software verifiers to handle 
Infinity Dimension  (II). However, our experiments show that state-of-the-art safety tech-
niques tend to diverge on our abstractions. We thus tackle Infinity Dimension (II) by pre-
senting a novel predicate refinement heuristic for predicate abstraction [10, 35].

2  Related work

There exists extensive research on the automated verification of parameterized systems, 
i.e., the unbounded replication of finite-state components. The survey in [74] gives an 
extensive overview. In contrast, we are interested in the verification of parameterized pro-
grams, where already the individual components are infinite-state. Several works discuss 
their verification, among them approaches orthogonal to ours such as cutoff detection [48, 
50], semi-automatic deductive techniques [54], or those based on small model properties 
[9, 62]. In the following, we discuss the works most closely related to ours.

2.1  Existing methods for safety verification

Gurfinkel et al. [38] generalizes the Owicki–Gries approach [56] to find universally quanti-
fied inductive invariants for parameterized systems. They encode k asynchronous processes 
as a set of Constrained Horn Clauses (CHCs) and use a solver to check for the existence 
of an invariant with k universally quantified variables. Syntactic limitations of the system 
and the invariant candidates guarantee that the Herbrand universe these quantified vari-
ables induce is finite and can be instantiated, which yields a decision procedure for several 
decidable fragments (such as Petri nets).

Model checking modulo theories (MCMT) [32, 33] builds on verification techniques for 
well-structured transition systems (WSTS) [2, 28] to model-check a subclass of array-
based systems (namely, those expressible in well-quasi-ordered theories). Follow-up work 
in [5] presents practical improvements to MCMT by combining it with interpolation-based 
abstraction. While MCMT also includes some heuristics for predicate-abstraction, the main 
focus of MCMT is a symbolic approach to backward-reachability based on WSTS; in par-
ticular, WSTS support the direct analysis of infinite state systems and can guarantee the 
termination of the analysis under certain conditions. In contrast, we don’t build on WSTS 
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and propose a specific abstraction technique for reducing the safety (and liveness) verifica-
tion problem of parameterized system to a finite-state system.

Ganjei et  al. [30, 31] prove parameterized program safety by combining two nested 
CEGAR loops: Their method applies symmetric predicate abstraction [21], a specialization 
of predicate abstraction for symmetric concurrent programs, to obtain a program template’s 
finite-state abstraction as a boolean program. The method then uses counter abstraction to 
encode the parallel composition of n copies of the boolean program into a monotonic coun-
ter machine (essentially a vector addition system, i.e., more threads lead to more behavior). 
Since some wide-spread synchronization constructs have non-monotonic behavior, these 
tests are lost in the monotonic abstraction2. The authors strengthen their abstraction using a 
thread-modular analysis and check the resulting, now non-monotonic counter machine with 
the inner CEGAR loop running constrained monotonic abstraction [1], again abstracting 
the non-monotonic system into a monotonic one for which state reachability is decidable.

Kaiser et al. [49] present another combination of monotonic abstraction nested inside 
a specialized predicate abstraction. They introduce a symbolic representation for tracking 
inter-thread predicates, extending those of [21]. The resulting system is again non-mono-
tonic and the authors force monotonicity as above.

Following a different approach, Farzan et al. [25] introduce control flow nets, a hybrid 
of Petri nets and control flow graphs, as their program model. The proof procedure alter-
nates between synthesizing a candidate counting automaton (a kind of restricted counter 
machine) and checking language inclusion with the underlying control flow net. While this 
inclusion check is decidable, it has high computational complexity and no implementation 
is given. In addition, the Petri net program model has several shortcomings. It is unclear 
which parameterized verification problems can be modeled by the suggested formalism. 
For example, even the authors state a program where “it does not seem possible to encode 
the verification problem for mutual exclusion by a control flow net” [25]. Moreover, it is 
unclear how to express the additional upper-bounds check on n added to our running exam-
ple (Fig. 1c) given that the parameter is not symbolically represented in the control flow 
net.

In a later paper, Farzan et al. [26] extend the language-theoretic approach to program 
correctness for sequential programs by Heizmann et al. [39] to the parameterized setting. 
Their algorithm generalizes single infeasible counter-example traces to sets of infeasible 
traces that are recorded in the newly-introduced predicate automata. The paper focuses 
on the formal development but leaves important implementation questions unanswered. In 
particular, the efficacy of this approach is limited by (i) only considering a single infeasible 
counter-example trace at a time, and (ii) by the ability to heuristically divine a generaliza-
tion to a set of infeasible traces that is suitable for the overall program. On the engineer-
ing side, the verification algorithm has to iteratively perform emptiness checks on the con-
structed predicate automata. This itself is an undecidable problem and may be intractable 
even in practical settings.

2 Synchronization mechanisms such as the dynamic barriers considered by Ganjei et al. [30, 31] test the 
number of threads in a specific state. In essence, their counter abstraction would then have to encode a 
counter machine with zero tests, making state reachability checking undecidable.
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2.2  Existing methods for termination proving

Cook et al. [15] prove lock-freedom, a liveness property of pointer-manipulating programs 
[41], via reduction to termination. They give particular focus to the development of an iter-
ative thread-modular proof rule suited for pointer programs and this specific liveness prop-
erty. Their construction requires a termination check in each iteration, which is often costly 
and unnecessary, as we demonstrate in Sect. 9.

In our own previous work [59], we introduce an iterative thread-modular method for per-
forming resource bound analysis [37], which is equivalent to the synthesis of bounded live-
ness properties [61]. Like Cook et al. [15], this method incrementally refines its environment 
abstraction and requires a costly bound analysis step in each iteration.

Farzan et al. [27] present a liveness-to-safety reduction by introducing well-founded proof 
spaces and quantified predicate automata (QPAs), both new formalisms for computing termi-
nation arguments for parameterized programs. QPAs extend the predicate automata of [26] 
(see above), themselves a relatively new addition to the software verification toolbelt. Similar 
to their previous work, the authors only consider a single terminating trace at a time and rely 
on checking QPA emptiness, itself an undecidable problem. A possible solution to the latter 
problem is only sketched in the paper; consequently, it is unclear whether an effective imple-
mentation of this approach is feasible.

Padon et al. [58] reduce the liveness verification of parameterized programs to safety of 
infinite-state systems expressed in pure first-order logic. They forego synthesis of ranking 
functions altogether and focus on an abstract semantics for which acyclicity proves termina-
tion. In their paper, the authors apply liveness-to-safety reduction manually, and follow it with 
an interactive safety proof; i.e., the verification is mechanized, but not push-button automatic.

2.3  Our approach

In summary, state-of-the-art methods rely on tightly coupled, specialized abstractions and 
heavy, non-standard proof machinery. Many times, implementation questions are unclear and 
the possibility of automation is questionable. However, our experiments show that many prac-
tical examples can be proven in a more straight-forward way: We replace the heavy machinery 
of previous work with a clean, two-step abstraction framework built from a novel combination 
of well-known techniques, thus significantly improving the state of the art.

In particular, we start from a standard program model by encoding program templates as 
transition systems. To these, our method first applies a novel thread-modular counter abstrac-
tion adapted to infinite-state systems that tracks and projects away the unboundedly repli-
cated local state. In the subsequent step, we apply standard predicate abstraction [10, 35] (for 
safety) and standard transition predicate abstraction [16] (for termination) to deal with the 
infinite data domain. The discovery of counting arguments is left entirely to the abstraction 
refinement phase. This reduces reasoning to the sequential setting, which has seen a wealth of 
research into both theoretical and practical aspects over the past decades [22, 45]. We show in 
Sects. 8 and 9 that this straight-forward method is powerful enough for many examples from 
the literature. In addition, our two-step abstraction follows a clean design by applying the sep-
aration of concerns design principle: each Dimension of Infinity (cf. Sect. 1.3) is dealt with 
in a dedicated component. While our upfront thread-modular abstraction may be too coarse 
in some cases, it could be strengthened by an outer refinement loop, again running predicate 
abstraction. This additional refinement step is beyond the scope of this work; we sketch it in 
Sect. 10 and leave its detailed investigation for future work.
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3  Contributions

We introduce a novel framework for parameterized software verification. Its advantages 
over state-of-the-art methods lie in its clean design and simplicity, while being powerful 
enough to tackle the benchmarks of previous work—in the case of safety even a superset. 
In particular, we make the following contributions: 

1. Our framework is a novel layered proof system of well-understood and pluggable com-
ponents. The power of our method stems from adapting, combining, and extending 
established methods without introducing complicated new proof machinery or non-
standard concepts for both safety properties (Sects. 6 and 7) and termination (Sect. 9). 
To our knowledge, we are the first to suggest this combination of techniques for safety 
and termination proofs of parameterized programs. In particular, we contribute the fol-
lowing technical advancements: 

(a) We adapt counter abstraction to infinite-state systems by introducing auxiliary 
state to track the number of threads in a specific local state (Sect. 6). To our 
knowledge we are the first to propose such a counter abstraction and to apply it 
to parameterized programs.

(b) We reduce reasoning about parameterized programs to the sequential setting. If 
the abstracted sequential program is safe or terminates, then the original param-
eterized program is also safe (Sect. 6) or terminates (Sect. 9), respectively. This 
facilitates the reuse of existing sequential software verifiers for parameterized 
verification.

(c) Predicate abstraction with standard predicate selection heuristics diverges on our 
abstract models (Sect. 8). We present novel predicate selection heuristics to guide 
a CEGAR loop in the presence of these counter-abstracted summaries (Sect. 7).

2. We implement our safety method based on constrained Horn clauses (CHCs) and dem-
onstrate its efficacy on a combined benchmark set from various sources (Sect. 8). To our 
knowledge, our technique is the only automated method that has been demonstrated to 
successfully solve this benchmark set.

3. We present a case study demonstrating how to extend these results to termination 
(Sect. 9). In addition, we demonstrate the efficacy of this method by automatically 
proving termination of a standard example from the literature using an existing termi-
nation prover for sequential programs (Sect. 9). To our knowledge, this constitutes the 
first actual implementation of an automated termination proof for this benchmark.

4. The individual components of our framework lend themselves to tweaking and adap-
tation. We discuss avenues for further research, both on the theoretical side (e.g., by 
providing new heuristics or refinement methods) and on the practical side (e.g., through 
new and improved backend solvers) (Sect. 10).

Extended version This is an extended version of the conference paper [60] that appeared at 
FMCAD 2020. The conference version solely considered safety analysis. In this extended 
version, besides making the material more accessible through additional explanations and 
discussions, we extend our framework to termination proving. This additional content is 
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naturally spread throughout the paper, with the major additions and results presented in 
Sects. 6 and 9.

4  Motivating example: safety

In this section, we give an overview of our approach for safety analysis on our run-
ning example (we continue to develop our method for termination in Sect. 9, referencing 
many of the results for safety). This will help to distinguish our method from existing, 
state-of-the-art methods, which we already discussed in Sect. 2.

Starting from a program template T[N], our method constructs the base copy of a 
parameterized program by replacing parameter N with the total number of threads n to 
obtain program P = T[N∕n] . We are then interested in the safety of the parameterized 
program P(n) induced by P for all n > 0.

4.1  Overall idea: thread‑modular abstraction

To tackle the unbounded replication of parameterized programs (cf. Sect. 4), our method 
keeps one thread concrete and computes an abstraction of the n − 1 other threads. In 
line with thread-modular reasoning terminology [29, 40, 47], we call these n − 1 threads 
environment threads or just the environment. The following sections demonstrate how 
we compute this abstraction on our introductory example. Figure  3 shows the overall 
structure of our method.

Fig. 3  Overall structure of our method for safety verification. Dashed parts are beyond the scope of this 
work and sketched in Sect. 10. In parentheses, we reference first the corresponding section of our motivat-
ing example (Sect. 4) and second the detailed technical exposition (Sects. 6 and 7)



Formal Methods in System Design 

1 3

�0

�1

�2

�err

{s = t = 0 ∧ c0 = n− 1 ∧ c1 = c2 = 0 ∧ n− 1 ≥ 0}

[c0 > 0]; t++; c0--; c1++;

[c1 > 0]; s++; c1--; c2++;

[¬(0 < t− s ≤ n)]

(a) Counter-instrumented program CCA(P, n− 1).

�

{s = t = 0 ∧ c0 = n − 1 ∧
c1 = c2 = 0 ∧ n− 1 ≥ 0}

IncS:
[c1 > 0]; s++;
c1--; c2++;

IncT:
[c0 > 0]; t++;
c0--; c1++;

(b) Counter-instrumented, thread-modular summary P̂ = TMS(CCA(P, n− 1)).

�0

�1

�2

�err

{s = t = 0 ∧ c0 = n− 1 ∧ c1 = c2 = 0 ∧ n− 1 ≥ 0}

t++;

s++;

[¬(0 < t− s ≤ n)]

IncT

IncS

IncT

IncS

IncT

IncS

(c) Abstracted program TMCA(T, n, 1) = P1 ‖ TMS(CCA(P, n− 1)).

Fig. 4  Running example illustrating our thread-modular abstraction ���� . This demonstrates our abstrac-
tion on the introductory example for safety in Fig. 1
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4.1.1  Counter instrumentation

Our thread-modular abstraction below keeps one thread concrete and abstracts the 
remaining n − 1 environment threads. To track the local state of these n − 1 environment 
threads, our method instruments program P with additional global counter variables. 
This introduction of auxiliary state serves to retain some information about the local 
state of the environment threads in the subsequent abstraction step.

Running example (Safety) In our motivating example (Fig. 1), each thread’s local state is 
given entirely by the valuation of its program counter, which ranges over the finite domain 
of program locations {�0,�1,�2} . Our method introduces fresh global variables {�0, �1, �2} 
and instruments the program such that variable �i tracks the number of threads at location 
�i . The resulting instrumented program ���(P, n − 1) is shown in Fig. 4a.

4.1.2  Thread‑modular summary generation

In this step, our method uses thread-modular reasoning to project away the unboundedly 
many local variables of the n − 1 environment threads. Our method generates a thread-
modular summary P̂ of the instrumented program ���(P, n − 1) , such that P̂ over-approxi-
mates the reachable global state space of the environment threads for all n > 0.

Running example (Safety) In our example, the only local variable of

(Fig. 4a) is the program counter. By projecting it away, we obtain

as the thread-modular summary in Fig. 4b: Abstract transition ���� corresponds to transi-
tion �0 → �1 , and abstract transition ���� corresponds to transition �1 → �2.

It is easy to see that from its initial state

the summary P̂ over-approximates the globally visible behavior of n − 1 environment 
threads for all n > 0 . Thus, instead of analyzing the parameterized program P(n) or its infi-
nitely many instances {P(1),P(2),…} , we instead consider its over-approximation

shown in Fig. 4c, where summary P̂ over-approximates the behavior of the unboundedly-
many environment threads P2 ∥ ⋯ ∥ Pn.

(2)���(P, n − 1)

(3)P̂ = ���(���(P, n − 1))

(4){s = t = 0 ∧ c0 = n − 1 ∧ c1 = c2 = 0 ∧ n − 1 ≥ 0},

(5)����(T , n, 1) = P1 ∥ P̂
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4.2  Invariant generation (predicate abstraction + CEGAR)

The abstracted program ����(T , n, 1) from above is just a sequential program that could 
be checked by off-the-shelf software verifiers, e.g., based on predicate abstraction. Our 
experiments (Sect. 8) show that our abstraction already allows state-of-the-art methods to 
prove safety for some examples. However, due to the uncommon structure of our abstract 
models, standard predicate discovery heuristics often diverge. Again improving the state of 
the art, we thus introduce a novel predicate selection heuristic in Sect. 7.

Running example (Safety) For our abstracted example ����(T , n, 1) in Fig.  4c, this 
predicate selection procedure finds the following invariant at control location �1:

Obviously, this implies that 0 < t − s ≤ n and thus proves the error location �err 
unreachable.

5  Program model and parameterized safety

In the previous section, we demonstrated our approach for safety analysis on our running 
example. In this section, we start to formally develop the abstraction technique illustrated 
above by formalizing our program model and our problem statement for safety.

Definition 1 (Program model) Let g = (g1,… , gk) and l = (l1,… , lj) be disjoint tuples 
of global and local program variables. Let N be a symbolic parameter.

A guarded command gc ∈ �� over l , g , N has the form

where [cond] is an assume statement over l , g , N, and v ∶= e is an assignment of expres-
sion e over l , g , N to a local or global variable v. Expression * denotes a non-deterministic 
integer value. We write �(g, l) for the valuation of global and local variables and omit its 
arguments wherever clear from the context. Further, we denote by �⇂v the projection of val-
uation � to variables v and extend its definition to sets and relations in the usual, element-
wise way. We denote by �� ∈ [[gc]](�) the (possibly non-deterministic) effect of a guarded 
command gc and write �(g, g�, l, l�) for its standard encoding as a formula over primed and 
unprimed variables.

A program template T[N] over global and local variables g and l and a parameter N is 
a directed labeled graph T[N] = (Loc, �,�0, Init) where Loc is a finite set of control loca-
tions, �0 ∈ Loc is the initial control location, 𝛿 ⊆ Loc × �� × Loc is a finite set of transi-
tions, and Init is a predicate over g , l , N describing the initial valuations of variables.

From template T[N], we obtain program P = T[N∕n] = (Loc, ��,�0, Init
�

) by replacing 
each occurrence of N in T (viz. in � and Init ) with the expression n. We call a pair (�, �) of 
a control location � ∈ Loc and a valuation �(g, l) a program state. We represent runs of P 
as interleaved sequences of states and transitions and write (�0, �0)

gc0
������������→ (�1, �1)

gc1
������������→ … such 

(6)c1 < t − s ≤ n − c0 ∧ c0 ≥ 0 ∧ c1 ≥ 0 ∧ c2 ≥ 0 ∧ n > 0 ∧ s ≥ 0 ∧ t > 0

(7)gc ∶ [cond] ∣ v ∶= e ∣ gc1; gc2
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that �0 satisfies Init′ , and for all i ≥ 0 we have that (�i, gci,�i+1) ∈ �� and �i+1 ∈ [[gci]](�i) . 
Finally, let Reach (P) denote the reachable states of program P, i.e.,

We overload the operator ⇂v (projection to variables v ) to a set of program states Reach (P) 
by applying it element-wise to the program state’s valuation component:

Furthermore, let GReach (P) denote the reachable global states of P, i.e.,

We define the transition relation TR (P) of program P as

and let GTR (P) denote the transition relation of program P restricted to global states, i.e.,

We define the interleaving of two programs P1 = (Loc1, �1,�1,0, Init1) and 
P2 = (Loc2, �2,�2,0, Init2) over joint global variables g and disjoint local variables l1 and 
l2 as the program P1 ∥ P2 = (Loc1 × Loc2, �, (�1,0,�2,0), Init1 ∧ Init2) over global and 
local variables g and l1 ∪ l2 where ((�1,�2), gc, (�

�

1
,��

2
)) ∈ � iff either (�1, gc,�

�

1
) ∈ �1 and 

�
�

2
= �2 , or (�2, gc,�

�

2
) ∈ �2 and ��

1
= �1 . Let P = (Loc, �,�0, Init) be a program. For thread 

identifiers i = 1,… , k we obtain the instantiation Pi of program P by replacing each local 
variable lj in P with its i-th copy lj,i . We define the k-times interleaving Pk of P as the inter-
leaving of the first k instantiations of P, i.e., Pk

= P1 ∥ ⋯ ∥ Pk . Finally, a program template 
T[N] induces a parameterized program P(n) = (T[N∕n])n , where parameter N has been 
replaced by the number of concurrent threads n and we construct the n-times interleaving 
of the resulting program.

Remark We note that we do not define a concrete syntax and semantics for the guards and 
commands, as the framework developed in this paper is not tied to a particular choice of 
guarded commands. In our implementation, the guards and commands are given by what is 
supported by the model checking backend.

Following [42, 44], we define safety of a parameterized program in the style of 
coverability:

Definition 2 (Safety) Let T[N] be program template, and let P(n) be its induced parame-
terized program over tuples of global and local variables (g, l1,… , ln) . Recall that a state of 
P(n) has the form ((�1,… ,�n), �(g, l1,… , ln)) . We define safety relative to a generator set 
of error states ���m of (T[N∕n])m for a fixed m ≥ 0 . P(n) is safe if and only if for all n > 0 , 
no run of P(n) reaches an error state from the system error states ���(n) , where

(8)Reach (P)
���
= {(�, �) ∣ (�, �) occurs on a run of P}.

(9)Reach (P)⇂v
𝖽𝖾𝖿
= {(�, �⇂v) ∣ (�, �) occurs on a run of P}.

(10)GReach (P)
𝖽𝖾𝖿
= {�⇂g ∣ (�, �) occurs on a run of P}.

(11)TR (P)
𝖽𝖾𝖿
= {((�, �), (��, ��)) ∣ (�, �)

gc
��������→ (�

�, ��) appears on a run of P},

(12)GTR (P)
𝖽𝖾𝖿
= {(�⇂g, �

�⇂g) ∣ (�, �)
gc
��������→ (�

�, ��) appears on a run of P}.
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i.e., P(n) is safe if and only if ���(n) ∩ Reach (P(n)) = �.

Intuitively, P(n) is unsafe if it contains m pairwise distinct threads that reach an error 
state from ���m while the remaining n − m symmetric threads may take arbitrary control 
locations and local states.

Remark Note that for a concrete parameterized verification problem, m is a scalar value 
but n is universally quantified: Given a program template T[N] and a generator set ���m , our 
goal is to prove safety of the induced parameterized program P(n), i.e., to show that reach-
ing an error state from ���(n) is infeasible for all parameter instantiations n > 0.

To prove safety, our method follows a two-step process that we explain in the following 
two sections.

6  Tackling infinity dimension I: thread‑modular counter abstraction

As outlined in Sect. 1.3, there are two main challenges in proving safety of a parameterized 
program P(n): its unboundedly replicated local state, and the infinite data domain. The first 
step of our method, thread-modular counter abstraction (TMCA), tackles the first aspect. 
We target the second dimension, infinite data, in Sect. 7.

TMCA is inspired both by the work on counter abstraction [63] and  thread-modular 
reasoning [29, 40, 47]. Starting from a program template T[N], its induced parameterized 
program P(n) = T[N∕n]1 ∥ ⋯ ∥ T[N∕n]n , and a generator set of error states ���m , our goal 
is to construct a program abstraction P̂ such that the single sequential program

over-approximates the reachable state space of P(n) for all n > 0 , but has only finitely many 
control locations and variables. In the following, we explain both the counter abstraction 
and the thread-modular aspect of TMCA in further detail.

6.1  Control counter abstraction (CCA)

Background Counter abstraction [63] was introduced to abstract the parallel execution of 
parameterized systems, i.e., an unbounded number of finite-state processes: For each state, 
a counter is introduced to track how many processes reside in their respective copy of the 
state. Counter values are then projected onto a finite domain (e.g., [46, 74]) to obtain a 
finite-state system that is then model-checked. Counter abstraction has also been used for 
the verification of distributed systems [7] in order to tackle two dimensions of unbound-
edness: first the data received by each process is subjected to counter abstraction, then 

(13)

���(n)
���
= {((𝓁1,… ,𝓁n), 𝜈) ∣ ((𝓁i1

,… ,𝓁im
), 𝜈�) ∈ ���m s.t.

𝜈�(g) = 𝜈(g), 𝜈�(lj) = 𝜈(lij ) for 0 ≤ j ≤ m

and some i1,… , im s.t. 1 ≤ i1 < ⋯ < im ≤ n},

(14)����(T , n,m)
���
= T[N∕n]1 ∥ ⋯ ∥ T[N∕n]m ∥ P̂
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the resulting system of finite-state processes is counter-abstracted into a finite-state sys-
tem. This idea has been adapted to parameterized software [30, 31, 49] by first predicate-
abstracting the program template into a boolean program, and then counting the number of 
threads residing in one of the finitely many abstract states.

Our method In contrast, our method instruments counters as auxiliary variables [55, 56] 
into an infinite-state system: It is well-known that thread-modular reasoning is incomplete 
[8], but can be made more expressive by adding auxiliary state [54, 55]. Thus, in contrast 
to earlier work on counter abstraction, our goal is not to finitize the entire parameterized 
system, but to express the unboundedly replicated local state of a parameterized program 
P(n) in the already infinite data domain. To this end, we first instrument the correspond-
ing program P with fresh counter variables, one for each program location, that count the 
number of threads in (their copy of) the respective control state. We formalize this idea:

Definition 3 (Auxiliary variable instrumentation  ��� ) Let P = (Loc, �,�0, Init) be 
a program over global and local variables g and l . We extend the set of global variables 
with a set of fresh auxiliary variables, one for each program location: for global variables 
g = (g1,… , gi) and control locations Loc = {�0,�1,… ,�j} , let the set of instrumented var-
iables be

The control counter-instrumented program ���(P, k) = (Loc, ��,�0, Init
�

) is defined over 
the extended global variables g′ and local variables l where the instrumented transition 
relation �′ is

and

Proposition 1 Let P be a program over global and local variables g and l , and let Pk 
be its k-times interleaving over global variables g and local variables l1 ∪⋯ ∪ lk . Note 
that its control-counter instrumentation ���(P, k)k ranges over additional counters c , i.e., 
over global variables g ∪ c and local variables l1 ∪⋯ ∪ lk . Up to the instrumented counter 
variables, the transition relation of ���(P, k)k is exactly the transition relation of Pk for all 
k > 0 , i.e.,

Proof sketch Every run of Pk can be extended to ���(P, k)k : We can simply extend 
every state along the run of Pk to a state of ���(P, k)k by counting for every location of 
Loc = {�0,�1,… ,�j} how many processes are at location �i and then assigning this value 
to the variable ci.

On the other hand, every run of ���(P, k)k gives rise to a run of Pk by simply removing 
the instrumented variables.

(15)g� = (g1,… , gi, c0, c1,… , cj).

(16)
�src

gc�

�����������→ �tgt ∈ 𝛿� iff �src

gc
��������→ �tgt ∈ 𝛿 where

gc�
𝖽𝖾𝖿
= [�src > �]; gc; �src ∶= �src − �; �tgt ∶= �tgt + �;

(17)Init�
���
= Init ∧ c0 = k ∧ c1 = ⋯ = cj = 0 ∧ k ≥ 0.

(18)TR (𝖢𝖢𝖠(P, k)k)⇂
(g∪l1∪⋯∪lk)

= TR (Pk
) for all k > 0.
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The claim then follows because Pk and ���(P, k)k have the same runs (when projecting 
away the instrumented variables).

Corollary 1 Up to the instrumented counter variables, ���(P, k)k has the same reach-
able states as Pk for all k > 0 , i.e.,

Remark Note that ��� ’s second argument k can be symbolic. We use this below to obtain 
a summary for an arbitrary number of threads n.

6.2  Thread‑modular summary generation (TMS)

The parameterized program instrumented as outlined above still contains unboundedly 
many local variables. To tackle this second aspect of unboundedly replicated local state, 
our method computes a thread-modular summary.

Background. Originally conceived as an extension of Hoare logic to concurrency, 
thread-modular reasoning [29, 40, 47] picks one reference thread and models the inter-
leaved steps of all other threads (the environment) in an environment assumption. This 
environment assumption is a binary relation over global program states and over-approxi-
mates the environment’s transition relation.

Definition 4 (Thread-modular summary) Let P = (Loc, �,�0, Init) be a program. We call 
a program P′ whose transition relation projected onto global states GTR (P�

) over-approx-
imates the transition relation projected onto global states GTR (P) of P, i.e., for which we 
have GTR (P) ⊆ GTR (P�

) , a thread-modular summary of P.

Our method. We compute thread-modular summaries by projecting away all local state 
(i.e., the control locations and valuations of local variables) from the program’s transition 
relation3; in our framework this projection is simply expressed as existential quantification 
over the local variables4:

Definition 5 (Thread-modular summary  ��� ) Let P = (Loc, �,�0, Init) be a pro-
gram over global and local variables g and l . We define the thread-modular summary 
���(P) = ({�}, ��,�, Init�) over global variables g for a fresh program location � ∉ Loc 
where Init�

���
= ∃l.Init and �′ is defined as

(19)Reach (𝖢𝖢𝖠(P, k)k)⇂
(g∪l1∪⋯∪lk)

= Reach (Pk
) for all k > 0.

(20)𝓁
∃l,l�⋅�(g,g� ,l,l�)
������������������������������������������������→ 𝓁 ∈ �� iff 𝓁src

�(g,g� ,l,l�)
����������������������������������→ 𝓁tgt ∈ �.

3 We choose this definition because it is sufficiently fine-grained for our safety benchmarks. In general, 
stronger notions of a thread-modular summary (e.g., restricting the transition relation to reachable states) 
can be adopted [40, 69, 70].
4 In an implementation, one can either work with a set of guarded commands that supports quantifiers or 
use a quantifier elimination procedure to directly remove the quantified variables. In our prototype, we have 
implemented a simple quantifier elimination procedure, which was sufficient to deal with our benchmark 
set.
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Proposition 2 Let P be a program over global and local variables g and l . ���(P) is 
a thread-modular summary of P, i.e., its transition relation over-approximates the transi-
tion relation of P’s k-times interleaving Pk when projected onto global states for all k > 0 . 
Formally,

Proof sketch The claim directly follows from Definition 5: Every run of GTR (Pk
) is also 

a run of ���(P) because we can always instantiated the existentially quantified variables 
in the run of ���(P) with the values of the corresponding local variables in the run of 
GTR (Pk

).

Corollary 2 ���(P) over-approximates the reachable global states of P’s k-times inter-
leaving Pk for all k > 0 , i.e.,

6.3  Combining CCA and TMS: thread‑modular counter abstraction (TMCA)

The combination of control counter abstraction (Sect. 6.1) and thread-modular reasoning 
(Sect. 6.2) yields a control- and local-stateless thread-modular summary that over-approx-
imates the reachable states of the original program. In addition, it retains the number of 
threads in a specific control location in the instrumented counter variables. As we moti-
vated in Sect. 1, this is essential for constructing counting proofs of parameterized soft-
ware. Observe the following property of the combination of ��� and ���:

Proposition 3 Let P be a program over global and local variables g and l . Note that the 
composition of ��� and ��� , ���(���(P, k)) , ranges over additional counters c , i.e., 
over global variables g ∪ c . Up to these instrumentation variables, ���(���(P, k)) over-
approximates the transition relation of P’s k-times interleaving Pk when projected onto 
global variables for all k > 0 , i.e.,

Proof sketch The claim is a direct consequence of Propositions 1 and 2 (instantiating P in 
Proposition 2 with ���(P, k)).

Corollary 3 Up to instrumentation variables, ���(���(P, k)) over-approximates the 
reachable global states of P’s k-times interleaving Pk for all k > 0 , i.e.,

Application to safety proving. Recall from Definition 2 that safety of a parameterized 
program P(n) is defined with respect to a generator set of error states ���m . For deciding 
if a program state belongs to ���m , the control locations and valuations of local variables 
of the n − m other symmetric threads are irrelevant. We thus use the following generaliza-
tion of thread-modular reasoning: We pick a finite set of m reference threads (recall that 
the parallel composition of finitely many threads is again a sequential program) and apply 

(21)GTR (Pk
) ⊆ GTR (���(P)) for all k > 0.

(22)GReach (Pk
) ⊆ GReach (���(P)) for all k > 0.

(23)GTR (Pk
) ⊆ GTR (𝖳𝖬𝖲(𝖢𝖢𝖠(P, k)))⇂g for all k > 0.

(24)GReach (Pk
) ⊆ GReach (𝖳𝖬𝖲(𝖢𝖢𝖠(P, k)))⇂g for all k > 0.
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a combination of control counter abstraction and thread-modular summary generation to 
abstract all n − m other threads.

Definition 6 (Thread-modular counter abstraction ���� ) Let T[N] be a program tem-
plate and let P(n) be the induced parameterized program. Let ���m be a generator set of 
error states. We define the thread-modular counter abstraction ����(T[N], n,m) as the 
program

Proposition 4 Let T[N] be a program template, let P(n) be its induced parameterized 
program, let �0 and Init denote the initial states of P(n). Let ���m be a generator set of error 
states. We define Reach m to be the set of reachable states Reach (P(n)) of P(n) where its 
local state is projected onto the first m components, i.e., let

Then, ����(T[N], n,m) (with the auxiliary instrumentation variables projected away) 
over-approximates Reach m , i.e., we have that

Proof sketch Let P = T[N∕n] . We note that Pn
= P1 ∥ ⋯ ∥ Pm ∥ P(n−m) . The claim 

then follows from Proposition  3 because every run of Pn gives rise to a run of 
P1 ∥ ⋯ ∥ Pm ∥ ���(���(P, n − m)) that agrees on the values of g ∪ l1 ∪⋯ ∪ lm.

Proposition 5 By symmetry of ���(n) , Reach m contains an error state if and only if an 
error state defined by ���m is reachable by P(n).

Finally, this allows us to state the soundness of TMCA for safety:

Theorem 1 (Soundness for safety) Let T[N] be a program template, let P(n) be its induced 
parameterized program, and let ���m be a generator set of error states. If ����(T , n,m) is 
safe with respect to ���m , then so is P(n) for all n > 0.

Proof Direct consequence of Propositions 4 and 5.   ◻

The result in Theorem  1 gives us a technique for verifying the safety of a given 
parameterized program: Our method computes its TMCA  abstraction and checks the 
safety of the resulting abstract program. If this program is safe, then so is the parameter-
ized program for all system sizes n > 0.

(25)
����(T[N], n,m)

���
= let P = T[N/n] in

P1 ∥ ⋯ ∥ Pm ∥ ���(���(P, n − m)).

(26)
Reach m = {((�1,… ,�m), �(g, l1,… , lm)) ∣ s.t.

((�1,… ,�n), �(g, l1,… , ln)) ∈ Reach (P(n),�0, Init)}.

(27)Reach m ⊆ Reach (𝖳𝖬𝖢𝖠(T[N], n,m))⇂
(g∪l1∪⋯∪lm)

.
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6.4  Thread‑modular counter abstraction (TMCA) vs. standard thread‑modular 
reasoning (TM)

A similar result holds if we adapt standard thread-modular reasoning (TM) (e.g., [29, 
40, 47]) to parameterized systems.

Definition 7 (Standard thread-modular abstraction �� ) Let T[N] be a program template 
and let P(n) be the induced parameterized program. Let ���m be a generator set of error 
states. Let program P = T[N∕n] and let the auxiliary program ��′ be

The standard thread-modular abstraction ��(T[N], n,m) is the program ��′ with an aug-
mented initial state constraint on the system size n, i.e.,

(28)���

(T[N], n,m) = (Loc, �,𝓁0, Init)
���
= P1 ∥ ⋯ ∥ Pm ∥ ���(P).

�0

�1

�2

�err

{s = t = 0 ∧ c0 = n− 1 ∧ c1 = c2 = 0 ∧ n− 1 ≥ 0}

t++;

s++;

[¬(0 < t− s ≤ n)]

[c0 > 0]; t++; c0--; c1++;

[c1 > 0]; s++; c1--; c2++;

[c0 > 0]; t++; c0--; c1++;

[c1 > 0]; s++; c1--; c2++;

[c0 > 0]; t++; c0--; c1++;

[c1 > 0]; s++; c1--; c2++;

(a) TMCA abstraction TMCA(T, n, 1) = P1 ‖ TMS(CCA(P, n− 1)).

�0

�1

�2

�err

{s = t = 0 ∧ n > 0}

t++;

s++;

[¬(0 < t− s ≤ n)]

t++;

s++;

t++;

s++;

t++;

s++;

(b) Standard thread-modular abstraction TM(T, n, 1) = P1 ‖ TMS(P ).

Fig. 5  Running example illustrating our thread-modular abstraction ���� next to standard thread-modular 
abstraction ��
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Similar to TMCA, standard thread-modular reasoning �� over-approximates the states 
reachable by the parameterized program and is sound for safety:

Proposition 6 Let Reach m be defined as in Proposition 27. ��(T[N], n,m) over-approxi-
mates Reach m , i.e., we have that Reach m ⊆ Reach (��(T[N], n,m)).

Proof sketch Let P = T[N∕n] . We note that Pn
= P1 ∥ ⋯ ∥ Pm ∥ P(n−m) . The claim 

then follows from Proposition  2 because every run of Pn gives rise to a run of 
P1 ∥ ⋯ ∥ Pm ∥ ���(P)) that agrees on the values of g ∪ l1 ∪⋯ ∪ lm.

Theorem  2 (Soundness of standard thread-modular reasoning) Let T[N] be a program 
template, let P(n) be its induced parameterized program, and let ���m be a generator set of 
error states. If ��(T , n,m) is safe with respect to ���m , then so is P(n) for all n > 0.

Proof Direct consequence of Propositions 6 and 5.   ◻

While both standard thread-modular reasoning �� and our TMCA abstraction ���� 
are sound, TMCA is a stronger abstraction than TM. Below, we give an example where 
our TMCA abstraction is capable of proving safety and standard TM is not.

Running example (Safety) Figure 5a shows the ���� abstraction (Definition 25) of our 
running example (continued from Fig. 4c) next to the standard thread-modular abstraction 
�� (Definition 29) in Fig. 5b. Note that the only difference between the two abstract pro-
grams is ���� ’s stronger environment transition relation, which is introduced by the aux-
iliary counter instrumentation ��� (Definition 17). Yet, in the ���� abstraction the error 
location �err is unreachable, while the �� abstraction is unsafe.

This is witnessed by the following feasible error path on �� (Fig. 5b) that invalidates 
the assertion’s lower bound (starting in an initial state where s = t = 0 ∧ n > 0):

Similarly, the assertion’s upper bound is invalidated, e.g., for n = 2 by the following feasi-
ble error path on �� (Fig. 5b):

Both error paths are infeasible in the ���� abstraction (Fig. 5a): In the first case, the tran-
sition corresponding to �1

�++

����������������→ �1 is infeasible because �1 = 0 , i.e., no environment thread 
has yet moved from �0 to �1 . In the second case, the number of times the transition cor-
responding to �1

�++

����������������→ �1 can be taken is bounded by the initial value of �0 , i.e. n − 1 = 1.

Theorem 3 (Expressiveness) Let Reach m be defined as in Proposition  27. For all pro-
gram templates T[N], ���� is a stronger abstraction than �� , i.e., we have that

(29)��(T[N], n,m)
���
= (Loc, 𝛿,�0, Init

�

) where Init�
���
= Init ∧ n > 0.

(30)�0

�++

����������������→ �1

�++

����������������→ �1

[¬(0<�−�≤n)]
�����������������������������������������������→ �err.

(31)�0

�++

����������������→ �1

�++

����������������→ �1

�++

����������������→ �1

[¬(0<�−�≤n)]
�����������������������������������������������→ �err.

Reach m ⊆ Reach (𝖳𝖬𝖢𝖠(T[N], n,m))⇂
(g∪l1∪⋯∪lm)

⊆ Reach (𝖳𝖬(T[N], n,m)).
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Proof sketch We observe that ���(���(P, n − m)) ⊆ ���(P) because every run of 
���(P, n − m) gives rise to a run of P when projecting away the instrumented variables. 
Hence, every run of ����(T[N], n,m) gives rise to a run of ��(T[N], n,m) , and the claim 
follows.

Discussion. It is well-known that standard thread-modular reasoning effectively 
abstracts the following three aspects of multi-threaded programs [73]: 

1. the order in which program transitions happen (transition order),
2. how many times each transition is performed (transition multiplicity), and
3. which thread takes which transition (thread identities).

It is also well-known that adding auxiliary state to a thread-modular abstraction increases 
expressiveness [54, 55]. TMCA’s auxiliary counter instrumentation effectively introduces 
some information about both transition order and transition multiplicity on top of standard 
thread-modular reasoning. Although TMCA is equally oblivious to thread identities, in our 
experience this is not an issue due to the symmetry of parameterized programs.

6.5  Conclusion

In this section we introduced our thread-modular counter abstraction TMCA. We showed 
that safety of the TMCA abstraction implies safety of the parameterized program for all 
system sizes, and compared TMCA to standard thread-modular reasoning. In the next 
section, we discuss how to automatically discharge a safety proving obligation on our 
TMCA abstraction.

7  Tackling infinity dimension II: predicate abstraction (PA)

The parameterized program P(n) induced by a program template T[N] refers to an infi-
nite family of programs. In contrast, consider its thread-modular counter abstraction 
����(T , n,m) : if its parameter n remains symbolic, we obtain an abstraction of the param-
eterized program in the form of a sequential program with finitely many control locations 
and local variables, while over-approximating the infinite family of programs induced by 
P(n). Standard software verification methods could be applied to prove safety, thus tackling 
Infinity Dimension (II) from Sect. 1.3: the infinite data domain.

Divergence of predicate abstraction-based verifiers. However, our experiments in Sect. 8 
show that standard methods often fail on our models: We encode the TMCA abstraction of 
our benchmarks as a set of constrained Horn clauses [36] (CHCs). Both state-of-the-art 
solvers Eldarica [43] and Z3 [20] diverge on many of our examples (Table  1, columns 
1c and 1d; cf. Sect. 8 for details). We speculate that this is due to the uncommon struc-
ture of our TMCA models; each control location of our abstraction has self-loops of the 
thread-modular summary attached (compare, e.g., Fig. 4c). In this section, we discuss how 
to guide a predicate abstraction-based solver to converge on TMCA models.
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7.1  Predicate selection for TMCA models

A standard method for building predicate abstractions is to iteratively use an interpolating 
theorem prover to find new predicates that rule out spurious counter-examples [52]: We 
encode the error path in a logical formula in the usual way and split it into partitions A ∧ B . 
If the formula is unsatisfiable, the solver returns an interpolant I over the common symbols 
of A and B such that A → I and I → ¬B . Intuitively, the interpolant I gives a reason why 
the path A ∧ B is infeasible, and can thus be used as a predicate to refine the abstraction.

Choosing good predicates. The key to converging predicate abstraction CEGAR loops is 
to chose the “right” interpolants. Loop counters are variables that are incremented or dec-
remented on a loop path of the program. Conventional wisdom holds that referring to such 
loop counters, which frequently appear on infeasible error paths, is best avoided in abstract 
models: tracking their values leads to loop unrolling and divergence of the CEGAR loop 
[13, 68]. This poses a challenge for thread-modular summaries, as we demonstrate on our 
running example:

Running example (Safety) Recall the TMCA abstraction of our example in Fig. 4c: Due to 
product construction with the thread-modular summary

all variables are loop counters: the self-loops ���� and ���� at each program location incre-
ment or decrement c0 , c1 , c2 , s, and t. Tracking the value of either one leads to useless 
loop unrollings.

Even more elaborate predicates, e.g., tracking the difference expression t − s in the 
assertion do not lead to convergence: Assume that we already applied predicate abstraction 
and the model checker returned the following spurious counter-example5 (starting in an 
initial state where s = t = 0):

(32)���(���(P, n − 1)),

(33)� + +; ����; ����; [0 ≥ � − �];

s = 0 ∧ t = 0 ∧ c0 = n− 1 ∧ c1 = 0 ∧ c2 = 0 ∧ n > 0 ∧ (initial state)

s′ = s ∧ t′ = t+ 1 ∧ c′0 = c0 ∧ c′1 = c1 ∧ c′2 = c2 ∧ (�0 → �1: t++)

c′0 > 0 ∧ s′′ = s′ ∧ t′′ = t′ + 1 ∧ c′′0 = c′0 − 1 ∧ c′′1 = c′1 + 1 ∧ c′′2 = c′2 ∧ (�1 → �1: IncT)

c′′1 > 0 ∧ s′′′ = s′′ + 1 ∧ t′′′ = t′′ ∧ c′′′0 = c′′0 ∧ c′′′1 = c′′1 − 1 ∧ c′′′2 = c′′2 + 1 ∧ (�1 → �1: IncS)

0 < t′′′ − s′′′ (assertion)

(a) Concrete interpolation query.

s = 0 ∧ t = 0 ∧ c0 = n− 1 ∧ c1 = 0 ∧ c2 = 0 ∧ n > 0 ∧ (initial state)

s′ = s ∧ t′ = t+ 1 ∧ c′0 = c0 ∧ c′1 = c1 ∧ c′2 = c2 ∧ (�0 → �1: t++)

c′0 > 0 ∧ sA = s′ ∧ tA = t′ + 1 ∧ cA0 = c′0 − 1 ∧ cA1 = c′1 + 1 ∧ cA2 = c′2 ∧ (sA = ṡ ∧ tA − cA1 = ṫ− ċ1) ∧ (�1 → �1: IncT)

cB1 > 0 ∧ s′′′ = sB + 1 ∧ t′′′ = tB ∧ c′′′0 = cB0 ∧ c′′′1 = cB1 − 1 ∧ c′′′2 = cB2 + 1 ∧ (sB = ṡ ∧ tB − cB1 = ṫ− ċ1) ∧ (�1 → �1: IncS)

0 < t′′′ − s′′′ (assertion)

(b) Abstract interpolation query.

Fig. 6  Interpolation queries for our running example from Fig. 4c

5 One can reproduce the behavior of this running example in the model checker Eldarica (v2.0.2) [43] and 
the interpolating theorem prover Princess (v2020-03-12) [67].
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The formula representing this error path is shown in Fig. 6a. If we partition the formula 
between ���� and ���� , an interpolating theorem prover is likely to find the new predicate 
2 ≤ t − s . This rules out the spurious counter-example above, but leads to another, longer 
one:

This again can be ruled out by the additional predicate 3 ≤ t − s but only leads to fur-
ther unrollings of ���� and ���� and to further invariants of this shape; the CEGAR loop 
diverges.

Finding better interpolants. Instead, we want to find an invariant that relates the loca-
tion counters c0 , c1 , c2 to the values of the global variables s and t. Thus, traditional 
predicate selection heuristics do not apply, and we need a new selection procedure suitable 
for TMCA models (and similarly structured programs). The next section explains how to 
achieve this.

7.2  An interpolation abstraction heuristic for TMCA models

As we argued above, interpolating predicate abstraction is always driven by heuristics to 
prevent divergence. We now present a heuristic that we find useful for the considered prob-
lem domain and later show that it outperforms several existing ones (for experimental evi-
dence, cf. Sect. 8).

Interpolation abstraction [51] is a state-of-the-art method to implement predicate selec-
tion. The technique uses a set of template terms T to abstract the interpolation query and 
thus guide the theorem prover in its search for an interpolant. Template terms represent 
relations between common variables v of the partitions A and B of an interpolation prob-
lem. An abstraction of the interpolation query A ∧ B is obtained by renaming the common 

(34)� + +; ����; ����; ����; ����; [0 ≥ � − �];

Table 1  Benchmark results: time to prove safety

indicates a timeout after 15 min, the fastest tool for our TMCA encoding is highlighted in bold
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symbols v in A and B to vA and vB , respectively, and subsequently constraining the resulting 
formulas with the equalities v̇ = vA and v̇ = vB and instantiations of the template terms T 
over v̇ . Following [51], we use T(A) ∧ T(B) to denote the resulting abstract interpolation 
query and call the abstract query feasible if T(A) ∧ T(B) is still unsatisfiable. By construc-
tion, any interpolant for a feasible interpolation abstraction T(A) ∧ T(B) corresponds to an 
interpolant for the original query A ∧ B (but not vice versa).

Eldarica with its default interpolation abstraction heuristic (Table  1, column 1b) 
already fares better than without (column 1c) but still diverges on some benchmarks. We 
introduce a dedicated heuristic for TMCA models to remedy this shortcoming by encoding 
our domain knowledge in the template terms T. We briefly introduce interpolation abstrac-
tion on our running example and refer the interested reader to the canonical description 
[51] for further reading.

Running example (Safety) As explained in Sect. 1, the valuations of s and t correspond to 
the number of threads in specific control locations, and thus to sums over the instrumented 
location counters. In particular, at �1 we have that

Assume that we choose template terms {t − c1, s} . The abstracted query is shown in 
Fig. 6b: Common symbols at the interpolation point have been renamed and limited knowl-
edge about them is reintroduced via equalities over the template terms in the shaded sub-
formulae: in particular, the concrete values of t′′ and c′′

1
 are lost, and only relational knowl-

edge about their difference is reintroduced. Thus, 2 ≤ ṫ − ṡ is no longer an interpolant. 
Instead, our interpolation procedure finds the new predicate c1 < t − s , which is inductive 
at �1 and rules out further unrollings of the thread-modular summary. Note that this predi-
cate c1 < t − s is implied by the invariant in Eq. (36) and, together with 0 ≤ c1 , implies the 
assertion 0 < t − s.

It remains to define how our method computes the set of template terms for interpo-
lation abstraction.

Definition 8 (Interpolation abstraction template terms) Let T[N] be a program template 
over global and local variables g and l , let P = T[N∕n] be the program obtained by replac-
ing N in T with n, and let P(n) be the induced parameterized program. We start by comput-
ing a set of template terms for the thread-modular abstraction ���(���(P, n − m)) . For 
each variable x, we compute a stride set

We then define difference terms

(35)t = c1 + c2 + 1 and s = c2 and thus

(36)t − s = (c1 + c2 + 1) − (c2) = c1 + 1.

(37)
S(x) = {� ∣ x is incremented by � on some

transition of ���(���(P, n − m))}.
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We define the set of interpolation abstraction template terms Templ as the union of the 
following: 

1. all global variables g,
2. the parameter n,
3. the set of difference terms T���.

Searching the abstraction space. We replace the template term heuristics of [51] with 
our set Templ . The powerset lattice ⟨2Templ,⊆⟩ over the template terms then induces a 
search space of interpolation abstractions, which is systematically explored by the 
abstraction algorithm from [51]. Intuitively, smaller subsets correspond to logically 
stronger abstractions. Larger subsets of Templ may cause the abstraction to become too 
weak, i.e., cause the interpolation query to become satisfiable. Thus, the search algo-
rithm of [51] first explores the subset lattice to find the maximal elements (viz. the larg-
est subsets of template terms Templ ) for which the interpolation query is still unsatisfia-
ble. Let Cand refer to this candidate set of strongest possible abstractions. The algorithm 
then assigns a cost to each candidate abstraction C ∈ Cand . [51] explores a number of 
cost functions; we choose a simple one that counts the number of template terms in c, 
i.e., it assigns uniform cost to each element in C. Given this cost-weighted set of maxi-
mal unsatisfiable candidate abstractions, the algorithm of [51] picks the ones with mini-
mal cost (in our case, the smallest subsets in Cand ) to abstract the interpolation query 
and compute interpolants (and thus refinement predicates).

Our template terms in abstraction search. Intuitively, our choice of template terms 
Templ leads the search to explore relational abstractions, such as t − c1 , early by assign-
ing them the same cost as selecting a single global variable g ∈ g . Moreover, it still allows 
us to track the value of global variables and to introduce the parameter n if necessary. In 
cases where there is no relationship between the global variables and location counters as 
captured by T��� , our templates may still be useful by ruling out interpolants that track 
concrete variable values and would lead to loop unwinding. Finally, even though our tem-
plate terms are linear relations, interpolation abstraction is semantic in nature and does not 
restrict the prover to only find such interpolants [51].

8  Safety experiments

We implement our TMCA abstraction and predicate discovery engine inside the Eldarica 
safety verifier [43, 51] as Eldarica with TMCA[23]. Our extension takes as input a pro-
gram template T[N] and the error states ���m in a C-like language and outputs the abstracted 
program ����(T , n,m) as a set of constrained Horn clauses (CHCs) [36] in the standard 
SMT-LIB format. To this output we apply different CHC solvers, including Eldarica’s 
own Horn solver with its default and our customized predicate selection heuristic.

(38)
T��� = {�x − �c ∣ x is a global program variable,

c is a location counter introduced by ���,

� ∈ S(c) and � ∈ S(x)}.
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8.1  Benchmarks

Our safety benchmarks and results are shown in Table 1. The first group of benchmarks (A) 
[11] consists of program templates that sequentially increment and decrement a global var-
iable. At each program location we assert the tightest possible lower and upper bounds; 
given that the number of increments and decrements depends on the number of concurrent 
threads n, these assertions are parameterized by the number of concurrent threads.

The second group of benchmarks (B) is a set of programs using unbounded thread crea-
tion taken from the software verification competition SV-COMP [12]. In its latest three 
editions (2018–2020), no sound verification tool proved these benchmarks safe. In addi-
tion, fkp2014 and the bluetooth driver qw2004 are the introductory and running exam-
ple of [25].

The third group of benchmarks (C) from [30, 57] includes non-monotonic synchroniza-
tion barriers (cf. Sect. 2).

8.2  Comparisons

The columns of Table 1 compare our two main contributions for safety, i.e., approaches to 

1. Parameterized verification We compare our TMCA abstraction (column 1) combined 
with different backend solvers (sub-columns 1a–1d) to other parameterized program 
verifiers (columns 2 and 3).

2. Predicate selection. On our TMCA abstraction (column 1), we compare our predicate 
selection heuristic (sub-column 1a) to other predicate selection heuristics (sub-columns 
1b–1d).

Parameterized verification: TMCA vs. others In particular, we first compare TMCA 
abstraction (column 1) to other parameterized program verifiers: Pacman [30] (column 2) 
and Eldarica’s unbounded thread encoding6 [44] (column 3).

Predicate selection: our heuristic vs. others Second, we compare different CHC solv-
ers on our TMCA-abstracted models in the subcolumns of column  1: our predi-
cate selection heuristic from Sect.  7 (column  1a), Eldarica’s default heuristic [51] 
(-abstract:relIneqs, column  1b), Eldarica without interpolation abstraction 
(-abstract:off, column 1c) and the CHC solver in Z3 [20] (column 1d).

8.3  Results

Parameterized verification The last two benchmarks, parent–child and as-many, 
use dynamic thread creation which is currently not supported by Eldarica. Eldarica times 
out on the remaining ones. Unfortunately, we were unable to replicate the results for Pac-
man from [30]. We are thus limited to citing previous results from [30] (recall from Sect. 2 

6 This encoding is usually unaware of the parameter n. We therefore slightly modify our benchmarks such 
that the encoding’s implicitly introduced local thread id variable is bounded by n.
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�0 �1 �2 �3
x = *; [x > 0] d = *; [d > 0]

[x > 0]

x = x - d

(a) Program template P. This is the introductory example of [27].

�

{c0 = n− 1 ∧ c1 = c2 = c3 = 0 ∧ n− 1 ≥ 0}

AssX:
[c0 > 0]; x = *; [x > 0];

c0--; c1++;

AssD:
[c1 > 0]; d = *; [d > 0];

c1--; c2++;

PosX:
[c2 > 0]; [x > 0];

c2--; c3++;

Sub:
[c3 > 0]; [d > 0]; x = x - d;

c3--; c2++;

(b) Counter-instrumented, thread-modular summary P̂ = TMS′(CCA(P, n− 1)).

�0

�1

�2

�3

{c0 = n− 1 ∧ c1 = c2 = c3 = 0 ∧ n− 1 ≥ 0}

x = *; [x > 0]

d = *; [d > 0]

[x > 0]x = x - d

AssX
AssD

PosX
Sub

AssX
AssD

PosX
Sub

AssX
AssD

PosX
Sub

AssX
AssD

PosX
Sub

(c) TMCA abstraction TMCA(P, n, 1) = P1 ‖ TMS′(CCA(P, n− 1)).

Fig. 7  Termination running example
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that our main objective is to replace their dedicated abstraction techniques with a cleaner 
framework of well-established ones).

Parameterized verification nOf the remaining benchmarks, only maximum does not have 
a thread-modular proof and thus cannot be proved safe by our method. On the remaining 
benchmarks, TMCA (Sect. 6) combined with our predicate selection heuristic (Sect. 7) is 
the only toolchain to solve all tasks. It does so well below the timeout limit of 15 min. 
Meanwhile, Eldarica with default predicate selection heuristics encounters 5 timeouts, 
Eldarica without interpolation abstraction 10, and Z3 in its standard configuration even 
11 timeouts. This shows how indispensable an appropriate predicate discovery algorithm is 
for our thread-modular abstractions.

Conclusion In summary, a combination of both our contributions for safety (TMCA 
abstraction and our predicate selection heuristic) is necessary to tackle all benchmarks; no 
other toolchain comes close in results.

This concludes our discussion on safety verification; in the next section, we discuss a 
generalization of our methods to termination proving.

9  Case study: generalization to termination

So far, our technical exposition has focused on safety properties. In contrast, termination 
is a foundational liveness property: like reachability for safety, proving liveness can be 
reduced to proving termination [15, 71]. Unlike termination proving for sequential pro-
grams (e.g., [14, 17, 19, 24, 34]) and multi-threaded programs with a fixed number of 
threads (e.g., [3, 4, 36, 66]), which have seen an ample amount of research in the past, live-
ness verification of parameterized programs has only recently become a focus of research 
(cf. Sect. 2). In this section, we present a generalization of our TMCA-based analysis to 
termination.

9.1  Introduction

We start our discussion with a case study, developing our technique on our introductory 
example for termination analysis from Fig. 2. For easier reference, we also show this pro-
gram template in Fig. 7a.

Running example (Termination) Recall program P (Fig. 7a) from our motivating example 
in Sect. 4: First, x and then d are assigned positive integer values. The subsequent loop 
subtracts d from x until x becomes non-positive. We are interested in showing termination 
of the parameterized program P(n) = P1 ∥ ⋯ ∥ Pn composed of n threads executing P for 
all n > 0.

Figure 7b shows the counter-instrumented, thread-modular summary

of P . Note that here we adopt ���′ , a slightly stronger version of ��� that restricts the 
summary transitions to reachable states. This allows us to include the additional assumption 

(39)P̂ = ����(���(P, n − 1))
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that d is positive [� > 0] in transition ��� . This is in accordance with our definition of 
thread-modular summaries (Definition  4). Methods for computing such summaries have 
been described throughout the literature, for example in [69, 70].

Finally, consider the thread-modular counter abstraction ����(P, n, 1) = P1 ∥ P̂ 
(Fig. 7c). We show that this abstraction terminates, and thus also the parameterized pro-
gram P(n) terminates for all n > 0 . We give an intuitive termination proof for the TMCA 
abstraction in Fig. 7c:

Note that the concrete thread P1 can only diverge if it gets stuck in the loop 
�2 → �3 → �2 → … . Without interference from the TMCA-abstracted environment P̂ , P1 
terminates because � is strictly positive at �2 and �3 , and thus � decreases in each iteration 
towards the bound [� > 0].

Let us now consider interference from the thread-modular summary P̂ : Transitions 
����,����, ����, ��� do not change the fact that d is strictly positive once the concrete 
thread P1 reaches �2 . The remaining environment interference that could cause the pro-
gram to diverge is transition ���� that resets the value of � . At this point, TMCA’s counter 
instrumentation comes into play. While ���� resets the value of x and may thus prevent 
its value from converging towards 0, the number of times transition ���� can be executed 
is unbounded but finite: due to its guard [�1 > 0] , this transition may not execute more 
than n − 1 times. This symbolic expression is itself unbounded from above, but only takes 
finite, non-negative values. After at most n − 1 executions of ���� , the value of � cannot be 
reset anymore, and progresses towards zero in the loop �2 → �3 → �2 → … as above (and 
potentially also by interleaved executions of ���� and ��� by the abstracted environment P̂
).

Finally, we observe that also the abstracted environment terminates: Transitions ���� 
and ���� can only be executed finitely often based on the arrangement of auxiliary coun-
ters �0 and �1 . Executions of ���� and ��� may interleave and alternate, but also make the 
value of x progress towards zero, and thus cannot be executed indefinitely.

Termination of the abstraction ����(P, n, 1) = P1 ∥ P̂ together with soundness of our 
abstraction (argued below), implies termination of the parameterized program P(n) for all 
system sizes n > 0 . Consider the aforementioned fact that ����(P, n, 1) is a sequential 
program. We can thus use an existing termination prover for sequential software (e.g., [14, 
17, 19, 24, 34]) to compute a termination argument for our abstraction. Below, we give a 
more formal description of our termination analysis.

9.2  Problem statement

Given a program template T[N], we consider the induced parameterized program 
P(n) = P1 ∥ ⋯ ∥ Pn . Our goal is to show that P(n) terminates from all initial states and for 
all system sizes n > 0.

Definition 9 (Termination) Let T[N] be program template, and let P(n) be its induced 
parameterized program. Consider an instance P(k) for a scalar k ∈ ℕ

+ of P(n). Recall from 
Definition 1 that a run of program P(k) is an interleaved sequence of states and transitions 
(�0, �0)

gc0
������������→ (�1, �1)

gc1
������������→ … . We say that program P(k) terminates if all its runs are finite. 

We say that the parameterized program P(n) terminates if all its instances P(1),P(2),… 
terminate.
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As for safety, this means proving that each member of the infinite family {P(1),P(2),…} 
of instances induced by the parameterized program P(n) is terminating.

9.2.1  Equivalent notions

We briefly consider the notion of thread termination [18], and how it relates to parameter-
ized program termination.

Definition 10 (Thread termination) Let T[N] be program template, and let 
P(n) = P1 ∥ ⋯ ∥ Pn be its induced parameterized program. Pi is thread-terminating in the 
context of P(n), if all runs of P(n) contain only finitely-many transitions by Pi.

Note that termination of the parameterized program P(n) for all n > 0 is equivalent to 
proving thread termination of all threads Pi of P(n) for 0 < i ≤ n . If all threads Pi of P(n) 
are thread-terminating, then P(n) makes only finitely many steps and thus is itself terminat-
ing. Finally, also note that, by symmetry of P(n), thread termination of P1 implies thread 
termination of all Pi ( 0 < i ≤ n).

9.3  TMCA for termination

As we argued above, termination of the abstraction ����(P, n, 1) = P1 ∥ P̂ together with 
soundness of our abstraction implies termination of the parameterized program P(n) for all 
system sizes n > 0 . In this section, we show that TMCA is a sound abstraction not only for 
safety, but also for termination.

9.3.1  Our goal

More formally, our goal is to show that if the TMCA abstraction

terminates for some m ≥ 0 , then also the parameterized program P(n) terminates. Intui-
tively, the counter instrumentation ��� and the thread-modular abstraction ��� must 
retain all behaviors of the original parameterized program, i.e., ���� must not restrict the 
abstraction such that it is terminating when the original parameterized program is not.

9.3.2  Building blocks

The main building blocks of our soundness argument where already presented in Sect. 6 
for safety: From Proposition 1 we have that the counter instrumentation of ��� preserves 
the transition relation of all k-times interleavings Pk of program P. The instrumented coun-
ters are purely auxiliar and do not alter the transition relation of the instrumented program 
when projected away. Following directly from the definition of a thread-modular summary 
(Definition 4), we have that ��� (and ���′ ) over-approximates the transition relation of 
all k-times interleavings Pk of program P when projected onto global states (Proposition 2). 

(40)����(P, n,m)
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As for safety, we use this fact to obtain a single summary ���(���(P, k)) that over-
approximates all k-times interleavings Pk (Proposition 3).

9.3.3  Soundness for termination

This leads us to our main theorem for termination. It considers termination of the TMCA 
abstraction

for some m to prove termination of the parameterized program P(n).

Theorem 4 Let P be a program template and let P(n) be its induced parameterized pro-
gram. If the thread-modular abstraction ����(P, n,m) is terminating for some m ≥ 0 , 
then so is the parameterized program P(n) for all n > 0.

Proof sketch Pick an arbitrary m ≥ 0 and assume that ����(P, n,m) is terminating. Thus, 
none of the first m concrete threads P1 ∥ ⋯ ∥ Pm of ����(P, n,m) executes infinitely-
many steps. From Proposition 3 we have that ���(���(P, n − m)) over-approximates the 
transition relation of the remaining n − m threads. Therefore, none of the first m threads 
P1 ∥ ⋯ ∥ Pm of the parameterized program P(n) = P1 ∥ ⋯ ∥ Pn execute infinitely-many 
steps. By symmetry of the parameterized program P(n), P(n) itself is terminating for all 
n > 0 . In the special case of m = 0 , ���(���(P, n)) already over-approximates the transi-
tion relation of all threads, and its termination thus immediately implies termination of the 
parameterized program P(n).

Remark The above statement is most obvious for a complete thread-modular abstraction 
where no concrete thread is retained ( m = 0 ), or for a single concrete thread ( m = 1 ) com-
posed with the thread-modular summary. Still, the argument in Theorem 4 holds more gen-
erally for an arbitrary number of concrete threads m ≥ 0 . Preliminary work in [42] has 
shown that larger m result in a more expressive proof system for safety; whether this is also 
the case for termination and liveness is an interesting theoretical problem left for future 
work (cf. Sect. 10).

9.3.4  Soundness via thread termination

Inspired by the notion of thread termination discussed above (Sect. 9.2), we can state an 
alternate version of Theorem  4 that does not require termination of the thread-modular 
summary ���(���(P, n − m)) . Instead, we only require thread termination of the m con-
crete threads of ����(P, n,m):

Theorem  5 Let P be a program template and let P(n) be its induced parameterized 
program. If the thread-modular abstraction ����(P, n,m) is thread-terminating for 
P1,… ,Pm and some m > 0 , then so is the parameterized program P(n) for all n > 0.

(41)����(P, n,m) = P1 ∥ ⋯ ∥ Pm ∥ ���(���(P, n − m))
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9.4  Automation: a case study

As a case study for automation of our approach, we encode the TMCA abstraction 
����(P, n,m) of our running example (Fig. 7). We prove termination of the abstraction 
����(P, n,m) using the termination analyzer T2 [14, 19], thus eliminating the premise 
of Theorem 4 and deducing termination of the parameterized program P(n) for all n > 0 . 
We analyzed both the TMCA abstraction ����(P, n, 0) with no concrete thread and the 
abstraction ����(P, n, 1) with a single concrete thread. For m = 0 , T2 proved safety in 
1.2 s; for m = 1 in 1.5 s.

9.4.1  Current limitations

We leave a more thorough experimental investigation of termination as future work due to 
the following, remarkable, fact: Most existing termination proving tools oscillate between 
a safety proving phase (to compute supporting invariants) and a rank function synthe-
sis phase (to compute intermediate termination arguments) [14]. Curiously, when we 
attempted to prove termination of further examples, several tools diverged not in their ter-
mination proving phase, but when computing supporting invariants in their safety phase. 
Since our TMCA abstractions for termination are similar in shape to those for safety, 
we suspect that this happens due to the same phenomenon that we already observed for 
safety in Sect. 7, i.e., bad predicate selection heuristics. Due to the tightly-knit interaction 
between termination provers and their backend safety prover, and the high implementation 
effort expected to alleviate this issue, we leave a more thorough investigation of this phe-
nomenon for future work.

Aside: safety benchmarks
The reader is probably surprised that we are not investigating the safety benchmarks 

from Sect.  8 here. We have not considered these benchmarks, because they do not con-
tain loops and are therefore trivially terminating. This is quite common in parameterized 
programs, where repetition is more naturally expressed through replication rather than 
iteration.

Still, we emphasize that to our knowledge, the termination proof we presented for the 
case study in this section is the first actually implemented, automated termination proof for 
this example.

With this, we conclude our investigation of safety and termination proofs of pararam-
eterized programs through thread-modular counter abstraction (TMCA). As a novel frame-
work, TMCA allows for a number of natural extensions through future work. We discuss 
these avenues for further research in the following section.

10  Future work

TMCA, our framework for parameterized program safety and termination, is designed to 
be modular and pluggable. As such, there are many directions for future work. We discuss 
several promising ones in this section and invite further ideas and suggestions from the 
community.
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k‑thread modular reasoning Hoenicke et al. [42] investigate k-thread modular proofs for 
safety. Their method makes thread-modular proofs more expressive and is orthogonal to 
auxiliary state introduction. In this work, we have hinted at this possibility with the intro-
duction of m concrete threads. It would be interesting to systematically combine k-thread 
modular proofs with our counter abstraction for safety. In addition, the work in [42] does 
not consider liveness properties. Intuitively, k-thread modularity should yield a similar 
increase in expressiveness for termination and liveness properties in general. An in-depth 
investigation of this topic makes for interesting future work.

Refinement of the thread‑modular abstraction As another possibility for future work, we 
sketch how to further refine our thread-modular abstraction by closing the outer CEGAR 
loop. This corresponds to the dashed parts of Fig. 3. If the model checker reports a genuine 
counter-example, this may mean that the parameterized program is in fact unsafe, or that 
our upfront thread-modular abstraction was too coarse. If simulation on the original pro-
gram finds the counter-example to be spurious, one can use predicate abstraction to refine 
the program’s original control structure. This results in additional counters in our thread-
modular abstraction. These counters are then not only capable of tracking control state, but 
also arbitrary predicates.

Syntactic predicate selection The interpolation abstraction approach to predicate selection 
is highly semantic, in that the interpolant search is left to the underlying theorem prover. 
While this provides a lot of freedom, it would be interesting to see how a more syntactic 
approach—e.g., based on syntax-guided synthesis [6]—performs.

Predicate selection for termination In Sect.  9 we conjectured that termination prov-
ers run into the same hurdles about predicate selection as safety provers, causing them to 
diverge on our termination benchmarks. We plan an in-depth investigation of this issue, 
that we expect to yield (i) a better theoretical understanding of the divergence we see, (ii) 
fixes to existing termination provers to make them converge on TMCA models. In close 
relation, we will also investigate if these changes to the safety phase of termination provers 
is enough, or whether tools based on transition predicate abstraction [64, 65] need addi-
tional extensions to the predicate discovery heuristic deployed in their termination proving 
phase.

General liveness properties It is well-known that fair termination is a foundational live-
ness property, and proofs of general linear-time properties can be reduced to checking fair 
termination [15, 71]. As an interesting avenue for future work, we propose to extend our 
termination analysis from Sect. 9 to general liveness properties. Given the practical impact 
of such a prover, it should be developed in lockstep with the predicate selection heuristics 
for termination in the previous paragraph.

Additional experiments While our safety proofs are currently limited to CHC solvers in 
the backend, we plan to evaluate our abstraction with further sound software verification 
tools as backend solvers. As we sketched above, we plan similar work on termination prov-
ers. Given our current empirical understanding of TMCA abstractions, this may lead to 
interesting insights and extensions of the predicate selection heuristics of these additional 
tools.
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11  Conclusion

In this work, we present an automated, abstraction-based method for proving safety and 
termination of parameterized infinite-state programs. Our method cleanly separates dif-
ferent abstraction concerns and—in contrast to the heavy proof machinery of existing 
techniques—is built from a novel combination of the well-understood methods counter 
abstraction, thread-modular reasoning, and (transition) predicate abstraction.

In particular, for safety verification, we introduce thread-modular counter abstrac-
tion  (TMCA), a novel abstraction method for parameterized programs (Sect.  6). Fur-
thermore, to facilitate automation, we introduce a custom predicate selection heuristic 
(Sect. 7). Our implementation of both, Eldarica with TMCA [23], is freely available. 
Finally, we use this implementation to demonstrate the efficacy of our method on a 
number of benchmarks from the literature (Sect. 8).

For liveness verification, we present a generalization of TMCA to termination 
(Sect. 9). While not the case for thread-modular reasoning methods in general (cf. [53]), 
usually these techniques (e.g., [29, 40, 47])—including TMCA—are relational with 
respect to the environment’s transition relation. That is, they over-approximate the con-
current program’s binary reachability [17] and are thus suitable to prove termination. 
Similar to safety, we reduce parameterized termination to sequential termination via 
TMCA—the extension to general liveness properties is standard [15, 71, 72]. While we 
leave its systematic implementation for future work (cf. Sect. 10), we believe that this 
task is far more feasible than implementing previous theoretical approaches to param-
eterized program termination (Sect. 2).
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