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Abstract
Bounded variable elimination is one of the most important preprocessing techniques in 
SAT solving. It benefits from discovering functional dependencies in the form of defini-
tions encoded in the CNF. While the common approach pioneered in SatELitE relies on 
syntactic pattern matching, our new approach uses cores produced by an embedded SAT 
solver, KittEn. In contrast to a similar semantic technique implemented in LingELing based 
on BDD algorithms to generate irredundant CNFs, our new approach is able to generate 
DRAT proofs. We further discuss design choices for our embedded SAT solver Kitten. 
Experiments with Kissat show the effectiveness of this approach.

Keywords SAT Solving · Variable elimination · Definition extraction

1  Dedication

We dedicate this rather technical SAT paper to the memory of Ed Clarke. He was one 
of the first to see the tremendous potential of SAT solving not only in model checking, 
but more general in verification and beyond. His vision to use SAT for model checking, 
the encouragement and guidance he gave to two Post-Docs working on this topic (the 2nd 
author and Yunshan Zhu), which then lead to our multiple awards winning joint work on 
Bounded Model Checking [5–9, 16], clearly plays a pivotal role in the history of the SAT 
revolution we are witnessing today.

Bounded Model Checking turned out not only to become the first practical application 
of SAT but also, even though highly debated initially, lead to a paradigm shift in using 
formal verification, trading completeness for scalability. This controversy can also be seen 
as the starting point of other highly-influential work in the model checking community, 
particularly Ken McMilan’s work on interpolation [30] and then the development of the 
IC3 algorithm by Aaron Bradley [14], which both also rely on SAT solving but try to keep 
completeness without sacrifying scalability too much.
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This success of SAT in model checking motivated new research on SAT solving, includ-
ing the seminal work at Princeton yielding the Chaff [32] SAT solver, which is standing on 
the shoulders of another seminal work around the Grasp solver from Michigan [36], and 
also turbo-charged the use of decision procedures originating in the automated theorem 
proving community in the form of SMT. This SAT revolution is a corner stone of the more 
broader adoption of automated reasoning in many applications, from classical hardware to 
software verification as well as scheduling cloud jobs. We believe without Ed this would 
not have happened.

2 Introduction

Preprocessing and particularly inprocessing [26] is a key feature of modern SAT solvers, 
the latter being part of every winner of the SAT competition since 2013. Arguably the most 
important pre- and inprocessing technique is bounded variable elimination  (BVE). Even 
though in its unbounded form, elimination is a decision procedure for SAT, in the context 
of preprocessing bounded variable it is not run until completion. The idea of BVE is to iter-
atively eliminate one variable from the problem by resolving every occurrence away with-
out adding redundant clauses. Furthermore, the difference between the number of added 
and removed clauses is bounded in practical implementation (Sect. 3).

Definability is a concept that reduces the number of clauses to add. It consists in recog-
nizing a definition of x such that x ↔ f (a1,… , an) from the input formula in conjunctive 
normal form (CNF). The simplest example are gates like x ↔ a1 ∧ a2 that can be efficiently 
detected. Detecting gates reduces the number of resolvents because not all clauses have 
to be resolved together. A simple approach is to syntactically recognize gates as encoded 
in the CNF input. This approach is for example used in CadiCaL [10] and CryptoMiniSat 
[39].

This syntactic approach (Sect.  4) is limited though and fails to recognize “irregular” 
gates not characterized by a simple gate type (such as And gates). It also fails to detect 
gates after elimination of one of the input variables. Recently semantic approaches based 
on Padoa’s theorem [34] have been developed with applications in model counting [28] 
and a similar technique exists for (D)QBF reasoning [35, 37]. In both approaches a SAT 
solver is used as oracle to find gate clauses. In this paper we follow this line of research 
and extend our SAT solver KiSSat [12] to detect gates semantically. It uses a simple SAT 
solver called KittEn, called as an oracle to find gate clauses (Sect. 5). Our definition of gate 
detection is equivalent to previous approaches, even though our method never explicitly 
reconstructs the function (Sect. 6).

Our technique discovers gates but it does not need to know which are the inputs 
(Sect. 7). One interesting property about gates is that we do not need to resolve gate clauses 
among themselves. However, this only holds if the full clause is found and not a subset of 
the clause. If those clauses are forgotten, an unsatisfiable problem can become satisfiable 
(Sect. 8). Syntactic detection of gates is faster and detects most useful gates. So KiSSat first 
finds gates syntactically and then calls KittEn to find other gates semantically (Sect. 9).

It turns out that the performance of the sub-solver KittEn has a non-negligible impact 
on the overall performance, as it is frequently called to find definitions with different envi-
ronment clauses in which a candidate variable to be eliminated occurs. Basically KittEn is 
a very simple CDCL solver with watched literals but for instance without blocking literals. 
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A key feature of KittEn for semantic gate detection is that it can be “cleared” efficiently 
avoiding reallocation of internal data structures (Sect. 10). It further can be instructed to 
keep antecedents of learned clauses in memory and thus can compute clausal cores in 
memory.

Experiments on benchmarks from the SAT Competition 2020 show that our new elimi-
nation method has only a minor impact on performance and runtime, but it does eliminate 
substantially more variables, even after syntactic extraction is employed first. Thus defini-
tion extraction is effective (Sect. 11).

We finish with related work (Sect. 12). The idea of not generating redundant unneces-
sary clauses relates to blocked clause elimination (BCE), a simplification technique that 
can remove clauses. Iser [24] also used a SAT solver in the context of gate identification, 
but he does not use it to identify a gate, but only to check “right uniqueness” of already 
identified set of clauses.

This paper is an substantially extended version of our very brief presentation in the sys-
tem description [12] of KiSSat from the SAT Competition 2021 and an extension of our 
(unpublished) Pragmatics of SAT Workshop 2021 (POS’21) presentation [11]. Compared 
to the system description, we have significantly extended all explanations and give more 
details about KittEn. Last but not least we report detailed experiments.

3  Bounded variable elimination

In principle, eliminating variables from a formula reduces the search space in solving the 
formula exponentially with the number of removed variables. However, this argument is 
only sound as long the formula does not increase in size geometrically with the number of 
eliminated variables. Otherwise we would have found a procedure to polynomially solve 
SAT.

Thus the basic idea of bounded variable elimination is to only eliminate variables in a 
formula, for which the resulting formula is not bigger than the original formula, i.e., where 
the size increase due to variable elimination is bounded. This procedure can be imple-
mented efficiently and in practice is considered the most effective preprocessing technique, 
particularly for industrial instances.

The basic approach works as follows. Let x be a variable considered to be eliminated 
from the CNF F . We split F syntactically into three parts

where F
�
 is the CNF of clauses of F which contain literal � , with � ∈ {x, x̄} and �(F, x) 

contains the remaining clauses without x nor x̄ . We call E(F, x) = (Fx ∧ Fx̄) the environ-
ment of x. As usual tautologies do not have to be considered, where a clause is called tauto-
logical or trivial if it contains a variable x and its negation x̄.

Let x be a variable and Hx and Hx̄ CNFs where clauses in H
�
 all contain � , we define 

the1 set of resolvents of Hx and Hx̄ over x as follows:

F = Fx ∧ Fx̄
⏟⏟⏟
E(F,x)

∧�(F, x),

1 If two clauses can be resolved over two different variables, the resulting resolvents are tautological. Thus 
the resolution operator “ ⊗ ” does not really need to be parameterized by x.
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As usual we interpret a CNF also as a set of clauses. The goal of variable elimination is to 
resolve all clauses of Fx̄ with all clauses of Fx and replace E(F, x) with the obtained resol-
vents, that is replacing the formula F by (Fx ⊗ Fx̄) ∧ 𝛥(F, x).

The process described so far is just a reformulation of “clause distribution” from the orig-
inal DP procedure [17]. What turns it into the most important preprocessing techniques of 
today’s SAT solvers is the idea of eliminating a variable if the difference between the num-
ber of added (resolvent) clauses and removed clauses (containing the eliminated variable x) is 
bounded [2, 3, 18, 40]. There are various possibilities to set this bound, and even increase it 
dynamically [33], which are orthogonal to the discussion of this paper.

Enforcing that the size of the formula does not grow too much during variable elimination 
restricts the number of variables that can be eliminated and thus the effectiveness of variable 
elimination. It is therefore beneficial to determine whether certain resolvents are redundant, 
i.e., implied by the resulting formula, and do not need to be added. This will allow addi-
tional variables to be eliminated, for which the size limit is hit without considering redundant 
resolvents.

Finally, as the elimination of a variable produces a formula which is satisfiability equiva-
lent but not logically equivalent to the original formula (unless the formula is unsatisfiable), 
we need a way to reconstruct models of the original formula given a model of the simplified 
formula. This can be achieved by saving the eliminated clauses on a “reconstruction stack” 
and the interested reader might want to consult [13, 21, 26] for further details.

4  Gate extraction

Already when introducing the SatELitE preprocessor [18], it was proposed to extract subsets 
of “gate clauses” from Fx and Fx̄ that encode “circuit gates” with output x, also called defini-
tions of x. Resolving these gate clauses against each other results in tautological (trivial) resol-
vents, and, in particular, this situation allows the solver to ignore resolvents between non-gate 
clauses (since those are implied). Assume that F can be decomposed as follows

where G ≡ Gx ∧ Gx̄ are the gate clauses, i.e., the Tseitin encoding of a circuit gate with 
output x, Hx and Hx̄ the remaining non-gate clauses of F containing x and x̄ respectively, 
and �(F, x) the remaining clauses without x nor x̄ . The original technique from SatELitE 
[18] would then use

and only consider the smaller set of resolvents on the right, as both Gx ⊗ Gx̄ as well 
Hx ⊗ Hx̄ can be omitted from Fx ⊗ Fx̄ , even though the former are tautological resolvents 
and thus ignored anyhow. To give a concrete example consider the following formula con-
taining three gate clauses, encoding an and gate x = a ∧ b , and four non-gate clauses.

H
x
⊗ H

x̄
= {(C ∨ D) ∣ (C ∨ x) ∈ H

x
, (D ∨ x̄) ∈ H

x̄
, and (C ∨ D) not a tautology}.

F ≡

Fx

���
Gx ∧ Hx ∧

Fx̄

���
Gx̄ ∧ Hx̄ ∧ 𝛥(F, x)

F ≡ (Fx ⊗ Fx̄) ∧ 𝛥(F, x) ≡ (Gx ⊗ Hx̄) ∧ (Gx̄ ⊗ Hx) ∧ 𝛥(F, x)
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Resolving all clauses with x or x̄ results in the following CNF.

Eliminating x in the original CNF F of 8 clauses results in CNF F′′ with 13 clauses in 
total, but includes 2 tautological clauses, thus actually only has 11 non-tautological clauses. 
Without further ignoring the 4 redundant resolvents in Hx ⊗ Hx̄ bounded variable elimina-
tion (even up to allowing for introducing two more clauses) would still not eliminate x. If 
the And gate is detected and non-gate clauses are not resolved against non-gate clauses, we 
end up with 7 clauses and x is eliminated.

Finding such gate clauses was originally based on syntactic pattern match-
ing, by in essence trying to invert the Tseitin encoding. This is best explained for And 
gates. Given an elimination candidate x and � ∈ {x, x̄} . We go over all “base clauses” 
C = (𝓁 ∨ 𝓁1 ∨⋯ ∨ 𝓁n) and check whether F also contains all (�̄ ∨ �̄i) for i = 1… n . If this 
is the case, we found the n-ary And gate 𝓁 = (𝓁1 ∧⋯ ∧ 𝓁n) with gate clauses G

�
= {C} 

and G
�̄
= {(�̄ ∨ �̄i) ∣ i = 1… n} . If � = x then x is the output of an And gate. If � = x̄ , then 

x is the output of an Or gate x = (𝓁1 ∨⋯ ∨ 𝓁n) . For the special case n = 1 this amounts to 
extracting bi-implications (equivalences). According to our benchmarks (Sect. 11), extract-
ing and gates this way already gives the largest benefit but similar syntactical extraction 
techniques exist for Xor or ifthEnELSE gates.

Detecting gates syntactically, however, is not very robust and our SAT solver LingE-
Ling [4] implements a very different technique inspired by BDD algorithms. It converts 
the environment clauses into a BDD (actually a function table), eliminates variables there, 
and translates the result back to a CNF using Minato’s algorithm [19, 31], which produces 
a redundancy-free CNF. More details are provided in the preprocessing chapter of the 2nd 
edition of the Handbook of SAT [13].

Figure 1 shows a CDF of the number of solved instances of the last LingELing release 
with and without this technique. On these problems from the SAT Competition 2020, deac-
tivating this technique (smallve0) gives better performance. Remember that LingELing is 
not developed anymore and was not trained on competition problems since 2016. Figure 2 
gives the amount of time spent during variable elimination. As LingELing’s semantic vari-
able elimination algorithm is arguably too costly, we take this as an additional motivation 
to look into different algorithms for semantic gate detection. The second issue with the 
implementation is that it cannot produce a DRAT proof of the transformation.

F = (ā ∨ b̄ ∨ x)
���������

Gx

∧ (a ∨ x̄) ∧(b ∨ x̄)
�����������������

Gx̄

∧

Hx

�����������������

(c ∨ x) ∧(d ∨ x) ∧

Hx̄

���������������

(e ∨ x̄) ∧(f ∨ x̄) ∧ (c̄ ∨ d̄ ∨ ē ∨ f̄ )
���������������

𝛥(F,x)
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Fig. 1  LingELing with and without variable elimination
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Fig. 2  Percentage of the total amount of time spent in variable elimination in LingELing 
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5  Definition mining with a SAT solver

Instead of only syntactically extracting definitions, our new version of KiSSat tries to 
extract gate clauses semantically by checking satisfiability of the conjunction of the co-
factors (Fx|x̄) and (Fx̄|x) of F, i.e., the formula that is obtained by removing the occurrences 
of x in Fx and of x̄ in Fx̄ and then conjoining the result. Alternatively one can obtain the 
candidate formula to be checked for unsatisfiability by removing all occurrences of the lit-
erals x and x̄ from the environment E(F, x).

If this formula is unsatisfiable, we compute a clausal core which in turn can be mapped 
back to original gate clauses Gx and Gx̄ in the environment (by adding back x resp. x̄ to the 
clauses generated in the first step).

Note that we ignore �(F, x) here and focus on environment clauses only. In principle, 
however, we can replace �(F, x) in F by (x ∨ 𝛥(F, x)) ∧ (x̄ ∨ 𝛥(F, x)) to obtain a CNF (after 
distributing the variables over �(F, x) ) where all clauses either contain x or x̄ . Thus the fol-
lowing discussion extends to the seemingly more general case where also �(F, x) is used as 
“don’t care” for gate extraction.

Let G
�
 for � ∈ {x, x̄} be the identified clauses of F

�
 mapped back from the clausal core 

computed by the SAT solver and H
�
 the remaining clauses, i.e., F

�
= G

�
∧ H

�
 . Then it 

turns out that Fx ⊗ Fx̄ can be reduced to (Gx ⊗ Gx̄) ∧ (Gx ⊗ Hx̄) ∧ (Gx̄ ⊗ Hx) . In particular 
(Hx ⊗ Hx̄) can be omitted.2 The net effect is that fewer resolvents are generated and thus 
more variables can be eliminated.

To see that non-gate versus non-gate resolvents can be omitted assume that A ∧ B is 
unsatisfiable and thus Ā ∨ B̄ is valid. Therefore for any C or D we have

With two resolution steps we can then show that the right-hand side implies (C ∨ D) and 
thus can be added to the left-hand side.

Setting (A,B,C,D) = (Gx|x̄,Gx̄|x,Hx̄|x,Hx|x̄) shows the rest, more specifically, that 
C ∨ D = Hx̄ ∨ Hx|x̄ can be ignored, independent of A ∨ B = Gx|x̄,Gx̄|x:

For the previous example the conjunction of the co-factors of the 7 environment clauses 
E(F, x) results in the following unsatisfiable formula

The first three clauses form a clausal core and after adding back x and x̄ enable extracting 
the same gate clauses as before, which in turn enables bounded variable elimination. If 
only one co-factor contains clauses, e.g., Hx̄ , then we can learn the unit literal x . This rarely 
happens in our experiments though. This technique is a generalization of failed literal 

(A ∨ C) ∧ (B ∨ D) ≡ (A ∨ C) ∧ (B ∨ D) ∧ (Ā ∨ B̄).

(A ∨ C) ∧ (B ∨ D) ≡ (A ∨ C) ∧ (B ∨ D) ∧ (C ∨ D)

Fx ⊗ Fx̄ ≡(Gx ⊗ Gx̄) ∧ (Gx ⊗ Hx̄) ∧ (Gx̄ ⊗ Hx) ∧ (Hx ⊗ Hx̄)

≡(Gx|x̄ ∨ Gx̄|x) ∧ (Gx|x̄ ∨ Hx̄|x) ∧ (Gx̄|x ∨ Hx|x̄) ∧ (Hx|x̄ ∨ Hx̄|x)
=(A ∨ B) ∧ (A ∨ C) ∧ (B ∨ D) ∧ (C ∨ D)

≡(A ∨ B) ∧ (A ∨ C) ∧ (B ∨ D)

=(Gx ⊗ Gx̄) ∧ (Gx ⊗ Hx̄) ∧ (Gx̄ ⊗ Hx)

(ā ∨ b̄) ∧ (a) ∧ (b) ∧ (c) ∧ (d) ∧ (e) ∧ (f ).

2 Resolvents among gate clauses are not necessarily tautological though (see Sect. 8).
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probing [29] where multiple decisions are allowed instead of deciding and propagating just 
one literal.

6  Relating functional dependency and cores

In previous work [28, 34, 37] the following condition for “definability” was used and we 
are going to show that in essence it boils down to the same idea. A variable x has a func-
tional dependency in F on an (ordered) sub-set of variables D of F with x ∉ D , i.e., the set 
D of other variables on which the value of x is functionally dependent, iff the following 
formula is valid

with F′ a copy of F where each variable y is replaced by a new variable y′ . The intuitive 
meaning is that there is only one solution for x given the same inputs ( D = D� ), whatever 
the value of the other variables.

The short-hands D = D� and x = x� denote formulas which enforce that the correspond-
ing original variable and its primed copy assume the same value (through for instance a 
conjunction of bi-implications). Therefore, there is a functional dependency of x on D iff 
the following formula is unsatisfiable.

The key remark is that x̄ = x� and x = x� are equivalent because the formula is symmetric 
in x and x′ . In our concrete application, we are not interested in determining the exact set 
of variables D , because we do not have restrictions on dependencies (unlike in QBF [37] or 
#SAT [28]). Hence we can pick D , i.e., the variables on which x is supposed to depend, to 
consist of an arbitrary set of variables occurring in F except x . In practice we will restrict 
D to the set of variables in the environment of E(F, x) different from x and this way obtain 
a sufficient but not necessary condition for definability of x over F.

Under this assumption, we prove that our core based condition is the same as definabil-
ity. First determine CNFs P, N and R such that

where neither x nor x̄ occurs in R. Then simplify (D = D�) ∧ F� ∧ (x̄ = x�) to

using equivalent literal substitution (see for instance [13]). This yields the following satisfi-
ability equivalent formula to our core condition in Eqn. (1)

(1)(D = D�) ∧ F ∧ F�
→ x = x�

(D = D�) ∧ F ∧ F� ∧ (x̄ = x�)

F ≡ (x ∨ P) ∧ (x̄ ∨ N) ∧ R

(F ∧ F�)[D�
↦ D][x� ↦ x̄] = F ∧ (F�[D�

↦ D][x� ↦ x̄])

= F ∧
((
(x� ∨ P�) ∧ (x� ∨ N�) ∧ R�

)
[D�

↦ D][x� ↦ x̄]
)

= F ∧
((
(x� ∨ P) ∧ (x� ∨ N) ∧ R

)
[x� ↦ x̄]

)

= F ∧ ((x̄ ∨ P) ∧ (x ∨ N) ∧ R)

F ∧ (F[x ↦ x̄]),
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where on the right x is replaced by its negation x̄ and accordingly x̄ with x. As F is a 
CNF this formula contains each clause with x twice, once as in F and once with x (and x̄ ) 
negated. These two copies of each clause can thus be resolved on x and each resolvent sub-
sumes both antecedents (through self-subsuming resolution). Clauses in F′ which do not 
contain x′ nor x̄′ become identical after substitution to their counterpart in F.

Therefore the resulting formula after substitution is logically equivalent to the formula 
obtained from F by removing all the environment clauses E(F, x) (clauses with x or x̄ ) and 
replacing them with (Fx|x̄) ∧ (Fx̄|x).

To summarize, in order to determine that x is dependent on the variables D in E(F, x) 
it is sufficient to check unsatisfiability of

Example 1 (Example of the Proof) Consider the following formula and apply the proof 
described above: F = (ā ∨ b̄ ∨ x)

���������
Gx

∧ (a ∨ x̄) ∧ (b ∨ x̄)
�����������������

Gx̄

 as defined above. The formula

is satisfiable iff its negation is unsatisfiable

as the formula is symmetrical in x and x′ , is unsatisfiable iff the following is too

We replace equivalent variables:

Now we resolve each clause of F with its F′ counterpart, yielding a clause subsuming its 
antecedents

(Fx|x̄) ∧ (Fx̄|x) ∧ 𝛥(F, x)

(D = D�) (a = a� ∧ b = b� ∧ c = c�)

∧ F ((ā ∨ b̄ ∨ x) ∧ (a ∨ x̄) ∧ (b ∨ x̄) ∧ (c ∨ x))

∧ F� ((ā� ∨ b̄� ∨ x�) ∧ (a� ∨ x̄�) ∧ (b� ∨ x̄�) ∧ (c� ∨ x�))

→ x = x�

(D = D�) (a = a� ∧ b = b� ∧ c = c�)

∧ F ((ā ∨ b̄ ∨ x) ∧ (a ∨ x̄) ∧ (b ∨ x̄) ∧ (c ∨ x))

∧ F� ((ā� ∨ b̄� ∨ x�) ∧ (a� ∨ x̄�) ∧ (b� ∨ x̄�) ∧ (c� ∨ x�))

∧ x = x�

(D = D�) (a = a� ∧ b = b� ∧ c = c�)

∧ F ((ā ∨ b̄ ∨ x) ∧ (a ∨ x̄) ∧ (b ∨ x̄) ∧ (c ∨ x))

∧ F� ((ā� ∨ b̄� ∨ x�) ∧ (a� ∨ x̄�) ∧ (b� ∨ x̄�) ∧ (c� ∨ x�))

∧ x̄ = x�

F ((ā ∨ b̄ ∨ x) ∧ (a ∨ x̄) ∧ (b ∨ x̄) ∧ (c ∨ x))

∧ F�[x� ↦ x̄]((ā ∨ b̄ ∨ x̄) ∧ (a ∨ x) ∧ (b ∨ x) ∧ (c ∨ x̄))

((ā ∨ b̄) ∧ (a) ∧ (b) ∧ (c))



390 Formal Methods in System Design (2022) 60:381–404

1 3

and we can use KittEn to determine that these clauses are unsatisfiable and to produce the 
following clausal core

In our approach we focus on the environment E(F, x) ⊆ F and only extract definitions 
implied by E(F, x), which reduces the effort spent in KittEn, but in principle we might 
want to take additional clauses of F or all of �(F, x) into account to find all definitions 
(see Example 2 below). We further do not need a conjecture about D a-priori, actually 
do not even need to determine D for our application at all. It is sufficient to extract gate 
clauses from the proof of unsatisfiability. Their variables make up D (excluding x).

Example 2 (Missing Environment) Our extraction without additional clauses can miss defi-
nitions. Consider for example, the circuit corresponding to x = a ∧ a = b , where we add b 
(resp. b̄ ) to each clause containing x (resp.  x̄ ) and are looking for the definition of x . The 
CNF is F = (x̄ ∨ a ∨ b) ∧ (x ∨ ā ∨ b̄) ∧ (ā ∨ b) ∧ (a ∨ b̄) . Obviously from F , we know that 
x = a or x = b are both definitions of x.

Without the additional two clauses in �(F, x) , the problem is satisfiable, but becomes 
unsatisfiable with them. Therefore, our approach without all clauses would miss definabil-
ity. Remark that in this case, we would actually be able to find the definition of x by first 
deriving the definition a and eliminating it.

7  Actually determining the definition

In order to apply gate information to variable elimination we do not need to extract the actual 
gate f(D) of x nor need to know the set of input variables D of the gate f. For other applications 
it might still be interesting to characterize the possibilities of picking f though. Let L = G|x be 
the positive co-factor of the gate clauses G and U = G|x̄ the negation of its negative co-factor, 
where, to simplify the argument, we use Gx|x = Gx̄|x̄ = ⊤ , and thus

and

This notation allows us to derive the following “Shannon decomposition” of G:

(ā ∨ b̄) ∧ (a) ∧ (b)

Fx|x ∧ Fx̄|x̄ = (a ∨ b) ∧ (ā ∨ b̄)

𝛥(F, x) = (ā ∨ b) ∧ (a ∨ b̄)

G|x ≡ (Gx ∧ Gx̄)|x ≡ Gx|x ∧ Gx̄|x ≡ Gx̄|x ≡ L

G|x̄ ≡ (Gx ∧ Gx̄)|x̄ ≡ Gx|x̄ ∧ Gx|x̄ ≡ Gx|x̄ ≡ U.

G ≡ (x̄ ∨ G|x) ∧ (x ∨ G|x̄) ≡ (x̄ ∨ Gx̄|x) ∧ (x ∨ Gx|x̄) ≡ (x̄ ∨ L) ∧ (x ∨ U)
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First note that L implies U (written L ⊧ U ) as L ∧ U is the same as Gx̄|x ∧ Gx|x̄ and thus 
unsatisfiable. Now pick an arbitrary f with L ≤ f ≤ U between the lower bound L and the 
upper bound U, i.e., L ⊧ f  and f ⊧ U . We are going to show that G ⊧ x = f .

The lower bound gives x̄ ∨ L ⊧ x̄ ∨ f  and as G ⊧ x̄ ∨ L we get G ⊧ x̄ ∨ f  by modus ponens. 
Similarly we have x ∨ U ⊧ x ∨ f̄  by contraposition of the upper bound assumption, i.e., U ⊧ f̄  , 
and derive G ⊧ x ∨ f̄  , which concludes the proof. If f is given explicitly we can pick D as 
the set of variables occurring in f. If f is given semantically, for instance as function table or 
BDD, then y ∈ D iff f |y ≢ f |ȳ , which can be determined by checking equivalence between co-
factors. Similar arguments can be used for characterizing gate extraction from BDDs [20, 41].

8  Resolving gate against gate clauses

As we have explained above the idea of gate extraction is that we only need to resolve 
clauses with the definition of the gate. However, we still need to resolve the gate clauses 
amongst themselves in two cases. First if extracted semantically (Sect.  8.1). Second if 
instead of finding a clause, we actually find a shorter (subsuming) clause (Sect. 8.2). Both 
cases are easy to detect in an implementation.

8.1  Semantical gate extraction

Semantic definition extraction does not necessarily produce gate clauses which are tauto-
logical, i.e., Gx ⊗ Gx̄ could be non-empty. If these resolvents among gate clauses are not 
added to the clause set, variable elimination is not satisfiability preserving. Consider the 
following (unsatisfiable) formula:

As shown, KittEn found the (actually minimum unsatisfiable) clausal core 
(b) ∧ (a) ∧ (ā ∨ b̄) in the conjunction of the co-factors of the environment of x, even though 
there is a shorter core (a) ∧ (ā) , which after adding back x̄ and x encodes a bi-implication. 
The reader should be aware that the extracted gate clauses do not encode a Nand gate (sec-
ond clause has x̄ and not x).

This example was produced through fuzzing [15], by comparing a version of KiSSat 
which correctly resolves gate clauses and one which does not. In this example the fuzzer 
produced an option setting where extraction of equivalences (bi-implications) was disabled 

F = (x ∨ b)
���

Gx

∧ (x̄ ∨ a) ∧ (x̄ ∨ ā ∨ b̄)
�������������������������

Gx̄

∧ (x ∨ ā)
���

Hx

∧

𝛥(F,x)
�����������������������������������

(ā ∨ c) ∧ (a ∨ b̄) ∧ (b ∨ c̄)
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before semantic definition extraction was tried, and then KittEn simply focused on the 
larger core.

Thus the correct result after elimination is

The last four clauses are satisfiable (setting a = b = c = ⊥ ) but the whole F′′ as F is unsat-
isfiable. Therefore the first clause obtained from resolving gate with gate clauses has to be 
added.

8.2  Syntactical gate resolving

We have used fuzzing again to show that the requirement to add gate against gate resol-
vents is not unique to semantic gate extraction, but also applies to syntactic gate extraction 
if for instance one allows the solver to use shorter subsuming clauses instead of the exact 
Tseitin clauses (a common case in Xor extraction [38]). Consider the following encoding 
of “ x = (if a then b else c) ”, encoded as:

By resolving on x , we obtain:

If we do not include the resolvents, then b actually becomes pure and the entire formula 
is satisfiable with a = ⊥ and b = c = ⊤ . However the formula is actually unsatisfiable. 
The resolvent of Gx ⊗ Gx̄ contains the clause ā ∨ b̄ ∨ c . By resolving with the first clause 
b ∨ ā ∨ c of F′ , we obtain the clause ā ∨ c meaning that the clauses are unsatisfiable, 
because we now have all binary clauses over a and c.

F�� = (a ∨ b)
���
Gx⊗Gx̄

∧ (ā ∨ b̄)
���
Gx̄⊗Hx

∧

𝛥(F,x)
�����������������������������������

(ā ∨ c) ∧ (a ∨ b̄) ∧ (b ∨ c̄) .

Gx = (x ∨ ā ∨ b̄) ∧ (x ∨ a ∨ c̄)

Gx̄ = (x̄ ∨ c) ∧ (x̄ ∨ ā ∨ b)

F� = (b ∨ ā ∨ c) ∧ (a ∨ c) ∧ (a ∨ c̄) ∧ (ā ∨ c̄)

Gx ⊗ Gx̄ = (ā ∨ b̄ ∨ c) ∧ (a ∨ b̄ ∨ c̄)

Gx ⊗ Hx̄ = ⊤
Gx̄ ⊗ Hx = ⊤
Hx ⊗ Hx̄ = ⊤
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9  Scheduling variable in the main SAT solver Kissat

Identifying gate clauses syntactically is more efficient than identifying UNSAT cores with 
a SAT solver, even when using a smaller one like KittEn. Hence, KiSSat first uses syntactic 
pattern matching for a Tseitin encoding of an and, EquivaLEnCE, Xor, or ifthEnELSE gate 
with the given variable as output, and only if this fails, the inner SAT solver is called. In 
turn, if this fails due to hitting some limits, the standard elimination criterion is used. This 
is illustrated in Algorithm 1.

Until 2020, the order of scheduling variables as candidates to be eliminated was done 
using a priority queue implemented as binary heap, where variables with smaller number 
of occurrences are tried to be eliminated first. Since the 2021 version, we have (by default) 
disabled the heap and replaced it with iterating over all active literals; i.e., the variables that 
have neither been removed nor have already been eliminated. This actually improves per-
formance of KiSSat (Fig. 3). Of course it avoids updating the heap when removing clauses 
and probably has other positive effects we still need to investigate in future work.

0 1000 2000 3000 4000 5000

0
50

10
0

15
0

20
0

25
0

����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����
����
����
����
����
����
����

����
����
����

�� ����
����
����

����
����
����
����
����

��� ��� �� ��� �������
��������

�� � ������ ��� � ��� �� � � � �

� baseline
eliminateheap
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10  Core‑producing lean embedded SAT solver Kitten

In order to check satisfiability and compute clausal cores of these co-factors of the envi-
ronment of a variable we have implemented a simple embedded sub-solver KittEn with 
in-memory proof tracing and fast allocation and deallocation. If the conjunction of the 
co-factors of the environment are unsatisfiable we reduce through the API in KittEn its 
formula to the clausal core, shuffle clauses and run KittEn a second time which usually 
results in a smaller core and thus fewer gate clauses (increasing chances that the variable is 
eliminated).

If only one co-factor contains core clauses, then we can derive a unit clause. In this 
case the learned clauses in KittEn are traversed to produce a DRAT proof trace sequence 
for this unit. This is one benefit of using a proof tracing sub-solver in contrast to the BDD 
inspired approach in LingELing [4] discussed at the end of Sect. 4, which cannot produce 
DRAT proofs.

KittEn is a very simple SAT solver. Instead of using complicated data structures that 
take a long time to initialize, KittEn uses watched literals (without blocking literals) and 
the variable-move-to-front heuristic for decisions. It does not feature garbage collection (no 
“reduce”) nor simplification of added unit clauses. The latter makes it easier to keep track 
of unsat cores.

To speed up solving and reduce memory usage, KittEn renumbers literals of the given 
clauses to consecutive literals. Allocations are very fast reusing the internal memory allo-
cator of KiSSat instead of allocating new memory. However, even though allocation is fast, 
it is better to reuse the space allocated KittEn within one elimination round. In order to 
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reuse KittEn for the next variable we only clear the necessary content of memory, by for 
instance clearing stacks for watch lists and the clause arena, instead of deleting and real-
locating the solver.
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11  Experiments

We have evaluated KiSSat on the benchmark instances from the SAT Competition 2020 on 
8-core Intel Xeon E5-2620 v4 CPUs running at 2.10GHz (turbo-mode disabled). We used 
a memory limit of 7GB (unlike the SAT Competition 2020).

In our first experiment, we have run KiSSat with and without gates for variable elimina-
tion. The results are presented in Fig. 4 and the difference is rather negligible. While the 
default version performs slightly better, the difference is too small to be significant. How-
ever performance is also not worse. The graph also includes the configuration realloc-
kitten-eachtime where instead of clearing and reusing the same KittEn instance 
during elimination rounds, KiSSat reallocates a new KittEn solver for each variable. Thus 
avoiding this reallocation turns out to be important at the beginning, even if the impact 
seems to wear off over time.

We also plotted the amount of time used in the entire elimination procedure (not only 
the time spent in KittEn). Figure 5 shows that the time spent in KittEn is similar for most 
problems but in extreme cases is much larger even though the effect is not critical most 
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of the time. However, if we activate preprocessing as described in the next paragraph, we 
observed extreme cases (like newpol34-4) where the elimination took more than 90% 
of the time. However, these problems are not solved by any KiSSat configuration anyhow.

We have further compared efficiency of different techniques by looking at how many 
variables they have eliminated compared to the total number of eliminated variables 
(Fig. 6). We can see that And-gate elimination is by far the most important, but semanti-
cally extracting definitions is second. Extracting ifthEnELSE gates is not essential. Still, for 
all extraction techniques, there are a few problems where nearly all eliminated variables 
are of the given type. We assume that this is due to the structure and the encoding of those 
problems. Figure 7 shows the same numbers in relation to the total number of variables of 
the input problem and not compared to the number of eliminated variables, with the same 
conclusion: and-gate elimination is more important than any other technique.

To evaluate our new elimination technique in more detail, we implemented a preprocessing 
phase in KiSSat, by running explicit preprocessing rounds initially. Each round is composed of 
probing, vivification, and variable elimination. For our experiments, we use three rounds of pre-
processing (or fewer if a fix-point is reached earlier). Then we do not run KiSSat until comple-
tion and stop at the first decision. In the default implementation, there is no preprocessing and 
the same techniques are only called as inprocessing after a few hundred conflicts.

We first compare KiSSat with definitions and gates (the “base line”) to the version with-
out definitions. To do so, we show the percentage of removed variables in a scatter plot 
(Fig.  8). More variables are eliminated in the version with definitions. In two extreme 
cases, more than 90% of the variables are eliminated.

An interesting case is deactivating syntactic extraction of gates3 while keeping defini-
tion mining through KittEn (Fig. 9). The resulting figure is similar to Fig. 8, indicating that 
KittEn-based definition mining finds those gates too. Note that KittEn does not necessarily 
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3 Using KiSSat ’s –no-gate option also deactivates semantic definition extraction. Thus we spelled out 
all gate types as option in our experiments.
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find the minimal (smallest) unsat core, nor is it guaranteed to find a minimum core (an 
MUS). Thus it could in some cases only find large gates even though small gates exists and 
thus not eliminate as many variables as possible.

The difference in the number of eliminated variables is much higher if we also deacti-
vate and-gate detection (Fig. 10). With few exceptions the base line removes more vari-
ables. Also note that variable elimination is not confluent: eliminating variables in a differ-
ent order might lead to different results and the number of eliminated variables differs.

Finally, we deactivated syntactic (no-gates) as well as semantic (no-definitions) 
gate extraction and compare it to the base line (Fig. 11). Much fewer variables are elimi-
nated, as most eliminations need to introduce more clauses.

12  Related work

Our approach is mainly motivated by the use of definitions in recent work on model count-
ing [28] and QBF solving [37], where the authors also use core-based techniques, but 
extract gates explicitly. We showed the connection to this work and claim our restricted 
formulation is much more concise, because we do not have to extract exactly the variables 
the definitions depends on.

The approach presented in this article is also the first to use a “little” SAT solver 
inside a “big” SAT solver to extract definitions, while this related work discussed above 
uses an ordinary (big) SAT solver to find definitions but for harder problems with a 
much higher complexity. In circuit synthesis a related approach uses interpolation to 
find Boolean functions in relations [27].

Another line of work is related to blocked clause elimination [23, 25], a simplification 
technique used by SAT solvers to remove clauses. A clause is blocked if and only if all 
resolvents with one literal of the clause are tautologies.

Blocked clauses can be removed from the formula, shifting some work from solving 
(fewer clauses) to model reconstruction (the model after removal might not be a model 
anymore). However, detecting gates makes it possible to produce fewer clauses even if the 
solver subsequently uses BCE. Let’s look at the earlier example from Sect. 4:

BCE cannot remove the redundant clause a ∨ c because it is neither blocked with respect 
to a (due to clause ā ∨ b̄ ∨ e ) nor to c (due to clause c̄ ∨ d̄ ∨ ē ∨ f̄  ). By producing fewer 
clauses during elimination, our method actually makes BCE stronger.

Iser [24] used the “blockedness criterion” to identify gates in addition to a SAT solver 
(or another approach). He first uses BCE to check that left-uniqueness of the equa-
tions, before using the SAT solver to check right-uniqueness. He does not use the SAT 
solver to identify the clauses, but only to check whether the already identified clauses are 
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right-unique. Iser reports on experiments but does not report on performance changes, only 
on the amount of time spent in his various strategies.

This work by Iser is also motivated by performing blocked clause decomposition [22], 
which has the goal to split a CNF in two parts, where the first part is a set of clauses which 
can be completely eliminated by blocked clause elimination, and the other part contains 
the remaining clauses. The first “blocked clause set” is of course satisfiable and models 
can be generated in linear time. This allows to treat that part almost as a circuit [1]. How-
ever, blocked clause decomposition is often costly and the second remaining part of clauses 
often remains big.

13  Conclusion

We compute cores with a simple little SAT solver KittEn embedded in a large SAT solver 
KiSSat to semantically find definitions after syntactic gate detection fails in order to elimi-
nate more variables. The cost of calling KittEn is limited by focusing on the environment 
clauses of elimination candidates and its cheap enough to be used whenever syntactic gate 
detection fails, while it still allows to produce proofs in the DRAT format when needed.

On the considered benchmark set the performance of KiSSat is unfortunately not really 
improved by semantic definition extraction even though the technique is efficient and effec-
tive in finding many additional semantic definitions as well as eliminating more variables. 
The same applies to syntactic gate detection, which in principle is shown to be subsumed 
by our new semantic approach.

As future work we want to consider further usage of such an embedded SAT solver and 
started already to apply it to SAT sweeping [12]. We also want to apply our approach and 
KittEn to extract definitions for preprocessing in model counting and QBF.
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