
Vol.:(0123456789)

Formal Methods in System Design
https://doi.org/10.1007/s10703-023-00411-4

1 3

Stochastic games with lexicographic objectives

Krishnendu Chatterjee1 · Joost‑Pieter Katoen2 · Stefanie Mohr3 ·
Maximilian Weininger3 · Tobias Winkler2

Received: 3 January 2022 / Accepted: 25 January 2023
© The Author(s) 2023

Abstract
We study turn-based stochastic zero-sum games with lexicographic preferences over objec-
tives. Stochastic games are standard models in control, verification, and synthesis of sto-
chastic reactive systems that exhibit both randomness as well as controllable and adversarial
non-determinism. Lexicographic order allows one to consider multiple objectives with a
strict preference order. To the best of our knowledge, stochastic games with lexicographic
objectives have not been studied before. For a mixture of reachability and safety objectives,
we show that deterministic lexicographically optimal strategies exist and memory is only
required to remember the already satisfied and violated objectives. For a constant number of
objectives, we show that the relevant decision problem is in �� ∩ ���� , matching the cur-
rent known bound for single objectives; and in general the decision problem is ������-hard
and can be solved in �������� ∩ ���������� . We present an algorithm that computes
the lexicographically optimal strategies via a reduction to the computation of optimal strate-
gies in a sequence of single-objectives games. For omega-regular objectives, we restrict our
analysis to one-player games, also known as Markov decision processes. We show that lexi-
cographically optimal strategies exist and need either randomization or finite memory. We
present an algorithm that solves the relevant decision problem in polynomial time. We have
implemented our algorithms and report experimental results on various case studies.

Keywords Probabilistic verification · Stochastic games · Markov decision process ·
Multiple objectives · Lexicographic preferences · Reachability · Safety · Omega-regular

1 Introduction

Simple stochastic games (SG) [1] are zero-sum turn-based stochastic games played over a
finite state space by two adversarial players, Maximizer and Minimizer, along with random-
ness in the transition function. These games allow the interaction of angelic and demonic
non-determinism as well as stochastic uncertainty. They generalize classical models such
as Markov decision processes (MDP) [2] which have only one player and stochastic uncer-
tainty. An objective specifies the desired set of trajectories of the game, and the goal of
the Maximizer is to maximize the probability of satisfying the objective against all choices

 * Tobias Winkler
 tobias.winkler@cs.rwth-aachen.de

Extended author information available on the last page of the article

http://orcid.org/0000-0002-4561-241X
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0002-8630-3218
http://orcid.org/0000-0002-0163-2152
http://orcid.org/0000-0003-1084-6408
http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-023-00411-4&domain=pdf

 Formal Methods in System Design

1 3

of the Minimizer. The basic decision problem is to determine whether the Maximizer can
ensure the satisfaction of the objective with a given probability threshold. This is among
the rare and intriguing problems that are �� ∩ ���� , and whether it belongs to � is a major
and long-standing open problem. Besides the theoretical interest, SG are a standard model
in control and verification of stochastic reactive systems [2–5], and they serve as robust
abstractions of MDP when precise transition probabilities are unknown [6, 7].

Multi-objective optimization problems are relevant in the analysis of systems with multi-
ple – potentially conflicting – goals where trade-offs must be considered. While such trade-
off analyses have been extensively studied for MDP with various classes of objectives, see
e.g. [2, 8–11], the problem is notoriously hard for SG. In fact, even for multiple reachability
objectives, such games are not determined [12] and their decidability is still open.

This work considers SG with multiple objectives equipped with a total lexicographic
preference order. That is, if there are, say, two objectives Ω1 and Ω2 where Ω1 comes first
in the preference order, then Maximizer should pick a strategy that is (i) optimal for Ω1 ,
and (ii) optimal for Ω2 among all strategies that satisfy condition (i). This lexicographic
optimization scheme easily generalizes to an arbitrary number of objectives. Lexicographic
objectives are useful in many scenarios. For example, an autonomous vehicle might have a
primary objective to avoid clashes and a secondary objective to optimize performance; or a
robot saving lives during a fire in a building might have a primary objective to save as many
lives as possible, and a secondary objective to minimize energy consumption. Thus study-
ing reactive systems with lexicographic objectives is a very relevant problem that has been
considered in many different contexts [13, 14]. In particular, non-stochastic games with lexi-
cographic objectives [15, 16] and MDP with lexicographic objectives [17, 18] have been
considered, but to the best of our knowledge SG with lexicographic objectives have not been
studied.

1.1 Our contribution

The contribution of this paper is twofold.
(I) We present theoretical and practical results for SG with lexicographic reachability and

safety objectives. These are the same as in the conference version of this paper [19], but
we improved the presentation and included the full proofs. The main contributions are as
follows.

• Determinacy In contrast to SG with multiple objectives that are not determined, we
establish determinacy of SG with a lexicographic combination of reachability and safety
objectives.

• Computational complexity For the associated decision problem we establish the
following: (a) if the number of objectives is constant, then the decision problem
lies in �� ∩ ���� , matching the current known bound for SG with a single objec-
tive; (b) in general, the decision problem is ������-hard and can be solved in
�������� ∩ ����������.

• Strategy complexity We show that there exist lexicographically optimal strategies that
are deterministic and use finite memory. We also show that memory is only needed
in order to remember the already satisfied and violated objectives, i.e., the memory is
arena-independent [20].

Formal Methods in System Design

1 3

• Algorithm We present an algorithm that computes the unique lexicographic value and
the witness lexicographically optimal strategies via a reduction to the computation of
optimal strategies in a sequence of single-objectives games.

• Experimental results We have implemented the algorithm and present experimental
results on several case studies.

Technical contribution The key idea is that, given the lexicographic order of the objectives,
we can consider them sequentially. After every objective, we remove all actions that are not
optimal, thereby forcing all following computations to consider only locally optimal actions.
The main complication is that local optimality of actions does not imply global optimal-
ity when interleaving reachability and safety, as the latter objective can use locally optimal
actions to stay in the safe region without reaching the more important target. We introduce
quantified reachability objectives as a means to solve this problem.

(II) We present new results for MDP with lexicographic �-regular objectives. These
results extend the conference version [19] of this paper. We discuss the reason for only
addressing MDP and not SG in Sect. 4.3, also sketching the possible directions for dealing
with the more general model of games, as well as a solution for a subclass of SG. The main
contributions are as follows.

• Algorithm We present an algorithm that computes the unique lexicographic value and
witness lexicographically optimal strategies for MDP with a tuple of lexicographic
Streett objectives in polynomial time.

• Computational complexity We establish that the associated decision problem is in � .
This result relies on the objectives being given as Streett-conditions. If they are in a dif-
ferent form, e.g. LTL formulae, we get the corresponding doubly exponential blow-up of
transforming LTL to Streett.

• Strategy complexity We show that there exist lexicographically optimal strategies. They
need either randomization or finite memory, but only in a limited part of the state space,
the so-called end components. In the rest of the MDP, memoryless deterministic strate-
gies suffice.

• Experimental results We have implemented the algorithm and present experimental
results on several case studies, comparing our deterministic algorithm to the one from
[18], which is based on reinforcement learning. Surprisingly, our algorithm often outper-
forms the learning-based approach.

Technical contribution The key problem is that satisfaction of general �-regular objectives
depends on the game’s infinite runs. This is different from reachability (and safety) where
satisfaction (violation, resp.) can be witnessed after a finite number of steps. Hence, we have
to analyze the part of the state space where a play can remain forever, i.e., the end compo-
nents. In MDP, we can compute the lexicographic value vector for all states in end compo-
nents and then reduce the problem to reachability. In SG, the analysis of the end components
is more complicated and we leave it for future work. A more detailed discussion of the com-
plications and the possible solutions is in Sect. 4.3.

1.2 Related work

We discuss related works on (a) MDP with multiple objectives, (b) SG with multiple objec-
tives, (c) lexicographic objectives in related models, and (d) existing tool support.

 Formal Methods in System Design

1 3

(a) MDP with multiple objectives have been widely studied over a long time [2, 8]. In
the context of verifying MDP with multiple objectives, both qualitative objectives such as
reachability and LTL [21], as well as quantitative objectives, such as mean payoff [9, 22],
discounted sum [23], total reward [24] and combinations thereof [11, 25] have been consid-
ered. Besides multiple objectives with expectation criteria, other criteria have also been con-
sidered, e.g. combinations with variance [26], or multiple percentile (threshold) queries [22,
27–29]. Practical applications of MDP with multiple objectives are described in [30–32].

(b) More recently, SG with multiple objectives have been considered, but the results are
more limited [33]. Multiple mean-payoff objectives were first examined in [34] and the qual-
itative problems are coNP-complete [35]. Some special classes of SG (namely stopping SG)
have been solved for total-reward objectives [12, 36] and applied to autonomous driving
[37]. However, in the general case, decidability of SG with multiple objective remains open,
even in the simple case of reachability objectives. On the positive side, it is known that the
Pareto curve of achievable thresholds can be approximated to arbitrary precision [38].

(c) The study of lexicographic objectives has been considered in many different contexts
[13, 14]. Non-stochastic games with lexicographic mean-payoff objectives and parity con-
ditions have been studied in [15] for the synthesis of reactive systems with performance
guarantees. Non-stochastic games with multiple �-regular objectives equipped with a mono-
tonic preorder, which subsumes lexicographic order, have been studied in [39]. Moreover,
the beyond worst-case analysis problems studied in [40] also considers primary and second-
ary objectives, which has a lexicographic flavor. MDP with lexicographic discounted-sum
objectives have been studied in [17], and have been extended with partial-observability in
[41]. Very recently, a reinforcement learning-based algorithm for MDP with lexicographic
�-regular objectives was presented in [18]. This solution relies on the choice of suitable
parameters for the learning and, in the absence of mechanisms to guess them, does not pro-
vide a formal guarantee about the correctness of the result. In contrast, our algorithm is
deterministic and guarantees to find the lexicographic value and optimal strategies.

(d) PRISM-Games [42] provides tool support for several multi-player multi- objective
settings. MultiGain [43] is limited to generalized mean-payoff MDP. Storm [44] can, among
numerous single-objective problems, solve Markov automata with multiple timed reachabil-
ity or expected cost objectives [45], multi-cost bounded reachability MDP [46], and it can
provide simple strategies for multiple expected reward objectives in MDP [10]. The recent
tool TEMPEST [47] includes a solver for SG with safety and mean-payoff objectives. It can
also solve multiple mean-payoff objectives by mixing them into a single one.

1.3 Organization of this paper

After recalling preliminaries and defining the problem in Section 2, we first, in Sect. 3.1,
consider SG with reachability and safety objectives with the following restriction: all target
sets are absorbing. Then, in Sect. 3.2 we extend our insights to general games, yielding the
full algorithm and the theoretical results. Section 4 considers the lexicographic �-regular
objectives for MDP. After providing a solution for end components in Sect. 4.1, the general
algorithm is given in Sect. 4.2. In Sect. 4.3 we discuss the complications for SG. Finally,
Section 5 describes the prototypical implementation and experimental evaluation of both
algorithms, and Sect. 6 concludes.

Formal Methods in System Design

1 3

2 Preliminaries

We fix some general notation first. A probability distribution on a finite set A is a function
f ∶ A → [0, 1] such that

∑

x∈A f (x) = 1 . We denote the set of all probability distributions on
A by D(A) . A distribution f is Dirac if f (a) = 1 for some a ∈ A . Vectors x ∈ Bn where B is
an arbitrary set are denoted in a bold font. For 1 ≤ i ≤ n we write xi to refer to the i-th com-
ponent of x . Moreover, we use x<i to denote the (possibly empty) vector (x1,… , xi−1).

2.1 Games, strategies, and basic objectives

In this section, we formally introduce the stochastic models used in this paper, most impor-
tantly stochastic games and Markov decision processes. We also define strategies and basic
objectives.

2.1.1 Stochastic games and Markov decision processes

In this paper, we consider (simple) stochastic games [1], which are defined as follows (see
Fig. 1 on page 1 for examples):

Definition 1 (SG: Stochastic game) An SG is a tuple G = (S
◻
, S◊, L,���,P) with

S ∶= S
◻
⊎ S◊ ≠ � a finite set of states, L a finite set of action labels, 𝖠𝖼𝗍 ∶ S → 2L ⧵ {�} a

set of actions available at every state, and P ∶ S × L ⤏ D(S) a (partial) probabilistic transi-
tion function. P(s, a) is defined for s ∈ S and a ∈ L iff a ∈ ���(s).

We write P(s, a, s�) instead of P(s, a)(s�) for all s, s� ∈ S , a ∈ ���(s) . A state s ∈ S is
called absorbing (or sink) if P(s, a, s) = 1 for all a ∈ ���(s) . �����(G) denotes the set of all
absorbing states of G . We refer to the two players of the game as ��� and ��� , and the sets
S
◻
 and S◊ as ��� - and ���-states, respectively. As the game is turn-based, these sets parti-

tion the state space S: in each state, it is either ��� ’s or ��� ’s turn.
Intuitively, the semantics of an SG is as follows: In every turn, the corresponding player

picks one of the finitely many available actions a ∈ ���(s) in the current state s. The game

p

q

r

s

t

u

v w

S1

S2

(a)

p

q

r

s

t

u

v w

S1

S2

(b)

Fig. 1 a An example of a stochastic game (action labels omitted). ���-states are rendered as squares ◻
and ���-states as rhombs ◊ . Probabilistic choices correspond to small circles. All probabilities are equal
to 1∕2 . The absorbing lex-objective � = {�����

(

S1

)

, ����
(

S2

)

} is indicated by the thick green line around
S1 = {s, t} and the dotted red line around S2 = {t, u} . Self-loops in sinks are omitted. b Restriction of the
game to lex-optimal actions only

 Formal Methods in System Design

1 3

then transitions to the next state according to the probability distribution P(s, a). The
winning conditions and the initial state are not part of the game and need to be specified
externally.

We also consider Markov decision processes in this paper:

Definition 2 (MDP: Markov decision process) An MDP is the special case of an SG where
either S◊ = � or S

◻
= � . In other words, an MDP is a 1-player SG.

2.1.2 Strategies

We define the formal semantics of SG (and MDP) by means of paths and strate-
gies. Let G = (S

◻
, S◊, L,���,P) be an SG. An infinite path � is an infinite sequence

� = s0a0s1a1⋯ ∈ (S × L)� , such that for every i ≥ 0 , we have ai ∈ ���(si) and
si+1 ∈ {s� ∣ P(si, ai, s

�
) > 0} . Finite paths are defined analogously as elements of

(S × L)∗ × S . Omitting the action labels in a path yields a sequence of states. We call such
state sequences trajectories.

A strategy of player ��� is a function � ∶ (S × L)∗ × S
◻
→ D(L) where 𝜎(𝜋s)(s�) > 0

only if s ∈ ���(s) . The strategy � is memoryless if �(�s) = �(��s) for all �,��
∈ (S × L)∗

and s ∈ S
◻
 . More generally, � has memory of class-size at most m if the set (S × L)∗ can be

partitioned into m classes M1,… ,Mm ⊆ (S × L)∗ such that �(�s) = �(��s) for all 1 ≤ i ≤ m ,
�,��

∈ Mi and s ∈ S
◻
 . A memory of class-size m can be represented with ⌈logm⌉ bits.

A strategy � of ��� is deterministic if �(�s) is Dirac for all �s . Strategies that are both
memoryless and deterministic are called MD and can be identified as functions � ∶ S

◻
→ L .

Note that there are at most |L||S◻| different MD strategies, i.e., exponentially many in S
◻
 . MD

strategies play an important role in this paper because they are sufficient in order to play
optimally w.r.t. to many basic objectives, see below.

Strategies � of player ��� are defined analogously, with S
◻
 replaced by S◊ in the above

definitions. The set of all strategies of player ��� is denoted with Σ
���

 , and its set of all MD
strategies with Σ��

���
 . Similarly, we use the notation Σ

���
 and Σ��

���
 for the corresponding strat-

egy sets of player ���.

2.1.3 Markov chains and probability measures

A Markov chain (MC) is the special case of an SG with |���(s)| = 1 for all game states s.
Fixing strategies �, � of both players in an SG G yields the induced MC G�,� . Formally, G�,�
has infinitely many states S�,� = (S × L)∗ × S and the transition probabilities are given as

for all � ∈ (S × L)∗ , states s, s� ∈ S and a ∈ ���(s) . Note that the term �(�s)(a) is the prob-
ability assigned by ��� to action a when the game reaches state s with history � . It is also
possible to fix just one player’s strategy � which results in the induced MDP G�.

Even though induced Markov chains (and MDP) are generally infinite, it is well-known
that if the strategies �, � are finite-memory, then G�,� is equivalent (more precisely: bisimi-
lar) to a finite MC. In particular, if the strategies are MD, then the induced MC is simply
obtained from keeping only the actions selected by the MD strategies at each state.

Unlike SG and MDP, Markov chains are purely probabilistic systems, and it is in fact
possible to define a probability measure over certain events that may occur in an MC.

P�,�
(�s, �sas�) =

�∑

a∈���(s) �(�s)(a) ⋅ P(s, a, s
�
) if s ∈ S

◻
,

∑

a∈���(s) �(�s)(a) ⋅ P(s, a, s
�
) if s ∈ S◊,

Formal Methods in System Design

1 3

Ultimately, it is this probability measure that assigns meaning to statements like “ ��� can
win the game with probability 1/2”. The construction of such a probability measure is stand-
ard, see e.g. [3, Ch. 10]. Given a Markov chain with (countable) state space S, we define the
cylinder set of a finite trajectory � ∈ S∗ as �S� = {���

∣ ��
∈ S�} . We obtain a sigma-alge-

bra (S�,F) where F ⊆ 2S
𝜔 is the smallest set that contains all the cylinder sets and that is

closed under complement and countable union. The sets in F are called measurable events.
Each measurable event E ∈ F can be assigned a probability ℙs0

(E) ∈ [0, 1] given some MC
state s0 ∈ S . This probability measure is constructed as follows: First, the probability of a
cylinder set is defined as

where |�| is the length of a finite trajectory. Second, the probabilities of countably many
pairwise disjoint events (Ei)i≥0 satisfy

It turns out that these axioms induce a unique probability measure ℙs0
∶ F → [0, 1] . The

resulting structure (S�,F,ℙs0
) is a probability space. The probability measure of an

induced Markov chain G�,� with initial state s0 is denoted ℙ�,�
s0

.

2.1.4 Reachability and safety objectives

In our setting, an objective is a measurable event Ω ⊆ S𝜔 of infinite trajectories in an SG G .
Note that on the level of an induced MC G�,� , where �, � are arbitrary strategies, the event Ω
must be identified with the (measurable) event

i.e., the trajectories in Ω� are like the ones in Ω but each state also carries a possible history.
To simplify the notation, we do not distinguish between Ω and Ω�.

The reachability objective �����(T) with target set T ⊆ S is the objective

The set ����(T) = S� ⧵ �����(T) is called a safety objective; alternatively,

In other words, a safety objective consists of avoiding the unsafe set T forever (we remark
that some other authors specify safety objectives in terms of a safe set that should never be
left). Further, for sets T1, T2 ⊆ S we define the until objective

Reachability, safety, and until objectives are among the simplest examples of measur-
able events [3]. A reachability or safety objective where the set T satisfies T ⊆ �����(G)

ℙs0
(�S�) =

⎧

⎪

⎨

⎪

⎩

1 if � is the empty trajectory,

0 if � = s�� for some s ≠ s0,�
�
∈ S∗,

∏

���−1

i=0
P(�i,�i+1) otherwise,

ℙs0

(

⋃

i≥0

Ei

)

=

∑

i≥0

ℙs0
(Ei) .

Ω
�
= {𝜋1s1,𝜋2s2,… ∈ (S𝜎,𝜏)𝜔 ∣ s1s2 … ∈ Ω, ∀i ≥ 0 ∶ P𝜎,𝜏

(𝜋isi,𝜋i+1si+1) > 0} ,

�����(T) = { s0s1 … ∈ S� ∣ ∃ i ≥ 0 ∶ si ∈ T } .

����(T) = { s0s1 … ∈ S� ∣ ∀ i ≥ 0 ∶ si ∉ T } .

T1 � T2 = { s0s1 … ∈ S𝜔 ∣ ∃ i ≥ 0 ∶ si ∈ T2 ∧ ∀ j < i ∶ sj ∈ T1 } .

 Formal Methods in System Design

1 3

is called absorbing. For the safety probabilities in an (induced) MC, it holds that
ℙs0

(����(T)) = 1 − ℙs0
(�����(T)).

2.1.5 !‑regular objectives and streett conditions

Reachability, safety, and until objectives as discussed above are all special cases of �-regu-
lar objectives. In general, the class of �-regular objectives can be characterized as follows:
An objective Ω ⊆ S𝜔 is �-regular iff there exists a deterministic Streett1 automaton (DSA)
with input alphabet S that accepts exactly the trajectories in Ω . In order to reason about opti-
mal strategies for Ω , one can construct the automata-theoretic product of the game with the
DSA defining Ω . This product is an SG with a Streett objective, and optimal strategies for
Ω can be found by optimizing the probability to satisfy the Streett condition in the product.
More formally, DSA and products of DSA and SG are defined as follows:

Definition 3 (DSA and product contruction) A deterministic Streett automaton (DSA) is a
finite automaton A = (Q,Σ, �, q0, (�j, �j)1≤j≤m) , where Q ≠ ∅ is a finite set of control states,
Σ ≠ � is a finite input alphabet, � ∶ Q × Σ → Q is a deterministic transition function, q0 ∈ Q
is an initial state, and for all 1 ≤ j ≤ m , (�j, �j) ⊆ Q × Q is a tuple of states called Streett pair.

Consider an SG G = (S
◻
, S◊, L,���,P) and A = (Q, S, �, q0, (�j, �j)1≤j≤m).

We define the product of G and A as the SG G ×A = (S
◻
× Q, S◊ × Q, L,����,P�

) where
for all s ∈ S and q ∈ Q , ����(s, q) = ���(s) , and P�

∶ (S × Q) × L ⤏ D(S × Q) such that for
all a ∈ ���(s) , P�

((s, q), a) is a distribution ds,q,a over S × Q with ds,q,a(s�, q�) = P(s, a, s�) if
q� = �(q, s) , and ds,q,a(s�, q�) = 0 otherwise.

The tuples (S × �j, S × �j)1≤j≤m are a Streett condition for G ×A.

Such product constructions are standard in probabilistic model checking, see e.g. [3,
Sec. 10.6.4] for further details. In the rest of the paper we assume that we are already given
a (product) SG equipped with a Streett condition when considering �-regular objectives,
i.e., we do not consider the product explicitly.

Let G be an SG with state space S. The semantics of a Streett condition (�
j
, �

j
)1≤j≤m ,

∀1 ≤ j ≤ m ∶ �j, �j ⊆ S , for G is defined in terms of the objective Ω = �������((�
j
, �

j
)1≤j≤m) .

An infinite path s0s1 … ∈ S� is contained in Ω iff

It is well-known that �-regular sets, and thus, in particular, Streett objectives, are measur-
able events, see e.g. [3, Sec. 10.3].

2.2 Lexicographic objectives

The lexicographic order on ℝn is defined as x ≤
���

y iff xi ≤ yi where i ≤ n is the greatest
position such that for all j < i it holds that xj = yj . The position i is called tiebreaker. Notice
that for arbitrary sets X ⊆ [0, 1]n , suprema and infima exist in the lexicographic order.

∀ 1 ≤ j ≤ m ∶ { i ≥ 0 ∣ si ∈ �j } is finite or { i ≥ 0 ∣ si ∈ �j } is infinite .

1 For technical reasons (discussed in Sect. 4.1), we prefer Streett over the equally expressive Rabin, Parity,
or Muller conditions.

Formal Methods in System Design

1 3

Definition 4 (Lex-objectives and lex-values) Let G be an SG with state space S. A lex(-
icographic) objective for G is a vector � = (Ω1,… ,Ωn) where Ωi ⊆ S𝜔 is an objective in
G for all 1 ≤ i ≤ n . For all s ∈ S , the lex(-icographic) value function �v𝗅𝖾𝗑 ∶ S → [0, 1]n is
defined as:

where ℙ�,�
s
(�) denotes the vector (ℙ�,�

s
(Ω1),… ,ℙ�,�

s
(Ωn)) ∈ [0, 1]n and the suprema and

infima are taken with respect to the order ≤
���

 on [0, 1]n.

Thus the lex-value at state s is the lexicographically supremal vector of probabilities that
��� can ensure against all possible behaviors of ��� when the game starts in s. We prove in
Sect. 3.2.3 that the supremum and infimum in (1) can be exchanged in the case of (possibly)
mixed reachability and safety objectives; this property is called determinacy. We omit the
superscript � in �v��� if it is clear from the context.

Example 1 (SG and lex-values) Consider the SG sketched in Fig. 1a with the lex-objective
� = {�����

(

S1
)

, ����
(

S2
)

} . Player ��� must thus maximize the probability to reach S1
and, moreover, among all optimal strategies for �����

(

S1
)

 , it must choose one that maxi-
mizes the probability to avoid S2 forever.

2.2.1 Lex‑value of actions and lex‑optimal actions

We extend the notion of value to actions. Let s ∈ S . The lex-value of an action a ∈ ���(s)
is defined as v���(s, a) =

∑

s� P(s, a, s
�
) ⋅ v���(s�) . If s ∈ S

◻
 , then action a is called lex-opti-

mal if v���(s, a) = maxb∈���(s) v
���
(s, b) . Similarly, if s ∈ S◊ , then a is called lex-optimal if

v���(s, a) = minb∈���(s) v
���
(s, b) . There exists at least one lex-optimal action because ���(s) is

finite by definition.

Example 2 (Lex-values of actions) We now intuitively explain the lex-values of all states
in Fig. 1a. The lex-value of sink states s, t, u and w is determined by their membership in
the sets S1 and S2 . E.g., v���(s) = (1, 1) , as it is part of the set S1 that should be reached and
not part of the set S2 that should be avoided. Similarly we get the lex-values of t, u and w as
(1, 0), (0, 0) and (0, 1) respectively. State v has a single action that yields (0, 0) or (0, 1) each
with probability 1∕2 , thus v���(v) = (0, 1∕2).

State p has one action going to s, which would yield (1, 1). However, as p is a ���-state,
its best strategy is to avoid giving such a high value. Thus, it uses the action going down-
wards and v���(p) = v���(q) . State q only has a single action going to r, so v���(q) = v���(r).

State r has three choices: (i) Going back to q, which results in an infinite loop between q
and r, and thus never reaches S1 . So a strategy that commits to this action will not achieve the
optimal value. (ii) Going to t or u each with probability 1∕2 . In this case, the safety objective
is definitely violated, but the reachability objective is achieved with 1∕2 . (iii) Going to t or
v each with probability 1∕2 . Similarly to (ii), the probability to reach S1 is 1∕2 , but addition-
ally, there is a 1∕2 ⋅ 1∕2 chance to avoid S2 . Thus, since r is a ���-state, its lex-optimal
choice is the action leading to t or v and we get v���(r) = (1∕2, 1∕4) .

(1)
�v���(s) = sup

�∈Σ
���

inf
�∈Σ

���

ℙ
�,�
s
(�)

 Formal Methods in System Design

1 3

2.2.2 Lex‑optimal strategies

Definition 5 (Lex-optimal strategies) A strategy � ∈ Σ
���

 is lex-optimal for � if for all
s ∈ S , v���(s) = inf��∈Σ

���
ℙ
�,��

s
(�) . A strategy � ∈ Σ

���
 is a lex-optimal counter-strategy

against � if ℙ�,�
s
(�) = inf��∈Σ

���
ℙ
�,��

s
(�).

Further, a strategy � of ��� (��� , resp.) is called locally lex-optimal if for all � ∈ (S × L)∗ ,
s ∈ S

◻
 (s ∈ S◊ , resp.) and a ∈ ���(s) , we have 𝜎(𝜋s)(a) > 0 implies that action a is lex-

optimal. Thus, locally lex-optimal strategies only assign positive probability to lex-optimal
actions. Locally lex-optimal strategies are not necessarily (globally) lex-optimal, see Exam-
ple 4.

We stress that in general, counter-strategies of ��� may depend on the strategy chosen by
��� ; this is because of the quantification order “ sup inf”.

3 Lexicographic 2‑player stochastic games

In this section, we derive properties and algorithms for SG with lexicographic reachabil-
ity and safety objectives. Formally, a lexicographic reachability-safety objective (reach-safe
lex-objective, for short) for a game G with state space S is a vector � = (Ω1,… ,Ωn) such
that Ωi ∈ {�����

(

Si
)

, ����
(

Si
)

} with Si ⊆ S for all 1 ≤ i ≤ n . Note that arbitrary alterna-
tions of reachability and safety objectives are allowed. We call � absorbing if Si ⊆ �����(G)
for all 1 ≤ i ≤ n . Intuitively, games with absorbing objectives terminate once a single reach-
ability or safety objective in � has been satisfied or violated, respectively, which somewhat
simplifies the analysis.

The rest of this section is structured as follows. In Sect. 3.1, we treat absorbing reach-safe
lex-objectives, and we reduce the non-absorbing case to the absorbing setting in Sect. 3.2.

3.1 Lexicographic reach‑safe SG with absorbing targets

This section deals with computing the values and optimal strategies of SG with absorb-
ing reach-safe lex-objectives. In Sect. 3.1.1, we prove a structural result (Theorem 1) about
optimal strategies which implies in particular that MD optimal strategies exist (Theorem 2).
The subsequent Sect. 3.1.2 presents our algorithm. The main technical difficulty arises from
interleaving reachability and safety objectives.

3.1.1 Characterizing optimal strategies

This first subsection derives a characterization of lex-optimal strategies in terms of local
optimality and an additional reachability condition (Theorem 1 further below). It is one
of the key ingredients for the correctness of the algorithm presented later and also gives
rise to a (non-constructive) proof of the existence of MD lex-optimal strategies in the
absorbing case.

We begin with the following lemma that summarizes some straightforward facts
that we will frequently use. Recall that a strategy is locally lex-optimal if it only selects
actions with optimal lex-value.

Formal Methods in System Design

1 3

Lemma 1 The following statements hold for every SG G with absorbing reach-safe lex-
objective � :

(a) If � ∈ Σ
��

���
 is lex-optimal and � ∈ Σ

��

���
 is a lex-optimal counter strategy against � , then

� and � are both locally lex-optimal. We do not (yet) claim that MD optimal strategies
�, � exist in general.

(b) Let G̃ be the subgame obtained by removing all actions (of both players) that are not
locally lex-optimal in G . Let ṽ��� be the lex-values in G̃ . Then ṽ��� = v���.

Proof Both claims follow from the definitions of lex-value and lex-optimal strategy. For (b)
in particular, a strategy using actions that are not lex-optimal can be transformed into a strat-
egy that achieves a greater (lower, resp.) value. Thus removing the non-lex-optimal actions
does not affect the lex-value. ◻

Example 3 (Modified game G̃) Consider again the SG from Fig. 1a. Recall the lex-values
from Example 2. Now we remove the actions that are not locally lex-optimal. This means
we drop the action that leads from p to s and the action that leads from r to t or u (Fig. 1b).
Since these actions were not used by the lex-optimal strategies, the value in the modified SG
is the same as that of the original game.

Example 4 (Locally lex-optimal does not imply globally lex-optimal) Note that in the sub-
game in Fig. 1, we do not drop the action that leads from r to q, because v���(r) = v���(q) , so
this action is locally lex-optimal. In fact, a lex-optimal strategy for ��� can use it arbitrarily
many times without reducing the lex-value, as long as it eventually picks the action leading
from r to t or v. However, if ��� only played the action leading to q, the lex-value would be
reduced to (0, 1) as we would not reach S1 , but would also avoid S2.

We stress the following consequence of this: Playing a locally lex-optimal strategy is not
necessarily globally lex-optimal. It is not sufficient to just restrict the game to locally lex-
optimal actions of the previous objectives and then solve the current one. Note that in fact
the optimal strategy for the second objective ����

(

S2
)

 would be to remain in {q, r} ; how-
ever, ��� must not pick this safety strategy before it has not “tried everything” for all previ-
ous reachability objectives, in this case reaching S1 .

The final set
This idea of “trying everything” for an objective �����

(

Si
)

 is equivalent to the follow-
ing: either reach the target set Si, or reach a set of states from which Si cannot be reached
anymore. Formally, let ����i = {s ∈ S ∣ v���

i
(s) = 0} be the set of states where ��� cannot

enforce reaching Si with positive probability if ��� plays optimally w.r.t. to more impor-
tant targets j < i . Note that ����i indeed depends on the lex-value, and not on the single-
objective value of reaching Si . This is important as the single-objective value could be
greater than 0, but a more important objective has to be sacrificed to achieve it.

We define the set of states where we have “tried everything” for all reachability objec-
tives as follows:

Definition 6 (Final set) For absorbing � = (Ω1,… ,Ωn) and 1 ≤ i ≤ n+1 , let
R<i = {j < i ∣ Ωj = �����

(

Sj
)

} . We define the Final Set

 Formal Methods in System Design

1 3

with the convention that F<i = S if R<i = � . We also let F = F<n+1.

In other words, the Final Set F contains all target states as well as the states whose lex-
value vector has zero entries at all positions corresponding to reachability objectives. The
latter is necessary because as long as a state still has a positive lex-value w.r.t. at least one
reachability objective, the optimal behaviour of ��� is trying to reach that. Otherwise, ���
would not have “tried everything”.

Example 5 (Final set) For the game in Fig. 1 with objectives Ω1 = �����
(

S1
)

,Ω2 = ����
(

S2
)

 ,
we have ����1 = {u, v,w} and thus F = ����1 ∪ S1 = {s, t, u, v,w} . An MD lex-optimal
strategy of ��� must almost-surely reach this set against any strategy of ��� ; only then it has
“tried everything”.

We can now characterize MD lex-optimal strategies in terms of local lex-optimality and
the Final Set.

Theorem 1 Let � be an absorbing reach-safe lex-objective and � ∈ Σ
��

���
 . Then � is lex-

optimal for � if and only if � is locally lex-optimal and for all s ∈ S we have

where F is the Final Set from Definition 6.

Proof sketch The “if”-direction is shown by induction on the number n of targets. We make
a case distinction according to the type of Ωn : If it is safety, then we prove that local lex-
optimality is already sufficient for global lex-optimality. If Ωn is reachability, then intui-
tively, the additional condition (2) ensures that the strategy � indeed “tries everything” and
either reaches the target Sn or eventually a state in ����n where the opponent ��� can make
sure that ��� cannot escape. The technical details of these assertions rely on a fixed point
characterization of the reachability probabilities and the classical Knaster-Tarski fixed point
theorem [48].

For the “only if”-direction recall that lex-optimal strategies are necessarily locally lex-
optimal by Lemma 1 (a). Further, let i be such that Ωi = �����

(

Si
)

 and assume for contra-
diction that � remains forever within S ⧵ (Si ∪ ����i) with positive probability against some
strategy of ��� . But then � visits states with positive lex-value for Ωi infinitely often without
ever reaching Si . Thus � is not globally lex-optimal, contradiction. ◻

Full Proof of Theorem 1
We first prove the following lemma about the special case of MDP:

Lemma 2 Let G be an MDP (i.e., S
◻
= � or S◊ = �) and let � be an absorbing lex-objec-

tive. Then there exists an MD lex-optimal strategy for � for the respective player.

Proof We assume w.l.o.g. that S◊ = � ; otherwise we can exchange all �����
(

Si
)

 for
����

(

Si
)

 in � and swap the roles of ��� and ��� . Fix a state s ∈ S . It is known that the set of
points x ∈ [0, 1]n such that there exists a strategy � ∈ Σ

���
 with

F<i =

⋃

k∈R<i

Sk ∪

⋂

k∈R<i

����k

(2)∀� ∈ Σ
��

���
∶ ℙ

�,�
s
(�����(F)) = 1 ,

Formal Methods in System Design

1 3

where ≥̇ denotes point-wise inequality is a closed convex polyhedron � [21, 49] which is
contained in [0, 1]n . Therefore � contains a maximum x∗ in the order ≤

���
 . Moreover, x∗ is

a vertex of � , i.e., a point contained in � which is not a proper convex combination of two
different points of � . If not, then x∗ = �y + (1 − �)z for y ≠ z ∈ � and 0 < 𝛼 < 1 . Let i be
the tiebraker position of y and z . We can assume w.l.o.g. that yi > zi . But then it follows
immediately that y >

���
x∗ , contradicting the fact that x∗ was maximal in � . The claim fol-

lows because in MDP the vertices of � are achieved by MD strategies [49]. ◻

Before proving Theorem 1, we show the following intermediate result, where we use
�����

(

Si ∪ ����i

)

 (for all 1 ≤ i ≤ n such that Ωi = �����
(

Si
)

) instead of �����(F).

Lemma 3 Let � ∈ Σ
��

���
 and let � be an absorbing reach-safe lex-objective. Then �

is lex-optimal for � if and only if � is locally lex-optimal and for all 1 ≤ i ≤ n such that
Ωi = �����

(

Si
)

 and all s ∈ S it holds that

Proof We show the two directions of the “if and only if” statement. Recall that an MC can
be simplified to a tuple M = (S,P) such that P ∶ S → D(S).

“if”: We use the following characterization of the reachability probabilities in any (not
necessarily finite) Markov chain: The probabilities ℙs(�����

(

S�
)

) constitute the least fixed
point x(s) of the operator

which is monotonic on the complete lattice [0, 1]S (that is, the set of all mappings from S to
[0, 1]) [3]. In a finite MC, the fixed point of R can be made unique by requiring addition-
ally that R(x)(s) = 0 if there is no path from s to S′ in the MC.

We now prove the “if”-direction by induction on n. We first show the inductive step and
then argue that the base case n = 1 follows with a similar, slightly simpler argument. Let
n > 1 . Moreover, let � ∈ Σ

��

���
 be locally lex-optimal and assume that (3) holds. To prove

that � is lex-optimal, we let � ∈ Σ
���

 be a lex-optimal-counter strategy against � in the
induced MDP G� and show that ℙ�,�

s
(Ωi) = v���

i
(s) for all 1 ≤ i ≤ n . By Lemma 2, we can

assume that � is MD. By the I.H., � is already lex-optimal for �<n = (Ω1,… ,Ωn−1) . Next
observe that since � is a lex-optimal counter-strategy against � , it holds that

Thus we only need to prove the other inequality “ ≥ ” in (5). Therefore we make a case dis-
tinction according to the type of Ωn:

• Ωn = ����
(

Sn
)

 . Consider the MC G�,� . Since �, � are both MD, this MC has the same
finite state space S as the game and its transition probability function is defined as
P�,�

(s, s�) = P(s, �(s), s�) if s ∈ S
◻
 and P�,�

(s, s�) = P(s, �(s), s�) if s ∈ S◊ . In G�,� , the
safety probabilities ℙs(Ωn) = ℙs(����

(

Sn
)

) constitute the greatest fixed point of the
operator

(

ℙ
𝜎
s
(Ω1),… ,ℙ𝜎

s
(Ωn)

)

≥̇ x

(3)∀� ∈ Σ
��

���
∶ ℙ

�,�
s
(�����

(

Si ∪ ����i

)

) = 1.

(4)R ∶ [0, 1]S → [0, 1]S, R(x)(s) =

�

1 if s ∈ S�
∑

s� P(s, s
�
) ⋅ x(s�) else

(5)ℙ
�,�
s
(Ωn) ≤ v���

n
(s).

 Formal Methods in System Design

1 3

 which is obtained from the operator R for reachability using the relation
ℙs(����

(

Sn
)

) = 1 − ℙs(�����
(

Sn
)

) . Just like R , the operator S is also monotonic on
the complete lattice [0, 1]S and we can apply the well-known Theorem of Knaster &
Tarski: If we can prove that for all s ∈ S

 then this implies v���
n
(s) ≤ (��� S)(s) = ℙ

�,�
s
(Ωn) , where ��� S denotes the greatest

fixed point of S . To prove (6), we let s ∈ S and make another case distinction:

• s ∈ Sn . In this case, v���
n
(s) = 0 ≤ S(v���

n
)(s) holds trivially.

• s ∈ S
◻
⧵ Sn . Then

 and thus in particular v���
n
(s) = S(v���

n
)(s).

• s ∈ S◊ ⧵ Sn . Let v���
<n
(s) be the lex-value with respect to the first n − 1 objectives

�<n . Since � is lex-optimal for �<n and � is a lex-optimal counter-strategy against
� , we have that

 Let ���<n(s) be the lex-optimal actions available in s with respect to �<n . By the
previous equation, 𝜏(s) ∈ ���<n(s) . Therefore,

 Thus together with (5) we have v���
n
(s) = ℙ

�,�
s
(Ωn) and � is lex-optimal for

� = (Ω1,… ,Ωn).
• Ωn = �����

(

Sn
)

 . This case is a similar but slightly more involved than the previous
case. As mentioned earlier, in G�,� the probabilities ℙs(Ωn) constitute the unique fixed
point of the following monotonic operator:

 where the transition probability function P of the Markov chain G�,� is defined as
before. As in the other case, we prove that v���

n
(s) ≤ R(v���

n
)(s) for all s ∈ S , which

S ∶ [0, 1]S → [0, 1]S, S(x)(s) =

�

0 if s ∈ Sn
∑

s� P
�,�
(s, s�) ⋅ x(s�) else

(6)v���
n
(s) ≤ S(v���

n
)(s)

v���(s) = max
a∈���(s)

∑

s�

P(s, a, s�) ⋅ v���(s�) (by Lemma 1(b))

=

∑

s�

P(s, �(s), s�) ⋅ v���(s�)(� is locally lex-optimal)

v���
<n
(s) = min

a∈���(s)

∑

s�

P(s, a, s�) ⋅ v���
<n
(s�) (by Lemma 1(a))

=

∑

s�

P(s, 𝜏(s), s�) ⋅ v���
<n
(s�)

v���
n
(s) = min

a∈���<n(s)

∑

s�

P(s, a, s�) ⋅ v���
n
(s�)

≤
∑

s�

P(s, 𝜏(s), s�) ⋅ v���
n
(s�) = S(v���

n
)(s).

R ∶ [0, 1]S → [0, 1]S, R(x)(s) =

⎧

⎪

⎨

⎪

⎩

1 if s ∈ Sn
0 if s cannot reach Sn
∑

s� P(s, s
�
) ⋅ x(s�) else

Formal Methods in System Design

1 3

implies v���
n
(s) ≤ (���R)(s) = ℙ

�,�
s
(Ωn) . Notice that the greatest fixed point ���R is

equal to the unique fixed point of R . Let s ∈ S and let us again make a case distinction
to prove v���

n
(s) ≤ R(v���

n
)(s) for all s:

• If s ∈ Sn , then v���
n
(s) = 1 = R(v���

n
)(s).

• The cases where s can reach Sn but s ∉ Sn can be shown exactly as in the previous
case where Ωn was safety.

• Now suppose s cannot reach Sn in G�,� , i.e., ℙ�,�
s
(�����

(

Sn
)

) = 0 . In this case we
need to show that v���

n
(s) = 0 , or equivalently, s ∈ ����n . By condition (3), we have

for all t ∈ S that

 and thus ℙ�,�
t (�����

(

Sn
)

) = ℙ
�,�
t (����

(

����n

)

) . Therefore, � is also locally
lex-optimal for the objective (Ω1,Ω2,… , ����

(

����n

)

) . But then we can show
exactly as in the previous case that v���

n
(t) ≤ S(v���

n
)(t) where S is the fixed point

operator for safety probabilities associated to the objective ����
(

����n

)

 . Thus
v���
n
(s) ≤ (��� S)(s) = ℙ

�,�
s
(����

(

����n

)

) = 0.
Finally, for the base case n = 1 observe that the same reasoning applies with the simplifi-
cation that we do not need to care about previous targets. In particular, we do not need to
apply the I.H.

“only if”: Let � ∈ Σ
��

���
 be lex-optimal. First observe that � is also locally lex-optimal by

Lemma 1(a). Now let i be such that Ωi = �����
(

Si
)

 , let s ∈ S be any state and let � ∈ Σ
��

���
 .

It remains to show (3). Assume for contradiction that ℙ𝜎,𝜏
s
(�����

(

Si ∪ ����i

)

) < 1 . This
means that in the finite Markov chain G�,� , there exists a reachable bottom strongly con-
nected component (BSCC, see [3, Ch. 10]) B ⊆ S such that B ∩ (Si ∪ ����i) = � . Thus for
every state t ∈ B , we have v���

i
(t) > 0 . Further it holds that ℙ�,�

t (�����
(

Si
)

) = 0 because s
can only reach states inside B, but B ∩ Si = � . However, this is a contradiction to the lex-
optimality of � . ◻

We now conclude the proof of Theorem 1:

Proof of Theorem 1 Let � be locally lex-optimal, let s ∈ S and let � ∈ Σ
��

���
 . We show the fol-

lowing equivalence:

where R = {i ≤ n ∣ Ωi = �����
(

Si
)

} . The equivalence states that conditions (3) and (2) are
equivalent and thus Lemma 3 is equivalent to Theorem 1. For R = � there is nothing to
show, so we let R ≠ ∅.

To show direction “ ⇒ ”, assume for contradiction that the left-hand side holds but
ℙ
𝜎,𝜏
s
(�����

(

Si ∪ ����i

)

) < 1 for some i ∈ R . Then in the finite MC G�,� there exists a BSCC
B which is reachable from s with positive probability and B ∩ (Si ∪ ����i) = � . Thus if
t ∈ B , then t ∉ Si and t ∉ ����i . Thus t ∉ F , contradiction because t is reachable from s with
positive probability.

1

= ℙ
�,�
t
(�����

(

Sn ∪ ����n

)

)

= ℙ
�,�
t
(�����

(

Sn
)

) + ℙ
�,�
t
(�����

(

����n

)

)

= ℙ
�,�
t
(�����

(

Sn
)

) + 1 − ℙ
�,�
t
(����

(

����n

)

)

ℙ
�,�
s
(�����(F)) = 1 ⟺ ∀i ∈ R ∶ ℙ

�,�
s
(�����

(

Si ∪ ����i

)

) = 1,

 Formal Methods in System Design

1 3

For direction “ ⇐ ”, the argument is similar. Suppose that the right-hand side holds
but ℙ𝜎,𝜏

s
(�����(F)) < 1 . Then in the finite MC G�,� there exists a BSCC B which is

reachable from s with positive probability and B ∩ F = � . Let t ∈ B . Then since t ∉ F ,
we have by definition that t ∉ Si for all i ∈ R and t ∉ ����j for some j ∈ R . But this is a
contradiction to ℙ�,�

s
(�����

(

Sj ∪ ����j

)

) = 1 because t is reachable from s with positive
probability. ◻

Existence of MD lex-optimal strategies
The characterization from Theorem 1 also allows us to prove that MD lex-optimal

strategies exist for absorbing reach-safe lex-objectives.

Theorem 2 In every SG with absorbing reach-safe lex-objective � , there exist MD lex-opti-
mal strategies for both players.

Proof sketch We consider the subgame G̃ obtained by removing lex-sub-optimal actions for
both players and then show that the (single-objective) value of �����(F) in G̃ equals 1. An
optimal MD strategy for �����(F) exists [1]; further, it is locally lex-optimal, because we
are in G̃ , and it reaches F almost surely. Thus, it is lex-optimal for � by the “if”-direction of
Theorem 1. ◻

Full proof Let G̃ be the game obtained by removing lex-sub-optimal actions in G for
both players. Let v(s) be the value of state s ∈ S for the objective �����(F) in the modi-
fied game G̃ , where F is the Final Set like in Theorem 1 (we can assume that R ≠ ∅). We
show that v(s) = 1 for all s ∈ S . Assume towards contradiction that there exists a state s
with v(s) < 1.

• If s ∈ �����(G) , then either s ∈ Si for some i ∈ R , or otherwise s is a sink which is not
contained in any of the Si with i ∈ R and thus s ∈ ����i for all i ∈ R . Thus s ∈ F by
definition of F and v(s) = 1 , contradiction.

• Let s ∉ �����(G) . Let � be an MD optimal strategy for �����(F) in G̃ and let � be an
MD optimal counter-strategy. Notice that such strategies exist because we are only con-
sidering a single objective [1]. As usual, we consider the finite MC G̃

�,�
 . Since v(s) < 1 ,

we have ℙ𝜎,𝜏
s
(�����(F)) < 1 which means that there is a BSCC B ⊆ S in G̃

�,�
 such that

B ∩ F = � and ℙ𝜎,𝜏
s
(�����(B)) > 0 . Let t ∈ B be any state in the BSCC. Then clearly,

ℙ
�,�
t (�����(F)) = 0 and thus v(t) = 0 because � is optimal for �����(F) . But since t ∉ F ,

we have by definition of F that ∃i ∈ R ∶ t ∉ ����i , which means that v���
i
(t) > 0 . Notice that

here, v��� are the lex-values in the original game G , however by Lemma 1(b), they coincide
with the lex-values in G̃ . Thus since v���

i
(t) > 0 , there is a strategy of ��� in G̃ that reaches

Si with positive probability against all counter-strategies of ��� and thus also reaches F with
positive probability because Si ⊆ F . This is a contradiction to v(t) = 0.

 ◻

Formal Methods in System Design

1 3

3.1.2 Algorithm for SG with absorbing targets

Theorem 2 is not constructive because it relies on the values v��� without showing how to
compute them. Computing the values and constructing an optimal strategy for ��� in the
case of an absorbing reach-safe lex-objective is the topic of this subsection.

Definition 7 (QRO) Consider an SG with state space S and a function q ∶ S� → [0, 1] for
some S′ ⊆ S . The quantified reachability objective (QRO) �����(q) is defined as follows:
For all strategies � and �,

Intuitively, a QRO generalizes its standard Boolean counterpart by additionally assign-
ing a [0, 1]-valued weight – or reward – to the states in the target set S′ . The probability of
a QRO in some (induced) MC with a given initial state s is defined as the expected value of
the reward received when reaching S′ . Clearly, this number is in [0, 1]. Note that it does not
depend on whatever happens after reaching S′ ; in fact, it is unaffected by making all states in
S′ absorbing.

In Sect. 3.2, we also need the dual notion of quantified safety objectives, whose probabil-
ity is defined as ℙ�,�

s
(����(q)) = 1 − ℙ

�,�
s
(�����(q)) . Intuitively, maximizing a quantified

safety objective is equivalent to minimizing the probability of the dual QRO.

Remark 1 The standard Boolean reachability objective �����
(

S′
)

 is a special case
of a QRO with q(s) = 1 for all s ∈ S� . Vice versa, a QRO can be easily reduced to
a standard reachability objective �����

(

S′
)

 : Convert all states t ∈ S� into sinks, then
for each such t prepend a new state t′ with a single action a and P(t�, a, t) = q(t) and
P(t�, a,⊥) = 1 − q(t) where ⊥ is a sink state. Finally, redirect all transitions leading into
t to t′ . Despite this equivalence, it turns out to be convenient and natural to use QROs.

Example 6 (QRO) Example 4 illustrated that solving a safety objective after a reachability
objective can lead to problems, as the optimal strategy for ����

(

S2
)

 did not use the action
that actually reached S1 . In Example 5, we indicated that the Final Set F = {s, t, u, v,w}
has to be reached with probability 1, and among the states of F the ones with the high-
est safety values should be preferred. This requirement can be encoded in a QRO as
follows: Compute the values for the ����

(

S2
)

 objective for the states in F. Then con-
struct the function q2 ∶ F → [0, 1] that maps all states in F to their safety value, i.e.,
q2 ∶ { s ↦ 1, t ↦ 0, u ↦ 0, v ↦ 1∕2, w ↦ 1 } .

With QRO, we can effectively reduce (interleaved) safety objectives to quantified reach-
ability objectives:

Lemma 4 (Reduction Safe → Reach) Let � = (Ω1,… ,Ωn) be an absorbing reach-safe
lex-objective with Ωn = ����

(

Sn
)

 . Define the QRO qn ∶ F → [0, 1] as qn(t) = v���
n
(t) for all

t ∈ F where F is the Final Set (Definition 6), and define ��
= (Ω1,… ,Ωn−1,�����

(

qn
)

) .
Then it holds that �v��� = �

�

v���.

ℙ
�,�
s
(�����(q)) =

∑

t∈S�

ℙ
�,�
s
((S ⧵ S�) � t) ⋅ q(t).

 Formal Methods in System Design

1 3

Proof (Proof sketch) By definition, �v���(s) = �
�

v���(s) for all s ∈ F , so we only need to
consider the states in S ⧵ F . Since any lex-optimal strategy for � or �′ must also be lex-
optimal for �<n , we know by Theorem 1 that such a strategy reaches F<n almost-surely.
Note that we have F<n = F , as the n-th objective, either the QRO or the safety objective,
does not add any new states to F. The reachability objective �����

(

qn
)

 weighs the states in
F with their lexicographic safety values v���

n
 . Thus we additionally ensure that in order to

reach F, we use those actions that give us the best safety probability afterwards. In this way
we obtain the correct lex-values v���

n
 for states in S ⧵ F . ◻

Proof (Full proof) Let � ∈ Σ
��

���
 be lex-optimal for � (such a � exists by Theorem 2). Clearly, � is

in particular lex-optimal for the first n − 1 objectives �<n . Let us denote by Σ<n
���

 the set of all MD
lex-optimal strategies for player ��� with respect to �<n . We have 𝜎 ∈ Σ

<n
���

.
We know by Theorem 1 that � reaches F<n = F almost surely against all � ∈ Σ

��

���
 . Now

fix an optimal counter strategy � ∈ Σ
��

���
 of ��� against � w.r.t. the full objective � . For an

arbitrary MD strategy ��
∈ Σ

��

���
 of ��� , let Σ<n

���
(𝜎�

) denote the set of all MD lex-optimal
counter strategies against �′ w.r.t. �<n . Clearly, 𝜏 ∈ Σ

<n
���

(𝜎).
For all s ∈ S , it holds that

This proves the claim. ◻

Example 7 (Reduction Safe → Reach) Recall Example 6. By Lemma 4, computing
sup� inf� ℙ

�,�
s
(�����

(

S1
)

,�����
(

q2
)

) yields the correct lex-value v���(s) for all s ∈ S . Con-
sider for instance state r: The action leading to q is clearly suboptimal for �����

(

q2
)

 as it
does not reach F. Both other actions surely reach F. However, since q2(t) = q2(u) = 0 while
q2(v) = 1∕2 , the action leading to u and v is preferred over that leading to t and u, as it
ensures the higher safety probability after reaching F.

ℙ
𝜎,𝜏
s
(����

(

Sn
)

) =

∑

t∈F

ℙ
𝜎,𝜏
s
((S ⧵ F) � t) ⋅ ℙ𝜎,𝜏

t
(����

(

Sn
)

)

(asF is reached a.s. inG𝜎,𝜏 , and (S ⧵ F) ∩ Sn = � as� is absorbing)

⟹ v���
n
(s) =

∑

t∈F

ℙ
𝜎,𝜏
s
((S ⧵ F) � t) ⋅ v���

n
(t) (𝜎, 𝜏 are lex-optimal w.r.t.�)

= sup
𝜎�∈Σ

<n
���

inf
𝜏�∈Σ<n

���
(𝜎�)

∑

t∈F

ℙ
𝜎� ,𝜏�

s
((S ⧵ F) � t) ⋅ v���

n
(t) (as 𝜎 ∈ Σ

<n
���

)

= sup
𝜎�∈Σ

<n
���

inf
𝜏�∈Σ<n

���
(𝜎�)

ℙ
𝜎� ,𝜏�

s
(�����

(

qn
)

) (Definition 7)

= the n-th component of the vector sup
𝜎�∈Σ

��

���

inf
𝜏�∈Σ��

���

ℙ
𝜎� ,𝜏�

s
(�

�
)

=
�

�

v���
n
(s) .

Formal Methods in System Design

1 3

Algorithm 1 Solve absorbing reach-safe lex-objective

Input: SG G, absorbing reach-safe lex-objective Ω = (Ω1, . . . ,Ωn)
Output: Lex-value vectors vlex, MD lex-optimal strategy σ for Max
1: procedure SolveAbsorbingRS(G,Ω)
2: initialize vlex and σ arbitrarily
3: G ← G Consider whole game in the beginning.

4: for 1 ≤ i ≤ n do
5: (v, σ) ← SolveSingleObj(G,Ωi) Black box
6: if Ωi = Safe (Si) then
7: F<i ← Final Set with respect to G and Ω<i see Def. 6
8: qi(s) ← v(s) for all s ∈ F<i see Def. 7
9: (v, σQ) ← SolveSingleObj(G,Reach (qi)) Black box

10: end if

11: G ← restriction of G to optimal actions w.r.t. v

12: vlex
i ← v

13: for s ∈ S do
14: if (Ωi=Reach (Si) ∧ v(s)>0) or (Ωi=Safe (Si) ∧ s∈F<i) then
15: σ(s) ← σ(s) Strategy improvement
16: else if Ωi=Safe (Si) ∧ s/∈F<i

17: σ(s) ← σQ(s)
18: end if
19: end for
20: end for

return (vlex, σ)
21: end procedure

We now explain the basic structure of Algorithm 1. More technical details are
explained in the proof sketch of Theorem 3. The idea of Algorithm 1 is, as sketched in
Sect. 3.1.1, to consider the objectives sequentially in the order of importance, i.e., start-
ing with Ω1 . The i-th objective is solved (Lines 5-10) and the game is restricted to only
the locally optimal actions (Line 11). This way, in the i-th iteration of the main loop, only
actions that are locally lex-optimal for objectives 1 through (i−1) are considered. Finally,
we construct the optimal strategy and update the result variables (Lines 12-13).

Theorem 3 Given an SG G and an absorbing reach-safe lex-objective � = (Ω1,… ,Ωn) , Algo-
rithm 1 computes the vector of lex-values v��� and an MD lex-optimal strategy � for player ��� . It
needs n + m calls to a solver for single reachability, where m is the number of safety objectives in �.

Proof sketch We explain the intuition of the algorithm and highlight the most interesting details.

• G̃-invariant For i ≥ 1 , in the i-th iteration of the loop, G̃ is the original SG restricted
to only those actions that are locally lex-optimal for the targets 1 to (i−1) ; this is the
case because Line 11 was executed for all previous targets.

 Formal Methods in System Design

1 3

• Single-objective case The single-objective that is solved in Line 5 can be either reach-
ability or safety. We can use any (precise) single-objective solver as a black box, e.g.
strategy iteration [1]. By Remark 1, it is no problem to call a single-objective solver
with a QRO since there is a trivial reduction.

• QRO for safety If an objective is of type reachability, no further steps need to be
taken; if on the other hand, it is safety, we need to ensure that the problem explained
in Example 4 does not occur. Thus we compute the Final Set F<i for the i-th target
and then construct and solve the QRO as in Lemma 4.

• Resulting strategy When storing the resulting strategy, we again need to avoid errors induced
by the fact that locally lex-optimal actions need not be globally lex-optimal. This is why for
a reachability objective, we only update the strategy in states that have a positive value for
the current objective; if the value is 0, the current strategy does not have any preference, and
we need to keep the old strategy. For safety objectives, we need to update the strategy in
two ways: for all states in the Final Set F<i , we set it to the safety strategy �̃ (from Line 5) as
within F<i we do not have to consider the previous reachability objectives and therefore must
follow an optimal safety strategy. For all states in S ⧵ F<i , we set it to the reachability strategy
from the QRO �Q (from Line 9). This is correct, as �Q ensures almost-sure reachability of F<i
which is necessary to satisfy all preceding reachability objectives; moreover �Q prefers those
states in F<i that have a higher safety value (cf. Lemma 4).

 ◻

Full proof The proof is by induction on n. For n = 1 , the algorithm is correct by the assump-
tion that �������������� is correct in the single-objective case. Next, we show the induc-
tive step n > 1 for reachability and then for safety objectives.

• Case 1 Ωn = �����
(

Sn
)

 . By the I.H., G̃ is the correct restriction of G to lex-optimal
actions for both players with respect to the first n − 1 objectives �<n = (Ω1,… ,Ωn−1)
and � is a lex-optimal MD strategy in G with respect to �<n . The algorithm computes
an MD optimal strategy �̃ in G̃ with respect to the single-objective �����

(

Sn
)

 , and the
single-objective values v(s) of this objective in G̃ by calling �������������� (line 5).
The strategy � ∈ Σ

��

���
 is then updated as follows:

 We claim that � is lex-optimal for the whole lex-objective � = (Ω1,… ,Ωn).

• We first show that � remains lex-optimal for the first n − 1 objectives �<n by
applying the “if”-direction of Lemma 3: First observe that by definition, � is
locally lex-optimal with respect to �<n . Therefore it only remains to show condi-
tion (3) in Lemma 3. Let i < n such that Ωi = �����

(

Si
)

 , let s ∈ S and let � ∈ Σ
��

���

be a counter-strategy against � . If v(s) = 0 , then ℙ�,�
s
(�����

(

Si ∪ ����i

)

) = 1
because from initial state s, � behaves like �old which is lex-optimal for �<n . Thus
let v(s) > 0 . From the “only if”-direction of Lemma 3 applied to �̃ , we know that
ℙ
�,�
s
(�����

(

Sn ∪ {s ∈ S ∣ v(s) = 0}
)

) = 1 . Thus for a play � that starts in s and is
consistent with �, � , almost-surely one of the following two cases occurs:

∗ If � reaches a state t ∈ Sn , then since t is a sink, we have t ∈ Si ∪ ����i.
∗ If t with v(t) = 0 is reached in � , then since we play according to �old from t, we

either reach Si or ����i by the “only if”-direction of Lemma 1 applied to �old.

𝜎(s) =

{

�𝜎(s) if �v(s) > 0

𝜎old(s) if �v(s) = 0.

Formal Methods in System Design

1 3

 Thus ℙ�,�
s
(�����

(

Si ∪ ����i

)

) = 1 and � remains lex-optimal for �<n.
• To complete the proof that � is lex-optimal for � , notice that v(s) = v���

n
(s) for all s ∈ S

by Lemma 1.

• Case 2 Ωn = ����
(

Sn
)

 . Since by the I.H., the values v���
1
,… , v���

n−1
 are the correct lex-

values with respect to �<n , the algorithm computes the final set F<n = F<n+1 = F.
 Next observe that v(s) = v���

n
(s) for all s ∈ F because of the following:

• First, �̃ is locally lex-optimal w.r.t. �<n because it is defined in the subgame G̃ . There-
fore by Lemma 1, � is already (globally) lex-optimal for �<n from all s ∈ F because
condition 2 is satisfied trivially. Thus v(s) ≤ v���

n
(s).

• Second, by the same argument, an MD lex-optimal strategy for � is necessarily
locally lex-optimal w.r.t. �<n . The strategy �̃ is locally lex-optimal w.r.t. �<n and
moreover optimal for Ωn in the subgame G̃ . Thus v(s) ≥ v���

n
(s).

 Notice that it is very well possible that v(s) > v���
n
(s) for s ∉ F because the strategy �̃ does

not necessarily reach F from s ∉ F . Applying Lemma 4 concludes the proof: The quantified
reachability objective qn constructed by the algorithm indeed satisfies qn(s) = v(s) = v���

n
(s)

for all s ∈ F as we have just shown. The result strategy � defined by the algorithm is

where �Q is a lex-optimal strategy for ��
= (Ω1,… ,Ωn−1,�����

(

qn
)

) . Thus with
Lemma 4 and the above discussion, � is lex-optimal from all states.

 ◻

3.2 General lexicographic reach‑safe SG

We now consider SG with general reach-safe lex-objectives that are not necessarily absorb-
ing. In Section 3.2.1, we describe a reduction to the absorbing case. The resulting algorithm
is given in Section 3.2.2. Finally, in Section 3.2.3, we discuss complexity and determinacy
results that follow easily from our algorithms.

3.2.1 Reduction to absorbing reach‑safe lex‑objectives

In general lexicographic SG, strategies need memory. This is because they have to remember
which reachability and safety objectives have already been satisfied and violated, respectively, and
behave accordingly. We formalize the solution of such games by means of stages. Intuitively, one
can think of a stage as a copy of the game with fewer objectives, or as the sub-game that is played
after visiting one of the targets or unsafe sets for the first time. This approach is standard for deal-
ing with multiple reachability or safety objectives [12, 50, 51].

Definition 8 (Stage) Given a general reach-safe lex-objective � = (�1,… ,�n) and a set
I ⊆ {i ≤ n} , a stage �(I) is the objective vector where the objectives �i are removed for all
i ∈ I . For every state s ∈ S , let �(s) denote the stage �({i ∣ s ∈ Si}) . If a stage contains only one
objective, we call it simple.

�(s) =

{

�̃(s) if s ∈ F

�Q(s) if s ∉ F

 Formal Methods in System Design

1 3

Example 8 (Stages) Consider the SG in Fig. 2a on Page 24. There are two (reachability)
objectives and thus 22 = 4 four possible stages: The one where we consider the original
objective (the region denoted with � in Fig. 2b), the simple ones where we consider only
one of the objectives (regions �({1}) and �({2})), and the one where both objectives have
been visited. This final stage is trivial since there are no more objectives left, hence we do
not depict it and do not have to consider it. Note that the actions of q and r are omitted in the
�-stage, this is because a new stage begins once we visit these states for the first time.

Consider the two simple stages first: In stage �({1}) , state q has value 0 as it belongs to
player ��� who may use the self-loop to avoid reaching r ∈ S2 . In stage �({2}) , both p and
r have value 1 because ��� can easily reach the target state q ∈ S1 from both of them. By
combining this knowledge, we can assemble an optimal strategy for every possible initial
state in the principal stage � . In particular, note that an optimal ���-strategy for state p needs
memory: First go to r and thereby reach stage �({2}) . Afterwards, go back from r to p, and
then use the other action in p to reach q and the final stage �({1, 2}).

Note that this example reveals another interesting fact about lexicographic games: Opti-
mal strategies may try to satisfy less important objectives first.

In Example 8, we combined our knowledge about the sub-objectives in the corresponding stages
to find the lex-values for the overall objective. In general, the lex-values of the stages are vectors
in [0, 1]. We will reuse the idea of quantified reachability and safety objectives from Definition 7
(Page 18) in order to find an optimal strategy for some stage � given the values of its substages: For
all 1 ≤ i ≤ n , let qi ∶

⋃

j≤n Sj → [0, 1] be defined as follows:

Recall that �(s) denotes the stage �({i ∣ s ∈ Si}) . Further, we define

(7)qi(s) =

⎧

⎪

⎨

⎪

⎩

1 if s ∈ Si and otherwise:
�(s)v���

i
(s) if Ωi is reachability

1 − �(s)v���
i
(s) if Ωi is safety.

(8)�� = (����1(q1), … , ����n(qn))

p

q

r

S1

S2

(a)

Ω

Ω({1})

Ω({2})

p

q

r

p

q

r

p

q

r

(b)

Fig. 2 a SG with non-absorbing lex-objective � = (�����
(

S1

)

,�����
(

S2

)

) . b The three stages identified by
the sub-objectives � , �({1}) = �����

(

S2

)

 , and �({2}) = �����
(

S1

)

 . The latter two stages are simple

Formal Methods in System Design

1 3

where for all 1 ≤ i ≤ n , ����i = ����� if Ωi = �����
(

Si
)

 , and ����i = ���� if Ωi = ����
(

Si
)

 .
Thus we have reduced a general reach-safe lex-objective � to a vector of quantitative
reachability or safety objectives �� . This reduction preserves the values:

Lemma 5 For every reach-safe lex-objective � , it holds that �v��� = ��v��� , where �� is the
quantified reach-safe lex-objective defined in (7) and (8).

Proof In this proof, we write � =
⋃

i≤n Si for the sake of readability. For the case s ∈ � , a
straightforward induction shows that qi(s) = �v���

i
(s) = ��v���

i
(s) for all 1 ≤ i ≤ n.

Now let s ∉ � . Let �, � be arbitrary strategies of ��� and ��� , respectively. Further, sup-
pose that Ωi = �����

(

Si
)

 . In the induced Markov chain G�,� , the following holds (all infima
and suprema are taken over lex-optimal (counter-)strategies with respect to �<i):

where we used the notation Pathsfin(𝔖) = {�t ∈ (S ⧵ 𝔖)
∗
× S ∣ t ∈ 𝔖} for the set of all

finite paths to a state in � in G�,� and ℙ�,�
s
(�t) denotes the probability of such a path when

the Markov chain G�,� starts in s.
If Ωi is a safety objective instead, then the claim follows from the above using the rela-

tionship ℙ�,�
s
(����

(

Si
)

) = 1 − ℙ
�,�
s
(�����

(

Si
)

) . ◻

The reward functions qi involved in �� all have the same domain
⋃

j≤n Sj . Hence we
can, as mentioned below Definition 7, consider �� on the game where all states in

⋃

j≤n Sj
are sinks without changing the lex-value. This is precisely the definition of an absorbing
game, and hence we can compute ��v��� using Algorithm 1 from Sect. 3.1.2.

3.2.2 Algorithm for general SG

Algorithm 2 computes the lex-value �v��� for a given lexicographic objective � and an arbi-
trary SG G . We highlight the following technical details:

• Reduction to absorbing case We just have seen that once we have the quantitative objec-
tive vector �� , we can use the algorithm for absorbing SG (Line 13).

ℙ
�,�
s
(Ωi) =

∑

�t∈Pathsfin(𝔖)

ℙ
�,�
s
(�t) ⋅ ℙ�,�

�t
(Ωi) (because� visits n state in𝔖)

=

∑

�t∈Pathsfin(𝔖)

ℙ
�,�
s
(�t) ⋅ ℙ�(�),�(�)

t (Ωi) (where �(�) behaves like � after seeing�)

⟹ v���
i
(s) = sup

�

inf
�

∑

�t∈Pathsfin(𝔖)

ℙ
�,�
s
(�t) ⋅ sup

�(�)

inf
�(�)

ℙ
�(�),�(�)
t (Ωi)

(because behavior of �, � after� is independent of the behavior before �)

= sup
�

inf
�

∑

�t∈Pathsfin(𝔖)

ℙ
�,�
s
(�t) ⋅ �v���

i
(t) (by definition of the lex-value�v���(t))

= sup
�

inf
�

∑

�t∈Pathsfin(𝔖)

ℙ
�,�
s
(�t) ⋅ qi(t) (because t ∈ 𝔖)

= sup
�

inf
�

∑

t∈𝔖

ℙ
�,�
s
((S ⧵ 𝔖) � t) ⋅ qi(t) (by definition of the until property)

= sup
�

inf
�
ℙ
�,�
s
(�����

(

qi
)

) =
��v���

i
(s).

 Formal Methods in System Design

1 3

• Computing the quantitative objective vector To compute �� , the algorithm calls itself recur-
sively on all states in the union of all target sets (Line 5-7). We annotated this recursive call
“With dynamic programming”, as we can reuse the results of the computations. In the worst
case, we have to solve all 2n − 1 possible non-empty stages. Finally, given the values �(s)v���
for all s ∈

⋃

j≤n Sj , we can construct the quantitative objective (Line 10 and 12) that is used
for the call to ����������������.

• Termination Since there are finitely many objectives in � and in every recursive call at
least one objective is removed from consideration, eventually we have a simple objective
that can be solved by �������������� (Line 3).

• Resulting strategy The resulting strategy is composed in Line 14: It adheres to the strat-
egy for the quantitative query ��� until some s ∈

⋃

j≤n Sj is reached. Then, to achieve the
values promised by qi(s) for all i with s ∉ Si , it adheres to �(s)� , the optimal strategy for
stage �(s) obtained by the recursive call.

Algorithm 2 Solve non-absorbing reach-safe lex-objective

Input: SG G, reach-safe lex-objective Ω = (Ω1, . . . ,Ωn)
Output: Lex-values Ωvlex, lex-optimal σ ∈ ΣMax with at most 2n−1 memory

1: procedure SolveGeneralRS(G,Ω)

2: if Ω = (Ω1) is just a single objective then Base case
3: return SolveSingleObj(G,Ω1) Blackbox
4: end if

Recursive call with dynamic programming
5: for s ∈ j≤n Sj do
6: Ω(s)vlex, Ω(s)σ ← SolveGeneralRS(G,Ω(s))
7: end for

Assemble quantified objective as in (7) and (8)
8: for 1 ≤ i ≤ n do
9: Let qi : j≤n Sj → [0, 1],

10: qi(s) ←

1 if s ∈ Si and else:
Ω(s)vlex

i (s) if type(Ωi) = Reach
1− Ω(s)vlex

i (s) if type(Ωi) = Safe
11: end for
12: qΩ ← (type1(q1), . . . , typen(qn))

13: (qΩvlex, qΩσ) ← SolveAbsorbingRS(G, qΩ) Algorithm 1

Resulting strategy; note that Ω(s)σ was computed in Line 6
14: σ ← adhere to qΩσ until reaching some s ∈ j≤n Sj , then to Ω(s)σ

15: return (qΩvlex, σ)

16: end procedure

Formal Methods in System Design

1 3

Theorem 4 Given an SG G and a reach-safe lex-objective � = (Ω1,… ,Ωn) , Algorithm 2
correctly computes the vector of lex-values v��� and a deterministic lex-optimal strategy �
of player ��� which uses memory of class-size at most 2n−1 . The algorithm needs at most
2n−1 calls to ���������������� or ��������������.

Proof Correctness of the algorithm and termination follows from the discussion of the algo-
rithm, Lemma 5 and Theorem 3. ◻

3.2.3 Determinacy and complexity

Theorem 5 below states that lexicographic games are determined for arbitrary lex-objectives
� . Intuitively, this means that the lex-value is independent of the player who fixes their strat-
egy first. This property does not hold for non-lexicographic multi-reachability/safety objec-
tives [12].

Theorem 5 (Determinacy) For all SG G and reach-safe lex-objectives � , it holds for all
s ∈ S that:

Proof This statement follows because single-objective games are determined [1] and Algo-
rithm 2 obtains all values by either solving single-objective instances directly (Line 3) or
calling Algorithm 1, which also reduces everything to the single-objective case (Line 5 of
Algorithm 1). Thus the sup-inf values v��� returned by the algorithm are in fact equal to the
inf-sup values. ◻

By analyzing Algorithm 2, we also get the following complexity results:

Theorem 6 (Complexity) For any SG G and reach-safe lex-objective � of size n:

1. Strategy complexity: Deterministic strategies with 2n − 1 memory-classes (i.e., bit-size
n) are sufficient and necessary for lex-optimal strategies.

2. Computational complexity: The decision problem v���(s0) ≥?
���

x is ������-hard and can
be solved in �������� ∩ ���������� . If n is a constant or � is absorbing, then it is
contained in �� ∩ ����.

Proof

1. For each stage, Algorithm 2 computes an MD strategy for the quantitative objective.
These strategies are then concatenated whenever a new stage is entered. Equivalently,
every stage has an MD strategy for every state, so as there are at most 2n − 1 stages (since
there are n objectives), the strategy needs at most 2n − 1 states of memory; these can be
represented with n bits. Intuitively, we save for every target set whether it has been visited.
The memory lower bound already holds in non-stochastic reachability games where all
n targets have to be visited with certainty [50].

v���(s) = sup
�∈Σ

���

inf
�∈Σ

���

ℙ
�,�
s
(�) = inf

�∈Σ
���

sup
�∈Σ

���

ℙ
�,�
s
(�) .

 Formal Methods in System Design

1 3

2. The work of [28] shows that in MDP, it is ������-hard to decide if n targets can be
visited almost-surely. This problem trivially reduces to ours. For the �� upper bound,
observe that there are at most 2n − 1 stages, i.e., a constant amount if n is assumed to be
constant (or even just one stage if � is absorbing). Thus we can guess an MD strategy for
player ��� in every stage. The guessed overall strategy can then be checked by analyzing
the induced MDP in polynomial time [21]. The same procedure works for player ��� and
since the game is determined, we have membership in ���� . In the same way, we obtain
the �������� ∩ ���������� upper bound in the general case where n is arbitrary.

 ◻

We leave the question of whether ������ is also an upper bound open. The main
obstacle towards proving ������-membership is that it is unclear if the lex-value
– being dependent on the value of exponentially many stages in the worst-case – may
actually have exponential bit-complexity.

4 MDP with lexicographic !‑regular objectives

In this section, we study one-player SG, also known as MDP, with �-regular lexicographic
objectives. Similarly to the previous section, we first consider a simpler problem in Sect. 4.1:
We show how to solve lexicographic �-regular objectives in end components – fragments of
the state space where the player can remain forever if it chooses to do so. Then, using this,
we solve arbitrary MDP in Sect. 4.2. We provide our motivation for restricting attention to
MDP instead of the more general SG in the final Sect. 4.3.

Intuitively, the reason for first considering end components is that �-regular objectives
depend on the infinite suffix of a path, and such an infinite suffix can only occur with posi-
tive probability inside an end component. Thus, a standard approach for dealing with �-reg-
ular objectives is to analyze the end components first. Afterwards, we consider the problem
of reaching the end components where the objectives can be satisfied. The end components
that are ranked higher in the lexicographic order are preferred. In this way we reduce the
problem to lexicographic reachability.

There exist several acceptance conditions that capture exactly the class of �-regular
objectives; here, we will use Streett acceptance for technical reasons. In practice, �-regular
conditions are often specified as formulas in Linear Temporal Logic (LTL). Such formu-
las can be transformed to deterministic Streett automata (DSA) with a doubly exponential
space blow-up, see e.g. [52, 53]. Model checking an MDP against an LTL formula reduces
to checking Streett acceptance of the product of the MDP with the corresponding DSA (see
Definition 3). It is also possible to iterate this product construction for several LTL formulas
or DSA. We assume in the following that we are already given a “product” MDP with n
Streett conditions.

4.1 Lexicographic streett in end components

Intuitively, an end component of an MDP is a subset of states where the player (i) can
remain forever if it wants to, and (ii) can visit all states in the subset infinitely often with
probability 1. We now give a formal definition. Let M be an MDP with state space S, and let
E ⊆ S . For a state s ∈ E and an action a ∈ ���(s) , we say that a exits E if P(s, a, s�) > 0 for
some s� ∉ E.

Formal Methods in System Design

1 3

Definition 9 (End component) Let M = (S,���,P) be an MDP. A set E ⊆ S is called an
end component (EC) of M if there exists A ⊆

⋃

s∈E ���(s) such that

1. for all a ∈ A , it holds that a does not exit E , and
2. for all s, s� ∈ E , there exists a finite path sa0 … ans

�
∈ (E × A)∗ × E.

An EC that is not contained in another EC is called maximal (MEC).
The set E of all MEC of an MDP can be computed in polynomial time, see e.g. [54]. Fur-

ther, recall that a Streett objective Ω for an MDP with state space S is defined in terms of a
set of pairs Ω = �������((�

j
, �

j
)1≤j≤m) such that �j , �j ⊆ S for all 1 ≤ j ≤ m . An infinite trajec-

tory s0s1 … ∈ S� satisfies Ω iff

4.1.1 Solving single streett in end components

We first recall a polynomial-time algorithm from [55, Sec. 4] for deciding whether a given
EC of some MDP is good or bad for a Streett objective. Here, good means that the player
can satisfy the Streett objective with probability 1 without leaving the EC; a bad EC is one
that is not good. Note that remaining in a bad EC forever would violate the Streett objective.
Hence the Street value of all states in an EC is either 0 or 1.

Let E be an EC of some MDP M , and let (�
j
, �

j
)1≤j≤m be a Streett condition on M . The

algorithm proceeds in an alternating fashion. It first identifies the bad states of E . A state
s ∈ E is bad if s ∈ �j and �j ∩ E = � for some 1 ≤ j ≤ m . Intuitively, s is bad because the
player may visit s at most finitely many times; thus, in order to satisfy the Streett condi-
tion, s must be eventually avoided forever with probability 1. The algorithm removes all
bad states from E which results in a sub-MDP Ẽ . In general, Ẽ is not an end component due
to the state removal. However, if Ẽ is an EC, then we can label it as good. Indeed, since Ẽ
contains no bad states, it suffices to visit all states in Ẽ infinitely often with probability one2.
The original EC E is then also good; the player can satisfy the Streett objective by simply
navigating to Ẽ which is possible with an MD strategy. If Ẽ is not an EC, then the algorithm
computes a MEC decomposition of Ẽ , calls itself recursively on all the resulting MEC, and
labels E as good iff it finds that at least one of the MEC is good. In summary:

Lemma 6 (from [55]) There is a polynomial-time algorithm ���������������� which
takes as input an EC E of some MDP M together with a Streett condition (�

j
, �

j
)1≤j≤m on

M , and outputs ���� iff E is good. In case E is good, the algorithm additionally outputs an
optimal strategy for the states inside the EC.

∀ 1 ≤ j ≤ m ∶ { i ≥ 0 ∣ si ∈ �j } is finite or { i ≥ 0 ∣ si ∈ �j } is infinite .

2 Visiting every state in an EC infinitely often with probability 1 is achieved by a memoryless randomized
strategy that picks actions uniformly at random, or, alternatively, by a deterministic strategy using memory
constructed as in [56, Lem. 5.4].

 Formal Methods in System Design

1 3

4.1.2 Algorithm for lexicographic streett in end components

We now present an algorithm that computes the lex-value of a Street lex-objective for an EC
of some MDP. Note that this lex-value is a vector in {0, 1}n which is moreover independent
of the initial state. The key idea of our algorithm is the observation that Streett objectives
are closed under conjunction. Indeed, for Streett conditions Ω1 = �������((�

1
j
, �1

j
)1≤j≤m1

) and
Ω2 = �������((�

2
j
, �2

j
)1≤j≤m2

) it holds that a given path satisfies both Ω1 and Ω2 iff it satisfies
the single Streett condition

With this observation and ���������������� as described above, our algorithm is easy
to implement and runs in polynomial time.

Algorithm 3 LexStreettEC: Lexicographic Streett in EC of an MDP

Input: EC E of some MDP, lex-objective Ω = (Ω1, . . . ,Ωn) where for all
1 ≤ i ≤ n, we have Ωi = Streett((Fi

j , I
i
j)1≤j≤mi)

Output: Lex-value Ωvlex of E w.r.t. Ω (is independent of initial state), and
a lex-optimal strategy Ωσ

1: procedure LexStreettEC(E, Ω)

2: v ← (0, . . . , 0) Will contain the resulting lex-value
3: Ωcurr ← Streett(()) Initially empty Streett objective

4: for i from 1 to n do
5: Ωtest ← Ωcurr ∧ Ωi As in (9)
6: if SingleStreettSat(E,Ωtest) then As in Lemma 6
7: vi = 1
8: Ωcurr ← Ωtest
9: end if

10: end for

11: σ ← strategy computed by last successful call to SingleStreettSat
12: return (v, σ)

13: end procedure

Lemma 7 Algorithm 3 computes the correct lex-values of an EC in polynomial time.

Proof The idea of the algorithm relies on the following observation: Let 1 ≤ i ≤ n , and let

(9)Ω1 ∧ Ω2 = �������((�
1
1
, �1

1
),… , (�1

m1
, �1

m1
), (�2

1
, �2

1
),… , (�2

m2
, �2

m2
)) .

Formal Methods in System Design

1 3

Then it holds that �v���
i

= 1 iff the single Streett objective Ω<i ∧ Ωi can be achieved with
probability 1 in E , and otherwise �v���

i
= 0 . This is because in an EC, a Streett objective

is either achievable with probability 1 or 0. Our algorithm computes Ω<i iteratively; Ω<i is
called Ωcurr in Algorithm 3.

Formally, we show the following invariant by induction: For all 0 ≤ i ≤ n and j ≤ i ,
it holds that after i iterations of the loop in Line 4, the objective Ωcurr contains Ωj iff
�v���

j
= 1 . This trivially holds for i = 0 , i.e., if the loop has not been executed yet. For i > 0 ,

observe that by the induction hypothesis we have after i − 1 iterations that �v���
i

= 1 iff
Ωtest = Ωcurr ∧ Ωi can be achieved with probability 1 in E (Line 6).

If so, then after the i iterations, Ωcurr will contain Ωi , and otherwise Ωcurr will not con-
tain Ωi , which establishes the invariant again. Overall, correctness of the algorithm follows
because after i = n iterations, we have for all 1 ≤ j ≤ i that vj = 1 iff Ωj is contained in Ωcurr
iff �v���

j
= 1 . ◻

4.2 Lexicographic streett in general MDP

We now show how to compute the value of a lexicographic Streett objective in general
MDP, i.e., not just in end components as in the previous subsection. We use the standard
approach of first computing a MEC decomposition of the MDP, analysing the MEC in
isolation, and then reduce the overall question to a reachability problem. In particular, in
our case, we obtain a lexicographic reachability problem, and we can reuse the algorithm
from Sect. 3. We state our algorithm formally as Algorithm 4.

Concretely, we construct a modified MDP M̃ (Line 2, 7 and 8), where for every MEC
E we add a new sink state sE that can be reached from every state in the MEC (Line 7 and
8). This sink intuitively corresponds to remaining in the MEC forever, using the optimal
strategy �E of the MEC as computed by Algorithm 3 (Line 6). Thus, choosing to remain
in E achieves the lex-value v���

E
 of the MEC E . We remodel our objective as a reachability

lex-objective Ωreach by having each target set Ti contain exactly those sE where v���
E,i

= 1
(Line 3, 9 and 11). Now, by solving this absorbing reachability objective Ωreach in the
modified MDP M̃ (Line 12), we compute the lex-value for the Streett objective in the
original MDP M . Intuitively, we compute the optimal probability to reach a good MEC
E and then, by going to the sink sE , use the optimal strategy in the MEC to indeed satisfy
the best combination of Streett objectives. Thus, the resulting strategy is a combination
of the strategy �reach to reach the MEC E and the strategy �E to remain in the MEC E
(Line 13).

Ω<i =

⋀

j<i, �v���
j
=1

Ωj .

 Formal Methods in System Design

1 3

Algorithm 4 LexStreettMDP: Lexicographic Streett in general MDP

Input: MDP M, Streett lex-objective Ω = (Ω1, . . . ,Ωn)
Output: Lex-values Ωvlex (one for each state), lex-optimal strategy σ

1: procedure LexStreettMDP(M, Ω)

2: M ← M M will be a modified version of M
3: T1, . . . , Tn ← ∅ Initialize target sets for reachability lex-objective

4: E ← ComputeMEC(M) e.g. [54]

5: for E ∈ E do
6: (vlex

E , σE) ← LexStreettEC(E,Ω) Algorithm 3
7: Add new sink state sE to M.
8: For all s ∈ E, add the action s → sE to M.
9: For all 1 ≤ i ≤ n, if vlex

E,i = 1, then Ti ← Ti ∪ {sE}.
10: end for

11: Ωreach ← (Reach (T1) , . . . ,Reach (Tn))
12: (v, σreach) ← SolveAbsorbingRS(M,Ωreach) Algorithm 1, Sec. 3.1

13: σ ← Adhere to σreach until it takes an action s → sE , for some E ∈ E,
then adhere to σE .

14: return (v, σ)

15: end procedure

Theorem 7 Given an MDP M and a Streett lex-objective � , Algorithm 4 computes the lex-
values �v𝗅𝖾𝗑 ∶ S → [0, 1]n and a lex-optimal strategy � in polynomial time.

Proof The proof relies on the following standard observation: Independent of the chosen
strategy, the player eventually reaches an EC of M with probability 1 and stays there for-
ever. That is, there may exist strategies such that the induced MC has infinite paths that
never reach an EC; however, their total probability mass is zero. Moreover, whether or not
a Streett objective is satisfied on a given infinite path that reaches and (stays in) some EC
depends only on that EC, but not on whatever happened before reaching it. This discussion
implies that the player should prefer reaching EC with higher lex-value. More formally, for a
given initial MDP state s ∈ S , the player should choose a strategy � that (lexicographically)
maximizes the following quantity:

The supremum (and maximum) of this quantity is indeed the lex-value v���(s) . The strategy
� = �reach computed in Line 12 maximizes (10) by construction of Ωreach and due to the
additional actions s → sE that we have added for all EC E and s ∈ E in Line 8; recall that
these actions simulate staying forever in E , thereby “earning” the lex-value of E.

(10)
∑

E∈E

ℙ
�
s
(�����(E)) ⋅ v���

E

Formal Methods in System Design

1 3

For the runtime, observe that ���������� can be implemented in polynomial time [54],
and there are at most |S| many MEC. The algorithm ������������ can also be imple-
mented in polynomial time as discussed in Sect. 4.1. Finally, note that ����������������
can be implemented in polynomial time for MDP due to Algorithm 1 in Sect. 3.1 and the
fact that single-objective MDP reachability can be encoded as a linear program [2]. ◻

Theorem 8 (Complexity) The following holds for all MDP M with state space S and Streett
lex-objective � .

1. Strategy complexity: Memoryless (but randomized), or alternatively, deterministic strate-
gies with at most |S| memory classes are sufficient to play optimally in M w.r.t. to �.

2. Computational complexity: The decision problem �v���(s0) ≥?
���

x is in � for all s0 ∈ S.

Proof

1. The strategy that Algorithm 4 returns is a combination of the strategy �reach for the absorb-
ing reachability lex-objective and the strategies �E inside the maximal end components
E ∈ E . The former is MD by Algorithm 1, but the latter either needs randomization
or memory, see Sect. 4.1. The construction from [56, Lem. 5.4] shows that at most |E|
memory classes are sufficient for a deterministic �E . Therefore, the overall strategy needs
at most

∑

E∈E �E� ≤ �S� memory since the MEC are pairwise disjoint.
2. Algorithm 4 solves the decision problem in polynomial time.

 ◻

We stress that the complexity results from Theorem 8 crucially rely on the Streett objec-
tives being directly defined on M . If we had instead defined � through n deterministic
Streett automata, then we would first have to construct the product of M with all the autom-
ata, causing an exponential space blowup.

Now that we have established how to solve MDP with lexicographic �-regular objec-
tives, we discuss the case of SG with such objectives.

4.3 On SG with lexicographic !‑regular objectives

The techniques we introduced in Sect. 3 for solving reachability and safety are not appli-
cable to �-regular objectives. This is because they rely on reachability and safety being
achieved and violated in finite time, respectively. Every stage in the solution corresponds to
a subset of objectives being achieved/violated, and this decomposition into stages is vital for
the reduction to the single-dimensional case.

In contrast, for �-regular objectives, satisfaction or violation of an objective depends only
on the infinite suffix of the path. This is why in MDP we analyze end components (EC), the
parts of the state space where the infinite behaviour can occur. For SG, the concept of EC
is not strong enough to fully understand the infinite behaviours. It still captures parts of the
state space where a path can remain forever, but the standard definition assumes that the
players cooperate to stay. However, the players are antagonistic, and ��� will try to violate
the objective. Thus, not all states in an EC will have the same value (as they do in MDP),
and we need a finer decomposition of EC.

 Formal Methods in System Design

1 3

There are similar problems in single-dimensional reachability in SG [57]. There, the con-
cepts of bloated and simple EC were used for a more fine-grained analysis. Equivalently, in
deterministic games with parity objectives, the concept of tangle [58] captures parts of an
EC where one player can certainly win.

We conjecture that, inspired by these concepts, it is possible to decompose EC in SG
such that an algorithm similar to our Algorithm 4 solves the problem. However, even mim-
icking the first step of the development of simple EC [59] is not obvious: Consider for
instance SG with one-player EC, i.e., for every EC T it holds that either T ⊆ S

◻
 or T ⊆ S◊ .

In this case, it still holds that all states in an EC have the same value, so the general algo-
rithm is the same as in MDP. The difference is that we have to compute the lexicographic
value in end components belonging to ��� . ��� wants to violate a Street objective, which is
equivalent to achieving the Rabin objective with the same pairs [60]. But for minimizing the
lexicographic value, we want to violate all the given Street objectives, which means achiev-
ing a conjunction of Rabin objectives. This, however, calls for a more involved solution,
because we mix conjunction (between the objectives) and disjunction (between the pairs
of objectives). In contrast, our solution relies on the fact that conjunction of Street objec-
tives is again a Street objective. Thus, already in SG with one-player EC a solution needs
more complex automata theoretic tools, e.g. Emerson-Lei automata [61] for representing the
mixed Boolean combination of requirements on infinite paths.

We decided to focus on MDP with �-regular objectives, where an elegant and easy-to-
implement solution is possible by using the lexicographic reachability approach from Sec-
tion 3.1 and the existing results about Streett objectives in MDP. We leave the development
of new graph-theoretic concepts for SG with �-regular objectives as future work.

5 Experimental evaluation

In this section, we report the results of a series of experiments made with implementations
of the algorithms in Sect. 3 and 4.

5.1 Reach‑safe lex‑objective in SG: experiments

5.1.1 Implementation

We have implemented Algorithms 1 and 2 as prototypes within PRISM-games [42]. The
code is available online3. Since PRISM-games does not provide an exact algorithm to solve
SG, we used the available value iteration approach to implement the single-objective black-
box �������������� . Note that since value iteration is not exact for single-objective SG,
PRISM-games cannot compute the exact lex-values. Nevertheless, we focus on measur-
ing the overhead introduced by our algorithm compared to a single-objective solver. In our
implementation, value iteration stops if the values do not increase by more than 10−8 in one
iteration, which is PRISM’s default configuration.

3 https:// doi. org/ 10. 5281/ zenodo. 57981 08

https://doi.org/10.5281/zenodo.5798108

Formal Methods in System Design

1 3

5.1.2 Case studies

For our experiments, we have collected four case studies from the literature where lexico-
graphic objectives seem particularly useful:

Dice This example is shipped with PRISM-games [42] and models a simple dice game
between two players. The number of throws in this game is a configurable parameter,
which we instantiate with 10, 20 and 50. The game has three possible outcomes: Player
��� wins, Player ��� wins or draw. A natural lex-objective is thus to maximize the win-
ning probability and then the probability of a draw.
Charlton This case study [37] is also included in PRISM-games. It models an autono-
mous car navigating through a road network. A natural lex-objective is to minimize the
probability of an accident (possibly damaging human life) and then maximize the prob-
ability to reach the destination.
Hallway (HW) This instance is based on the Hallway example which is standard in the AI
literature [62, 63]. A robot can move north, east, south or west in a known environment,
but each move only succeeds with a certain probability, and otherwise rotates or moves
the robot in an undesired direction. We extend the example by a target wandering around
based on a mixture of probabilistic and demonic non-deterministic behavior, thereby
obtaining a stochastic game that models, for instance, a panicking person in a building on
fire. Moreover, we assume a 0.01 probability of damaging the robot when executing cer-
tain movements; a damaged robot’s actions succeed with even smaller probability. The
primary objective is to save the human, and the secondary objective is to avoid damaging
the robot. We use grid-worlds of sizes 5×5 , 8×8 , and 10×10.
Avoid the observer (AV) This case study is inspired by a similar example in [64]. It mod-
els a game between an intruder and an observer in a grid-world. The grid can have differ-
ent sizes as in HW, and we use 10×10 , 15×15 , and 20×20 . The most important objective
of the intruder is to avoid the observer, and its secondary objective is to exit the grid.
We assume that the observer can only detect the intruder within a certain distance and
otherwise makes random moves. At every position, the intruder moreover has the option
to stay and search for a treasure. In our example, a treasure is found with probability 0.1
each time the intruder decides to search for it. Collecting a treasure is the ternary (reach-
ability) objective.

Note that the above case studies (and in fact also the ones from Sect. 5.2 further below) have
just 2-3 objectives. We are currently not aware of any examples where a significantly larger
amount of objectives is useful or natural. In any case, this might not be computationally fea-
sible as the runtime of our algorithm is exponential in the number of objectives in the worst
case.

5.1.3 Experimental results

The experiments were conducted on a 2.4 GHz Quad-Core Intel© CoreTM i5 processor,
with 4GB of RAM available to the Java VM. The results are reported in Table 1. We only
recorded the run time of the actual algorithms; the time needed to parse and build the model

 Formal Methods in System Design

1 3

is excluded. All numbers are rounded to full seconds. All instances (even those with state
spaces of order 106) could be solved within a few minutes.

The two leftmost columns of Table 1 show the type of the lex-objective, the name of the
case study with scaling parameters (if applicable), and the number of states in the model.
The next three columns contain the verification times (excluding time to parse and build the
model), rounded to full seconds. The columns labeled G and G̃ provide the average number
of actions per state, i.e., the value �S�−1

∑

s∈S ����(s)� in the original SG G as well as in all
subgames G̃ (which result from removing lex-suboptimal actions, see Algorithm 1) consid-
ered in the main stage. The rightmost column reports on the fraction of stages that had to
be analyzed, i.e., the stages solved by the algorithm compared to the theoretically maximal
possible number of stages (2n − 1).

We compare the time of our algorithm on the lexicographic objective (column Lex) to
the time for checking just the first single-objective (First) and the sum of checking all single-
objectives individually (All). The runtimes of our algorithm and checking all single-objec-
tives individually are always in the same order of magnitude. This shows that our algorithm
works well in practice and that the overhead is often small. Even on SG of non-trivial size
(HW[10×10] and AV[20×20]), our algorithm returns the result within a few minutes.

Regarding the average number of actions, we see that the decrease in the number of
actions in the sub-games G̃ obtained by restricting the input game to optimal actions varies:
For example, very few actions are removed in the Dice instances, in AV we have a moderate
decrease, and in HW a significant decrease and almost all the non-determinism is eliminated
after the first objective. We conjecture that the less actions are removed, the higher is the
overhead compared to the individual single-objective solutions (column All). Consider the
AV and HW examples: While for AV[20×20], computing the lexicographic solution takes

Table 1 Experimental results for SG with reach-safe lex-objectives

Model |S| Time [s] Average #actions #Stages

Lex First All G G̃

R – R
Dice[10] 4,855 <1 <1 <1 1.42 1.41 1/3
Dice[20] 16,915 <1 <1 <1 1.45 1.45 1/3
Dice[50] 96,295 3 2 2 1.48 1.48 1/3
S – R
Charlton 502 <1 <1 <1 1.56 1.07 3/3
R – S
HW[5×5] 25,000 10 7.15 7 2.44 1.02 3/3
HW[8×8] 163,840 152 117 117 2.50 1.01 3/3
HW[10×10] 400,000 548 435 435 2.52 1.01 3/3
S – R – R
AV[10×10] 106,524 15 <1 10 2.17 1.55, 1.36 4/7
AV[15×15] 480,464 85 <1 50 2.14 1.52, 1.36 4/7
AV[20×20] 1,436,404 281 3 172 2.13 1.51, 1.37 4/7

Formal Methods in System Design

1 3

1.7 times as long as all the single-objective solutions, it took only about 25% longer for
HW[10×10]; this is the case because in HW, only very few actions remain after the first
objective. In AV, on the other hand, lots of choices have to be considered even for the sec-
ond and third objective. Note that the first objective sometimes (HW), but not always (AV)
needs the majority of the runtime.

We also see that the algorithm does not always have to explore all possible stages. For
example, for Dice we always just need a single stage, because the SG is absorbing. For
Charlton and HW all stages are relevant for the lex-objective, while for AV only 4 of 7 need
to be considered.

5.2 MDP with lexicographic LTL: experiments

5.2.1 Implementation

We implemented Algorithms 3 and 4 as an extension of Storm [44]. This allows us to reuse
existing efficient implementations for basic algorithms, such as finding end components and
solving single-objective reachability. The code is available online4.

Our implementation accepts as input an MDP and an ordered list of LTL formulas. We
transform each LTL formula into a deterministic Streett automaton using the tool Spot [65],
and then construct the standard product automaton of the MDP and all the automata. This
results in a (larger) MDP with several Streett objectives. We then proceed as described in
the algorithms in Sect. 4.

5.2.2 Case studies

We evaluate our implementation on the benchmarks from [18] and on one additional new
case study, the CleaningRobot. In summary, we consider the following case studies for our
experiments:

Cleaningrobot A robot cleans a house with two floors. It starts in the upper floor. At
some point, it can decide to try to clean the stairs, but with a probability of 0.5 it will fall
down and not clean the stairs. After this, it can only clean the ground floor, and never
go up to the first floor again. The LTL objectives that we check are (in this order) (1)
GF cleanfirst , (2) F cleanstairs , and (3) GF cleanground.
Gridworld This example models a robot that moves around in a grid world, has to visit
several outposts, avoid dangerous zones, and recharge every now and then. It can only
move left, right, up and down. The uncertainty comes into play when the robot chooses
to go into one direction: With probability of 0.5, it will move one step, and with 0.5 prob-
ability it will move two steps. A visualization can be found in Fig. 3, together with the
objectives that we checked.
Virus This example models a computer virus that is trying to breach a system. The sys-
tem consists of a grid of nodes, 3 × 3 in our case. If a node is infected, it can choose
to attack its neighboring nodes. This will be detected with a probability of 0.5. After a
node was successfully attacked, it will get infected with a probability of 0.5, as well. This
model stems originally from [66]. The objectives to be verified are:

4 https:// doi. org/ 10. 5281/ zenodo. 72336 05

https://doi.org/10.5281/zenodo.7233605

 Formal Methods in System Design

1 3

1. Fs3,2 = 2 ∧ G((s3,2 = 2 ∧ s3,1 ≠ 2) ⟹ XXs3,1 = 2) , and
2. Fs1,1 = 2 ∧ G(s2,2 ≠ 2 ∧ s3,2 ≠ 2) .

 The first one makes sure that node (3, 2) will eventually be infected, and once it is
infected, node (3, 1) should be infected in at most two steps. The second objective defines
a specific path to infect node (1, 1), without infecting nodes (2, 2) and (3, 2).
UAV This model considers an unmanned aerial vehicle (UAV) that moves on a net-
work of roads, originally presented in [67]. There are waypoints that should be visited
(modelled by the first objective), and restricted operation zones that should be avoided

1 2

3 4
R

1. iGFi
2. G¬danger
3. GFcharge

(a) 4×4 grid

1 2

3 4
R

1. i GFi
2. G¬danger
3. GFcharge

(b) 5×5 grid

1
2

3
4R

1. (GF1 ∧GF) ∨ (GF3 ∧GF4)
2. G¬danger
3. Fcharge

(c) 4×7 grid

Fig. 3 Robot Gridworld: A robot (R) has to visit the outposts (1,2,3,4), recharge (green states) and avoid
dangerous zones (red states). The graphics are taken from [18]

Table 2 Experimental Results. The first two columns show the model (with scaling parameters) and the
respective number of states. The third column describes the lexicographic order of the objectives, and the
fourth column contains the lex-value vector. The two rightmost columns show the running time of our algo-
rithm and of the reinforcement learning algorithm of [18]

Model |S| |MEC| Order Result Time [s]

Ours [18]

CleaningRobot 5 4 1, 2, 3 1, 0, 0 <1 2
CleaningRobot 5 4 2, 1, 3 0.5, 0.5, 0.5 <1 3
CleaningRobot 5 4 3, 2, 1 1, 0.5, 0 <1 2
Gridworld[4×4] 16 14 1, 2, 3 1, 0, 1 <1 13
Gridworld[4×4] 16 14 2, 1, 3 1, 0, 1 <1 4
Gridworld[5×5] 25 2 1, 2, 3 1, 1, 1 <1 26
Gridworld[4×7] 28 46 1, 2, 3 1, 0.75, 0.25 <1 44
Gridworld[4×7] 28 46 2, 1, 3 1, 0.5, 0 <1 24
Gridworld[10×10] 100 2 1, 2, 3 1, 1, 1 <1 5
Gridworld[20×20] 400 2 1, 2, 3 1, 1, 1 <1 7
Gridworld[30×30] 900 2 1, 2, 3 1, 1, 1 <1 9
Virus 809 1042 1, 2 1, 0 28 87
Virus 809 1042 2, 1 1, 0.25 28 405
UAV 11,448 6578 1, 2 1, 1 1367 213

Formal Methods in System Design

1 3

(modelled by the second objective). Formally, the objectives are (1)
⋀

i G¬rozi , and (2)
Fw1 ∧ Fw2 ∧ Fw6.

5.2.3 Experimental results

The experiments were conducted a server running Ubuntu 20.04.2 with 251 GB RAM and
a Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz. The results are reported in Table 2. We
only recorded the run time of the actual algorithms; the time needed to parse and build the
model is excluded because they were all below one second. All numbers are rounded to full
seconds.

For each model of the case study, we report the number of states, the number of MEC,
and the lexicographic preference order of the objectives. As a result we show the probabili-
ties of each objective, and the runtime of our approach, as well as the runtime of [18], which
solves the same problem using Reinforcement Learning. Apart from the existing bench-
marks we also added some more models.

We see that the runtime of our approach is significantly faster on most models, e.g., less
than one second on a 4 ×7-grid in contrast to 44 seconds. However, on models with a larger
state space, and especially a large number of MEC, the learning procedure of [18] scales
better, e.g., it only takes 213s for the UAV-model, whereas our approaches takes 1367s. This
scaling is a known advantage and the goal of learning procedures. However, for this they
they sacrifice guarantees on the resulting probabilities, which can be arbitrarily far off. In
contrast, after termination, our algorithm outputs the exact lex-value and provably optimal
strategies.

6 Conclusion and future work

In this work, we considered simple stochastic games with lexicographic objectives. Sim-
ple stochastic games are a standard model in reactive synthesis of stochastic systems, and
lexicographic objectives allow for an analysis with multiple objectives with an order of pref-
erence. We first focused on the most basic objectives: safety and reachability. While sim-
ple stochastic games with lexicographic objectives have not been studied before, we have
presented determinacy, strategy complexity, computational complexity, and algorithms for
these games. Moreover, we have shown how these games can model different case studies
and presented experimental results. Afterwards, we discussed stochastic games with �-regu-
lar objectives and gave a simple solution for the subclass of Markov decision processes with
lexicographic �-regular objectives represented as Streett conditions.

There are several directions for future work. First, for lexicographic reachability-safety
objectives in SG, closing the complexity gap (�������� ∩ ���������� upper bound
and ������ lower bound, see Theorem 6) is an open question. Second, the problem of
solving stochastic games with lexicographic �-regular objectives remains open. Combina-
tions of �-regular objectives in SG are a difficult open problem in general. For instance,
even qualitative combinations for more than two objectives as well as quantitative combina-
tions have not been solved yet [68]. Finally, one can consider lexicographic combinations

 Formal Methods in System Design

1 3

of quantitative objectives such as mean payoff or total reward, which allow for modeling
further practical applications.

Funding Tobias Winkler and Joost-Pieter Katoen are supported by the DFG RTG 2236 UnRAVeL and
the innovation programme under the Marie Skłodowska-Curie grant agreement No. 101008233 (Mission).
Krishnendu Chatterjee is supported by the ERC CoG 863818 (ForM-SMArt) and the Vienna Science and
Technology Fund (WWTF) Project ICT15-003. Maximilian Weininger is supported by the DFG projects
383882557 Statistical Unbounded Verification (SUV) and 427755713 Group-By Objectives in Probabilistic
Verification (GOPro). Stefanie Mohr is supported by the DFG RTG 2428 CONVEY. Open Access funding
enabled and organized by Projekt DEAL.

Data availibility The software and data used to generate the experimental results of this paper are availa-
ble online(See https:// doi. org/ 10. 5281/ zenodo. 57981 08 and https:// doi. org/ 10. 5281/ zenodo. 72336 05 for the
experiments described in Sect. 5.1 and Sect. 5.2, respectively.).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Condon A (1992) The complexity of stochastic games. Inf Comput 96(2):203–224. https:// doi. org/ 10.
1016/ 0890- 5401(92) 90048-K

 2. Puterman ML (2014) Markov decision processes: discrete stochastic dynamic programming. Wiley,
New Jersey

 3. Baier C, Katoen J-P (2008) Principles of model checking. MIT Press, Massachusetts
 4. Filar J, Vrieze K (1997) Competitive markov decision processes. Springer, Switzerland
 5. Chatterjee K, Henzinger TA (2012) A survey of stochastic �-regular games. J Comput Syst Sci

78(2):394–413. https:// doi. org/ 10. 1016/j. jcss. 2011. 05. 002
 6. Chatterjee K, Sen K, Henzinger TA (2008) Model-checking omega-regular properties of interval

Markov chains. In: FoSSaCS. Lecture notes in computer science, vol 4962, Springer, Switzerland, pp
302–317

 7. Weininger M, Meggendorfer T, Kretínský J (2019) Satisfiability bounds for �-regular properties in
bounded-parameter Markov decision processes. In: CDC, IEEE, New York, pp, 2284–2291, doi: https://
doi. org/ 10. 1109/ CDC40 024. 2019. 90294 60

 8. Altman E (1999) Constrained Markov decision processes. CRC Press, Florida
 9. Chatterjee K (2007) Markov decision processes with multiple long-run average objectives. In: FSTTCS.

Lecture notes in computer science, vol 4855, Springer, Switzerland, pp 473–484, doi: https:// doi. org/ 10.
1007/ 978-3- 540- 77050-3_ 39

 10. Delgrange F, Katoen J, Quatmann T, Randour M (2020) Simple strategies in multi-objective MDPs.
In: TACAS (1). Lecture notes in computer science, vol 12078, Springer, Switzerland, pp 346–364, doi:
https:// doi. org/ 10. 1007/ 978-3- 030- 45190-5_ 19

 11. Berthon R, Guha S, Raskin J (2020) Mixing probabilistic and non-probabilistic objectives in markov
decision processes. In: LICS, ACM, New York, pp 195–208, doi: https:// doi. org/ 10. 1145/ 33737 18.
33948 05

 12. Chen T, Forejt V, Kwiatkowska MZ, Simaitis A, Wiltsche C (2013) On stochastic games with multiple
objectives. In: MFCS. Lecture notes in computer science, vol 8087, Springer, Switzerland, pp 266–277,
doi: https:// doi. org/ 10. 1007/ 978-3- 642- 40313-2_ 25

 13. Fishburn PC (1974) Exceptional paper - lexicographic orders, utilities and decision rules: a survey.
Manage Sci 20(11):1442–1471. https:// doi. org/ 10. 1287/ mnsc. 20. 11. 1442

https://doi.org/10.5281/zenodo.5798108
https://doi.org/10.5281/zenodo.7233605
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1016/0890-5401(92)90048-K
https://doi.org/10.1016/j.jcss.2011.05.002
https://doi.org/10.1109/CDC40024.2019.9029460
https://doi.org/10.1109/CDC40024.2019.9029460
https://doi.org/10.1007/978-3-540-77050-3_39
https://doi.org/10.1007/978-3-540-77050-3_39
https://doi.org/10.1007/978-3-030-45190-5_19
https://doi.org/10.1145/3373718.3394805
https://doi.org/10.1145/3373718.3394805
https://doi.org/10.1007/978-3-642-40313-2_25
https://doi.org/10.1287/mnsc.20.11.1442

Formal Methods in System Design

1 3

 14. Blume L, Brandenburger A, Dekel E (1991) Lexicographic probabilities and choice under uncertainty.
Econom: J Econom Soc. https:// doi. org/ 10. 2307/ 29382 40

 15. Bloem R, Chatterjee K, Henzinger TA, Jobstmann B (2009) Better quality in synthesis through quantita-
tive objectives. In: CAV. Lecture notes in computer science, vol 5643, Springer, Switzerland, pp 140–
156, doi: https:// doi. org/ 10. 1007/ 978-3- 642- 02658-4_ 14

 16. Colcombet T, Jurdzinski M, Lazic R, Schmitz S (2017) Perfect half space games. In: Logic in Com-
puter Science, LICS 2017, IEEE Computer Society, Washington, DC, pp 1–11, doi: https:// doi. org/
10. 1109/ LICS. 2017. 80051 05

 17. Wray KH, Zilberstein S, Mouaddib A (2015) Multi-objective MDPs with conditional lexicographic
reward preferences. In: AAAI, AAAI Press, California, pp 3418–3424, doi: https:// doi. org/ 10. 5555/
28881 16. 28881 91

 18. Hahn EM, Perez M, Schewe S, Somenzi F, Trivedi A, Wojtczak D (2021) Model-free reinforcement
learning for lexicographic omega-regular objectives. In: FM. Lecture Notes in Computer Science,
vol 13047, Springer, Switzerland , pp 142–159, doi: https:// doi. org/ 10. 1007/ 978-3- 030- 90870-6_8

 19. Chatterjee K, Katoen J, Weininger M, Winkler T (2020) Stochastic games with lexicographic reach-
ability-safety objectives. In: CAV (2). Lecture notes in computer science, vol 12225, Springer, Swit-
zerland, pp 398–420, doi: https:// doi. org/ 10. 1007/ 978-3- 030- 53291-8_ 21

 20. Bouyer P, Roux SL, Oualhadj Y, Randour M, Vandenhove P (2022) Games where you can play opti-
mally with arena-independent finite memory. Log Methods Comput Sci. https:// doi. org/ 10. 46298/
lmcs- 18(1: 11) 2022

 21. Etessami K, Kwiatkowska MZ, Vardi MY, Yannakakis M (2008) Multi-objective model checking of
Markov decision processes. LMCS. https:// doi. org/ 10. 2168/ LMCS- 4(4:8) 2008

 22. Brázdil T, Brozek V, Chatterjee K, Forejt V, Kucera A (2014) Two views on multiple mean-payoff
objectives in Markov decision processes. LMCS. https:// doi. org/ 10. 2168/ LMCS- 10(1: 13) 2014

 23. Chatterjee K, Forejt V, Wojtczak D (2013) Multi-objective discounted reward verification in graphs
and mdps. In: LPAR. Lecture notes in computer science, vol 8312, Springer, Switzerland, pp 228–
242, https:// doi. org/ 10. 1007/ 978-3- 642- 45221-5_ 17

 24. Forejt V, Kwiatkowska MZ, Norman G, Parker D, Qu H (2011) Quantitative multi-objective verifi-
cation for probabilistic systems. In: TACAS, pp 112–127 . doi: https:// doi. org/ 10. 1007/ 978-3- 642-
19835-9_ 11

 25. Quatmann T, Katoen J (2021) Multi-objective optimization of long-run average and total rewards.
In: TACAS (1). Lecture notes in computer science, vol 12651, Springer, Switzerland, pp 230–249,
doi: https:// doi. org/ 10. 1007/ 978-3- 030- 72016-2_ 13

 26. Brázdil T, Chatterjee K, Forejt V, Kucera A (2017) Trading performance for stability in markov
decision processes. J Comput Syst Sci 84:144–170. https:// doi. org/ 10. 1016/j. jcss. 2016. 09. 009

 27. Filar JA, Krass D, Ross KW (1995) Percentile performance criteria for limiting average Markov
decision processes. IEEE Trans Autom Control 40(1):2–10

 28. Randour M, Raskin J, Sankur O (2017) Percentile queries in multi-dimensional Markov decision
processes. Formal Methods Syst Des 50(2–3):207–248. https:// doi. org/ 10. 1007/ s10703- 016- 0262-7

 29. Chatterjee K, Kretínská Z, Kretínský J (2017) Unifying two views on multiple mean-payoff objec-
tives in Markov decision processes. LMCS. https:// doi. org/ 10. 23638/ LMCS- 13(2: 15) 2017

 30. Baier C, Dubslaff C, Klüppelholz S (2014) Trade-off analysis meets probabilistic model checking.
In: CSL-LICS, pp 1–1110, doi: https:// doi. org/ 10. 1145/ 26030 88. 26030 89

 31. Baier C, Dubslaff C, Klüppelholz S, Daum M, Klein J, Märcker S, Wunderlich S (2014) Proba-
bilistic model checking and non-standard multi-objective reasoning. In: FASE. Lecture notes
in computer science, vol 8411, Springer, Switzerland, pp 1–16, doi: https:// doi. org/ 10. 1007/
978-3- 642- 54804-8_1

 32. Roijers DM, Whiteson S (2017) Multi-objective decision making. Synth Lect Artif Intell Mach
Learn. https:// doi. org/ 10. 2200/ S0076 5ED1V 01Y20 1704A IM034

 33. Svorenová M, Kwiatkowska M (2016) Quantitative verification and strategy synthesis for stochastic
games. Eur J Control 30:15–30. https:// doi. org/ 10. 1016/j. ejcon. 2016. 04. 009

 34. Basset N, Kwiatkowska MZ, Topcu U, Wiltsche C (2015) Strategy synthesis for stochastic games
with multiple long-run objectives. In: TACAS. Lecture notes in computer science, vol 9035,
Springer, Switzerland, pp 256–271, doi: https:// doi. org/ 10. 1007/ 978-3- 662- 46681-0_ 22

 35. Chatterjee K, Doyen L (2016) Perfect-information stochastic games with generalized mean-payoff
objectives. In: LICS, ACM, New York, pp 247–256, doi: https:// doi. org/ 10. 1145/ 29335 75. 29345 13

 36. Brenguier R, Forejt V (2016) Decidability results for multi-objective stochastic games. In: ATVA.
Lecture notes in computer science, vol 9938, pp 227–243, doi: https:// doi. org/ 10. 1007/ 978-3- 319-
46520-3_ 15

https://doi.org/10.2307/2938240
https://doi.org/10.1007/978-3-642-02658-4_14
https://doi.org/10.1109/LICS.2017.8005105
https://doi.org/10.1109/LICS.2017.8005105
https://doi.org/10.5555/2888116.2888191
https://doi.org/10.5555/2888116.2888191
https://doi.org/10.1007/978-3-030-90870-6_8
https://doi.org/10.1007/978-3-030-53291-8_21
https://doi.org/10.46298/lmcs-18(1:11)2022
https://doi.org/10.46298/lmcs-18(1:11)2022
https://doi.org/10.2168/LMCS-4(4:8)2008
https://doi.org/10.2168/LMCS-10(1:13)2014
https://doi.org/10.1007/978-3-642-45221-5_17
https://doi.org/10.1007/978-3-642-19835-9_11
https://doi.org/10.1007/978-3-642-19835-9_11
https://doi.org/10.1007/978-3-030-72016-2_13
https://doi.org/10.1016/j.jcss.2016.09.009
https://doi.org/10.1007/s10703-016-0262-7
https://doi.org/10.23638/LMCS-13(2:15)2017
https://doi.org/10.1145/2603088.2603089
https://doi.org/10.1007/978-3-642-54804-8_1
https://doi.org/10.1007/978-3-642-54804-8_1
https://doi.org/10.2200/S00765ED1V01Y201704AIM034
https://doi.org/10.1016/j.ejcon.2016.04.009
https://doi.org/10.1007/978-3-662-46681-0_22
https://doi.org/10.1145/2933575.2934513
https://doi.org/10.1007/978-3-319-46520-3_15
https://doi.org/10.1007/978-3-319-46520-3_15

 Formal Methods in System Design

1 3

 37. Chen T, Kwiatkowska MZ, Simaitis A, Wiltsche C (2013) Synthesis for multi-objective stochastic
games: An application to autonomous urban driving. In: QEST, pp 322–337, doi: https:// doi. org/ 10.
1007/ 978-3- 642- 40196-1_ 28

 38. Ashok P, Chatterjee K, Kretínský J, Weininger M, Winkler T (2020) Approximating values of gen-
eralized-reachability stochastic games. In: LICS, ACM, New York, pp 102–115, doi: https:// doi. org/
10. 1145/ 33737 18. 33947 61

 39. Bruyère V, Hautem Q, Raskin J (2018) Parameterized complexity of games with monotonically ordered
omega-regular objectives. In: CONCUR. LIPIcs, vol 118, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, Wadern . pp 29–12916, doi: https:// doi. org/ 10. 4230/ LIPIcs. CONCUR. 2018. 29

 40. Bruyère V, Filiot E, Randour M, Raskin J (2017) Meet your expectations with guarantees: beyond
worst-case synthesis in quantitative games. Inf Comput 254:259–295. https:// doi. org/ 10. 1016/j. ic. 2016.
10. 011

 41. Wray KH, Zilberstein S (2015) Multi-objective POMDPs with lexicographic reward preferences. In:
IJCAI, AAAI Press, California, pp 1719–1725, http:// ijcai. org/ Abstr act/ 15/ 245

 42. Kwiatkowska M, Parker D, Wiltsche C (2018) PRISM-games: verification and strategy synthesis for
stochastic multi-player games with multiple objectives. STTT 20(2):195–210. https:// doi. org/ 10. 1007/
s10009- 017- 0476-z

 43. Brázdil T, Chatterjee K, Forejt V, Kucera A (2015) MultiGain: a controller synthesis tool for MDPs with
multiple mean-payoff objectives. In: TACAS. lecture notes in computer science, vol 9035, Springer,
Switzerland, pp 181–187, doi: https:// doi. org/ 10. 1007/ 978-3- 662- 46681-0_ 12

 44. Dehnert C, Junges S, Katoen J, Volk M (2017) A storm is coming: A modern probabilistic model
checker. In: CAV (2). Lecture notes in computer science, vol 10427, Springer, Switzerland pp. 592–600,
doi: https:// doi. org/ 10. 1007/ 978-3- 319- 63390-9_ 31

 45. Quatmann T, Junges S, Katoen J (2017) Markov automata with multiple objectives. In: CAV (1). Lec-
ture Notes in Computer Science, vol 10426, Springer, Switzerland, pp 140–159, doi: https:// doi. org/ 10.
1007/ 978-3- 319- 63387-9_7

 46. Hartmanns A, Junges S, Katoen J, Quatmann T (2020) Multi-cost bounded tradeoff analysis in MDP
64:1483–1522. https:// doi. org/ 10. 1007/ s10817- 020- 09574-9

 47. Pranger S, Könighofer B, Posch L, Bloem R (2021) TEMPEST - synthesis tool for reactive systems
and shields in probabilistic environments. In: ATVA. Lecture notes in computer science, vol 12971,
Springer, Switzerland, pp 222–228, doi: https:// doi. org/ 10. 1007/ 978-3- 030- 88885-5_ 15

 48. Tarski A (1955) A lattice-theoretical fixpoint theorem and its applications. Pacific J Math 5(2):285–309.
https:// doi. org/ 10. 2140/ pjm. 1955.5. 285

 49. Forejt V, Kwiatkowska MZ, Parker D (2012) Pareto curves for probabilistic model checking. In: ATVA.
Lecture notes in computer science, vol 7561, Springer, Switzerland, pp. 317–332, doi: https:// doi. org/
10. 1007/ 978-3- 642- 33386-6_ 25

 50. Fijalkow N, Horn F (2010) The surprizing complexity of reachability games. CoRR abs/1010.2420arxiv:
1010. 2420

 51. Winkler T, Weininger M (2021) Stochastic games with disjunctions of multiple objectives. In: Gan-
dALF. EPTCS, vol 346, pp 83–100, doi: https:// doi. org/ 10. 4204/ EPTCS. 346.6

 52. Kupferman O, Vardi MY (1998)Freedom, weakness, and determinism: From linear-time to branching-
time. In: LICS, IEEE Computer Society, Washington, DC, pp 81–92, doi: https:// doi. org/ 10. 1109/ LICS.
1998. 705645

 53. Sickert S (2019) A unified translation of linear temporal logic to �-automata. PhD thesis, Technical
University of Munich, Germany https:// nbn- resol ving. org/ urn: nbn: de: bvb: 91- diss- 20190 801- 14849
32-1-4

 54. Chatterjee K, Henzinger M (2011) Faster and dynamic algorithms for maximal end-component decom-
position and related graph problems in probabilistic verification. In: SODA, SIAM, Philadelphia, pp
1318–1336, doi: https:// doi. org/ 10. 1137/1. 97816 11973 082. 101

 55. Chatterjee K, Dvorák W, Henzinger M, Loitzenbauer V (2016) Model and objective separation with
conditional lower bounds: disjunction is harder than conjunction. In: LICS, ACM, New York, pp197–
206, doi: https:// doi. org/ 10. 1145/ 29335 75. 29353 04

 56. Chatterjee K, Dvorák W, Henzinger M, Loitzenbauer V (2016) Model and objective separation with
conditional lower bounds: disjunction is harder than conjunction. CoRR abs/1602.02670arxiv: 1602.
02670

 57. Kelmendi E, Krämer J, Kretínský J, Weininger M (2018) Value iteration for simple stochastic games:
stopping criterion and learning algorithm. In: CAV (1). Lecture notes in computer science, vol 10981,
Springer, Switzerland, pp. 623–642, doi: https:// doi. org/ 10. 1007/ 978-3- 319- 96145-3_ 36

https://doi.org/10.1007/978-3-642-40196-1_28
https://doi.org/10.1007/978-3-642-40196-1_28
https://doi.org/10.1145/3373718.3394761
https://doi.org/10.1145/3373718.3394761
https://doi.org/10.4230/LIPIcs.CONCUR.2018.29
https://doi.org/10.1016/j.ic.2016.10.011
https://doi.org/10.1016/j.ic.2016.10.011
http://ijcai.org/Abstract/15/245
https://doi.org/10.1007/s10009-017-0476-z
https://doi.org/10.1007/s10009-017-0476-z
https://doi.org/10.1007/978-3-662-46681-0_12
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63387-9_7
https://doi.org/10.1007/978-3-319-63387-9_7
https://doi.org/10.1007/s10817-020-09574-9
https://doi.org/10.1007/978-3-030-88885-5_15
https://doi.org/10.2140/pjm.1955.5.285
https://doi.org/10.1007/978-3-642-33386-6_25
https://doi.org/10.1007/978-3-642-33386-6_25
http://arxiv.org/abs/1010.2420
http://arxiv.org/abs/1010.2420
https://doi.org/10.4204/EPTCS.346.6
https://doi.org/10.1109/LICS.1998.705645
https://doi.org/10.1109/LICS.1998.705645
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20190801-1484932-1-4
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20190801-1484932-1-4
https://doi.org/10.1137/1.9781611973082.101
https://doi.org/10.1145/2933575.2935304
http://arxiv.org/abs/1602.02670
http://arxiv.org/abs/1602.02670
https://doi.org/10.1007/978-3-319-96145-3_36

Formal Methods in System Design

1 3

 58. van Dijk T (2018) Attracting tangles to solve parity games. In: CAV (2). Lecture notes in computer sci-
ence, vol 10982, Springer, Switzerland, pp 198–215, doi: https:// doi. org/ 10. 1007/ 978-3- 319- 96142-2_
14

 59. Ujma M (2015) On verification and controller synthesis for probabilistic systems at runtime. PhD thesis,
University of Oxford, UK http:// ethos. bl. uk/ Order Detai ls. do? uin= uk. bl. ethos. 711811

 60. Löding C (1999) Optimal bounds for transformations of omega-automata. In: FSTTCS. Lecture
notes in computer science, vol 1738, Springer, Switzerland, pp 97–109, doi: https:// doi. org/ 10.
1007/3- 540- 46691-6_8

 61. Müller D, Sickert S (2017) LTL to deterministic emerson-lei automata. In: GandALF. EPTCS, vol 256,
pp 180–194, doi: https:// doi. org/ 10. 4204/ EPTCS. 256. 13

 62. Littman ML, Cassandra AR, Kaelbling LP (1995) Learning policies for partially observable environ-
ments: Scaling up. In: ICML, Morgan Kaufmann, Massachusetts, pp 362–370, doi: https:// doi. org/ 10.
1016/ b978-1- 55860- 377-6. 50052-9

 63. Chatterjee K, Chmelik M, Gupta R, Kanodia A (2016) Optimal cost almost-sure reachability in POM-
DPs. Artif Intell 234:26–48. https:// doi. org/ 10. 1016/j. artint. 2016. 01. 007

 64. Chatterjee K, Chmelík M (2015) POMDPs under probabilistic semantics. Artif Intell 221:46–72. https://
doi. org/ 10. 1016/j. artint. 2014. 12. 009

 65. Duret-Lutz A, Lewkowicz A, Fauchille A, Michaud T, Renault E, Xu L (2016) Spot 2.0 - A framework
for LTL and �-automata manipulation. In: ATVA. Lecture notes in computer science, vol 9938, pp 122–
129, doi: https:// doi. org/ 10. 1007/ 978-3- 319- 46520-3_8

 66. Kwiatkowska M, Norman G, Parker D, Vigliotti MG (2009) Probabilistic mobile ambients. Theor Com-
put Sci 410(12):1272–1303. https:// doi. org/ 10. 1016/j. tcs. 2008. 12. 058

 67. Feng L, Wiltsche C, Humphrey LR, Topcu U (2015) Controller synthesis for autonomous systems
interacting with human operators. In: ICCPS, ACM, New York, pp 70–79, doi: https:// doi. org/ 10. 1145/
27359 60. 27359 73

 68. Chatterjee K, Piterman N (2019) Combinations of qualitative winning for stochastic parity games. In:
CONCUR. LIPIcs, vol 140, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Wadern, pp 6–1617,
doi: 0.4230/LIPIcs.CONCUR.2019.6

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Authors and Affiliations

Krishnendu Chatterjee1 · Joost‑Pieter Katoen2 · Stefanie Mohr3 ·
Maximilian Weininger3 · Tobias Winkler2

 Krishnendu Chatterjee
 krishnendu.chatterjee@ist.ac.at

 Joost-Pieter Katoen
 katoen@cs.rwth-aachen.de

 Stefanie Mohr
 mohr@in.tum.de

 Maximilian Weininger
 maxi.weininger@tum.de

1 IST Austria, Klosterneuburg, Austria
2 RWTH Aachen University, Aachen, Germany
3 Technical University of Munich, Munich, Germany

https://doi.org/10.1007/978-3-319-96142-2_14
https://doi.org/10.1007/978-3-319-96142-2_14
http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.711811
https://doi.org/10.1007/3-540-46691-6_8
https://doi.org/10.1007/3-540-46691-6_8
https://doi.org/10.4204/EPTCS.256.13
https://doi.org/10.1016/b978-1-55860-377-6.50052-9
https://doi.org/10.1016/b978-1-55860-377-6.50052-9
https://doi.org/10.1016/j.artint.2016.01.007
https://doi.org/10.1016/j.artint.2014.12.009
https://doi.org/10.1016/j.artint.2014.12.009
https://doi.org/10.1007/978-3-319-46520-3_8
https://doi.org/10.1016/j.tcs.2008.12.058
https://doi.org/10.1145/2735960.2735973
https://doi.org/10.1145/2735960.2735973
http://orcid.org/0000-0002-4561-241X
http://orcid.org/0000-0002-6143-1926
http://orcid.org/0000-0002-8630-3218
http://orcid.org/0000-0002-0163-2152
http://orcid.org/0000-0003-1084-6408

	Stochastic games with lexicographic objectives
	Abstract
	1 Introduction
	1.1 Our contribution
	1.2 Related work
	1.3 Organization of this paper

	2 Preliminaries
	2.1 Games, strategies, and basic objectives
	2.1.1 Stochastic games and Markov decision processes
	2.1.2 Strategies
	2.1.3 Markov chains and probability measures
	2.1.4 Reachability and safety objectives
	2.1.5 -regular objectives and streett conditions

	2.2 Lexicographic objectives
	2.2.1 Lex-value of actions and lex-optimal actions
	2.2.2 Lex-optimal strategies

	3 Lexicographic 2-player stochastic games
	3.1 Lexicographic reach-safe SG with absorbing targets
	3.1.1 Characterizing optimal strategies
	3.1.2 Algorithm for SG with absorbing targets

	3.2 General lexicographic reach-safe SG
	3.2.1 Reduction to absorbing reach-safe lex-objectives
	3.2.2 Algorithm for general SG
	3.2.3 Determinacy and complexity

	4 MDP with lexicographic -regular objectives
	4.1 Lexicographic streett in end components
	4.1.1 Solving single streett in end components
	4.1.2 Algorithm for lexicographic streett in end components

	4.2 Lexicographic streett in general MDP
	4.3 On SG with lexicographic -regular objectives

	5 Experimental evaluation
	5.1 Reach-safe lex-objective in SG: experiments
	5.1.1 Implementation
	5.1.2 Case studies
	5.1.3 Experimental results

	5.2 MDP with lexicographic LTL: experiments
	5.2.1 Implementation
	5.2.2 Case studies
	5.2.3 Experimental results

	6 Conclusion and future work
	References

