
Vol:.(1234567890)

Formal Methods in System Design (2021) 59:44–76
https://doi.org/10.1007/s10703-022-00395-7

1 3

Bridging the gap between single‑ and multi‑model
predictive runtime verification

Angelo Ferrando1 · Rafael C. Cardoso2 · Marie Farrell4 · Matt Luckcuck4 ·
Fabio Papacchini5 · Michael Fisher3 · Viviana Mascardi1

Received: 21 June 2021 / Accepted: 5 July 2022 / Published online: 18 August 2022
© The Author(s) 2022

Abstract
This paper presents an extension of the Predictive Runtime Verification (PRV) paradigm
to consider multiple models of the System Under Analysis (SUA). We call this extension
Multi-Model PRV. Typically, PRV attempts to predict the satisfaction or violation of a
property based on a trace and a (single) formal model of the SUA. However, contempo-
rary node- or component-based systems (e.g. robotic systems) may benefit from monitor-
ing based on a model of each component. We show how a Multi-Model PRV approach can
be applied in either a centralised or a compositional way (where the property is composi-
tional), as best suits the SUA. Crucially, our approach is formalism-agnostic. We demon-
strate our approach using an illustrative example of a Mars Curiosity rover simulation and
evaluate our contribution via a prototype implementation.

 * Angelo Ferrando
 Angelo.Ferrando@unige.it

 Rafael C. Cardoso
 rafael.cardoso@abdn.ac.uk

 Marie Farrell
 Marie.Farrell@mu.ie

 Matt Luckcuck
 Matt.Luckcuck@mu.ie

 Fabio Papacchini
 f.papacchini@lancaster.ac.uk

 Michael Fisher
 michael.fisher@manchester.ac.uk

 Viviana Mascardi
 Viviana.Mascardi@unige.it

1 Department of Computer Science, Bioengineering, Robotics and Systems Engineering (DIBRIS),
University of Genova, Genova, Italy

2 Department of Computing Science, University of Aberdeen, Aberdeen, UK
3 Department of Computer Science, The University of Manchester, Manchester, UK
4 Department of Computer Science, Maynooth University, Co. Kildare, Ireland
5 School of Computing and Communications, Lancaster University in Leipzig, Leipzig, Germany

http://orcid.org/0000-0002-8711-4670
http://crossmark.crossref.org/dialog/?doi=10.1007/s10703-022-00395-7&domain=pdf

45Formal Methods in System Design (2021) 59:44–76

1 3

Keywords Runtime verification · Predictive runtime verification · Multi-model · Robotics

1 Introduction

Runtime Verification (RV) [8, 9, 23] is a formal technique for verifying the runtime behav-
iour of software systems. Figure 1a illustrates a RV monitor, which consumes a trace (a
sequence of events) from the system being monitored, and concludes whether the trace sat-
isfies or violates a property of interest. One or more monitor(s) can be used to analyse sys-
tem traces, and properties of interest are usually expressed in a formal modelling language
such as Linear-time Temporal Logic (LTL) [5, 8, 16].

In PRV [39], the monitor attempts to predict the satisfaction or violation of the property
being monitored. If the monitor predicts the property’s violation, then the system may be
able to recover from the failure or even prevent the violation in advance. Conversely, if the
monitor predicts the property’s satisfaction, then the monitor can be removed to reduce
CPU and memory overheads. Figure 1b illustrates a predictive approach, as an extension of
standard RV (Fig. 1a). The system is described by a model, � , which can be used to predict
future continuations of a generated trace. To generate a verdict, a predictive runtime moni-
tor takes both the property, � , to be verified and the model, � , of the system as input.

Previous approaches to PRV have represented the SUA using a single model [31, 39].
However, when the SUA is composed of multiple components—which may be written in
heterogeneous languages or paradigms – it may be difficult to define a single and complete
representation of the system. For example, for a robotic system, we might be interested in
checking that when a sensor perception is received, then a particular action is executed.
These events may belong to different components (and therefore different models) but all
of the events must be taken into account in order to accurately predict the verdict. In sce-
narios like this, we may have (formal or non-formal) descriptions of some or all of the
system components. Our approach works in a bottom-up fashion to make use of these mod-
els of individual components of the SUA, rather than assuming a monolithic model of the
entire system. Thus, we seek to answer the following research question:

RQ: How can a predictive monitor be applied when the SUA is composed of multiple
components, and each component is described by its own model?

Property

System

Runtime
Monitor

Trace (σ)

ϕ

Verdict
S

(a) The monitor checks whether a trace, σ,
satisfies or violates property ϕ.

Model

Property

System

Predictive
RV Monitor

Trace (σ)

ψ

ϕ

Verdict
S

(b) An extension of Fig. 1a, the monitor
uses a model, ψ, to predict future continu-
ations of the trace, σ.

Fig. 1 The standard (left) and predictive (right) RV approaches

46 Formal Methods in System Design (2021) 59:44–76

1 3

We consider two styles of PRV: compositional and centralised. If the monitored property
concerns several components and it can be split into sub-properties with each only concern-
ing one component, then we use a compositional approach: one monitor for each component,
sub-property, and model. This is similar to replicating Single-Model RV [31] across several
models. However, if the monitored property cannot be split in this way, then we show how a
centralised approach can be utilised.

The remainder of this paper is structured as follows. Section 2 provides the prerequisite
definitions of single- and multi-model PRV that are used throughout the paper. In Sect. 3 we
describe the steps that are required to move from single-model to multi-model PRV. Sec-
tion 4 introduces our two contributions to multi-model PRV; the centralised and compositional
approaches. Section 5 demonstrates the theory, using RV for the Mars Curiosity rover as an
illustrative example. In Sect. 6 we evaluate our contribution. Specifically, in Sect. 6.1 we pre-
sent an overview of the prototype tool developed for this work, and in Sect. 6.2 we report the
results of the experiments obtained by applying our tool to the Mars Curiosity example. Sec-
tion 7 discusses related work and, finally, Sect. 8 concludes with a brief summary and outlines
future research directions.

2 Preliminaries

This section introduces the notation and basic definitions used throughout the paper. Our
approach is formalism-agnostic with respect to the models and properties meaning that it is
not tied to any specific language or logic for the model and/or to specify properties. In prac-
tice, implementations of our approach will rely on formalisms selected by the monitors’ devel-
opers, and these will need to respect particular conditions that we introduce later. These con-
ditions are satisfied by many common formalisms, such as LTL and Finite-State Automata
(FSA).

A system is denoted by S , and its alphabet (all of its observable events) is denoted by ΣS (or
Σ where there is no confusion). Given an alphabet, Σ , then a trace, � , is a sequence of events in
Σ , and tr(Σ) is the set of all possible traces (the language) over Σ.

Properties are denoted by � , potentially subscripted for clarity, and � denotes their nega-
tion. Given an alphabet Σ , we denote the alphabet of a property � by Σ𝜑 ⊆ Σ . Given an alpha-
bet, Σ , a property, � , is satisfied by a trace, � , over Σ , written 𝜎 ⊧ 𝜑 , if and only if � belongs to
the language of traces determined by � . Thus, a property denotes a set of traces. For instance,
if the chosen formalism is LTL, then the notion of satisfaction of a formula, i.e. 𝜎 ⊧ 𝜑 , is
obtained by applying the semantics of LTL over traces [32]; if the formalism is FSA, then
𝜎 ⊧ 𝜑 is obtained by checking whether � corresponds to a path from an initial state to a final
state in the automaton [24], and so on. The set [[𝜑]] = {𝜎 ∣ 𝜎 ⊧ 𝜑} contains the set of traces
satisfying � , and we denote that a particular trace � satisfies a property � as � ∈ [[�]].

A property, � , can be specified in any formalism such that for a given alphabet Σ , and for
any trace, � ∈ tr(Σ) , the following two conditions hold:

Condition (1) states that, given a property, � , specified in a chosen formalism, we can
always assess whether a trace, � , satisfies � , i.e. � belongs to the set of traces satisfying � .
This condition is mandatory since a monitor is defined upon the notion of trace acceptance.

(1)� ∈ [[�]] is decidable

(2)� ∈ [[�]] ⟺ � ∉ [[�]]

47Formal Methods in System Design (2021) 59:44–76

1 3

As we will show in Definition 1, a monitor must check if a trace satisfies the property under
analysis, and this can be achieved only when condition (1) holds. Condition (2) states that
a trace � , satisfies a property, � , if, and only if, � does not satisfy its negation � . The nega-
tion of properties will be used in Definition 2 to define monitors with a predictive flavour,
where we will combine a model, � , with the negation of a property, � , to check for traces
satisfying � but not �.

Definition 1 (Monitor) Let S be a system with alphabet Σ , and � be a property. Then, a
monitor for � is a function Mon� ∶ tr(Σ) → �4 , where �4 = {⊤,⊥, ?⊤, ?⊥}:

where ∙ is the standard trace concatenation operator.

In Definition 1, a monitor can be intuitively understood to be a function that, given
a trace (�), returns a verdict (either ⊤ , ⊥ , ?⊤ , or ?⊥). If all continuations of � satisfy � ,
then the monitor returns ⊤ . If all possible continuations of � violate � , then the monitor
return ⊥ . If � satisfies � , but there exists at least one continuation which does not, then
the monitor returns ?⊤ (read as “possibly true”). And if � does not satisfy � , but there
exists at least one continuation that does, then the monitor returns ?⊥ (read as “possibly
false”).

Remark 1 Even though our contribution is general and formalism-agnostic, to help the
reader understand better how a monitor works, we linger a bit longer on its description.
According to [7], a monitor concludes ⊤ , when it has observed enough information from
the system to declare the satisfaction of the property under evaluation (�). This means
that no matter what the system does in the future, what it has done in the past is more
than enough to conclude satisfaction. Symmetrically, a monitor concludes ⊥ , when it has
observed enough information from the system to declare that the property under evaluation
(�) has been violated. Again, this means that no matter what the system does in the future,
what the system has done in the past is more than enough to conclude the violation.

The two inconclusive verdicts (?⊤ and ?⊥) are returned when a final verdict cannot be
determined over the currently observed trace � . These mean that the monitor has observed
a trace � that might satisfy � , but that does not contain enough information to guarantee it
will always do so. Thus, the monitor concludes ?⊤ if, up to now the system seems to behave
correctly (� does satisfies �), but in the future it could still do something that would violate
the property � . Symmetrically, ?⊥ is concluded where the currently observed trace � is vio-
lating � , but it is still possible that in the future the system will satisfy �.

For Definition 1 we implicitly assume that the chosen formalism describes both finite
and infinite traces of events. This can be observed in the third and fourth case of Defini-
tion 1, where the trace � is finite. In the case of a formalism only accepting infinite traces,
the definition of a monitor is obtained by merging the third and fourth cases, returning
a single but less informative outcome (i.e., ?). In this paper, we consider the more chal-
lenging scenario, when the formalism accepts both finite and infinite traces. However, the
obtained results can also be ported to scenarios only considering infinite traces.

Mon𝜑(𝜎) =

⎧
⎪⎨⎪⎩

⊤ ∀u∈tr(Σ).𝜎 ∙ u ∉ [[𝜑]]

⊥ ∀u∈tr(Σ).𝜎 ∙ u ∉ [[𝜑]]

?⊤ 𝜎 ∈ [[𝜑]] ∧ ∃u∈tr(Σ).𝜎 ∙ u ∈ [[𝜑]]

?⊥ 𝜎 ∉ [[𝜑]] ∧ ∃u∈tr(Σ).𝜎 ∙ u ∈ [[𝜑]]

48 Formal Methods in System Design (2021) 59:44–76

1 3

Definition 1 describes a generic monitor that does not impose constraints on the for-
malism used. Consequently, we collapse the definition of tr(Σ) for representing finite and
infinite traces depending on what is supported by the formalism that is used to define
� . Thus, if the formalism used to define � supports only traces of infinite length, then
tr(Σ) = Σ� ; if the formalism supports only traces of finite length, then tr(Σ) = Σ∗ ; other-
wise, tr(Σ) = Σ∗ ∪ Σ�.

Example 1 (LTL Monitor) Let � = ◻p be an LTL property, and Σ = {p, q} be the alphabet
of the system under analysis. In natural language, the property is read: “p is always true”.
If we consider the semantics of � according to standard LTL semantics [32], we obtain:
[[�]] = {p�} (where p� denotes an infinite trace of p). Now, according to Definition 1, we
define a monitor as a function Mon� ∶ Σ�

→ �4 . Note that, since LTL semantics is defined
on infinite traces only, we have that tr(Σ) = Σ� . Let us consider the finite trace � = p ∙ p ∙ p
as an example. When we apply Mon� to � , we obtain1 ? (i.e., Mon�(�) = ?). This is due
to the fact that there exist continuations u ∈ Σ� of � that both satisfy � (such as the infi-
nite trace u = p�) and that violate � (such as the infinite trace u = q ∙ p�). Intuitively, this
means that the monitor cannot conclude anything about the satisfaction or violation of �
because there might still be future events that would change the monitor’s outcome.

Let us consider instead another finite trace � = p ∙ p ∙ q as an example. In this case,
when we apply Mon� to � , we obtain ⊥ (i.e., Mon𝜑(𝜎) = ⊥). This is due to the fact that, as
specified in Definition 1, the monitor concludes the violation of � by knowing that all pos-
sible continuations u ∈ Σ� violate � . In fact, by observing q as third event in � , we already
know � cannot be satisfied by the system (� requires p to be observed at each step in the
trace). In the case of � = p ∙ p ∙ q , because there is no infinite continuation (u ∈ Σ�) that
can satisfy the specification (𝜎 ∙ u ⊧ 𝜑) the monitor can safely conclude that � has been
violated. This verdict is final, indeed, no future event will ever change the outcome.

Let S be a system with alphabet Σ . We denote its model by � , and use [[𝜓]] ⊆ tr(Σ) to
indicate the set of traces recognised by � . A model, � , can be specified in any formalism
such that for a given alphabet, Σ , for any trace, � ∈ tr(Σ) , and for any property, � , the fol-
lowing holds:

We denote (4) via the use of a binary relation ⊗ , that is, [[𝜑⊗ 𝜓]] = [[𝜑]] ∩ [[𝜓]].
Often, PRV frameworks express their properties in LTL (for example [28, 39]); how-

ever, we took our inspiration from a PRV framework where both the SUA and property
are defined using Timed Automata (TA) [31]. The reason is that in works such as [28, 39],
the predictive aspect is not formalised through a model of the system, but as a set of finite
suffixes. These suffixes are then concatenated to the given trace, � , allowing the monitor
to predict the initial part of the possible continuations, u . Instead, in our work, as in [31],
we explicitly represent the model without focusing only on the first events after � , but by
applying the prediction to the entire possible continuation. This can be obtained by using

(3)� ∈ [[�]] is decidable

(4)[[�]] ∩ [[�]] is computable

1 We remind the reader that in case of tr(Σ) = Σ� , the two inconclusive outcomes ?⊤ and ?⊥ are merged into
a single inconclusive and less informative ?.

49Formal Methods in System Design (2021) 59:44–76

1 3

a model of the system as input to the monitor, alongside the property to be verified. Infor-
mally, the model generates the set of event traces that can be observed by executing the
system. We follow the definition of a predictive monitor from [31], however, in this paper
we remain formalism-agnostic.

Definition 2 (Predictive Monitor) Let S be a system with alphabet Σ , model � and let �
be a property. A predictive monitor for � given � is a function, Mon

�,�
∶ tr(Σ) → �5 ,

where �5 = {⊤,⊥, ?⊤, ?⊥, ?}:

The intuitive meaning of the return values is the same as in the non-predictive case
(Definition 1). However, the introduction of the model requires the addition of the incon-
clusive value, ? , to cover the case when � does not belong to the model in question. Note
the use of ⊗ in the definition. For instance, the case for ⊤ requires that all traces � ∙ u are
not in [[�]] ∩ [[�]] where � represents the negation of � . Definition 2, like Definition 1,
assumes the most expressive kind of formalism, where both finite and infinite traces of
events are considered. Nonetheless, Definition 2 can be straightforwardly modified to con-
sider only infinite traces, by collapsing the last three cases into a single ? case.

To help the reader to better understand how this works, we again linger longer on its
definition. Specifically, in the case of a predictive monitor we do not only have a property
to verify � , but a model of the system under analysis � , as well. The model of the system
is used by the predictive monitor to reduce the number of possible continuations of a given
trace � . Since a monitor can conclude a final verdict (such as ⊤ or ⊥) only when it is certain
the system will never in the future produce anything to change its mind; without knowing
how the system behaves (which is what happens in the standard scenario), the monitor
has to consider any possible continuation. In fact, the monitor only stops when it knows
that the property � is certainly satisfied or violated. For a predictive monitor, the presence
of a model of the system helps the monitor to constrain the future continuations to only
those that are realistically observable. Thanks to this, the predictive monitor is capable of
concluding a final verdict in advance of its standard counterpart. This is simply due to the
fact that the standard monitor could consider a continuation that the system would never
produce (that is, a continuation that is not in the model), but that satisfies or violates the
property � . This could be a continuation that would stop the monitor from concluding a
final verdict (the first two cases in Definition 2).

Example 2 (Predictive Monitor) Let � be the same LTL property used in Exam-
ple 1 (i.e. � = ◻p), with Σ = {p, q} the alphabet of the system under analysis. Let
� = (p ∧○p) → ◻p be the model of the system, also expressed as an LTL property2.
In natural language, the model says: “if the first two observed events are p, then the sys-
tem will always do p” (where ○ is the LTL next operator). The semantics of the model

Mon
𝜑,𝜓

(𝜎) =

⎧
⎪⎪⎨⎪⎪⎩

⊤ ∀u∈tr(Σ).𝜎 ∙ u ∉ [[𝜑⊗ 𝜓]]

⊥ ∀u∈tr(Σ).𝜎 ∙ u ∉ [[𝜑⊗ 𝜓]]

?⊤ 𝜎 ∈ [[𝜑⊗ 𝜓]] ∧∃u∈tr(Σ).𝜎 ∙ u ∈ [[𝜑⊗ 𝜓]]

?⊥ 𝜎 ∈ [[𝜑⊗ 𝜓]] ∧∃u∈tr(Σ).𝜎 ∙ u ∈ [[𝜑⊗ 𝜓]]

? otherwise

2 Note that, the formalisms used to describe properties and models can be different in general.

50 Formal Methods in System Design (2021) 59:44–76

1 3

corresponds to [[�]] = {q ∙ {p, q}�, p ∙ q ∙ {p, q}�, p�} . Differently from Example 1, the
presence of the model � helps reduce the traces to consider as possible continuations of
a given finite trace � . Consider, as in Example 1, the finite trace � = p ∙ p ∙ p . The stand-
ard monitor would conclude ? (Mon�(�) = ?); because after observing p three times, we
do not have any assurance of the satisfaction or violation of � (we might keep observ-
ing p forever or a q could arrive and violate �). However, the predictive monitor (Defi-
nition 2) Mon

�,�
 has access to additional information about the system. In fact, accord-

ing to Definition 2, we cannot find any continuation (u ∈ Σ�) that is in the intersection
of the negation of the property and the model (𝜎 ∙ u ∈ [[𝜑⊗ 𝜓]]). This is determined by
the fact that [[�]] = {p∗ ∙ q ∙ {p, q}�} , and [[�]] = {q ∙ {p, q}�, p ∙ q ∙ {p, q}�, p�} . Thus,
[[𝜑⊗ 𝜓]] = {p ∙ q ∙ {p, q}𝜔, q ∙ {p, q}𝜔} . And, consequently, when � = p ∙ p ∙ p , we cannot
find any u ∈ Σ� such that 𝜎 ∙ u ∈ [[𝜑⊗ 𝜓]] and we obtain Mon

𝜑,𝜓
(𝜎) = ⊤ ; since no trace

containing two initial p is contained into [[𝜑⊗ 𝜓]].

The above definitions (Definitions 1 and 2) take into consideration the case where a sys-
tem is represented by a single model.

Definition 3 (Multi-model) Let S be a system composed of a set of compo-
nents C = {C1,… , Cn} and alphabet ΣS = Σ1 ∪… ∪ Σn where Σi is the alphabet of the com-
ponent Ci . Then a multi-model, ⟨Ψ,A⟩ , of S is a pair where Ψ = {�1,… ,�n} is the set of
models of the components in C , and A ∶ C → Ψ is a bijective function associating each
component with its model in Ψ.

Where we only have a single model � , we can consider this a special case of a multi-
model ⟨Ψ,A⟩ , where C = {C}.

In the remainder of the paper, components’ alphabets Σi are assumed to be disjoint.
Given a multi-model ⟨Ψ,A⟩ , A−1 indicates the inverse of the bijective function A.

3 Engineering multi‑model predictive RV

This section describes the process to port a given single-model predictive monitor to a
multi-model predictive monitor for a component-based system. When RV is applied to
component-based systems, there might be issues concerning the ordering of event traces
that are produced by distinct system components. As remarked in [22], in the absence of
a global clock, composing two remote3 traces produced by two separate components does
not necessarily yield a total ordering among the composite trace, but instead gives a partial
ordering. As we focus on the difficulties associated with applying RV using multiple mod-
els for prediction, in this paper we only consider systems with a shared global clock. The
presence of a global clock simplifies the monitor definition, because it allows monitors to
assume the existence of a total ordering over the local traces.

In this section, we describe how to extract the set of models to predict the events for a
given property, and how to combine multiple models into a single-model.

3 Traces that are generated by distributed components.

51Formal Methods in System Design (2021) 59:44–76

1 3

3.1 Contextualising a property

We begin by identifying to which component(s) a given property refers. In some cases the
property could refer to the entire system, or it might refer to a specific subset of compo-
nents. It is important to understand, first, which component(s) the corresponding monitor
must watch; and second, which model(s) are required to predict the events deriving from
the components of interest.

To identify which models are required to monitor a given property, we define a spe-
cific function (Definition 4) to extract these models, whose domain is the set of properties
Φ =

⋃
Ci∈C

ΦCi
 where ΦCi

 is the set of properties defined over the alphabet of the compo-
nent Ci ∈ C . Here, Φ denotes the collection of properties that can be defined for all compo-
nents in S.

Definition 4 (Contextualise Function) Let S be a system with components
C = {C1,… , Cn} , alphabet Σ = ΣC1

∪… ∪ ΣCn
 , and a multi-model ⟨Ψ,A⟩ . Then

�⟨Ψ,A⟩ ∶ Φ → ℙ(Ψ) is the contextualise function, which given a property � with alpha-
bet Σ� , returns the minimal set of models Ψ� = {�i1

,… ,�im
} with Ψ� ⊆ Ψ such that

∀Ci∈C.(ΣCi
∩ Σ� ≠ � ⟹ A(Ci) ∈ Ψ�).

The resulting set of models returned by �⟨Ψ,A⟩ is minimal because, as mentioned in
Sect. 2, the alphabets of the components are disjoint. Since an event can be produced by
only one component in S , only the events that are relevant for checking the property’s sat-
isfaction are considered. If we consider a proper subset of the models returned by �⟨Ψ,A⟩ ,
we can always find an event that is relevant for the property, but its model is not in the set.

Once we have extracted the context for a property, we know which models can be used
to predict future events. That is, given the multi-model ⟨Ψ,A⟩ of S , we know that � returns
the smallest subset of Ψ needed to predict future events.

Observation 1 (Contextualisation of the negation) It is important to note that the contex-
tualisation of a property and its negation are the same. This can be seen intuitively by the
fact that Definition 4 is based on the alphabet Σ� of the property � , and it follows directly
that Σ� = Σ� . Thus, passing the negation of the property (i.e., ¬�) as input to the contextu-
alise function would produce the same result.

3.2 Combining multiple models

After obtaining the above set of models, we use them to construct the predictive monitor.
The predictive monitor requires a property to verify, � , (which we already have) and a sin-
gle model, � , to be used to predict future events (which we do not yet have). Thus, we must
construct � based on what we know about the multi-model ⟨Ψ,A⟩.

When we combine multiple models into a global model, we need to refer to traces
belonging to both the single models and to the global model. In order to simplify our pres-
entation, we present a notion of trace projection, which we will later use to define the com-
bination of models.

Definition 5 (Projection) Let S be a system with components C = {C1,… , Cn} and alpha-
bet Σ = ΣC1

∪… ∪ ΣCn
 . Then �C� ∶ tr(Σ) → tr(ΣC

�) is the projection of a trace over the lan-
guage of C′ ⊆ C , which is recursively defined as follows.

52 Formal Methods in System Design (2021) 59:44–76

1 3

where � is the empty trace, and ∙ is the standard concatenation operator.

For readability, when the set of components contains only one element, i.e. C = {Ci} , we
write �Ci (�) , meaning that we project the trace, � , on the single component, Ci.

Definition 6 (Combination function) Let S be a system and ⟨Ψ,A⟩ its multi-model. Then
� ∶ ℙ(Ψ) → Ψ is the combination function which given a set of models Ψ� ⊆ Ψ , returns a
model �c representing their combination, such that:

Note that (1) requires �c to not produce global traces which cannot be observed by the
combination of the models, and (2) requires �c to recognise all of the global traces deriving
from the composition of the local traces recognised by the models.

The combination function, � , abstracts the notion of interleaving of models. Figure 2
and Fig. 3 illustrate a small example that we use to demonstrate this similarity. For simplic-
ity, we use Büchi Automata (BA) to describe the models. This choice helps us to describe
the function, but it does not limit the theory presented. For instance, other formalisms used

(1) �C� (�) = �

(2) �C� (ev ∙ �) = ev ∙ �C� (�) if ev ∈ ΣC
�

(3) �C� (ev ∙ �) = �C� (�) otherwise

(1) ∀�∈[[�c]]
.∀�i∈Ψ

� .(A
−1(�i) = Ci ⟹ �Ci (�) ∈ [[�i]])

(2) ∀�i∈Ψ
� .∀�∈[[�i]]

.∃��∈[[�c]]
.(A−1(�i) = Ci ⟹ �Ci (�

�) = �)

Fig. 2 Two models, � and � ′ ,
captured as Büchi Automata

s0

s1

a

b

s′0

s′1

c

d

e

ψ ψ′

s0, s
′
0

a

c

a

d

c

1

s0, s
′
1

1

s1, s
′
0

1

s1, s
′
1

1

s0, s
′
0

a
a

d

2

s0, s
′
1

2

s1, s
′
0

2

s1, s
′
1

2
e

c

c

b, d

e

ψ || ψ′ b

b, d

e

b

Fig. 3 The corresponding Büchi Automaton representing the combination of � and � ′ , namely �c

53Formal Methods in System Design (2021) 59:44–76

1 3

in the RV scenario could be used, such as Trace Expressions [2], Timed Automata [1],
FSA, and so on. Naturally, even though the theory behind Definition 6 would not change
(the requirements (1) and (2) would still be necessary), the instantiation of how to obtain
the combination of models would depend on the formalism of choice. For instance, in case
of Timed Automata4, the combination function could be obtained by a standard paral-
lel composition; while in case of Trace Expressions, the combination function could be
obtained by using the corresponding built-in interleaving operator.

Given a system, S , which is composed of two components, C and C′ , with alphabets
Σ = {a, b} , and Σ� = {c, d, e} , respectively, let ⟨Ψ,A⟩ be the multi-model of S , such that
Ψ = {� ,� �} (Fig. 2), and A(�) = C , A(� �) = C

� . We define the � function to create the
global model �c such that conditions (1) and (2) in Definition 6 hold. Since our models
are BA, � can be obtained through a standard parallel composition of automata, which is a
more relaxed version of product of automata where for moving among states in the prod-
uct it is enough to have the transition enabled in one of the two automata5. The resulting
automaton’s behaviour (Fig. 3) is an interleaving of the two automata. In Fig. 3, we show
all of the states generated in the process. As is standard in the product of BA, the states in
�c are labeled 1 and 2 (hexagons in Fig. 3), and �c must ensure that the visit to final states
occurs infinitely often.

Lemma 1 (Over-approximation of �) Let S be a system, � its single model, and ⟨Ψ,A⟩ its
multi-model. Then, [[𝜓]] ⊆ [[𝜒(Ψ)]].

Proof The lemma follows directly from Definition 6. Since � abstracts the notion of inter-
leaving of models, it always returns an over-approximation of S ; where no constraint on
the order amongst the different models is enforced. Thus, if a single model of the system
� actually existed, then it would always be at least as restrictive as the combined model
returned by � . ◻

4 Multi‑model predictive RV

Now that we have formally presented the function to contextualise a property, � , and the
function to combine multiple models, {�1,… ,�n} into one, �c , we can demonstrate how to
use these functions to adapt the single-model predictive monitoring approach to use mul-
tiple models. We assume that the models of the SUA have been constructed during earlier
phases of development, although they could be built specifically for RV.

Definition 7 (Multi-Model Predictive Monitor) Let S be a system with components
C = {C1,… , Cn} , alphabet Σ = ΣC1

∪… ∪ ΣCn
 , multi-model ⟨Ψ,A⟩ , and let � be a property.

A multi-model predictive monitor for � given ⟨Ψ,A⟩ is a function,
Mon

�,⟨Ψ,A⟩ ∶ tr(Σ�) → �5 , where �5 = {⊤,⊥, ?⊤, ?⊥, ?} , and Σ� =
⋃

�i∈�⟨Ψ,A⟩(�)
ΣA

−1(�i)
 , and is

defined as follows:

5 In the standard product of automata, a transition has to be enabled in both automata, since the product
denotes the intersection of the two languages.

4 In such case, there would be a different notion of traces w.r.t. what we present here, but the general idea
of how to use such traces to predict future continuations would be the same.

54 Formal Methods in System Design (2021) 59:44–76

1 3

The functions, �⟨Ψ,A⟩ and � , enable us to define a multi-model predictive monitor on
top of a single-model monitor. Our approach provides a general definition and requires
minimal constraints, thus allowing existing implementations of predictive monitors to
be reused.

For a given property, we extract the context (the models necessary for predicting a
verdict for the property), and then we create a single model by merging the models. This
enables us to use a standard predictive monitor that expects a single-model as input, as
described by Definition 7.

This approach considers the monitored property, � , to be a single global specification
which refers to the system, S , as a whole. However, S is composed of distinct compo-
nents. Consequently, we expect the property to refer to different parts of the system,
so there might be cases where the property can be checked by multiple monitors, each
focusing only on a part of the property that concerns only a subset of the components.
Such parallelism could improve monitoring performance and better exploit the intrinsic
distribution of the system. However, it would also complicate prediction. Since each
monitor would check only a subset of the system, it would need the corresponding sub-
set of the models to predict future events.

Theorem 1 (Soundness) Let S be a system with components C = {C1,… , Cn}, and alpha-
bet Σ = ΣC1

∪… ∪ ΣCn
. Let � be its single model, and let ⟨Ψ,A⟩ be its multi-model. Then,

for any property � the following implications hold:

Proof The theorem follows from Definition 7 and Lemma 1. By Definition 7, we know that
Mon

�,⟨Ψ,A⟩(�) = Mon
�,�(�⟨Ψ,A⟩(�))

(�) , and by Lemma 1, we know that � generates an over-
approximation of � . Thus, the resulting monitor Mon

�,⟨Ψ,A⟩ has access to a model which is
at most as restrictive as � (i.e., [[𝜓]] ⊆ [[𝜒(𝜅⟨Ψ,A⟩(𝜑))]]). Let us prove (1), and (2) can be
proved analogously. By Definition 2, Mon

𝜑,⟨Ψ,A⟩(𝜎) = ⊤ if, and only if, for all possible con-
tinuations u ∈ tr(Σ) we have 𝜎 ∙ u ∉ [[𝜑⊗ 𝜒(𝜅⟨Ψ,A⟩(𝜑))]] . Since [[𝜓]] ⊆ [[𝜒(𝜅⟨Ψ,A⟩(𝜑))]] , it
follows that 𝜎 ∙ u ∉ [[𝜑⊗ 𝜓]] . Thus, Mon

𝜑,𝜓
(𝜎) = ⊤ . ◻

Observation 2 (No completeness) The opposite direction of the implications in Theo-
rem 1 does not hold. This can be observed by the fact that the over-approximation can
denote more traces than needed (since all possible interleaving of the components are con-
sidered). Thus, it is possible that although predictive monitor using this over-approxima-
tion does not conclude a final outcome (⊤ or ⊥) this is because of the presence of continu-
ations belonging to the over-approximation (satisfying and violating �), but not belonging
to the actual model �.

From Theorem 1, we know that a multi-model predictive monitor generated using
Definition 7 preserves its results with respect to a standard, single-model monitor. If
the multi-model predictive monitor returns a final outcome, then we are assured that the
system actually satisfies or violates the property (in the current run �).

Mon
�,⟨Ψ,A⟩(�) = Mon

�,�(�⟨Ψ,A⟩(�))
(�)

(1) ∀𝜎∈tr(Σ).Mon
𝜑,⟨Ψ,A⟩(𝜎) = ⊤ ⇒ Mon

𝜑,𝜓
(𝜎) = ⊤

(2) ∀𝜎∈tr(Σ).Mon
𝜑,⟨Ψ,A⟩(𝜎) = ⊥ ⇒ Mon

𝜑,𝜓
(𝜎) = ⊥

55Formal Methods in System Design (2021) 59:44–76

1 3

In the next section we describe how, using the notion introduced previously, we can
define a general and modular approach for using a multi-model to predict future events in
an heterogeneous environment where multiple monitors are used.

4.1 Compositional properties

So far we have focused on a centralised approach where, given a property and a (multi-)
model, a single predictive monitor is used. In the remainder of this paper we describe a
compositional approach that uses several monitors to predict the satisfaction or violation
of a complex property. One benefit of this approach is that it can enable a monitor to ter-
minate earlier. This section shows how properties can be split (if certain compositional
requirements are met) to allow the generated sub-properties to be verified independently.

Once properties are split into sub-properties they can be verified separately, alongside
the subset of the system models that correspond to the components to which each sub-
property refers. This reduces the number of possible continuations that have to checked,
which can enable the predictive monitor to terminate earlier than a non-predictive monitor.
If the monitor can conclude that the (sub-)property has been violated, then this could lead
to swifter mitigation. If the monitor can conclude that the (sub-)property has been satisfied,
then it can be terminated to save memory and CPU time.

We assume that the same formalism is used to specify the properties of different com-
ponents, and that this formalism contains binary operators, which are used to build com-
plex properties from simpler sub-properties. In this scenario, it is natural to think that the
verdicts of different monitors, monitoring sub-properties, can be aggregated into a single
verdict for the more complex property. This idea, however, does not translate immedi-
ately into practice as not all sub-properties can be monitored independently. This problem
can be partly circumvented by partitioning the operators into those which are commuta-
tive (implying independence) and those which are not. Naturally, there might be operators
which can be derived from other operators, in these cases, we extend the notion of com-
mutativity to include operators which are not commutative per se, but that can be derived
using commutative operators. An example is the implication operator (⟹), which is not
commutative, indeed A ⟹ B is not the same as B ⟹ A , but can be derived using the
disjunction operator (∨) as ¬A ∨ B (resp., ¬B ∨ A), which is commutative.

Formally, let ⋄ be the set of binary operators of the formalism, then ⋄c ⊆ ⋄ denotes the
set of commutative operators, and ⋄nc = ⋄ ⧵ ⋄c denotes the set of non-commutative ones.
We say that a property �1 ⋄1 �2 is compositional if ⋄1 ∈ ⋄c , and non-compositional oth-
erwise. If a property is compositional, then different monitors can be used for the differ-
ent components (sub-properties). For example, the property (�1 ⋄1 �2) ⋄2 �3 where ⋄1 ∈ ⋄c
and ⋄2 ∈ ⋄nc is not compositional and requires a single monitor, but the same property
where ⋄2 ∈ ⋄c and ⋄1 ∈ ⋄nc , can be monitored using two monitors (one for �1 ⋄1 �2 and
one for �3). Naturally, here we are assuming that ⋄1 cannot be distributed over ⋄2 , and vice
versa. If that was the case, then in the first example, even though ⋄2 ∈ ⋄nc , we could still
distribute it over ⋄1 ∈ ⋄c obtaining (�1 ⋄2 �3) ⋄1 (�2 ⋄2 �3) . Thus producing a composi-
tional property with two sub-properties. As a last step, we define how the results of differ-
ent monitors can be aggregated into a single verdict in Definition 8.

Definition 8 (Composition Setting) Let S be a system with components C = {C1,… , Cn} ,
alphabet Σ = ΣC1

∪… ∪ ΣCn
 , multi-model ⟨Ψ,A⟩ , and let ⋄c be the set of commutative

binary operators over properties. ST = {⟨⋄1, ◦1⟩,… , ⟨⋄n, ◦n⟩} is a composition setting

56 Formal Methods in System Design (2021) 59:44–76

1 3

where ⋄i ∈ ⋄c , and each ◦i ∶ �5 × �5 → �5 is an aggregation function such that the follow-
ing hold:

where C
1

s
= {A−1(𝜓) � 𝜓 ∈ (𝜅⟨Ψ,A⟩(𝜑1

))}, C2
s
= {A−1(𝜓) � 𝜓 ∈ (𝜅⟨Ψ,A⟩(𝜑2

))},X ∈ {?, ?⊤, ?⊥},

Y ∈ {⊤,⊥} and Z ∈ {⊤,⊥, ?⊤, ?⊥, ?}.

Definition 8 presents the notion of a composition setting, which is a set of tuples
⟨⋄, ◦⟩ , where each ⋄ operator is commutative and the two requirements hold. The first
requirement states the relation between ⋄ and its counterpart ◦ . Hence, to verify a com-
posed property �i ⋄ �j we can verify �i and �j separately, and then we aggregate the
results obtained from the verification with the corresponding ◦ operator. The second
requirement is more complicated, as it concerns the finality of the outcomes obtained
through the compose operator (⋄). This second requirement states that, if a final out-
come (⊤ or ⊥) can be concluded by combining an inconclusive verdict (such as ?⊤ , ?⊥ , or
?) with another possible verdict (any verdict in �5), then the same outcome can be con-
cluded by replacing the inconclusive verdict with a final one. In brief, if a final outcome
can be concluded with less information (inconclusive verdict), then it can definitely be
concluded with more information (final verdict). This is also related to the finality of the
verdict; once a final outcome is obtained, it should never change in the future (only the
inconclusive verdicts can change, and eventually become final verdicts).

For example, consider the commutative Boolean operators ∧ and ∨ . The composition
setting ST = {⟨∧, ◦∧⟩ , ⟨∨, ◦∨⟩} assigns functions to ∧ and ∨ that could be defined as in
Table 1.

On the left, we have a possible aggregation function for the ∧ operator; while on the
right, a possible aggregation for the ∨ operator. Except for the standard cases (⊤ and ⊥),
the other cases represent a possible aggregation of the Boolean verdicts. Specifically, all
the cases involving ?⊤ , ?⊥ , or ? can be defined differently depending on the context.

It is important to note that the choices made in Table 1 are subjective (but preserve
the second requirement of Definition 8), and for different scenarios we can have differ-
ent definitions for the same commutative operators. For instance, ?⊤◦∧?⊥ is mapped to
?⊥ , because we decided to give more importance to negative results for the ◦∧ operator.

(1) ∀𝜎∈tr(Σ).∀⟨⋄i,◦i⟩∈ST.
Mon

𝜑1⋄i𝜑2,⟨Ψ,A⟩(𝜎) = Mon
𝜑1,⟨Ψ,A⟩(𝜋C1s (𝜎))◦iMon

𝜑2,⟨Ψ,A⟩(𝜋C2s (𝜎))
(2) ∀⟨⋄i,◦i⟩∈ST.(X◦iY = ⊤) ⇒ (Z◦iY = ⊤)(resp., for⊥)

Table 1 One possible
composition setting for
conjunction and disjunction

◦∧ ⊤ ⊥ ?⊤ ?⊥ ? ◦∨ ⊤ ⊥ ?⊤ ?⊥ ?

⊤ ⊤ ⊥ ?⊤ ?⊥ ? ⊤ ⊤ ⊤ ⊤ ⊤ ⊤

⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊥ ⊤ ⊥ ?⊤ ?⊥ ?

?⊤ ?⊤ ⊥ ?⊤ ?⊥ ? ?⊤ ⊤ ?⊤ ?⊤ ?⊤ ?⊤

?⊥ ?⊥ ⊥ ?⊥ ?⊥ ?⊥ ?⊥ ⊤ ?⊥ ?⊤ ?⊥ ?

? ? ⊥ ? ?⊥ ? ? ⊤ ? ?⊤ ? ?

57Formal Methods in System Design (2021) 59:44–76

1 3

Nonetheless, we might as well define ◦∧ to map ?⊤◦∧?⊥ to ?⊤ , if the scenario would gain
from a more optimistic approach.

4.2 Compositional multi‑model predictive monitor

Using the composition setting (Definition 8), we know which operators (⋄) can be used
to guide the property decomposition into multiple monitors and how we can aggre-
gate (◦) their corresponding verdicts. The derived composition monitor, presented in
Definition 9, shows how such a compositional evaluation of properties can be obtained
using the same assumptions and engineering steps required by the centralised approach
(Definition 7).

Definition 9 (Composition Monitor) Let S be a system with components C = {C1,… , Cn} ,
alphabet Σ = ΣC1

∪… ∪ ΣCn
 , and multi-model ⟨Ψ,A⟩ . Let � be a property and ST a com-

position setting. Then, a composition monitor is a function CoMon� ∶ tr(Σ) → �5 , and is
defined as follows:

1. if � = �i ⋄ �j and ⟨⋄, ◦⟩ ∈ ST , then

 where Ci
s
= {A−1(�) � � ∈ (�⟨Ψ,A⟩(�i))} and C

j
s
= {A−1(�) � � ∈ (�⟨Ψ,A⟩(�j))}

2. otherwise,

Theorem 2 Let S be a system with components C = {C1,… , Cn}, and alpha-
bet Σ = ΣC1

∪… ∪ ΣCn
. Let � be its single model, let ⟨Ψ,A⟩ be its multi-model, and let ST

be a composition setting. Then, for any property � the following implications hold:

Proof The proof is by induction over the compositional structure of �.
Base case: Let us consider the case where � is non-compositional. By Definition 9, the

composition monitor is defined as CoMon�(�) = Mon
�,⟨Ψ,A⟩(�) . Hence, the base case fol-

lows by Theorem 1.
Induction step: Let � = �i ⋄ �j such that CoMon�i

(�Ci
s
(�)) = Y with Y ∈ {⊤,⊥} . By IH,

it follows that Mon
�i,�

(�Ci
s
(�)) = Y . By Definition 9, we have

CoMon�i⋄�j
(�) = CoMon�i

(�Ci
s
(�))◦CoMon�j

(�
C
j
s
(�)) By Definition 8, it follows that both

CoMon�i⋄�j
(�) = Y and Mon

�i⋄�j,�
(�) = Y . Therefore,

with Y = {⊤,⊥} . ◻

Observation 3 For Composition Monitors, the opposite implications of the ones pre-
sented in Theorem 2 do not hold (similarly to Multi-Model Predictive Monitors). This can

CoMon�i⋄�j
(�) = CoMon�i

(�Ci
s
(�)) ◦ CoMon�j

(�Cj
s
(�))

CoMon�(�) = Mon
�,⟨Ψ,A⟩(�)

(1) ∀𝜎∈tr(Σ).CoMon𝜑(𝜎) = ⊤ ⇒ Mon
𝜑,𝜓

(𝜎) = ⊤

(2) ∀𝜎∈tr(Σ).CoMon𝜑(𝜎) = ⊥ ⇒ Mon
𝜑,𝜓

(𝜎) = ⊥

CoMon�i⋄�j
(�) = Y ⇒ Mon

�i⋄�j ,�
(�) = Y

58 Formal Methods in System Design (2021) 59:44–76

1 3

be observed by the fact that the over-approximation generated in the leaves of the com-
posed property can denote more traces than needed (w.r.t. the precise single-model repre-
sentation �). Because of this, it may be that the composition monitor using over-approxi-
mation cannot conclude a final verdict, while the corresponding single-model version can.

A composition monitor is essentially a relay, which is used to aggregate and propa-
gate the verdicts of predictive monitors. In particular, it extracts the composed proper-
ties from the structure of � . This definition is based on the observation that a composi-
tional operator stops being compositional when nested inside a non-compositional one.
As long as we encounter properties composed of only compositional operators (case 1)
we can decompose the monitor evaluation; when we encounter a non-composed prop-
erty (case 2) then we stop, and revert to the multi-model definition.

Using these composition monitors we obtain compositional and predictive RV;
where, starting from a composed property, we can generate a set of monitors to propa-
gate and evaluate the different sub-properties. We assume the presence of a global trace,
� , which can be propagated from the top-level composition monitors down to the pre-
dictive monitors. From a practical perspective, this implies the use of an entity which
gathers the information from the components and creates a global trace. Since we
are dealing with systems that have a global clock, such an entity should be relatively
straightforward to obtain.

Figure 4 illustrates how the composition monitors work. Here, we have a property,
� , to verify, which is the composition of two sub-properties, �1 and �2 which, in turn,

Composition
Monitor

Predictive
RV Monitor

Composition
Monitor

Composition
Monitor

ϕ3

ϕ

ϕ1
ϕ2

ψ3

σ

π{C3,C4}(σ)

Predictive
RV Monitor

ϕ4

ψ4
Predictive
RV Monitor

ϕ5

ψ5

Predictive
RV Monitor

ϕ6

ψ6

V3

V4

V5

V6

V1 = V3 ◦∨ V4

V2= V5 ◦∨ V6

V = V1 ◦∧ V2

System

C1
C2

Cn ...

π{C5,C6}(σ)

σ
σ σ

σ

Fig. 4 Composition monitor example for property � = �
1
∧ �

2
 , with �

1
= �

3
∨ �

4
 and �

2
= �

5
∨ �

6
 .

Here, for each �i , we have that �(�⟨Ψ,A⟩(�i)) = �i and A−1(�i) = Ci

59Formal Methods in System Design (2021) 59:44–76

1 3

are the composition of the sub-properties �3 with �4 , and �5 with �6 , respectively.
This composition is obtained using the composition setting ST presented previously,
with which we can create conjunctions and disjunctions of our properties. The verdicts
obtained by the evaluation of the leaf properties (the non-composed ones), are propa-
gated bottom-up from the predictive, to the composition monitors. Each composition
monitor applies the corresponding aggregation function according to the composition
settings, ST , to generate the verdict to propagate. This process goes up to the root com-
position monitor, corresponding in this scenario to CoMon�1∧�2

 , which will propagate
the result to the end user.

Thanks to the composition setting, we are able to split the verification of a property,
� , across multiple monitors. Rather than the centralised version presented at the begin-
ning of Sect. 4, the composition approach does not require all of the models to be com-
bined, which can be both expensive to compute and require a non-negligible amount of
memory. Naturally, with the assumption of getting smaller sets of models when apply-
ing the contextualise function (Definition 4) on the sub-properties. Otherwise, the result
of the composition monitor is still sound, but there might not be any gain in the verifica-
tion process; since the verification of sub-properties would probably not be concluded in
advance of a centralised monitor. Even though this is not relevant from a more theoreti-
cal perspective, it might have practical implications. Thus, at the implementation level,
one could check whether the contextualise function returns smaller subsets of models
(or not). If it does not, the composition approach could be skipped, since it would not
bring any improvement over the centralised approach.

AgentEnvironment Interface

Arm Mast Wheels

Simulation
Environment

Fig. 5 Modular architecture of the Curiosity rover where arrows indicate data flow between distinct system
components

o A B C Windy Radiation

Fig. 6 The Curiosity begins at the origin, o, and then visits the waypoints A, B and C in whichever order
is safe. We indicate waypoints with high levels of wind (grey) and radiation (yellow). (Color figure online)

60 Formal Methods in System Design (2021) 59:44–76

1 3

5 Example: Mars Curiosity rover

In this section, we present an illustrative example of a simulation of the Mars Curios-
ity rover, which is an autonomous robotic system for Martian surface activities that was
previously modelled in [10]. This simulation is implemented as a system of modules as
shown in Fig. 5. This particular system is composed of: an Environment Interface that
processes and sends input from sensors to an Agent which is responsible for decision
making and instructs the Arm, Mast and Wheels. The output is sent to the Simulation
Environment.

5.1 Overview

The Curiosity carries out an inspection mission where it autonomously patrols particular
waypoints on a given topological map of an area on Mars. The Curiosity starts at the origin
waypoint, o, and from here, the rover must patrol three other waypoints (A, B, and C).

The Curiosity autonomously navigates between the waypoints in the following order:
(o → A → B → C → A → …), as shown in Fig. 6. However, if one of the waypoints is
experiencing high levels of radiation then the rover should skip it until the radiation has
reduced to a safe level. For data collection, the mast and arm should be open but it is unsafe
to do so in windy conditions.

It is important to apply robust verification techniques to systems composed of multi-
ple sub-systems, in order to improve confidence that the system is trustworthy. Particularly
when these systems are to be deployed in safety- and/or mission-critical domains. Using
RV here is useful because we can add one or more monitors while the system is running to
check that it is behaving as expected. This is achieved by formalising the properties that the
system has to preserve during its execution.

ready

left

right

forward

backward

set turning rad 1

set turning rad -1
set wheels speed

stop

stop

set wheels speed 0

wait

act failure

act successs0

s1 s2 s3
s4

s5 s6

s7

Fig. 7 BA model of the Wheels, �wheels . Once it is “ready” it begins to execute the actions that it receives

61Formal Methods in System Design (2021) 59:44–76

1 3

5.2 Applying our approach

Following the engineering steps presented in the previous sections, we demonstrate how
to apply an existing single-model predictive monitor to the Curiosity example, when we
do not have a single model of the system but rather a collection of models, one for each
component. The steps 1-4 below represent the engineering steps (Sect. 3) that are required,
while steps 5(a) and 5(b) show how to instantiate the centralised and composition monitors
respectively (Sect. 4).

Step 1: Formalising the models. Now we must choose a formalism to represent the mod-
els of the set of components, C . We have chosen to represent the models as BA and so
Figs. 7 and 8 depict the BA for the Wheels and Agent components, respectively. Intuitively,
Fig. 7 describes how the wheels component of the rover works. It starts by producing the
event ready, meaning that the wheels component is ready to receive instructions Then,
we find different possibilities: the wheels can be asked to turn forward , backward , left ,
or right . Depending on the instruction that was received, some additional command may
be required (like set_turning_rad , to change the direction of the wheels to left or right).
After that, the speed of the turning wheels is set, making them move at a certain fixed rate.
Finally, the wheels stop (by setting the speed to zero), and the process may restart.

The same reasoning as above also goes for Fig. 8, which defines the agent controlling
the robot. Here, we also have events concerning the state of the agent, as well actions con-
cerning the movement of the rover. Distinctly from Fig. 7, here the sequence of actions
executed by the agent are checked, and in each step the agent controls the outcome of the
performed action. After the sequence of different actions (which correspond to the rover’s
mission) has been completed, the agent may start again with the same patrolling mission.

We chose BA because they satisfy our restrictions (Sect. 2). In particular, given a BA,
� , we can: (1) check if a trace, � , belongs to � , i.e. � ∈ [[�]] and, (2) the ⊗ operator exists,
and can be obtained in two steps by first translating � into its equivalent BA, B� , (see [36]),

ready

move to A

right

ac
t
fa
ilu

re

act success

forwardac
t
fa
ilu

re

act success

move to B

left

act failure

act success

forward

act failure

act success

move to C

left

ac
t
fa
ilu

re

act success

forward

ac
t
fa
ilu

re

act success

right

ac
t
fa
ilu

re

act success

backward

ac
t
fa
ilu

re

act success

s0

s1

s2

s3 s4

s5 s6

s7 s8

s9 s10

s11 s12

s13

s14

s15s16

s17s18

s19

Fig. 8 BA model of the Agent �agent . Once it receives “ready” it sends the action commands to be executed
to the Wheels

62 Formal Methods in System Design (2021) 59:44–76

1 3

and then by taking the product with the model, i.e. 𝜑⊗ 𝜓 = B𝜑 × 𝜓 (standard product of
BA).

Considering the rover, with its components and models (Figs. 7 and 8), we now define
its corresponding multi-model as ⟨Ψ,A⟩ , where Ψ = {�wheel,�agent} , A(Wheels) = �wheels
and A(Agent) = �agent.

Next, we formalise the properties that we wish to monitor.
Step 2: Formalising the properties. We use LTL as the formalism for specifying the

properties because it complies with the restrictions imposed by our approach (Sect. 2).
Specifically, given an LTL property, � , we can: (1) decide whether a trace, � , satisfies � i.e.
𝜎 ⊧ 𝜑 and, (2) construct its negation, �.

In the context of our example, we are interested in specifying properties about the com-
ponents of the rover, such as its Wheels, Arm, Mast and Agent. For brevity, we focus on
the Wheels and the Agent. In particular, we require that after the Agent sends an action to
the Wheels component then the wheels will not stop before turning left (i.e. set the turning
radius to 1). We do not expect this property to be satisfied by each rover execution, but it
allows us to demonstrate how the models can help to predict the monitor’s final outcome.
We formalise this property in LTL, using the standard “until” operator (U), as:

where action ∈ {forward, left, right, backward} . This property refers to the Wheels and so
only the model of the Wheels is required for monitoring.

The rover’s high-level decision making is carried out in a single component, the Agent,
which decides on the actions to be executed. Each action is then sent to the respective com-
ponent for execution. An appropriate property to verify about the Agent is:

where ◻ is LTL’s standard “globally” operator. This property specifies that each action
requested by the agent between waypoint A and B never fails. Also in this case, the prop-
erty only refers to the Agent so only the model of the Agent component is required.

Next, in order to use the properties and the models to create the predictive monitors, we
must define the �⟨Ψ,A⟩ and � functions.

Step 3: Defining the contextualise function. The �⟨Ψ,A⟩ function (Definition 4) is straight-
forward; given a property, � , it extracts the set of events involved in the property (denoted
Σ�), and returns the set of models Ψ� ⊆ Ψ such that if ∃!𝜓∈Ψ.Σ𝜑 ⊆ Σ𝜓 , then Ψ� = {�} ; oth-
erwise, Ψ� = {�i | Σ�i

∩ Σ� ≠ �} . Where “ ∃! ” is read as “exists exactly one”. With respect
to the above Curiosity properties, we have that:

Step 4: Defining the combination function. The � function (Definition 6) in the context of
BA composition has already been presented in Fig. 3. In automata theory, the combination
of automata is often referred to as parallel composition.

Step 5(a): Instantiating a centralised multi-model monitor. Now that we have completed
all of the engineering steps outlined in Sect. 3, we have all that we need to port an exist-
ing single-model predictive monitor into a multi-model scenario. Since we decided to use
LTL and BA, we first instantiate the definition of single-model monitor. Due to the restric-
tions that we have imposed on the formalism, we know that such an instantiation exists. In
our specific scenario, an instantiation of a single-model predictive monitor Mon

�,�
 (Defi-

nition 2) for LTL properties using BA as models can be derived from [39]. We follow the

�1 = (action ⟹ (¬stop) U set_turning_rad_1)

�2 = (◻(move_to_A ⟹ (¬action_fail) U move_to_B))

�⟨Ψ,A⟩(�1) = {�wheels}and�⟨Ψ,A⟩(�2) = {�agent}

63Formal Methods in System Design (2021) 59:44–76

1 3

work on constructing Runtime Verification Linear Temporal Logic (RV-LTL) monitors in
[7] to distinguish between the ? and {?⊤, ?⊥} outcomes.

An example of a property that concerns more than one model at the same time is the
composition �3 = �1 ∧ �2 , which is derived from the composition of the two properties
that were described above, for the Wheels and Agent respectively. Intuitively, �3 says that,
after the Agent sends an action to the Wheels component, the wheels will not stop before
turning left, and all of the actions sent by the agent between waypoints A and B never fail.
To predictively monitor �3 , we require a model of the two components. This model does
not exist explicitly but it can be derived using the �⟨Ψ,A⟩ and � functions. Next, we instanti-
ate the multi-model predictive monitor (Definition 7) as: Mon

�3,⟨Ψ,A⟩ = Mon
�3,�(�⟨Ψ,A⟩(�3))

 ;
where we extract the context from �3 , which is �⟨Ψ,A⟩(�3) = {�wheels,�agent} , and we create
the resulting parallel combination automaton �c = �wheels||�agent . Intuitively, �c corre-
sponds to the decision-making model �agent , where states s3, s5, s8, s10, s13, s15, s17, s19 are
expanded into �wheels ’s states for each specific action. Since the two models share the
majority of events, �c does not offer a high level of parallelism. The Agent, after instructing
the Wheels to execute an action, waits for the corresponding outcome (success or failure).

Step 5(b): Instantiating composition monitors. As shown in Fig. 3, the composition of
automata may suffer from state space explosion. It is thus preferable to have, when pos-
sible, a more compositional approach, where we may use the models without having to
combine them.

Recall Definition 9, which shows how we can define the predictive monitor for �3 as the
composition of the two predictive monitors for �1 and �2 . Since �1 and �2 each only refer
to a single model then the corresponding predictive monitors do not require the combina-
tion of models. This brings us to the following instantiation:

CoMon�3
(�) = Mon

�1,�wheels
(�Wheels(�))◦

∧Mon
�2,�agent

(�Agent(�))

5.3 Discussion

Table 2 contains potential outcomes for each of the monitor functions instantiated in this
section. From left to right, the columns contain the prefix of an observed trace, � , the non-
predictive LTL monitors for �1 and �2 , the predictive monitors for �1 and �2 using �wheels
and �agent for prediction respectively, the centralised multi-model monitor for �3 and
finally, the composition monitor for �3 . The rows capture how the monitors behave accord-
ing to the respective prefix evolution, first when the trace is empty, � , then when it contains
only the ready event, and finally when it also contains forward . We can see how
Mon

�1,�wheels
 concludes the violation of its non-predictive counterpart; such anticipation is

obtained thanks to �wheels , which informs the monitor that there is no continuation after

Table 2 The outcomes of the various monitors for an example trace

Trace Non-Predictive Predictive Centralised Compositional

� Mon�
1

Mon�
2

Mon
�
1
,�wheels

Mon
�
2
,�agent

Mon
�
3
,⟨Ψ,A⟩ CoMon�

3

� ?⊤ ?⊤ ?⊤ ?⊤ ?⊤ ?⊤ ◦∧ ?⊤

ready ?⊥ ?⊤ ?⊥ ?⊤ ?⊥ ?⊤ ◦∧ ?⊥

ready ∙ forward ?⊥ ?⊤ ⊥ ?⊤ ?⊥ ⊥ ◦∧ ?⊤

64 Formal Methods in System Design (2021) 59:44–76

1 3

forward where �1 can be satisfied, because after �wheels consumes forward , there is no way
to observe set_turning_rad_1 without stopping the wheels first (Fig. 7). This conclusive
outcome is not obtained inside the centralised multi-model monitor, where we use the
global model of the system, since �3 requires the combination of both �wheels and �agent due
to it having events belonging to both components.

More specifically, the centralised monitor cannot conclude a final outcome because
there exists a continuation after forward that satisfies �1 . Such a trace corresponds to the
execution of the Agent, while the Wheels component remains idle. This is obtained under
the assumption of an absence of fairness in the system, which means that a component
can be indefinitely delayed. In such case, the resulting infinite trace belonging to the �agent
model trivially satisfies �1 . Note that, Definition 6 does not require fairness in general, but,
if needed, such a requirement can be added. Finally, following its definition, we obtain the
conclusive outcome with the composition monitor, since according to Table 1 the result of
such aggregation is ⊥.

6 Evaluation

To evaluate our solution, we have developed a prototype which implements all of the engi-
neering steps presented in Sect. 3, as well as the single- and multi-model predictive runt-
ime monitors (see Sect. 4).

6.1 Implementation

Figure 9 presents and an overview of our prototype tool6, which implements the entire
engineering process presented in this paper. The tool provides a proof of concept by apply-
ing our approach to LTL properties and Büchi automata. However, the theory presented in

Multi-Model
RV tool

. . .

trace

System

models
(HOA)

flag: –centralised, or, –composition

verdict

{�, ⊥, ?�, ?⊥, ?}

generates

specified by

Fig. 9 Overview of the implemented tool

6 Prototype: github.com/AngeloFerrando/MultiModelPredictiveRuntimeVerifica-
tion

65Formal Methods in System Design (2021) 59:44–76

1 3

this paper is general and the resulting engineering process can be ported to other formal-
isms for both properties and models.

Our tool is implemented in Python, and uses the Spot library7 [15], which is a C++14
library for LTL, �-automata manipulation and model checking. Thanks to this library, a
predictive monitor (see Definition 2) is relatively straightforward to implement. As shown
in [39], it is enough to transform an LTL property (or its negation) given as input into an
equivalent Büchi automaton, and then to compute the product of the latter with the model
of the system. Both LTL properties and Büchi automata are supported natively by Spot.
Specifically, Spot expects a Hanoi Omega-Automata (HOA)8 file, one of the most widely
used formats for representing automata-like structures, which makes our tool highly reus-
able. If an alternative to Spot is needed, then any of the algorithms presented in [12, 13, 18,
35] can be used.

In our tool, the transformation to a Büchi automaton and its product are completely
handled by Spot, which uses state of the art algorithms. Moreover, thanks to the Python
bindings to C++, the performance is not compromised, since the most time-demanding
computations are directly executed on the machine (not interpreted by Python). Once
the product is obtained, a predictive monitor can be implemented directly by checking if
the language recognised by the product is empty (or not). If the product of the property
with the model does not recognise any trace (its language is empty), then it means that
there are no continuations which belong to the model and satisfy the property. Thus, we
can conclude that the property has been violated (the second case of Definition 2 holds).

Symmetrically, the same reasoning can be followed with the negation of the prop-
erty; if the product of the negation of the property with the model recognises the empty
language, then it means we cannot find any continuation which belongs to the model
and violates the property. Thus, we can conclude the property is satisfied (the first case
of Definition 2 holds). If both the products recognise at least one trace (i.e., are not
empty), it means we have at least one continuation which belongs to the model that sat-
isfies (resp., violates) the property, and we find ourselves in an inconclusive case (?). To
discretise ? into ?⊤ or ?⊥ , it is enough to consider whether the current observed prefix is
accepted (resp., not accepted) by the Finite-State Machine (FSM) generated considering
LTL with a finite semantics (fLTL [29]). Exactly as it has been done with RVLTL [6],
which corresponds to the implementation of a standard 4-valued monitor (see Defini-
tion 1) for LTL properties.

The remaining engineering steps have been implemented directly in Python. Specifi-
cally, the contextualisation (see Definition 4), the projection (see Definition 5), and the
combination (see Definition 6) functions have been implemented as Python functions.
The first two are a trivial porting of the corresponding definitions. In fact, the contextu-
alise function simply looks for the events used in an LTL property, and returns the set
of models that contain at least one such event (i.e. the models of interest for predicting
the events considered in the property). The projection function is simply a filter, which
given a trace of events and a model as input, returns the trace deprived of the events
not belonging to the model. The combination function is less trivial, but as we showed
in Fig. 3, it can be obtained by interleaving the automata. In particular, this has been
obtained by extending the notion of a product in Spot, where instead of considering only

7 Spot Library: https:// spot. lrde. epita. fr/
8 http:// adl. github. io/ hoaf/

https://spot.lrde.epita.fr/
http://adl.github.io/hoaf/

66 Formal Methods in System Design (2021) 59:44–76

1 3

the events belonging to the intersection of the automata (as the product does), all transi-
tions are considered (and combined).

By applying the engineering steps from Sect. 3, we implemented the multi-model
predictive monitor. Specifically, this has been achieved by creating a Python class that
handles both Definition 7 and 9. In fact, depending on the user’s choice (via command
line arguments), the resulting monitor is constructed following one of these two defini-
tions. If the user wants to apply centralised (i.e., single-model) predictive runtime verifi-
cation, then the Python object will first combine all of the models given as input (using
the combination function), and will then create a predictive monitor.

Algorithm 1 reports, in pseudo-code, the implementation of Definition 7. Most of
the instructions in this algorithm correspond to notions presented previously in this sec-
tion. On lines 1 and 2, the LTL property � and its negation ¬� are transformed into
Büchi Automata (using the Spot library). Then, since we are in a multi-model scenario,
we need to contextualise the property � w.r.t. its models. This is achieved on line 3, by
applying the contextualise function (as presented in Definition 4). Then, the resulting
extracted models are combined on line 4 using the combination function (as presented
in Definition 6). The resulting Büchi Automaton denotes the over-approximation of the
system. This step is, again, achieved using the Spot library. After that, we loop over the
trace of events.

67Formal Methods in System Design (2021) 59:44–76

1 3

For each iteration of the loop (starting on line 5), the head of the trace (ev) is removed
and used to update the Büchi Automata. This update is performed by using the transition
functions. Starting from the current initial state, the transition that expects the ev is con-
sumed, and the state reached through such transition is assigned as the new initial state.
This is done for all automata, and it is necessary to keep track of the current trace � that
has been analysed. Since the loop considers only one event per iteration, the automata need
to be updated to remember which events have already been observed. Without this update
phase, the automata would always consider the current ev as the initial event of � . By mov-
ing inside the automata and keeping track of which events have already been observed, we
can incrementally check � over the automata.

Once this update phase is completed, as we mentioned earlier in the section, it is suf-
ficient to calculate the product of the automata. If the product of the Büchi Automaton
B� with the Büchi Automaton B� is empty (line 13), then, it means no future continua-
tion belonging to � satisfies � . Thus, we can return ⊥ (i.e., violation). Correspondingly,
if the product with the Büchi Automaton B¬� is empty, then, it means no continuation
belonging to the model violates � . Thus, we can return ⊤ (i.e., satisfaction). Otherwise,
the loop continues with the following event in the trace � , until the trace is empty. If
that happens, then the only thing left to check is if the current trace � at least satisfies
the property � considering a finite semantics. If that is the case, then we can conclude

68 Formal Methods in System Design (2021) 59:44–76

1 3

?⊤ ; since the trace is currently satisfying the property. Otherwise, we conclude ?⊥ ; since
the trace is currently violating the property. This last step is obtained by generating a
FSM for LTL considering its finite semantics (as presented in [29]).

Otherwise, if the user wants to apply compositional (i.e., multi-model) predictive
runtime verification, then the Python object will decompose the property (case 1 in Def-
inition 9) until it encounters a non-composed property; when this happens, the object
combines the contextualised models and creates the resulting predictive monitor (case
2 in Definition 9). Since this has been implemented recursively, the links amongst the
different generated monitors are then easily created. These links are used to propagate
the partial outcomes of the different monitors (as shown in Fig. 4) and are encapsulated
inside the Python object (whose pseudo-code is reported in Algorithm 2).

Fig. 10 Time required for synthesising monitors. This chart plots the relationship between time required
(y-axis) and property length (x-axis) for each of the three kinds of monitor synthesis. It shows that the time
taken for non-predictive and centralised monitors (blue and orange) grows exponentially as the size of the
property (i.e. its number of operators) increases. Instead, the time taken for composition monitor (green)
remains fairly constant as property length increases. Also, non-predictive was faster than centralised. (Color
figure online)

69Formal Methods in System Design (2021) 59:44–76

1 3

Algorithm 2 is a straightforward implementation of Definition 9, that takes the LTL
property to verify � , the multi-model denoting the system ⟨Ψ,A⟩ , and the trace gener-
ated by the system execution to analyse � . It returns the Boolean verdict according to
Definition 9. It starts by checking whether the LTL property � is compositional (line 1).
Recall that a binary operator ⋄ is compositional if, and only if, it is commutative (i.e.,
⋄ ∈ ⋄c). If the property � is compositional, then the algorithm proceeds by first extract-
ing the components referred to by the two sub-properties �i and �j of � (resp., Ci

s
 and

C
j
s in lines 2-3). This is obtained by retrieving models belonging to the context of � ,

and applying A−1 to obtain the corresponding components. Intuitively, in line 2 (resp.,
3), we extract the set of components Ci

s
 (resp., Cj

s) which generate events considered by
property �i (resp., �j).

Fig. 11 Time required for performing runtime verification with the monitors synthesised in Fig 10. This
chart plots the relationship between time required (y-axis) and trace length (x-axis) for each of the three
kinds of monitor. It shows that the time taken for the three monitors is linear with respect to the trace
length. Also, non-predictive was faster than the two predictive ones, and the execution time of the composi-
tion and centralised approaches is similar

70 Formal Methods in System Design (2021) 59:44–76

1 3

After the components of interest have been extracted, the algorithm recursively calls
itself on the two sub-properties (lines 4-5). This recursive call is performed on the pro-
jection of � over the selected components of interest, which is obtained using the project
function introduced in Definition 5.

Once the verdicts for the two sub-properties are returned, the algorithm concludes with
their combination using ◦ ; which is the operator corresponding to ⋄ , in the composition set-
ting. Otherwise, if Algorithm 2 reaches a leaf (w.r.t. the structure of the property), meaning
� cannot be decomposed any further, the algorithm concludes by calling Algorithm 1 (line
8). In this way, the algorithm decomposes the verification as far as possible, and when it
cannot decompose any more, it performs the multi-model verification.

In both the single- and multi-model scenarios, our prototype tool generates a predictive
monitor; be it single or compound. The monitor is then used to verify a trace given as input
(as a file). Further implementation details can be found in our GitHub repository6 , along
with a short example of use. In the next section, we report the results of the experiments
that we obtained by applying our tool to our running example (see Sect. 5).

6.2 Experiments

In our experiments, we focus on two aspects: the monitor synthesis time, and the runtime
verification execution time. The first aspect is concerned with how long it takes to syn-
thesise a monitor, given an LTL property and some models as input. The second aspect
instead focusses on how long it takes to verify a given trace using a previously synthesised
monitor. For both cases, we consider standard (non-predictive), centralised (single-model),
and compositional (multi-model) monitors.

In Fig. 10, we report the time required to synthesise the monitors for the Mars Curiosity
example with respect to a given input property. As expected, the monitor synthesis time
is influenced by the length of the property. The standard explicit algorithm to synthesise
a Büchi Automaton from an LTL property is double exponential w.r.t. the length of the
property [36]. In our implementation we follow the monitor construction in [8], so we need
to translate LTL properties into their equivalent Büchi Automata (as we show in Sect. 6.1,
specifically, lines 1-2 in Algorithm 1). Naturally, on the fly algorithms to improve the LTL
translation can be used, but this is left for future developments.

In Fig. 10, the exponential nature of the techniques can be seen. Specifically, both the
non-predictive and the centralised approaches behave exponentially w.r.t. the length of the
property. In our experiments, the length of the property was changed by by adding conjunc-
tions or disjunctions with new LTL properties. For instance, if the property was � = ◻p , of
length 1, we could generate a new LTL property �� = � ∧ ♢q , of length 2.

Another important result to note in Fig. 10 is the synthesis time for the composition
monitor. Unlike the previous two monitors, it does not grow exponentially w.r.t. the length
of the property. Instead, it remains constant. This depends on the decomposition of the
property carried out by the composition monitor. According to Definition 9, the composi-
tion monitor splits the property and it is recursively defined in terms of its sub-properties
(w.r.t. compositional operators). Because of this, when we synthesise a composition moni-
tor from the generated properties, we actually push the automaton translation to only the
leaves (i.e. the operands). Thus, even though the property length grows, the translation is
always performed on smaller properties. Considering the previous example, in the case
of non-predictive and centralised monitors, the automaton is synthesised using the entire

71Formal Methods in System Design (2021) 59:44–76

1 3

property ◻p ∧ ♢q (of length 2), while in the case of composition monitor, two automata
are synthesised, one for ◻p and another for ♢q (both of length 1). Naturally, if the proper-
ties could not be decomposed (i.e., the main operator is not compositional), then the per-
formance of the composition monitor would be exponential, like the centralised monitor.

Figure 11 shows the time required to verify at runtime a trace of a certain length, by
using the monitors synthesised in the previous step. For both non-predictive and predictive
monitors we observe linear behaviour. As the length of the trace increases, we find a pro-
portional increment in the time required to verify the traces. However, even though linear,
the slope of the times for predictive monitoring is steeper than for non-predictive monitor-
ing. Nonetheless, the total amount of time for verifying a trace of ∼50k events is less than
∼ 20 seconds.

In the case of the predictive monitors, we observe different execution times. The com-
position monitor, performs better than its centralised counterpart. This is because the mod-
els used by the centralised monitor become larger (because of the composition of the mod-
els of the components) than the models used by the composition monitor. The composition
monitor performs better because of these small models.

Another important aspect to keep in mind is that the results reported in Fig. 11 concern
a complete analysis of the traces. This means that in all three monitors, all the events in
the traces have been analysed. This was enforced by checking properties that could not be
determined, neither positively nor negatively, at runtime (i.e., the verdict was always ?). We
decided to apply our approach to such worst case scenarios to show how the implementa-
tion actually behaves w.r.t. the trace length. However, in a less stressed scenario, it would
be possible for the predictive monitors to conclude the verdict in advance, and to perform
much better.

In general, the prototype allows us to show the feasibility of our approach, and its effi-
cacy. We do not lose linearity in the predictive case, and the amount of time required to
verify our robotic case study is very promising.

7 Related work

As far as we know, our work is the first to tackle the problem of PRV applied to non-mon-
olithic systems. Specifically, it is the first work to re-engineer the standard PRV process,
which uses only a single model to predict events; into a multi-model PRV process, where
multiple models are used to predict events. In this section, we report in this area.

A survey [22] on RV for distributed and decentralised systems identifies several archi-
tectures for monitoring concurrent systems. The survey, defines a decentralised system as
synchronous and controlled by a global (shared) clock, while a distributed system is asyn-
chronous and has no shared clock.

The approach in [17] allows both the monitors and the specified properties to be decen-
tralised. This approach facilitates the monitoring of separate specifications for individual
components of the SUA but, crucially, does not tackle the predictive element of the work
presented here.

In [26], the authors use Signal Temporal Logic (STL) with a semantics that enables
monitored behaviour to be compared with its specification, with deviations quantified in
both space and time. This comparison provides a measure of how robust a system is, with
respect to its specification, instead of merely indicating if it satisfies or violates the speci-
fication. This provides a finer-grained measure of how far the system is from obeying its

72 Formal Methods in System Design (2021) 59:44–76

1 3

specification. Their approach calculates the deviation “between a signal and a set of sig-
nals, defined by the specification” (in STL); whereas our work operates on multiple traces,
each from different components of a system. Deshmukh et al. [14] use a similar approach
(but with a different measure of distance between system and specification) to check the
conformance of Simulink diagrams to a given specification. This, again, takes a single sys-
tem model, whereas our work caters to multiple models. Both of these approaches are also
more closely coupled with a particular formalism than our work, whereas we present for-
malism-agnostic approach and use LTL as an example instantiation.

Qin and Deshmukh [34] use statistical time-series analysis to predict future satisfaction of
an STL property, based on the existing time-series data gathered from the monitored system.
This is similar in intent to our work; both approaches attempt to side-step the problem that
online monitoring only evaluates events as they happen. Our work requires models of (parts
of) the system, whereas theirs constructs a model from observed traces. In both our work and
theirs, it is assumed that the system correctly implements the model; but [34] assumes that
enough of the trace has been observed to construct a model of the system. The downside of
their assumption is that if some events have not been observed yet (events that are crucial to
the prediction of the property’s satisfaction) the model will be incomplete and thus the predic-
tion will be further away from reality.

Some RV approaches have been developed specifically for particular robotic software sys-
tems: for example, RV-BIP [19] for the Behaviour Interaction Priority (BIP) framework; and
ROSRV [25] and ROSMonitoring [20] for the Robot Operating System (ROS) middleware.
Other approaches are designed to complement the development process for robotic systems.
For example, [21], which uses RV to highlight when environmental assumptions used in pre-
vious formal verification for an autonomous robotic system is invalidated by real environmen-
tal interactions.

In [37], the authors propose a predictive runtime monitoring approach for linear systems
with stochastic disturbance. Their approach is based on the construction of a data-driven linear
model of the SUA. In [4], the authors present Adaptive RV, which uses multiple monitors but
a single probabilistic model of the SUA to perform PRV. The probability of property viola-
tion is calculated and used to control the framework’s overheads. In principle, their technique
should be applicable to multiple models; however, their framework would need to be altered
to accommodate this change. A similar approach is presented in [3], where the model is rep-
resented as an Hidden Markov Model (HMM) to extend the partially observable paths of the
system. All of the previously mentioned works, along with the ones which inspired our work
[31, 39], are based on a single-model representation of the SUA; consequently, they are suit-
able candidates to be engineered using our approach for use with non-monolithic systems.

In order to side-step the problem of creating a model of the SUA the work in [38] gener-
ates a call-flow graph for the SUA and uses it to do “speculative execution” to predict the
satisfaction or violation of the property. It is claimed that this approach is easier and more
consistent than modelling the system by hand. However, call-flow graphs do not provide
the same rigour as our approach, which formalises the model of the SUA.

The work in [33] introduces the notion of temporal testers (of properties expressed in
LTL, Property Specification Language (PSL) and Metric Interval Temporal Logic (MITL)
, for example) and show how to combine them compositionally. Even though in principle
our contribution and theirs are similar, we accept properties expressed in any formalism

73Formal Methods in System Design (2021) 59:44–76

1 3

that meets our requirements (not just temporal logic properties). We also consider how the
system models affect the compositional verification. Nonetheless, it could be useful to ana-
lyse the relation between our compositional monitors and the temporal testers in [33] when
our contribution is instantiated in for temporal properties.

Colombo and Falcone [11] present a choreographed approach for the decentralised verifi-
cation of LTL properties. Like we do, they also assume the presence of a global clock to sup-
port communication amongst the different monitors. However, they focus explicitly on LTL,
and do not consider any form of prediction. It might be possible to extend our approach, tak-
ing into account some of the ideas in [11], specifically when our approach is instantiated in
temporal logic. This could provide a more decentralised and choreography-oriented approach,
which may improve both the performance and distribution of the composition of properties.

8 Conclusions and future work

This paper investigated the research question: How can we apply a predictive monitor
when the SUA is composed of multiple components, and each component is described
by its own model? In answer to this, we described the application of predictive RV to
modular systems, where instead of a single model to foresee future events, we have a set
of models. We also presented the engineering steps that are necessary to bridge the gap
between single- and multi-model predictive RV. This process resulted in two different
approaches: (1) centralised multi-model monitoring, where we combine the models of
the components into a global model, and we verify a property over these components;
and (2) compositional multi-model monitoring, where we use composition monitors for
each of the models and then compose these monitors in a bottom-up fashion, arriving at
a root composition monitor.

The theory behind these two approaches remains formalism-agnostic in specifying
both the monitored properties and the models; making them highly adaptable to existing
monitor implementations. We also present the restrictions that a chosen formalism must
satisfy. To demonstrate how the theory can be applied, we use an example of a simula-
tion of the Mars Curiosity rover to describe the engineering steps in practice. Finally,
we close the gap with the theory by developing a tool in Python that implements all of
the engineering steps that we present in this paper. Moreover, we show an overview of
the tool and the results of the experiments that we obtain by applying it to verify the
Mars Curiosity rover example.

Future work involves extending the current implementation to support additional for-
malisms. Since the theory behind our contribution is general, there is no reason for sup-
porting only a single formalism. Moreover, the extension to additional temporal formal-
isms, such as MTL [27], pLTL [29], STL [30], and so on, is natural. Indeed, they should
be fairly straightforward to implement in the tool, and would bring more advantages to
the approach. Other than extending the tool, we are also planning to apply our imple-
mentation to case studies with more complex and bigger models; in particular, where
the decomposition of the monitors can help distributing the computational workload.

With respect to composition properties and their verification using composition set-
tings, an interesting aspect is the choice of a more optimistic or pessimistic semantics
for the ◦ operators. In this paper, we have not focussed on the possible implications and
reasons for choosing either option, since they are out of the scope of our contribution. In
general, this choice could be guided by additional information about the system under

74 Formal Methods in System Design (2021) 59:44–76

1 3

analysis. For instance, if the system guaranteed fair execution, this detail could be used
to guide a more optimistic semantics, and vice versa. Naturally, this is only one possibil-
ity, and other system’s features could still be used to enhance the choice of more suit-
able semantics for the ◦ operators.

Funding Open access funding provided by Università degli Studi di Genova within the CRUI-CARE Agree-
ment. Research at Manchester was supported by both the Royal Academy of Engineering, under the Chairs
in Emerging Technologies scheme, and the UKRI’s TAS Node in Verifiability (EP/V026801).

Data availability Not applicable.

Code availability The GitHub repository containing the implementation of the tool is publicly available at
https:// github. com/ Angel oFerr ando/ Multi Model Predi ctive Runti meVer ifica tion.

Declarations

Conflict of interest Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

References

 1. Alur R, Dill DL (1994) A theory of timed automata. Theor Comput Sci 126:183–235
 2. Ancona D, Ferrando A, Mascardi V (2016) Comparing trace expressions and linear temporal logic for

runtime verification. In: Theory and practice of formal methods-essays dedicated to Frank de Boer on
the Occasion of His 60th Birthday, LNCS, vol 9660, pp 47–64. Springer

 3. Babaee R, Gurfinkel A, Fischmeister S (2018) Prevent : a predictive run-time verification framework
using statistical learning. In: Software engineering and formal methods, LNCS, vol 10886, pp 205–
220. Springer

 4. Bartocci E, Grosu R, Karmarkar A, Smolka SA, Stoller SD, Zadok E, Seyster J (2013) Adaptive runt-
ime verification. In: Runtime verification, LNCS, vol 7687, pp 168–182. Springer

 5. Bauer A, Leucker M, Schallhart C (2006) Monitoring of real-time properties. In: Foundations of soft-
ware technology and theoretical computer science, LNCS, vol 4337, pp 260–272. Springer

 6. Bauer A, Leucker M, Schallhart C (2007) The good, the bad, and the ugly, but how ugly is ugly? In:
Runtime verification, LNCS, vol 4839, pp 126–138. Springer

 7. Bauer A, Leucker M, Schallhart C (2010) Comparing LTL semantics for runtime verification. J Logic
Comput 20(3):651–674

 8. Bauer A, Leucker M, Schallhart C (2011) Runtime verification for LTL and TLTL. ACM Trans Softw
Eng Methodol 20(4):1–14

 9. Blech JO, Falcone Y, Becker K (2012) Towards certified runtime verification. In: Formal methods and
software engineering, LNCS, vol 7635, pp 494–509. Springer

 10. Cardoso RC, Farrell M, Luckcuck M, Ferrando A, Fisher M (2020) Heterogeneous verification of an
autonomous curiosity rover. In: NASA formal methods symposium, LNCS, vol 12229, pp 353–360.
Springer

 11. Colombo C, Falcone Y (2016) Organising LTL monitors over distributed systems with a global clock.
Formal Methods Syst. Des. 49(1–2):109–158. https:// doi. org/ 10. 1007/ s10703- 016- 0251-x

 12. Couvreur J (1999) On-the-fly verification of linear temporal logic. In: JM Wing, J Woodcock, J Davies
(eds.) FM’99-Formal Methods, World Congress on Formal Methods in the Development of Computing

https://github.com/AngeloFerrando/MultiModelPredictiveRuntimeVerification
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1007/s10703-016-0251-x

75Formal Methods in System Design (2021) 59:44–76

1 3

Systems, Toulouse, France, September 20–24, 1999, Proceedings, Volume I, Lecture Notes in Com-
puter Science, vol 1708, pp 253–271. Springer . https:// doi. org/ 10. 1007/3- 540- 48119-2_ 16

 13. Daniele M, Giunchiglia F, Vardi MY (1999) Improved automata generation for linear temporal logic.
In: N Halbwachs, DA Peled (eds.) Computer aided verification, 11th International Conference, CAV
’99, Trento, Italy, July 6–10, 1999, Proceedings, Lecture Notes in Computer Science, vol 1633, pp
249–260. Springer. https:// doi. org/ 10. 1007/3- 540- 48683-6_ 23

 14. Deshmukh JV, Majumdar R, Prabhu VS (2017) Quantifying conformance using the Skorokhod metric.
Formal Methods Syst Des 50(2–3):168–206. https:// doi. org/ 10. 1007/ s10703- 016- 0261-8

 15. Duret-Lutz A, Poitrenaud D (2004) SPOT: an extensible model checking library using transition-based
generalized büchi automata. In: D DeGroot, PG Harrison, HAG Wijshoff, Z Segall (eds.) 12th Inter-
national Workshop on Modeling, Analysis, and Simulation of Computer and Telecommunication Sys-
tems (MASCOTS 2004), 4–8 October 2004, Vollendam, pp 76–83. IEEE Computer Society. https://
doi. org/ 10. 1109/ MASCOT. 2004. 13481 84

 16. Eisner C, Fisman D, Havlicek J, Lustig Y, McIsaac A, Campenhout DV (2003) Reasoning with tempo-
ral logic on truncated paths. In: Computer aided verification, LNCS, vol 2725, pp 27–39. Springer

 17. El-Hokayem A, Falcone Y (2020) On the monitoring of decentralized specifications: semantics, prop-
erties, analysis, and simulation. ACM Trans Softw Eng Methodol 29(1):1–57

 18. Etessami K, Holzmann GJ (2000) Optimizing büchi automata. In: C Palamidessi (ed.) CONCUR
2000-concurrency theory, 11th International Conference, University Park, PA, USA, August 22–25,
2000, Proceedings, Lecture Notes in Computer Science, vol 1877, pp 153–167. Springer. https:// doi.
org/ 10. 1007/3- 540- 44618-4_ 13

 19. Falcone Y, Jaber M, Nguyen TH, Bozga M, Bensalem S (2011) Runtime verification of component-
based systems. In: Software Engineering and Formal Methods, LNCS, vol 7041, pp 204–220. Springer

 20. Ferrando A, Cardoso RC, Fisher M, Ancona D, Franceschini L, Mascardi V (2020) ROSMonitoring: a
runtime verification framework for ROS. In: towards autonomous robotic systems conference, LNCS,
vol 12228, pp 387–399. Springer

 21. Ferrando A, Dennis LA, Ancona D, Fisher M, Mascardi V (2018) Recognising assumption violations
in autonomous systems verificaion. In: Autonomous agents and multiagent systems, pp 1933–1935.
IFAAMAS/ACM

 22. Francalanza A, Pérez JA, Sánchez C (2018) Runtime verification for decentralised and distributed sys-
tems. In: Lectures on runtime verification, LNCS, vol 10457, pp 176–210. Springer

 23. Havelund K, Goldberg A (2005) Verify your runs. In: Verified software: theories, tools, experiments,
LNCS, vol 4171, pp 374–383. Springer

 24. Hopcroft JE, Ullman JD (1979) Introduction to automata. Theory Addison–Wesley, languages and
computation. Longman, London

 25. Huang J, Erdogan C, Zhang Y, Moore B, Luo Q, Sundaresan A, Rosu G (2014) ROSRV: runtime veri-
fication for robots. In: Runtime verification, LNCS, vol 8734, pp 247–254. Springer

 26. Jakšić S, Bartocci E, Grosu R, Nguyen T, Ničković D (2018) Quantitative monitoring of STL with edit
distance. Formal Methods Syst Des 53(1):83–112. https:// doi. org/ 10. 1007/ s10703- 018- 0319-x

 27. Koymans R (1990) Specifying real-time properties with metric temporal logic. Real Time Syst
2(4):255–299

 28. Leucker M (2012) Sliding between model checking and runtime verification. In: Runtime verification,
LNCS, vol 7687, pp 82–87. Springer

 29. Lichtenstein O, Pnueli A, Zuck LD (1985) The glory of the past. In: Logics of programs, LNCS, vol
193, pp 196–218. Springer

 30. Maler O, Nickovic D (2004) Monitoring temporal properties of continuous signals. In: Formal tech-
niques, modelling and analysis of timed and fault-tolerant systems, LNCS, vol 3253, pp 152–166.
Springer

 31. Pinisetty S, Jéron T, Tripakis S, Falcone Y, Marchand H, Preoteasa V (2017) Predictive runtime verifi-
cation of timed properties. J Syst Softw 132:353–365

 32. Pnueli A (1977) The temporal logic of programs. In: 18th annual symposium on foundations of com-
puter science, Providence, Rhode Island, USA, 31 October-1 November 1977, pp 46–57. IEEE Com-
puter Society. https:// doi. org/ 10. 1109/ SFCS. 1977. 32

 33. Pnueli A, Zaks A (2008) On the merits of temporal testers. In: O Grumberg, H Veith (eds.) 25 Years of
model checking-history, achievements, perspectives, Lecture Notes in Computer Science, vol 5000, pp
172–195. Springer. https:// doi. org/ 10. 1007/ 978-3- 540- 69850-0_ 11

 34. Qin X, Deshmukh JV (2020) Clairvoyant monitoring for signal temporal logic. In: N Bertrand,
N Jansen (eds.) Formal modeling and analysis of timed systems, vol 12288, pp 178–195. Springer
International Publishing. https:// doi. org/ 10. 1007/ 978-3- 030- 57628-8_ 11. Lecture Notes in Computer
Science

https://doi.org/10.1007/3-540-48119-2_16
https://doi.org/10.1007/3-540-48683-6_23
https://doi.org/10.1007/s10703-016-0261-8
https://doi.org/10.1109/MASCOT.2004.1348184
https://doi.org/10.1109/MASCOT.2004.1348184
https://doi.org/10.1007/3-540-44618-4_13
https://doi.org/10.1007/3-540-44618-4_13
https://doi.org/10.1007/s10703-018-0319-x
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1007/978-3-540-69850-0_11
https://doi.org/10.1007/978-3-030-57628-8_11

76 Formal Methods in System Design (2021) 59:44–76

1 3

 35. Thirioux X (2002) Simple and efficient translation from LTL formulas to Buchi automata. Electron
Notes Theor Comput Sci 66(2):145–159. https:// doi. org/ 10. 1016/ S1571- 0661(04) 80409-2

 36. Vardi MY, Wolper P (1986) An automata-theoretic approach to automatic program verification (pre-
liminary report). In: Proceedings of the symposium on logic in computer science, pp 332–344. IEEE
Computer Society

 37. Yoon H, Chou Y, Chen X, Frew EW, Sankaranarayanan S (2019) Predictive runtime monitoring for
linear stochastic systems and applications to geofence enforcement for UAVs. In: Runtime verification,
LNCS, vol 11757, pp 349–367. Springer

 38. Yu K, Chen Z, Dong W (2014) A predictive runtime verification framework for cyber-physical sys-
tems. In: Software security and reliability-companion, pp. 223–227. IEEE

 39. Zhang X, Leucker M, Dong W (2012) Runtime verification with predictive semantics. In: NASA for-
mal methods, LNCS, vol 7226, pp 418–432. Springer

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

https://doi.org/10.1016/S1571-0661(04)80409-2

	Bridging the gap between single- and multi-model predictive runtime verification
	Abstract
	1 Introduction
	2 Preliminaries
	3 Engineering multi-model predictive RV
	3.1 Contextualising a property
	3.2 Combining multiple models

	4 Multi-model predictive RV
	4.1 Compositional properties
	4.2 Compositional multi-model predictive monitor

	5 Example: Mars Curiosity rover
	5.1 Overview
	5.2 Applying our approach
	5.3 Discussion

	6 Evaluation
	6.1 Implementation
	6.2 Experiments

	7 Related work
	8 Conclusions and future work
	References

