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Abstract
Verifying arithmetic circuits and most prominently multiplier circuits is an important prob-
lem which in practice still requires substantial manual effort. The currently most effective
approach uses polynomial reasoning over pseudo boolean polynomials. In this approach a
word-level specification is reduced by a Gröbner basis which is implied by the gate-level
representation of the circuit. This reduction returns zero if and only if the circuit is correct.
We give a rigorous formalization of this approach including soundness and completeness
arguments. Furthermore we present a novel incremental column-wise technique to verify
gate-level multipliers. This approach is further improved by extracting full- and half-adder
constraints in the circuit which allows to rewrite and reduce the Gröbner basis. We also
present a new technical theorem which allows to rewrite local parts of the Gröbner basis.
Optimizing the Gröbner basis reduces computation time substantially. In addition we extend
these algebraic techniques to verify the equivalence of bit-level multipliers without using
a word-level specification. Our experiments show that regular multipliers can be verified
efficiently by using off-the-shelf computer algebra tools, while more complex and optimized
multipliers require more sophisticated techniques. We discuss in detail our complete verifi-
cation approach including all optimizations.
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1 Introduction

Formal verification of arithmetic circuits is important to help to prevent issues like the famous
Pentimum FDIV bug. Even more than 20years after detecting this bug the problem of ver-
ifying arithmetic circuits and especially multiplier circuits is still considered to be hard. A
common approachmodels the verification problem as a satisfiability (SAT) problem, inwhich
the circuit is translated into a formula in conjunctive normal form (CNF) which is then passed
on to SAT-solvers. In order to stimulate the development of fast SAT solving techniques for
arithmetic circuit verification, a large set of these benchmarks was generated and the CNF
encodings were submitted to the SAT 2016 competition. They are publicly available [4]. The
competition results confirmed that miters of even small multipliers produce very hard SAT
problems. The weak performance of SAT solvers on this benchmark set lead to the conjecture
that verifying miters of multipliers and other ring properties after encoding them into CNF
needs exponential sized resolution proofs [6], which would imply exponential run-time of
CDCL SAT solvers. However, this conjecture was recently rebutted. In [2] it was shown that
such ring properties do admit polynomial sized resolution proofs. But since proof search
is non-deterministic, this theoretical result still needs to be transferred into practical SAT
solving.

Alternative verification techniques use decision diagrams [9,10], more specifically binary
decision diagrams (BDDs) and binary moment diagrams (BMDs) are used for circuit verifi-
cation. The drawback of BDDs is their high usage of memory for this kind of benchmarks [9].
This issue can be resolved by using BMDs which remain linear in the number of input bits of
a multiplier. Actually BMDs and variants of them have been shown to be capable of detecting
the Pentium FDIV bug. However, the BMD approach is not robust, it still requires explicit
structural knowledge of the multipliers [14]. It is important to determine the order in which
BMDs are built, because it has tremendous influence on performance. Actually only a row-
wise backward substitution approach seems to be feasible [13], which in addition assumes a
simple carry-save-adder (CSA) design.

The currently most effective approach for gate-level verification of arithmetic circuits uses
computer algebra [15,24,27–31,35]. For each gate in the circuit a polynomial is introduced
which represents the relation of the gate output and the inputs of the gate. To ensure that vari-
ables in the circuit are restricted to boolean values, additional so-called “field polynomials”
are introduced. Furthermore the word-level specification of the multiplier is modeled as a
polynomial. If the circuit variables are ordered according to their reverse topological appear-
ance in the circuit, i.e., a gate output variable is greater than the input variables of the gate,
then the gate polynomials and field polynomials form a Gröbner basis. As a consequence, the
question if a gate-level circuit implements a correct multiplier can be answered by reducing
the multiplier specification polynomial by the circuit Gröbner basis. The multiplier is correct
if and only if the reduction returns zero.

Relatedwork [15,35] uses a similar algebraic approach,which is called function extraction.
Theword-level output of the circuit is rewritten using the gate relations and the goal is to derive
a unique polynomial representation of the gate inputs. In order to verify correctness of the
circuit this polynomial is then compared to the circuit specification. This rewriting method
is essentially the same as Gröbner basis reduction and is able to handle very large clean
multipliers but fails on slightly optimized multiplier architectures. The authors of [24,27,37]
focus on verification of Galois field multipliers using Gröbner basis theory. In contrast we
focus in ourwork [8,28,29] on integermultipliers as the authors of [15,30,31,35] do. In [30,31]
the authors propose a sophisticated reduction scheme which is used to rewrite and simplify
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the Gröbner basis, which as a consequence reduces computation time substantially. Several
optimizations are introducedwhichmade their verification technique scale to largemultipliers
of various architectures [19], but their arguments for soundness and completeness are rather
imprecise and neither the tools nor details about experiments are publicly available.

Inspired by these ideas we presented in [28] an incremental column-wise verification
technique for integer multipliers where a multiplier circuit is decomposed into columns. In
each column the partial products can be uniquely identified and we can define a distinct
specification for each slice relating the partial products, incoming carries, slice output and
outgoing carries of the slice. We incrementally apply Gröbner basis reduction on the slices to
verify the circuit. The incremental column-wise checking algorithm is improved in [8,29]. The
idea in thiswork is to simplify theGröbner basis by introducing linear adder specifications.We
search for full- and half-adder structures in the gate-level circuit and eliminate the internal
gates of the adder structures, with the effect of reducing the number of polynomials in
the Gröbner basis. Furthermore we are able to include adder specifications in the Gröbner
basis. Reducing by these linear polynomials leads to substantial improvements in terms of
computation time.

Alternatively to circuit verification using a word-level specification, it is also common to
check the equivalence of a gate-level circuit and a given reference circuit. This technique
is extremely important when it is not possible to write down the word-level specification
of a circuit in a canonical expression. In [32] equivalence checking of multiplier circuits is
achieved by first extracting half-adder circuits from the accumulation of partial products and
then checking the equivalence of these extracted half-adder circuits. Proofs of soundness and
completeness are lacking. More recently [31] proposes an algebraic variant of combinational
equivalence checking based on Gröbner basis theory. It is similar to SAT sweeping [23], and
compares the circuits bit-wise, e.g., output bit by output bit, again without soundness nor
completeness proof.

As a further contribution we present an extension of our incremental column-wise verifi-
cation approach, which can be used to incrementally derive the equivalence of two arbitrary
gate-level circuits in a column-wise fashion. We prove soundness and completeness for this
method.

This article extends and revises work presented earlier in [8,28,29]. Extending [28], we
provide a more detailed description of the algebraic approach, including several examples. In
Sect. 4 we introduce additional rewriting methods, called “Partial Product Elimination” and
“Adder-Rewriting” [8,29], which help to further simplify the Gröbner basis. We present the
theory behind these rewriting approaches in Sect. 5 including a theoretical theorem [8], which
allows that only a local part of the Gröbner basis is rewritten without losing the Gröbner basis
property. In Sect. 8 we generalize our incremental column-wise verification approach to an
incremental equivalence checking approach [29].

For this article we revised our engineering techniques and discuss a new method to derive
our column-wise slices in Sect. 9, which reduces the need of reallocating gates. Furthermore
we were able to improve the computation time of the experiments in [28] by adjusting the
order of polynomials during printing, cf. Sect. 9.

2 Algebra

Following [8,15,24,27–31,35], we model the behavior of a circuit using multivariate polyno-
mials. For each input and output of a logical gate a variable is introduced. The behavior of a
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gate, i.e., the relation of the gate inputs to the output of a gate is translated into a polynomial.
The set of all these polynomials builds a comprehensive description of the circuit. We show
that the circuit is correct if and only if the circuit specification, a polynomial describing the
relation of the circuit inputs and outputs, is implied by the gate-level polynomials.

The appropriate formalism for such a reasoning is the theory of Gröbner bases [11,12,16].
Throughout this section letK[X ] = K[x1, . . . , xn] denote the ring of polynomials in variables
x1, . . . , xn with coefficients in the field K.

Definition 1 A term (or power product) is a product of the form xe11 · · · xenn for certain non-
negative exponents e1, . . . , en ∈ N. The set of all terms is denoted by [X ]. A monomial
is a constant multiple of a term, αxe11 · · · xenn with α ∈ K. A polynomial is a finite sum of
monomials.

On the set of terms we fix an order such that for all terms τ, σ1, σ2 we have 1 ≤ τ and
σ1 ≤ σ2 ⇒ τσ1 ≤ τσ2. Such an order is called a lexicographic term order if for all terms
σ1 = xu11 · · · xunn , σ2 = xv1

1 · · · xvn
n we have σ1 < σ2 iff there exists an index i with u j = v j

for all j < i , and ui < vi .
Since every polynomial p �= 0 contains only finitely many terms and they are ordered

according to our fixed order <, we can determine the largest term in a polynomial. We call
it the leading term of p and write lt(p). If p = cτ + · · · and lt(p) = τ , then lc(p) = c is
called the leading coefficient and lm(p) = cτ is called the leading monomial of p. The tail
of p is defined by p − cτ .

Definition 2 A nonempty subset I ⊆ K[X ] is called an ideal if

∀ p, q ∈ I : p + q ∈ I and ∀ p ∈ K[X ] ∀ q ∈ I : pq ∈ I .

If I ⊆ K[X ] is an ideal, then a set P = {p1, . . . , pm} ⊆ K[X ] is called a basis of I
if I = {q1 p1 + · · · + qm pm | q1, . . . , qm ∈ K[X ]}, i.e., if I consists of all the linear
combinations of the pi with polynomial coefficients. We denote this by I = 〈P〉 and say I
is generated by P .

In general, an ideal I has many bases which generate the ideal. We are particularly inter-
ested in bases with certain structural properties, called Gröbner bases.

Definition 3 A basisG = {g1, . . . , gn} of an ideal I ⊆ K[X ] is called aGröbner basis (w.r.t.
the fixed order ≤) if the leading term of every nonzero element of I is a multiple of (at least)
one of the leading terms lt(g1), . . . , lt(gn).

Lemma 1 Every ideal I ⊆ K[X ] has a Gröbner basis w.r.t. a fixed term order.

Proof Corollary 6 in Chap. 2 §5 of [16]. 
�
The following Lemma 2 describes Buchberger’s Criterion, which states when a basis of

an ideal is a Gröbner basis. Given an arbitrary basis of an ideal, Buchberger’s algorithm [11]
is able to compute a Gröbner basis for it in finitely many steps. The algorithm is based on
repeated computation of so-called S-polynomials.

Lemma 2 Let G ⊆ K[X ]\{0} be a basis of an ideal I = 〈G〉. We define S-polynomials

spol(p, q) := lcm(lt(p), lt(q))

(
p

lm(p)
− q

lm(q)

)

for all p, q ∈ K[X ]\{0}, with lcm the least common multiple. Then G is a Gröbner basis of
the ideal I if and only if the remainder of the division of spol(p, q) by G is zero for all pairs
(p, q) ∈ G × G.
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Proof Thm. 6 in Chap. 2 §6 of [16]. 
�
To reduce the computation effort of Buchberger’s algorithm several optimizations exist

which decrease the number of S-polynomial computations. We will heavily make use of the
following optimization.

Lemma 3 (Product criterion) If p, q ∈ K[X ]\{0}are such that the leading terms are coprime,
i.e., lcm(lt(p), lt(q)) = lt(p) lt(q), then spol(p, q) reduces to zero mod {p, q}.
Proof Property 4 in Chap. 2 §9 of [16]. 
�

Since {p, q} ⊆ G, Lemma 3 suggests that if all leading terms of the polynomials in a
basis G of an ideal I are coprime, i.e., we cannot find any pair of polynomials p, q ∈ G
such that lt(p) and lt(q) have any variable in common, then the product criterion holds for
all pairs of polynomials of G and thus G is automatically a Gröbner basis for the ideal I .

To answer the question if a circuit is correct and hence fulfills its specification we need
to check if the specification polynomial is contained in the ideal generated by the circuit
relations, as we discuss in detail in Sect. 3. The theory of Gröbner bases offers a decision
procedure for this so-called ideal membership problem: Given a polynomial f ∈ K[X ] and
an ideal I = 〈G〉 ⊆ K[X ], determine if f ∈ I .

Given an arbitrary basis G of the ideal I , it is not so obvious how to check whether the
polynomial f belongs to the ideal I = 〈G〉. However, if G is a Gröbner basis of I , then the
membership question can be answered using a multivariate version of polynomial division
with remainder, cf. Algorithm 1, as derivation procedure. It can be shown that whenever G
is a Gröbner basis, then f belongs to the ideal generated by G if and only if the remainder of
division of f by G is zero. In the following we will introduce this approach more formally.

Lemma 4 (Multivariate division with remainder) Let the set of terms be ordered according
to a fixed order < and let P = (p1, . . . , ps) be an ordered list of polynomials inK[X ]. Then
every f ∈ K[X ] can be written as:

f = h1 p1 + . . . + hs ps + r

where h1, . . . , hs, r ∈ K[X ]. The remainder r is either zero or is a polynomial ∈ K[X ], such
that no term in r is a multiple of some lt(pi ). The complete division algorithm is listed in
Algorithm 1. We call the polynomials hi the co-factors of f and the polynomial r is called
the remainder of f with respect to P.

Proof Thm. 3 in Chap. 2 §3 of [16]. 
�

Example 1 Figure 1 depicts several And-Inverter-Graphs (AIGs) [23]. A node in an AIG
represents logical conjunction of the two inputs, depicted by edges on the lower half of the
node. The output is depicted by an edge in the upper half of the node. An edge containing a
marker negates the variable.

LetK = Q. Hence for the AIG on the left of Fig. 1, we have the relation g = a(1− b) for
all a, b, g ∈ {0, 1}. Furthermore, we always have g(g−1) = a(a−1) = b(b−1) = 0 since
a, b, g ∈ {0, 1}. To show that we always have gb = 0, it suffices to check if the polynomial
gb ∈ Q[g, a, b] is contained in the ideal I ⊆ Q[g, a, b] with

I = 〈−g + a(1 − b), g(g − 1), a(a − 1), b(b − 1)〉.
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Algorithm 1:Multivariate Division Algorithm [16]
Input : p1, . . . , ps , f
Output: h1, . . . , hs , r

1 h1 = 0, . . . , hs = 0, r = 0;
2 p = f ;
3 while p �= 0 do
4 i = 1, division = false;
5 while i ≤ s ∧ division = false do
6 if lt(pi ) | lt(p) then
7 hi = hi + lt(p)/ lt(pi );
8 p = p − pi · lt(p)/ lt(pi );
9 division = true;

10 else
11 i = i + 1;

12 if division = false then
13 r = r + lt(p);
14 p = p − lt(p);

15 return h1, . . . , hs , r

a b a b a b c

g

s

l r

r

t

u v w

Fig. 1 And-Inverter Graphs (AIGs) [23] used in Example 1 and later in Sect. 4

Multivariate polynomial division yields

gb =
h1↓

(−b) (−g + a(1 − b)) +
h4↓

(−a) b(b − 1) +
remainder r↓

0,

with h2 = h3 = 0, and therefore gb ∈ I and thus gb = 0 in the left AIG of Fig. 1.

As shown in this example, we can view an ideal I = 〈G〉 ⊆ K[X ] as an equational theory,
where the basis G = {g1, . . . , gm} defines the set of axioms. The ideal I = 〈G〉 contains
exactly those polynomials f for which the equation “ f = 0” can be derived from the axioms
“g1 = · · · = gm = 0” through repeated application of the rules u = 0∧ v = 0 ⇒ u + v = 0
and u = 0 ⇒ uw = 0 (compare to Definition 2).

Lemma 5 If G = {g1, . . . , gm} is a Gröbner basis, then every f ∈ K[X ] has a unique
remainder r with respect to G. Furthermore it holds that f − r ∈ 〈G〉.
Proof Property 1 in Chap. 2 §6 of [16]. 
�

123



28 Formal Methods in System Design (2020) 56:22–54

Ultimately the following Lemma provides the answer on how we can solve the ideal
membership problemwith the help ofGröbner basis and thus can checkwhether a polynomial
belongs to an ideal or not.

Lemma 6 Let G = {g1, . . . , gm} ⊆ K[X ] be a Gröbner basis, and let f ∈ K[X ]. Then f is
contained in the ideal I = 〈G〉 iff the remainder of f with respect to G is zero.

Proof Corollary 2 in Chap. 2 §6 of [16]. 
�

3 Ideals associated to circuits

Weconsider circuitsC with two bit-vectors a0, . . . , an−1 and b0, . . . , bn−1 of size n as inputs,
and a bit-vector s0, . . . , s2n−1 of size 2n as output. The circuit is represented by a number of
logical gates where the output of some gate may be input to some other gate, but cycles in the
circuit are not allowed. Additionally to the variables ai , bi , si for the inputs and outputs of
the circuit, we associate a variable g1, . . . , gk to each internal gate output. In our setting let
K = Q. By R we denote the ring Q[a0, . . . , an−1, b0, . . . , bn−1, g1, . . . , gk, s0, . . . , s2n−1],
containing all polynomials in the above variables with coefficients inQ. At first glance it may
seem surprising that we use Q instead of Z2 as ground field although all our variables are
restricted to boolean values. The reason for this choice is that we want to verify correctness
of integer multiplication. As we will see in Definition 5, using Q as base field allows us to
describe the desired behavior of the circuit by connecting it to the multiplication in Q. It
would also be possible to use Z2, but in this case, specifying the desired behavior of the
circuit in terms of polynomial equations would not be much easier than constructing a circuit
in the first place. Such a specification would not be more trustworthy than the circuit that we
want to verify.

The semantic of each circuit gate implies a polynomial relation among the input and output
variables, such as the following ones:

u = ¬v implies 0 = −u + 1 − v

u = v ∧ w implies 0 = −u + vw

u = v ∨ w implies 0 = −u + v + w − vw

u = v ⊕ w implies 0 = −u + v + w − 2vw.

(1)

The polynomials in R are chosen such that the boolean roots of the polynomials are the
solutions of the corresponding gate constraints and vice versa. We denote these polynomials
by gate polynomials. To ensure that we only find boolean solutions of the polynomials we
add the relations u(u − 1) = 0 for each variable u. We call this relations field polynomials.

Example 2 The possible boolean solutions for the gate constraint p00 = a0 ∧ b0 of Fig. 2
represented as (p00, a0, b0) are (1, 1, 1), (0, 1, 0), (0, 0, 1), (0, 0, 0) which are all solutions
of the polynomial −p00 + a0b0 = 0, when a0, b0 are restricted to the boolean domain.

Since the logical gates in a circuit are functional, the values of all the variables
g1, . . . , gk, s0, . . . , s2n−1 in a circuit are uniquely determined as soon as the inputs
a0, . . . , an−1, b0, . . . , bn−1 ∈ {0, 1} are fixed. This motivates the following definition.

Definition 4 LetC be a circuit. A polynomial p ∈ R is called a polynomial circuit constraint
(PCC) for C if for every choice of

(a0, . . . , an−1, b0, . . . , bn−1) ∈ {0, 1}2n
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and the resulting values g1, . . . , gk, s0, . . . , s2n−1 which are implied by the gates of the circuit
C , the substitution of all these values into the polynomial p gives zero. The set of all PCCs
for C is denoted by I (C).

It can easily be verified that I (C) is an ideal of R. Since it contains all PCCs, this ideal
includes all relations that hold among the values at the different points in the circuit. Therefore,
the circuit fulfills a certain specification if and only if the polynomial relation corresponding
to the specification of the circuit is contained in the ideal I (C).

Definition 5 A circuit C is called a multiplier if the word-level specification

2n−1∑
i=0

2i si −
(
n−1∑
i=0

2i ai

) (
n−1∑
i=0

2i bi

)
∈ I (C).

Thus checking whether a given circuit C is a correct multiplier reduces to an ideal mem-
bership test. Definition 4 does not provide any information of a basis of I (C), hence Gröbner
basis technology is not directly applicable. However, we can deduce at least some elements
of I (C) from the semantics of circuit gates.

Definition 6 Let C be a circuit. Let G ⊆ R be the set which contains for each gate of C the
corresponding polynomial of Eq. 1, where the variable u is replaced by the output variable and
v,w are replaced by the input variables of the gate. Furthermore G contains the polynomials
ai (ai − 1) and bi (bi − 1) for 0 ≤ i < n, called input field polynomials. Then the ideal
〈G〉 ⊂ R is denoted by J (C).

Hence G is a basis for the ideal J (C) and we can decide membership using Gröbner
bases theory. Assume that we have a verifier which checks for a given circuit C and a given
specification polynomial p ∈ R if p is contained in the ideal J (C). Because it holds that
J (C) ⊆ I (C), such a verifier is sound. To show that the verifier is also complete, we further
need to show J (C) ⊇ I (C). For doing so, we recall an important observation shown for
instance in [24,33].

Theorem 1 Let C be a circuit, and let G be as in Definition 6. Furthermore let≤ be a reverse
topological lexicographic term order where the variables are ordered such that the variable
of a gate output is always greater than the variables attached to the input edges of that gate.
Then G is a Gröbner basis with respect to the ordering ≤.

Proof By the restrictions on the term order and the form of Eq. 1, the leading term of each
gate polynomial is simply the output variable of the corresponding gate. Furthermore, the
leading terms of the input field polynomials ai (ai − 1) and bi (bi − 1) are a2i and b2i . Hence
all leading terms are coprime and therefore, by Lemma 3, division of spol(p, q) by {p, q}
has remainder zero for any choice p, q ∈ G. Since {p, q} ⊆ G for all p, q ∈ G, division of
spol(p, q) by G gives the remainder zero for all p, q ∈ G, and then, by Lemma 2, the claim
follows. 
�
Theorem 2 For all acyclic circuits C, we have J (C) = I (C).

Proof “⊆” (soundness): Immediately follows from the definition of J (C).
“⊇” (completeness): Let p ∈ R be a polynomial with p ∈ I (C). We show that p ∈ J (C).
Since C is acyclic, we can order the variables according to the needs of Theorem 1. Hence
by Theorem 1 we can derive a Gröbner basis G for J (C). Let r be the remainder of division
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a0 b0a0 b1a1 b0a1 b1a2 b0a2 b1

p00p01p10p11p20p21

c1

g1

g2

g0

c2

c3
s0s1s2s3s4

S0S1S2S3S4

s4 = c3 −s4 + c3,
c3 = p21 ∧ c2 −c3 + p21c2,
s3 = p21 ⊕ c2 −s3 + p21 + c2 − 2p21c2,
p21 = a2 ∧ b1 −p21 + a2b1,
c2 = g2 ∨ g1 −c2 + g2 + g1 − g2g1,
s2 = g0 ⊕ c1 −s2 + g0 + c1 − 2g0c1,
g2 = g0 ∧ c1 −g2 + g0c1,
g1 = p20 ∧ p11 −g1 + p20p11,
g0 = p20 ⊕ p11 −g0 + p20 + p11 − 2p20p11,
p20 = a2 ∧ b0 −p20 + a2b0,
p11 = a1 ∧ b1 −p11 + a1b1,
c1 = p10 ∧ p01 −c1 + p10p01,
s1 = p10 ⊕ p01 −s1 + p10 + p01 − 2p10p01,
p10 = a1 ∧ b0 −p10 + a1b0,
p01 = a0 ∧ b1 −p01 + a0b1,
s0 = p00 −s0 + p00,
p00 = a0 ∧ b0 −p00 + a0b0,

a2, a1, a0 ∈ {0, 1} a2(1 − a2), a1(1 − a1), a0(1 − a0),
b1, b0 ∈ {0, 1} b1(1 − b1), b0(1 − b0)

Fig. 2 A 3 × 2-bit gate-level multiplier circuit, gate constraints, and polynomials. Colored gates represent a
full adder, cf. Sect. 5. Dashed lines depict column-wise slicing, cf. Sect. 7

of p by G. Thus p − r ∈ J (C) by Lemma 5, and r ∈ J (C) ⇐⇒ p ∈ J (C). Then, since
J (C) ⊆ I (C) it holds that p − r ∈ I (C). By p ∈ I (C) and p − r ∈ I (C) it follows that
r ∈ I (C). Thus we need to show r ∈ J (C).

By the choice of the ordering of the terms and the observations about the leading terms
in G made in the proof of Theorem 1, from Lemma 5 it also follows that r only contains
input variables a0, . . . , an−1, b0, . . . , bn−1, and each of them has a maximum degree of one.
Simultaneously, r ∈ I (C) implies that all evaluations of r for all choices ai , b j ∈ {0, 1} are
zero.

We show r = 0, and thus r ∈ J (C). Assume r �= 0. Suppose m is a monomial of r with
a minimal number of variables, including the case that m is a constant. Since the exponents
are at most one, no two monomials in r contain exactly the same variables. Now select ai
(b j ) to evaluate to 1 iff ai ∈ m (b j ∈ m). Hence all monomials of r exceptm evaluate to zero
and thus vanish. By this choice r evaluates to the (non-zero) coefficient of m, contradicting
r ∈ I (C). Thus r = 0. 
�
Example 3 In contrast to our definition of a circuit, where both input bit-vectors have the
same length, Fig. 2 shows a 3× 2-bit multiplier. The leading terms of the polynomials in the
right column, read from top to bottom, follow a reverse topological lexicographic ordering.
Hence these polynomials form a Gröbner basis.

We conclude this section with the following simple but important observations. First, the
ideal I (C) is a so-called vanishing ideal. Therefore, it follows that J (C) is a radical ideal.
Hence testing ideal membership of the specification is sufficient for verifying the correctness
of a circuit, and we do not need to apply the stronger radical membership test (cf. Chap. 4
§2 of [16]).

Second, since it holds that I (C) = J (C) contains all the field polynomials u(u − 1) for
all variables u, not only for the inputs, we may add them to G.

Third, in the Gröbner basis G for gate-level circuits defined as given in Definition 6
using Eq. 1 it holds that all polynomials have leading coefficient ± 1. Thus during reduction
(division) no coefficient outside of Z (with non-trivial denominator) is introduced. Hence all
coefficient computations actually remain inZ. This formally shows that the implementations,
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e.g., those from [30,35], used for proving ideal membership to verify properties of gate-level
circuits, actually can rely on computation in Z without loosing soundness nor completeness.
Of course it needs to hold that the same term order as in Theorem 1 is used.

Fourth, we do not need Z as coefficient ring if we use computer algebra systems, we
can simply choose any field containing Z, e.g., Q, which actually improves computation,
because Z is not a field and ideal theory over rings is harder than ideal theory over fields.
In our experiments, using rational coefficients made a huge difference for Singular [17] (but
did not show any effect in Mathematica [34]).

Fifth, because the leading terms of G contain only one variable, computing a remainder
with respect toG has the same effect as substituting each leading termwith the corresponding
tail until no further substitution is possible.

Sixth, given a circuitC , checking whether an assignment of the inputs exists, which yields
a certain value at an output is actually the same as (circuit) SAT, and hence is NP complete:

Corollary 1 Consider the problem to decide, for a given polynomial p ∈ Q[X ] and a given
Gröbner basis G ⊆ Q[X ], whether p ∈ 〈G〉. Taking the bit-size of p and G in the natural
encoding as a measure for the problem size, this problem is co-NP-hard.

Proof Circuit SAT is the problem to decide for a given circuit with n gates and one output
bit whether it produces the output 1 for at least one choice of inputs. This problem is known
to be NP-hard. Consequently, the problem of deciding whether a given circuit with n gates
and one output bit s produces the output 1 for every choice of inputs is co-NP-hard. A circuit
C returns 1 for every input iff s − 1 ∈ J (C). As the Gröbner basis G for the circuit C has
essentially the same size as C , the circuit problem can be solved with at most polynomial
overhead if we have an algorithm for solving the membership problem. 
�

Themain point of this corollary is not that ideal membership is difficult, but that it remains
difficult even if we assume to be given a Gröbner basis of the ideal as part of the input. For
other results on the complexity of the ideal membership problem, see [1,21].

As a final remark, in the case when a polynomial g is not contained in an ideal I = 〈G〉,
i.e., the remainder of dividing g by G is not zero, the last part in the proof of Theorem 2,
where the “smallest” monomialm is evaluated, allows to determine a concrete choice of input
assignments for which g does not vanish. In our application of multiplier verification these
evaluations provide counter-examples, in case a circuit is determined not to be a multiplier.

We claim that this section shows the first formalization of not only soundness but also
completeness arguments for recent successful algebraic approaches [30,35]. In previouswork
soundness and completeness was formally shown too but only for other polynomial rings, i.e.,
over F2q to model circuits which implement Galois-field multipliers [24,27], or for polyno-
mial rings overZ2q whichmodel arithmetic circuit verification using overflow semantics [33].
In the work of [35] soundness and completeness is discussed too, but refers to [24,27] instead
of showing proofs, which as discussed above uses coefficients inF2q and notZ, the coefficient
ring the approach [35] is actually working with.

4 Optimizations

In this section we extend the “XOR-Rewriting”, “Common-Rewriting” and “Vanishing Con-
straints” optimizations of [28] by the additional rewriting techniques of “Adder-Rewriting”
and “Partial Product Elimination” [8,29]. Picking up the statement of Corollary 1, simply
reducing the specification polynomial in the constructed Gröbner basis of the circuit gener-
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ally leads to an exponential number of monomials in the intermediate reduction results. This
conjecture was also made in [30]. Thus in practice to efficiently use polynomial reduction
for verification of specific circuits tailored heuristics which rewrite Gröbner bases and hence
improve the reduction process become very important to speed up computation. The (non-
reduced) Gröbner basis of an ideal is not unique, thus some Gröbner bases may be better
than others, for instance much smaller. A natural choice among all the Gröbner bases is the
unique reduced Gröbner basis [16], but it was shown empirically in [29] that the computation
of this basis for multipliers is not feasible in practice, e.g., the computation of the unique
reduced Gröbner basis for a 4-bit multiplier took more than 20min.

In [30] a logic reduction rewriting scheme consisting of XOR-Rewriting and Common-
Rewriting is proposed which helps to reduce the number of monomials by partially reducing
the Gröbner basis. Furthermore several specific monomials are eliminated which fulfill a
certain Vanishing Constraint.

The technique XOR-Rewriting of [30] eliminates all variables of the Gröbner basis which
are neither an input nor an output of anXOR-gate. Also the primary input and output variables
of the circuit are not eliminated in the Gröbner basis.

In our setting circuits are usually given as AIGs, hence we adopt this rewriting for AIGs
by matching XOR (XNOR) patterns in the AIG which represent an XOR (XNOR) gate. This

means we want to find a set of nodes for which the relation s = (a ∧ b) ∧ (ā ∧ b̄) holds.
We eliminate internal variables of these structures and define the polynomial of the XOR
(XNOR) output directly in terms of the grandchildren.

Example 4 The middle AIG in Fig. 1 depicts an XOR constraint. For this structure we only
use the polynomial − s + a + b − 2ab for describing the logical constraint instead of the
polynomials− l+ab,−r+(1−a)(1−b), and− s+(1−l)(1−r). This deletes polynomials
containing the variables l, r from theGröbner basis, unless they are used as an input of further
gates.

After applying XOR-Rewriting the Common-Rewriting [30] technique further simplifies
the Gröbner basis by eliminating all variables which are used exactly once as an input of a
further gate. This technique can be compared to bounded variable elimination in SAT [18]
after encoding a circuit to a CNF using, e.g., Tseitin encoding. This approach would also
eliminate all variables in theCNF representing gates in the circuit having only one parent [20].

Example 5 The right AIG of Fig. 1 contains several variables occurring only once, hence
Common-Rewriting eliminates gates t , u, v, andw. Thus the relation of r is directly expressed
in terms of a, b, c.

Although the concepts of XOR-Rewriting and Common-Rewriting seem rather intuitive
in the sense that we can simply rewrite and delete polynomials from the Gröbner basis, we
need sophisticated algebraic reasoning, i.e., elimination theory of Gröbner bases. We will
introduce this theory in Sect. 5, but before doing so we want to complete the discussion of
possible optimizations.

A further optimization presented in [30]was to add vanishing constraints, i.e., polynomials
which are PCCs of the circuit C and because they are contained in I (C), they can be added
to the Gröbner basis. In [30] a specific constraint was called the XOR-AND Vanishing Rule,
denoting that an XOR-gate and AND-gate which have the same input can never be 1 at the
same time. An XOR- and AND-gate with the same inputs logically represent a half-adder,
where the XOR-gate represents the sum output and the AND-gate represents the carry output.
Because a half-adder only sums up two bits, it can never happen that the sum output and
carry output is 1 at the same time.
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Example 6 In themiddle AIG of Fig. 1 the variable l represents anAND-gate and s represents
an XOR-gate. Both have a, b as input. Hence we can deduce sl = 0.

We adapt this rule by searching for (negative) children or grand-children of specific AND-
gates in the circuit. We add a corresponding polynomial to our Gröbner basis which deletes
redundant monomials in intermediate reduction results.

Additionally to the above optimizations which we more or less adopted of [30], we
presented in [8,29] a further optimization called Adder-Rewriting, which is also based on
elimination theory of Gröbner basis. The core idea is to simplify the Gröbner basis by intro-
ducing linear adder specifications.

Definition 7 A sub-circuit CS of a circuit C is a full-adder if

−2c − s + a + b + i is a PCC for C

for outputs c, s and inputs a, b, i of CS and a half-adder if

−2c − s + a + b is a PCC for C .

We search for such sub-circuits representing full- and half-adders in the gate-level circuit
C . Then we eliminate the internal variables of these sub-circuits, cf. Sect. 5, which has the
effect that the linear adder specifications are included in the Gröbner basis. Reducing by
these linear polynomials leads to substantial improvements in terms of computation time.
Furthermore we will also add a polynomial representing the relation of s to the inputs a, b, i ,
because there are no restrictions on s. It can be used multiple times as a child of a gate and
hence we need a relation for it. In general, assuming that the carry output c is always larger
than the sum output s, the intermediate reduction polynomials includes the term 2c+s before
we reduce c. Using the adder specification s is canceled in parallel during the reduction of
c. Hence in certain multiplier architectures which consist only of full- and half-adders we
never have to reduce s, cf. Sect. 10. But we have to include polynomials with leading term
s, otherwise we lose completeness of our approach.

In [36] a similar strategy is given which detects embedded MAJ3 and XOR3 gates. In this
approach the Gröbner basis of the circuit is not simplified, but the MAJ3 and XOR3 gates
are used to receive a more efficient reduction order.

Example 7 The middle AIG in Fig. 1 shows a half adder with outputs l and s as carry and
sum and inputs a, b. Hence we can derive the relations−2l−s+a+b and−s+a+b−2ab.
In Fig. 2 the filled gates describe a full-adder. In this case we can obtain the specification
−2c2 − s2 + p20 + p11 + c1 by elimination of g0, g1, g2.

We apply the optimizations in the following order: Adder-Rewriting, XOR-Rewriting,
Common-Rewriting, Adding Vanishing Constraints. We start by eliminating variables from
bigger parts of the circuit and continue with rewriting smaller parts and only in the end we
add polynomials to the Gröbner basis.

In [29] we introduced a rewriting method which is different from the optimizations above,
because in Partial Product Elimination we change the circuit specification. In multipliers
where a partial product is simply the conjunction of two input bits, we find exactly n2

polynomials, representing the corresponding AND-gates.
We can eliminate these polynomials by cutting off these gates from the circuit and verify

themseparately, e.g.,we search for them in theAIG, but donot introduce separate polynomials
pi, j = aib j . Hence we change the specification of the multiplier from Definition 5 to the
specification given in Corollary 2.
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Corollary 2 A circuit C is a multiplier if

2n−1∑
i=0

2i si −
n−1∑
i, j=0

2i+ j pi, j ∈ I (C) with pi, j = aib j .

We can easily check that the specifications of Corollary 2 and Definition 5 are equivalent,
when we expand the sums and replace every occurring of pi, j with aib j in Corollary 2.

This approach works only in multipliers with a simple partial product generation, in
multipliers using, e.g., Booth encoding [26] these patterns do not exist, but it might be
possible to find similar patterns in this situation too.

In the following we show how rewriting techniques, which are based on variable elimina-
tion can be applied to circuit verification.

5 Variable elimination

Section 4 actually relies on elimination theory of Gröbner bases to justify our rewriting
techniques. This section provides more details about this theory and also presents a theorem
which allows to rewrite only local parts of the Gröbner basis following [8]. To apply these
rewriting techniques the circuit is split into two parts by extracting a sub-circuit, which is
then rewritten, without changing the rest of the circuit. For example Adder-Rewriting is
applied on an extracted full- or half-adder and XOR-Rewriting is used for nodes in the AIG
describing an XOR-constraint. Consequently also the overall ideal I (C) and the Gröbner
basis G are split into two parts. In the extracted sub-circuit we want to eliminate redundant
internal variables, i.e., variables occurring only inside the sub-circuit. For this purpose we
use the elimination theory of Gröbner bases [16].

Recall, that if I ⊆ Q[X ] and J ⊆ Q[X ] are ideals, then their sum is the set I + J =
{ f + g | f ∈ I , g ∈ J }, which in fact is also an ideal in Q[X ].

Lemma 7 Let I = 〈 f1, . . . , fr 〉 and J = 〈g1, . . . , gs〉 be two ideals in Q[X ]. Then I + J =
〈 f1, . . . , fr , g1, . . . , gs〉. In particular 〈 f1, . . . , fr 〉 = 〈 f1〉 + . . . + 〈 fr 〉.

Proof Property 2 and Corollary 3 in Chap. 4 §3 of [16]. 
�

In the simple case where all occurring polynomials are linear, the effect of elimination
theory can be easily illustrated with Gaussian elimination.

Example 8 (Gaussian elimination) Let us consider the following system of three linear equa-
tions in Q[x, y, z]:

2x + 4y − 3z + 4 = 0

3x + 7y − 3z + 2 = 0

2x + 5y − 4z + 5 = 0

Let V be the vector space consisting of all Q-linear combinations of the polynomials on
the left hand side, then each possible root (x, y, z) ∈ Q

3 of the above system is also a root
of each polynomial contained in V . In this sense, V contains all linear polynomials whose
solutions can be deduced from the roots of the system, i.e., the polynomials generating V .
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If we are only interested in polynomials of V in which the variable x does not occur, we
can triangularize the above system using Gaussian elimination. This for example leads to the
equivalent system:

x + 2y − 2z + 3 = 0

y + 3z − 7 = 0

z − 2 = 0

In Gaussian elimination new polynomials are derived by applying linear combinations of
the original polynomials. Hence the polynomials on the left hand side belong to the vector
space V . We see that two polynomials do not contain x . In fact, every element of V which
does not contain x can be written as a linear combination of the polynomials y + 3z + 2 and
z + 1 which are free of x .

Since Gaussian elimination is defined only for linear equations we cannot use it for our
setting, but using Gröbner bases theory we can extend the reasoning in the example above to
systems of nonlinear equations.

In linear polynomials a term consists of a single variable, hence for triangularization we
only have to order the terms in such a way that the variables which we want to eliminate
are the largest terms. This ordering is generalized to multivariate terms by introducing an
elimination order on the set of terms. In the following assume that we want to eliminate the
variables belonging to a subset Z of X .

Definition 8 [16] Let X = Y
·∪ Z . An order< on the set of terms of [X ] is called elimination

order for Z if it holds for all terms σ, τ where a variable from Z is contained in σ but not in
τ , we obtain τ < σ . We denote this ordering by Y < Z .

In the case that Z = {x1, . . . , xi } and Y = {xi+1, . . . , xn}, the lexicographic term order
is such an elimination order. In Example 8 the elimination order Y < Z is defined by a
lexicographic ordering with Y = {y, z} and Z = {x}.
Definition 9 [16] Assume an ideal I ⊆ Q[X ] = Q[Y , Z ]. The ideal where the Z -variables
are eliminated is the elimination ideal J ⊆ Q[Y ] defined by

J = I ∩ Q[Y ].
Theorem 3 [16] Given an ideal I ⊆ Q[X ] = Q[Y , Z ]. Further let G be a Gröbner basis of
I with respect to an elimination order Y < Z. Then the set

H = G ∩ Q[Y ]
is a Gröbner basis of the elimination ideal J = I ∩ Q[Y ], in particular 〈H〉 = J .

The requirements of Theorem 3 demand that we need to calculate a new Gröbner basis
H w.r.t. to an elimination order Y < Z for our circuit C . In general this means that we
really need to apply Buchberger’s algorithm and cannot simply rely on the product criterion
anymore as we did for G. Since Buchberger’s algorithm is computationally expensive [16],
this is practically infeasible. In [8,29] we derived a method which allows that we split G
into two smaller Gröbner basis GA and GB , where 〈GB〉 defines the ideal generated by the
gate polynomials of the extracted sub-circuit. The following theorem shows that in order to
compute a basis of the elimination ideal J = 〈G〉 ∩ Q[Y ] it suffices to compute a basis of
the elimination ideal 〈GB〉 ∩ Q[Y ].
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G

GA GB

HB

HY HZ

H

Step 1: original Gröbner basis G

Step 2: split G into two subbases

Step 3: change order of < to <Z

Step 4: eliminate the variables of Z

Step 5: rejoin bases H = GA ∪ HY

Fig. 3 Each step of the elimination procedure of the proof of Theorem 4

Theorem 4 Let G ⊆ Q[X ] = Q[Y , Z ] be aGröbner basis with respect to some term order<.
Let GA = G ∩Q[Y ] and GB = G\GA. Let <Z be an elimination order for Z which agrees
with < for all terms that are free of Z, i.e., terms free of Z are equally ordered in < and
<Z . Suppose that 〈GB〉 has a Gröbner basis HB with respect to <Z which is such that every
leading term in HB is free of Z or free of Y . Let HB = HY ∪ HZ , such that HZ consists of all
polynomials with leading terms in Z and HY = HB\HZ contains the remaining polynomials
with leading terms in Y . Then

1. 〈G〉 ∩ Q[Y ] = (〈GA〉 + 〈GB〉) ∩ Q[Y ] = 〈GA〉 + (〈GB〉 ∩ Q[Y ]).
2. H = GA ∪ HY is a Gröbner basis for 〈GA〉 + (〈GB〉 ∩ Q[Y ]) w.r.t. the ordering <Z .

Proof (1) The steps of the elimination process of this proof are depicted in Fig. 3. Since
Y <Z Z , it follows that the polynomials in HY cannot contain any variable of Z . Furthermore
by definition GA does not contain any polynomial containing Z -variables, hence variables
of Z only occur in HZ .

By Lemma 7 we derive

〈G〉 = 〈GA〉 + 〈GB〉 = 〈GA〉 + 〈HB〉
= 〈GA〉 + 〈HY 〉 + 〈HZ 〉 = 〈GA ∪ HY 〉 + 〈HZ 〉.

By GB(S, o) we denote an arbitrary Gröbner basis for S w.r.t. an ordering o. Changing an
arbitrary basis into a Gröbner basis does not affect the ideal, hence

〈GA ∪ HY 〉 + 〈HZ 〉 = 〈GB(GA ∪ HY ,<Z )〉 + 〈HZ 〉
= 〈GB(GA ∪ HY ,<Z ) ∪ HZ 〉.

FurthermoreGB(GA ∪ HY ,<Z )∪ HZ is a Gröbner basis, because all S-polynomials of pairs
of polynomials p, q reduce to zero:

1. p, q ∈ GB(GA ∪ HY ,<Z ): By Lemma 2, spol(p, q) reduces to zero.
2. p ∈ GB(GA ∪ HY ,<Z ), q ∈ HZ : The leading terms of HZ contain only variables of Z ,

whereas the polynomials GA ∪HY do not contain any variable of Z . Hence by Lemma 3,
spol(p, q) reduces to zero.

3. p, q ∈ HZ : Since HB = HY ∪ HZ is a Gröbner basis, it holds that spol(p, q) reduces to
zero w.r.t. HB . Consequently it reduces to zero w.r.t. GA ∪ HB = GA ∪ HY ∪ HZ . Since
each leading term of GA ∪ HY is a multiple of a leading term in GB(GA ∪ HY ,<Z ),
spol(p, q) reduces to zero w.r.t. GB(GA ∪ HY ,<Z ) ∪ HZ .

123



Formal Methods in System Design (2020) 56:22–54 37

Combining the above results we conclude that GB(GA ∪ HY ,<Z ) ∪ HZ is a Gröbner basis
for the ideal 〈GB(GA ∪ HY ,<Z ) ∪ HZ 〉 = 〈G〉. Following Theorem 3 we receive

(〈GA〉 + 〈GB〉) ∩ Q[Y ]
= 〈GB(GA ∪ HY ,<Z ) ∪ HZ 〉 ∩ Q[Y ]
= 〈GB(GA ∪ HY ,<Z )〉.

Since computation of a Gröbner basis does not change the ideal, we have

〈GB(GA ∪ HY ,<Z )〉 = 〈GA ∪ HY 〉 = 〈GA〉 + 〈HY 〉.
Because the set HY does not contain any variable of Z , it follows

〈HY 〉 = 〈HB〉 ∩ Q[Y ] = 〈GB〉 ∩ Q[Y ]
Altogether by composing the derived results we obtain

(〈GA〉 + 〈GB〉) ∩ Q[Y ] = 〈GA〉 + (〈GB〉 ∩ Q[Y ]).
(2) We need to prove that for every term τ ∈ [Y ]which is also a leading term of a polynomial
in 〈G〉 it follows that there exists a polynomial f ∈ GA ∪ HY such that lt( f ) | τ . Let τ be
such a term.

Because G is a Gröbner basis it holds that there exists a g ∈ G with lt(g) | τ . Since
G = GA ∪ GB it consequently follows that either g ∈ GA or g ∈ GB :

1. g ∈ GA: It immediately follows that g ∈ GA ∪ HY , hence f := g.
2. g ∈ GB : Since 〈GB〉 = 〈HB〉, there exists an element h ∈ HB with lt(h) | lt(g). From

this it follows that lt(h) | τ . Since τ ∈ [Y ] it further holds that lt(h) ∈ [Y ]. Hence h ∈ HY

and altogether h ∈ GA ∪ HY . In this case f := h.

So for each g ∈ G we find f ∈ GA ∪ HY whose leading term divides τ . 
�

The above theorem allows that we simply add the Gröbner basis HY of the elimination
ideal of the extracted sub-circuit 〈HY 〉 = 〈HB〉 ∩Q[Y ] = 〈GB〉 ∩Q[Y ] to the Gröbner basis
GA of the remaining circuit and obtain again a Gröbner basis, preventing that we have to
compute a new Gröbner basis w.r.t. to an elimination order for the whole circuit C . Actually
we only have to really compute one “small” local Gröbner basis HB . Although in principle
we can choose Z arbitrarily, we apply the idea to sets of variables that only occur locally in
the circuit. One source of such variables are intermediate results of adders.

Example 9 Wewant to applyAdder-Rewritingon the full adder in the circuitC ofFig. 2,which
is depicted by the colored gates. The full adder has outputs c2 (carry) and s2 (sum) and three
inputs p20, p11, c1. The internal gates g2, g1, g0 are not used outside the full adder structure,
hence we want to eliminate them and include the specification 2c2 + s2 − p20 − p11 − c1 in
the Gröbner basis G.

The Gröbner basis G which is depicted by polynomials in the right column in Fig. 2 is
split such that GA = G\GB and

GB = {−g0 + p20 + p11 − 2p20 p11, −g1 + p20 p11, −g2 + c1g0,

−s2 + c1 + g0 − 2c1g0, −c2 + g1 + g2 − g1g2}
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We apply variable elimination only in GB . For this let Z = {g2, g1, g0}. According to the
requirements of Theorem 3 we need to find an elimination order <Z such that Y < Z . So
far we used in Example 3 a lexicographic term ordering < with

b0 < b1 < a0 < a1 < a2 < p00 < s0 < p01 < p10 < s1 < c1

< p11 < p20 < g0 < g1 < g2 < s2 < c2 < p21 < s3 < c3 < s4

We choose <Z such that < and <Z restricted on Y are equal, i.e., we move g0, g1, g2
to be the largest variables in the lexicographic ordering, but do not change the order of the
remaining variables.

We compute a Gröbner basis HB w.r.t. <Z . During the computation we use the nota-

tion f
P−→ r , meaning that r is the remainder f with respect to P . For simplification we

immediately reduce higher powers without showing this reduction by the field polynomials
explicitly. Initially HB contains:

f1 := −g0 − 2p20 p11 + p20 + p11, f2 := −g1 + p20 p11, f3 := −g2 + g0c1,
f4 := −2c1g0 + g0 − s2 + c1, f5 := −g2g1 + g2 + g1 − c2

According to Buchberger’s algorithm [11] we consider all possible pairs ( fi , f j ) ∈ HB ×HB

and compute spol( fi , f j )
HB−−→ r . If r is not zero, we add r to HB . This step is repeated until

all spol( fi , f j ) for ( fi , f j ) ∈ HB × HB reduce to zero.
Initially we only have to explicitly compute the remainders of spol( f1, f4), spol( f2, f5)

and spol( f3, f5), because all other S-Polynomials reduce to zero according to the product
criterion, cf. Lemma 3.

spol( f1, f4) = 2c1 f1 − f4 = −g0 + s2 − 4p20 p11c1 + 2p20c1 + 2p11c1 − c1
{ f1}−−→ s2 − 4p20 p11c1 + 2p20 p11 + 2p20c1 − p20 + 2p11c1 − p11 − c1 =: f6

The non-zero remainder f6 of spol( f1, f4) is added to HB . Since lt( f6) is coprime to all
other leading terms of HB , all spol( fi , f6) reduce to zero, cf. Lemma 3.

spol( f2, f5) = g2 f2 − f5 = g2 p20 p11 − g2 − g1 + c2
{ f3}−−→ −g1 + g0 p20 p11c1 − g0c1 + c2
{ f2}−−→ g0 p20 p11c1 − g0c1 + c2 − p20 p11
{ f1}−−→ c2 + 2p20 p11c1 − p11c1 + p20c1 − p20 p11 =: f7

We add f7 to HB and we again apply the product criterion for all S-Polynomials containing
f7.

spol( f3, f5) = g1 f3 − f5 = −g2 + g1g0c1 − g1 + c2
{ f3}−−→ g1g0c1 − g1 − g0c1 + c2
{ f2}−−→ g0 p20 p11c1 − g0c1 + c2 − p20 p11
{ f1}−−→ c2 + 2p20 p11c1 − p11c1 + p20c1 − p20 p11

{ f7}−−→ 0

At this point the algorithm terminates, because now all S-Polynomials reduce to zero. Thus
HB = { f1, f2, f3, f4, f5, f6, f7} is a Gröbner basis for 〈HB〉.

Although HB is already a Gröbner basis, we will modify it to cover our needs. It is always
allowed to add polynomials of 〈HB〉 to HB without violating the Gröbner basis property.
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Fig. 4 Standard row-wise slicing (left) and our column-wise slicing (right) for a clean 3-bit carry-save-adder
based (CSA) multiplier. The numbers in the full-adders depict the order

In order to add the specification of the full adder to HB we construct f8 := 2 f7 + f6 =
2c2 + s2 − p20 − p11 − c1 and add it to HB .

To reduce the size of the Gröbner basis HB we eliminate unnecessary polynomials.
Lemma 3 in Chap. 2 §7 of [16] tells us that we can remove a polynomial p from our Gröbner
Basis HB whenever we have a further polynomial q ∈ HB such that lt(q) | lt(p). Thus we
can eliminate f4, f5 and f7 and our final Gröbner basis HB w.r.t. <Z is

HB = {g0 + 2p20 p11 − p20 − p11, g1 − p20 p11, g2 + g0c1,

s2 − 4p20 p11c1 + 2p20 p11 + 2p20c1 − p20 + 2p11c1 − p11 − c1,

2c2 + s2 − p20 − p11 − c1}.
We eliminate the first three colored polynomials containing variables of Z and derive 〈H〉 =
〈GA〉 + 〈HY 〉 with HY = HB ∩ Q[Y ].

6 Order

As long as the gate and field polynomials are ordered according to a reverse topological
lexicographic term order, the choice of order does not affect the correctness of the approach,
cf. Theorem 1. However the choice of order has an influence on the number of monomials
in the intermediate reduction result [35]. Hence, in addition to rewriting and reducing the
Gröbner basis G, choosing an appropriate term and hence reduction order has a tremendous
effect on computation time.

Given the two dimensional structure of multipliers, two orderings seemwell fitted, namely
a row-wise and a column-wise ordering. The idea in both approaches is to partition the gates
of a circuit into slices, which are then totally ordered. The gates within a slice are ordered
reverse topologically. The combined order of the variables has to be reverse topological,
such that the requirements of Theorem 1 are fulfilled and hence the gate and input field
polynomials form a Gröbner basis.

In the row-wise approach the gates are ordered according to their backward level. The
ordering is abstractly depicted in the left circuit in Fig. 4,where the order of the full-adders in a
clean carry-save-adder based (CSA)multiplier is given. Informally, amultiplier is cleanwhen
neither gate synthesis nor mapping is applied and where the XOR-gates, partial products and
the half/full adders can easily be identified. Otherwise a multiplier is called dirty. In previous
work the row-wise approach is widely used. In the approach of [35] the gates are ordered
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according on their logic level based on the circuit inputs. In [14] the row-wise order is used
to derive a word-level specification for a CSA step in a clean CSA multiplier. Unfortunately,
the variable order is only roughly discussed in [30].

In the column-wise order, cf. right side of Fig. 4, the multiplier is partitioned vertically
such that each slice contains exactly one output bit. We will use this order to determine a
more robust incremental checking approach.

In Fig. 4 we also list the sum of the partial products which occur in the row-wise and
column-wise slices. Assumewe swap a1b2 and a2b1. In contrast to permuting partial products
within a row, permuting partial products within a column does not affect the correctness of the
multiplier. By exchanging a1b2 and a2b1 the given sums of partial products for the row-wise
slices are not valid anymore, whereas in the column-wise slicing the sum of partial products
is still correct, meaning we can uniquely identify the partial products in a column-wise slice.

7 Incremental column-wise checking

The goal of an incremental checking algorithm is to divide the verification problem into
smaller, less complex and thus more manageable sub-problems. Because a column-wise
term order is robust under permutation of partial products, we use such an order to define
our incremental slices. Furthermore we split the word-level specification of Definition 5 into
smaller specifications which relate the partial products, incoming carries, sum output bit and
the outgoing carries of each slice.

Definition 10 Let C be a circuit which is partitioned according to a column-wise term order,
such that each slice contains exactly one output bit. For column i with 0 ≤ i < 2n let
Pi = ∑

k+l=i akbl be the partial product sum (of column i).

Definition 11 Let C be a circuit, as defined in Sect. 3. A sequence of 2n + 1 polynomials
C0, . . . ,C2n over the variables of C is called a carry sequence if

−Ci + 2Ci+1 + si − Pi ∈ I (C) for all 0 ≤ i < 2n + 1

Then the Ri = −Ci +2Ci+1 + si − Pi polynomials are called the carry recurrence relations
for the sequence C0, . . . ,C2n .

Based on these definitions we can obtain a general theorem which allows to incrementally
verify multiplier circuits using carry recurrence relations. For this theorem it is not necessary
to know how the carry sequence is actually derived.

Theorem 5 Let C be a circuit where all carry recurrence relations are contained in I (C),
i.e., C0, . . . ,C2n define a carry sequence as in Definition 11. Then C is a multiplier in the
sense of Definition 5, if and only if C0 − 22nC2n ∈ I (C).

Proof By the condition of Definition 11, we have (modulo I (C))

2n−1∑
i=0

2i si =
2n−1∑
i=0

2i (Pi + Ci − 2Ci+1)

=
2n−1∑
i=0

2i Pi +
2n−1∑
i=0

(
2iCi − 2i+1Ci+1

)
︸ ︷︷ ︸

C0 − 22nC2n

.
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Fig. 5 Deriving input cones (left) and slices (right) for a clean 3-bit CSA multiplier

It remains to show
∑2n−1

i=0 2i Pi =
(∑n−1

i=0 2i ai
) (∑n−1

i=0 2i bi
)
:

2n−1∑
i=0

2i Pi =
2n−1∑
i=0

2i
k,l≤n−1∑
k+l=i
k,l≥0

akbl =
n−1∑
k=0

n−1∑
l=0

2k+lakbl =
(
n−1∑
k=0

2kak

) (
n−1∑
l=0

2l bl

)

Putting the above calculations together yields:

2n−1∑
i=0

2i si

︸ ︷︷ ︸
L

= (
C0 − 22nC2n

)
︸ ︷︷ ︸

L1

+
(
n−1∑
k=0

2kak

) (
n−1∑
l=0

2l bl

)

︸ ︷︷ ︸
L2

Since all Ri ∈ I (C), it holds that L − L1 − L2 ∈ I (C). For soundness, we assume L1 ∈
I (C), thus conclude L − L2 ∈ I (C), which proves that C is a multiplier. For completeness,
let L − L2 ∈ I (C) and thus L1 ∈ I (C). 
�

For our incremental checking algorithm we determine for each output bit si its input cone,
namely the gates which si depends on (cf. left side of Fig. 5):

Ii := {gate g | g is in input cone of output si }
We derive slices Si as the difference of consecutive cones Ii (cf. right side of Fig. 5):

S0 := I0 Si+1 := Ii+1\
i⋃

j=0

S j

Definition 12 (Sliced Gröbner Bases) Let Gi be the set of polynomial representations of the
gates in a slice Si , cf. Eq. 1, and the input field polynomials. The terms are ordered such that
the requirements of Theorem 1 are fulfilled.

Corollary 3 The set Gi is a Gröbner basis for the slice ideal 〈Gi 〉.
Proof Follows from Theorem 1 with C replaced by Si and G replaced by Gi . 
�

Since the ideal 〈Gi 〉 contains all the field polynomials Fi for the gate variables in Si ,
we may use them in the reduction process to eliminate exponents greater than 1 in the
intermediate reduction results. Our incremental checking algorithm, cf. Algorithm 2, works
as follows: We start at the last output bit s2n−1 and compute the polynomials Ci recursively
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Algorithm 2: Multiplier Checking Algorithm
Input : Circuit C with sliced Gröbner bases Gi
Output: Determine whether C is a correct multiplier

1 C2n ← 0;
2 for i ← 2n − 1 to 0 do
3 Ci ← Remainder (2Ci+1 + si − Pi , Gi ∪ Fi )

4 return C0 = 0

as the remainder of dividing 2Ci+1 + si − Pi by Gi ∪ Fi . Hence a polynomial Ci is uniquely
defined, given Pi and Ci+1. It remains to fix the boundary polynomial C2n , where we simply
choose C2n = 0.

Theorem 6 Algorithm 2 returns true iff C is a multiplier.

Proof By definition Ri := −Ci +2Ci+1+si −Pi ∈ 〈Gi ∪Fi 〉. Let F denote the set of all field
polynomials for the variables of C . Since Gi ⊆ G and Fi ⊆ F , we have Gi ∪ Fi ⊆ G ∪ F .
Furthermore 〈G ∪ F〉 = 〈G〉 = J (C) and thus Ri ∈ J (C) = I (C).

We show inductively that Ci is reduced w.r.t. Ui , where Ui := ⋃
j≥i (G j ∪ Fj ). This

requires that si and Pi are reduced w.r.t. to Ui+1, which holds due to the construction of
the sliced Gröbner bases Gi . By U0 = G ∪ F we can derive that the final remainder C0 is
reduced w.r.t. G ∪ F thus C0 = C0 − 22nC2n ∈ I (C) = J (C) iff C0 = 0, which concludes
the proof using Theorem 5. 
�

Consequently Algorithm 2 returns false iff a multiplier is incorrect, i.e., C0 �= 0. As
discussed in the final remark of Sect. 3 we can use C0 to receive a concrete counter-example.
It also is possible to abort the algorithm earlier if we find partial products akbl of higher
slices Sk+l = S j in remainders Ci with i < j .

8 Incremental equivalence checking

In this section we introduce an incremental equivalence checking algorithm [29] generalizing
our incremental checking approach to gate-level equivalence checking of two multipliers,
but the approach is not restricted to multiplier circuits only. The presented theory applies to
all acyclic circuits C,C ′ which have the same inputs and the same number of output bits. We
generalize our definition of circuits of Sect. 3 as follows.

Let C be a circuit with l boolean inputs a0, . . . , al−1 andm outputs s0, . . . , sm−1. Internal
gates are represented by g0, . . . , g j . Further letC ′ be a circuit with the same l boolean inputs,
butm different outputs s′

0, . . . , s
′
m−1. The gates ofC

′ are defined by gate variables g′
0, . . . , g

′
k .

The union ofC,C ′ is denoted byC∪C ′, for which we can determine I (C∪C ′) = J (C∪C ′)
as described in Sect. 3.

The core idea of equivalence checking is to verify that two circuits C and C ′ compute the
same output, given the same input. The benefit of equivalence checking is that a circuit can be
verified without requiring a word-level specification by checking the equivalence of a circuit
and a correct “golden” reference circuit. In the following we show how we can derive an
incremental equivalence checking approach based on our column-wise checking algorithm
of Sect. 7.

Definition 13 Let C,C ′ be two circuits. They are equivalent, written C ≡ C ′, if

si − s′
i ∈ I (C ∪ C ′) i = 0, . . . ,m − 1.
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Lemma 8

C ≡ C ′ iff
m−1∑
i=0

2i
(
si − s′

i

) ∈ I
(
C ∪ C ′)

Proof “⇒”: Follows from Definition 2.
“⇐”: Let ϕ : X → B ⊆ Q denote an evaluation of all variables X of C,C ′, which is
implied by the functionality of the circuit gates, e.g., values of si , s′

i in B are uniquely
determined given fixed inputs a0, . . . , al−1. We extend ϕ to an evaluation of polynomials in
the natural way (the unique homomorphic extension), i.e., ϕ : Q[X ] → Q. For all PCCs f ,
i.e. f ∈ I (C ∪ C ′), it holds by definition that ϕ( f ) = 0. Since ϕ(si ), ϕ(s′

i ) ∈ B it is clear
that ϕ(si − s′

i ) ∈ {−1, 0, 1}.
Assume

∑m−1
i=0 2i (si − s′

i ) ∈ I (C ∪ C ′), but C �≡ C ′. Then there is a largest k with
0 ≤ k < m and ϕ(sk − s′

k) �= 0, which gives the following contradiction

0 = ϕ

(
m−1∑
i=0

2i (si − s′
i )

)
=

k∑
i=0

2iϕ
(
si − s′

i

)

= 2kϕ
(
sk − s′

k

)
︸ ︷︷ ︸

∈{−2k ,2k }

+
k−1∑
i=0

2iϕ
(
si − s′

i

)
︸ ︷︷ ︸

∈[−2k+1,2k−1]

�= 0


�
As for the incremental checking algorithm we define a sequence of relations, which is

used to split the word-level equivalence specification. Based on the sequence we define an
abstract incremental bit-level equivalence checking algorithm.

Definition 14 Let C,C ′ be two circuits. A sequence of m polynomials �0, . . . , �m over the
variables of C , C ′ is called a sequence of slice polynomials if

−�i + 2�i+1 + (
si − s′

i

) ∈ I
(
C ∪ C ′) for all 0 ≤ i < m

The polynomials Ei = −�i +2�i+1+(si −s′
i ) are called slice relations for the sequence

�0, . . . , �m .

Theorem 7 Let C,C ′ be two circuits and �0, . . . , �m be a sequence of slice polynomials.
Then C ≡ C ′ in the sense of Definition 13 iff 2m�m − �0 ∈ I (C ∪ C ′).

Proof Using Definition 14 we obtain modulo I (C ∪ C ′)
m−1∑
i=0

2i (si − s′
i ) =

m−1∑
i=0

2i (2�i+1 − �i ) = 2m�m − �0.


�
Before we can define our incremental equivalence checking algorithm, we need to find a

Gröbner basis for the ideal I (C ∪C ′) and similar to Sect. 7 we will define input cones which
are then used to define slices Si .

Lemma 9 Let C and C ′ be two circuits. Let G,G ′ be Gröbner bases for I (C), I (C ′) w.r.t. ≤
,≤′, satisfying the conditions of Theorem 1. Further let ≤∪ be such that ≤,≤′ are contained
in ≤∪. Then G ∪ G ′ is a Gröbner basis for I (C ∪ C ′) w.r.t. ≤∪.
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Proof The set G ∪ G ′ consists of all gate polynomials of C,C ′ and input field polynomials
ai (ai −1), but nomore. Since all variables ofC,C ′ apart from the input variables are unequal,
G ∩ G ′ contains only the input field polynomials.

Since the variables a0, . . . , al−1 are the smallest elements in ≤,≤′ they are by definition
also the smallest elements in ≤∪. Furthermore the term orderings for the gate polynomials
of C and C ′ are still valid in ≤∪. Hence by the constraints on ≤∪ the leading term of a
polynomial in G ∪ G ′ is either the output variable of a circuit gate or the square of an input
variable. Thus by Lemma 3 G ∪ G ′ is a Gröbner basis for I (C ∪ C ′) w.r.t. ≤∪. 
�
For each pair of output bits si and s′

i we determine its input cone

Ii := {
gate g | g is in input cone of output si or s

′
i

}
.

The slices Si are defined as in Sect. 7 as difference of consecutive cones Ii . For each slice
we define a set of polynomials Gi according to Definition 12. By Corollary 3 such a set is a
Gröbner basis for the ideal generated by the input field polynomials and the gate polynomials
of a slice. Note that the ideal generated by Gi contains all the field polynomials Fi for the
gate variables in Si .

Using Theorem 7 we define our incremental equivalence checking algorithm, cf. Alg 3.
Setting the boundary 2m�m to 0 we obtain the sequence of slice polynomials�0, . . . , �m−1

recursively by computing each �i as the remainder of 2�i+1 + si − s′
i modulo the sliced

Gröbner bases Gi ∪ Fi . This ensures that all Ei are contained in 〈Gi ∪ Fi 〉 ⊆ I (C ∪ C ′).
After computing �0, . . . , �m−1 we have to check if �0 = 0.

By similar arguments as in the proof of Theorem 6 we show correctness of Algorithm 3.

Algorithm 3: Equivalence Checking Algorithm
Input : Circuits C,C ′ with sliced Gröbner bases Gi
Output: Decide if C and C ′ are equivalent (C ≡ C ′)

1 �m ← 0;
2 for i ← m − 1 to 0 do
3 �i ← Remainder (2�i+1 + si − s′i , Gi ∪ Fi )

4 return �0 = 0

Theorem 8 Algorithm 3 returns true iff (C ≡ C ′).

Proof It holds bydefinition that Ei = −�i+2�i+1+(si−s′
i ) ∈ 〈Gi∪Fi 〉. By F wedenote the

set of all field polynomials of the variables ofC,C ′. We can derive thatGi ∪Fi ⊆ G∪G ′ ∪F
Therefore Ei ∈ 〈G ∪ G ′ ∪ F〉 = I (C ∪ C ′).

We show inductively that �i is reduced w.r.t. Ui := ⋃
j≥i (G j ∪ Fj ). For the induction it

is required that si and s′
i are reduced w.r.t. to Ui+1, which holds due to the definition of the

sliced Gröbner bases. With U0 = G ∪ G ′ ∪ F we get �0 is reduced w.r.t. G ∪ G ′ ∪ F thus
�0 = 2m�m − �0 ∈ J (C ∪ C ′) iff �0 = 0, concluding the proof using Theorem 7. 
�

9 Engineering

In this section we present the outline of our tool AigMulToPoly [28], cf. Algorithm 4, and
present a novel approach to define column-wise slices. Our tool AigMulToPoly, which
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Algorithm 4: Outline of our tool AigMulToPoly
Input : Circuit in AIG format
Output: File f for computer algebra system

1 for i ← 0 to 2n − 1 do
2 Si ← Define-Cones-of-Influence (i);
3 Merge (Si );
4 Promote (Si );
5 Levelize (Si );
6 Apply-Rewriting (Si );
7 Identify-Vanishing Constraints (Si );

8 f ← Print to file;

is implemented in C , takes a circuit given as an AIG in AIGER format [7] as input and
returns a file which can be passed on to the computer algebra systems Mathematica [34] and
Singular [17].

InAigMulToPolywedefine the cones-of-influence,which are used to define the column-
wise slices. In certain cases we have to optimize the slices by moving nodes from one slice
to another slice, which we discuss further down. After slicing an ordering is defined for the
nodes inside a slice, the rewriting methods are applied and as a last step everything including
the computation instructions of our incremental column-wise verification algorithm in the
syntax of the computer algebra system is printed to a file. In the computer algebra system the
actual computation (repeated multivariate division) of the incremental checking algorithm is
executed.

We generally define the column-wise slices based on the input cones, cf. Sect. 7. But this
is not always precise enough for dirty multipliers. It frequently happens, that AIG-nodes
which are not directly used to compute the output si of a slice are allocated to later slices.
This happens for example for carry outputs of full- and half-adders when they do not share
their nodes with the sum output.

Example 10 In Fig. 2 the dashed lines depict an optimal column-wise slicing. If we would
define the slices only based on input cones, then the AND-gate with output c1 would belong
to S2. Similar for the gates with outputs c2, g2, g1, c3, thus all the full- and half-adders would
be cut into two pieces.

We want to have these nodes in the same slice as the nodes computing the sum output
of an adder. Otherwise we cannot apply Adder-Rewriting. We informally define those nodes
in a slice Si which are used as inputs of nodes in a slice S j with j > i as carries of a slice
Si . The size of the carry polynomial Ci can be reduced by decreasing the number of carries
of the corresponding slice Si . If the nodes are not moved, larger carry polynomials Ci are
generated and hence we get larger intermediate reduction results than necessary. Therefore
we eagerly move nodes between slices in a kind of peephole optimization, backward (Merge)
as well as forward (Promote).

Merge Assume we find a node g in the AIG which belongs to a slice Si and both
children q and r belong to smaller slices S j and Sk . Let l = max( j, k). If the children
q and r do not have any other parent than g in a bigger slice than Sl , we move the node
g back to slice Sl . This approach is depicted on the left side of Fig. 6 for j = k = i −1.
Thus after merging g, the nodes q, r are less likely to be carry variables any more,
especially when j = k. We apply merging repeatedly until completion and Sl and Si
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Fig. 6 Moving nodes between slices by Merge (left side) and Promote (right side)

are updated after each application. Merging nodes usually ensures that the complete
logic of a full- or half-adder is contained within one slice.

Example 11 In the circuit of Fig. 2 gate c1 ismerged to slice S1. Gates g1, g2, c2 are repeatedly
merged to S2 and gate c3 is merged from S4 to S3. Hence every full- or half-adder logic is
contained within one slice.

Promote In somemultiplier architectures it happens the inputs of a node g are contained
in the same slice and all three nodes are carries. In this case we decrease the number
of carries by promoting g to the next bigger slice. More precisely we search for nodes
g in a slice Si−1 which have exactly one parent contained in a larger slice S j with
j ≥ i − 1. If g would also be an input of a node in Si−1, we cannot move g to slice
Si without violating the topological order. The inputs of g also have to be contained in
Si−1 and need to have at least one parent in a bigger slice S j with j > i − 1, i.e., they
are carries. Then we promote g to slice Si and thus decrease the number of carries.
Promoting is shown on the right side of Fig. 6 for j = i .

A node g which is merged can not be promoted back in the next round, because merging
and promoting have different requirements for the input nodes of g. This prevents an endless
alternate application of the above rules.

We can overcome the necessity of merging gates by defining slices based on the output
cones of the partial products, i.e., gates which depend on a partial product. This approach
works only if the partial products are generated by a simple AND-gate. If for example Booth
encoding of partial products is applied we cannot identify all partial products in the AIG and
thus cannot apply the approach of defining slices based on the output cones.

Oi := {gate g | g is in output cone of a partial product akbl with k + l = i}
We derive slices Si as the difference of consecutive cones Oi :

Sn−2 := On−2 Si := Oi\
n−2⋃
j=i+1

S j

The disadvantage of this approach is that the slice Sn−2 actually contains two output bits,
namely sn−2 and sn−1. In an AIG the output bit is usually introduced by a relation of the
form s = gk , i.e., renaming of a gate variable gk . To solve the issue we simply define a slice
Sn−1 which contains exactly the relation sn−1 = gk for some gk . This constraint is removed
from Sn−2.

It can be seen in Fig. 6 that slicing based on the output conesmakes the concept of merging
superfluous. The node g in slice Si has inputs q and r , which belong to smaller slices S j and
Sk . Hence g depends on the partial products of q and r . Thus g is in the same output cone
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than its children and it will be allocated to Sl , with l = max( j, k). So it cannot belong to a
different slice.

In contrast to merging, promoting a node is still necessary, because as it can be seen in the
right side of Fig. 6, nodes g, q, r all depend on the same partial products, hence they will all
be allocated to Si−1, which makes promoting of g to Si still necessary. Since promoting is
necessary in both approaches and slicing based on the input cones also works for encodings,
such as Booth encoding, we will stick to the slicing based on input cones.

After merging and promoting, the allocation of nodes to a slice is fixed. The slices are
totally ordered starting from S2n−1 to S0. We order the nodes in a slice according to their
level seen from the circuit inputs. Ordering the nodes after merging and slicing ensures that
the variables are topologically sorted.

The rewriting techniques of Sect. 4 are applied in the order: Adder-Rewriting, XOR-
Rewriting and Common-Rewriting. Since the structures of full- and half-adders usually do
not change within a certain circuit, we do not have to compute the Gröbner basis HB , cf.
Sect. 5, every time we find a certain full- or half-adder structure in the corresponding AIG.
The polynomials describing the adder will always have the same form. Thus it suffices that we
know the structure of the polynomials in HB and simply replace the polynomials describing
the adder structure by the polynomials of HB with appropriate variables. The same applies
to structures describing an XOR- or XNOR-gate.

In order to simulate Common-Rewriting, we search in each slice Si for nodeswhich are not
used in another slice and have exactly one parent. We collect them in the setUi . Polynomials
of nodes in Si which depend on nodes inUi are reduced first by the polynomials of nodes in
Ui , thus eliminating the nodes of Ui .

After rewriting Si , we search for Vanishing Constraints in the remaining nodes of Si .
More precisely we search for products which always evaluate to zero, e.g., gb in Example 1.
We store these constraints in a set Vi and during remainder computation we also reduce
against elements of Vi . Since these constraints are contained in the ideal I (C), and because
of Theorem 2, we can add these polynomials to the Gröbner basis without violating the
Gröbner basis property.

Partial Product Elimination is handled internally. We search for all n2 nodes which define
a partial product in the AIG and check if they are correct. We exclude the original inputs from
the AIG and treat these nodes as new inputs of the AIG. In the printing process we simply
rewrite the specification in terms of these nodes.

The polynomials of each slice together with computation instructions for the incremental
checking algorithm are written to a file which can be passed on to the computer algebra
systems Mathematica or Singular. Whereas Singular treats the polynomials of the sliced
Gröbner bases as a set which is then ordered internally according to the given variable
order, it seems that Mathematica actually treats the set of polynomials as a list. Therefore it is
necessary to print the polynomials in the correct order.We did not obey this fact in [28], where
we actually printed the polynomials in reverse order. We started by printing the polynomials
defining the partial products and ended by printing the polynomial representation of the
output bit of each slice. By adjusting the printing order of the polynomials such that the
leading terms of the polynomials are ordered according to the given variable order we were
able to improve our computation results from [28].
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Fig. 7 Multiplier architectures of “btor” (left) and “sp-ar-rc” (right) for input bit-width n = 4

10 Experiments

In ourworkwe focus on integermultipliers, as the authors of [15,30,31,35], which take two n-
bit vectors as inputs and return a bit-vector of size 2n. In the work of [15,35] the authors used
clean CSAmultipliers, crafted from [22]. They further usedmultipliers generated byABC [3]
on which synthesis and technology mapping is applied. These multipliers are extremely hard
to verify [15,35].

In our experiments we focus on two different architectures, called “btor” and “sp-ar-rc”.
The “btor” benchmarks are generated from Boolector [25] and can be considered as clean
multipliers. The “sp-ar-rc” multipliers are part of the bigger AOKI benchmarks [19] and
can be considered as dirty multipliers. The AOKI benchmark set was used extensively in
the experiments of [30,31]. The structure of “btor” and “sp-ar-rc” multipliers is shown in
Fig. 7. Both architectures can be fully decomposed into full- and half-adders, which are then
accumulated. In “btor” these full- and half-adders are accumulated in a grid-like structure,
whereas in “sp-ar-rc” full- and half-adders are accumulated diagonally.

In addition to “btor” and “sp-ar-rc” multipliers, we will further use more complex multi-
plier architectures of [15,35] and of the AOKI benchmarks. The architectures of the different
AOKI benchmarks are indicated by the names of the multipliers. The naming of the multi-
pliers follows the following structure: “partial product generation - accumulation - last step
adder”, e.g., a “sp-ar-rc” multiplier consists of simple partial product generation, which are
accumulated in an array structure and the adder in the last accumulation step is a ripple-carry
adder. In our experiments we will include “bp-ar-rc”, “sp-ar-cl” and “sp-wt-rc”, where bp
defines booth encoding [26], cl defines a carry-lookahead adder and wt means accumula-
tion by a Wallace-tree structure, where the number of partial products is reduced as soon as
possible, which minimizes the overall delay of the multiplier [26].

Furthermore we use benchmarks which are synthesized and technology mapping is
applied. The basis of these benchmarks is an “abc”-multiplier, which is generated with
ABC [3] and has the same clean structure as the “btor” benchmarks. The different versions
of synthesis and technology mapping should be the same as in [15,35].

In all our experiments we used a standard Ubuntu 16.04 Desktop machine with Intel
i7-2600 3.40GHz CPU and 16GB of main memory. The (wall-clock) time limit was set to
1200s and main memory was limited to 14GB. We measure the time from starting our tool
AigMulToPoly until Mathematica resp. Singular are finished. This includes the time our
tool AigMulToPoly needs to generate the files for the computer algebra system, which in
the worst case is around 3s for 128 bit multipliers. The results also include the time to launch
Mathematica resp. Singular.Wemark unfinished experiments by TO (reached the time limit),
MO (reached the memory limit) or by an error state EE (reached the maximum number of
ring variables in Singular). Singular has a limit of 32,767 on the number of ring variables and
multipliers of larger bit-width easily exceed this limitation. We also mark some unfinished
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Table 1 Our column-wise incremental approach (+inc +col) versus a non-incremental approach using column-
wise (−inc +col) and row-wise order (−inc +row) without Adder-Rewriting

mult n Mathematica Singular

+inc −inc+col −inc +row +inc −inc+col −inc +row

btor 16 2 3 4 1 1 2

btor 32 14 56 106 10 42 42

btor 64 131 MO MO MO MO MO

btor 128 TO TO TO EE EE EE

sp-ar-rc 16 4 9 11 1 TO TO

sp-ar-rc 32 30 326 425 28 TO TO

sp-ar-rc 64 300 MO MO MO MO MO

sp-ar-rc 128 TO TO TO EE EE EE

Table 2 Effect of turning off optimizations XOR-Rewriting (−xor), Common-Rewriting (−com) and Van-
ishing Constraints (−vc) keeping Adder-Rewriting disabled

mult n Mathematica Singular

+inc −xor −com −vc +inc −xor −com −vc

btor 16 2 5 2 3 1 1 1 1

btor 32 14 31 4 15 10 28 5 12

btor 64 131 292 22 128 MO MO MO MO

btor 128 TO TO 186 TO EE EE EE EE

sp-ar-rc 16 4 17 TO 4 1 6 TO 1

sp-ar-rc 32 30 171 TO 31 28 242 TO 28

sp-ar-rc 64 300 TO TO 303 MO EE MO MO

sp-ar-rc 128 TO TO TO TO EE EE EE EE

experiments by TO*, in this case the time limit was set to 36,000s (10h). Experimental data,
benchmarks and source code is available at http://fmv.jku.at/fmsd18.

In Table 1 we compare our incremental column-wise verification approach of Algorithm 2
to a non-incremental verification approach, where the complete word-level specification
(Definition 5) is reduced. For the non-incremental approach we use a column-wise as well as
row-wise term ordering. In Table 1 all optimizations are enabled (XOR-Rewriting, Common-
Rewriting, Vanishing Constraints, Merge, Promote), but Adder-Rewriting is disabled. The
results show that our incremental verification approach is faster and uses less memory than
the non-incremental approaches. In the experiments of [28] Mathematica needed a lot more
time than Singular, but as discussed at the end of Sect. 9 we could improve the running
time of Mathematica by adjusting the printing order. Hence in the experiments presented in
this work the computation time of Mathematica and Singular is nearly the same. The big
difference between the two computer algebra systems is that Singular needs a lot of memory,
verification of 64-bit multipliers needs more than 14GB. As expected we get an error state
for the 128-bit multipliers.

By default the adapted optimizations XOR-Rewriting, Common-Rewriting and adding
Vanishing Constraints of [30] are enabled in our incremental column-wise checking algo-
rithm. In the experiments shown in Table 2 we show the effects of turning off exactly one of
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Table 3 Effect turning off Merge (−merge) and Promote (−prom). Furthermore the effect of using slicing
based on the output cones (+ocone)

mult n Mathematica Singular

+inc −merge −prom +ocone +inc −merge −prom +ocone

btor 16 2 3 2 3 1 1 1 1

btor 32 14 21 15 15 10 10 10 11

btor 64 131 233 133 132 MO MO MO MO

btor 128 TO TO TO TO EE EE EE EE

sp-ar-rc 16 4 4 TO 4 1 1 TO 1

sp-ar-rc 32 30 39 TO 31 28 29 MO 28

sp-ar-rc 64 300 430 TO 301 MO MO MO MO

sp-ar-rc 128 TO TO TO TO EE EE EE EE

these optimizations (keeping Adder-Rewriting disabled). For the “btor” multipliers turning
off Common-Rewriting actually speeds up computation time. In the “btor” multipliers only a
few gates with only one parent exist and applying common-rewriting by splitting remainder
computation increases the run-time. In “sp-ar-rc” multipliers turning off Common-Rewriting
increases computation-time drastically, because structures containing nodes with only one
parent occur much more frequently. Turning off XOR-Rewriting is a downgrade for both
clean and dirty multipliers. Because of the additional number of gates we already reach an
error state for a 64-bit multiplier in Singular. In [28] turning off Vanishing Constraints had
a very bad effect for clean multipliers in Mathematica. By printing the polynomials in a
different order we could overcome this issue. Now turning off Vanishing Constraints does
not influence the behavior of neither Mathematica nor Singular for clean as well as dirty
multipliers. Hence the question can be asked if adding Vanishing Constraints in the current
form is really necessary. Summarized it can be said that the optimizations have both positive
and negative effects, depending on the structure of the multiplier.

In the experiments shown inTable 3we investigate the effects of turning off the engineering
methods Merge and Promote. The computation time of disabling Merge can considered to
be the same. The difference can be seen in the size of Ci in the log-files, e.g., in sp-ar-rc-8
the maximum number of monomials in any Ci is 38, whereas in the approach with Merge
enabled themaximumnumber is 8. Furthermore allCi are linear. Turningoff Promote does not
affect “btor”-multipliers but really slows down computation time of “sp-ar-rc” multipliers.
Furthermore we compare our incremental slicing based on the input cones to the slicing
method which is based on the output cones. Both slicing approaches lead to identical output
files for the computer algebra systems, hence we have the same computation time in both
approaches.

In Table 4 we apply Adder-Rewriting on top of our incremental verification approach.
In the first step we simply add the full- and half-adder specifications (+as) to the Gröbner
basis, without eliminating any internal variable. Comparing the computation time, it seems
that computer algebra systems cannot use this additional redundant information, similar to
VanishingConstraints inTable 2.ApplyingAdder-Rewriting by eliminating internal variables
in the sliced Gröbner bases has a tremendous effect on the computation time. Now also 128-
bit multipliers can be verified within roughly 100s, while before verification timed out after
20min. Additionally eliminating the partial products (+ppe) further speeds-up computation
time. We assume that the considered multipliers are correct and since they can fully be
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Table 4 Enabling Adder-Rewriting and partial product elimination

mult n Mathematica Singular

+inc +Adder Rew. +inc +Adder Rew.

+as +ppe −s +as +ppe −s

btor 16 2 2 1 1 0 1 0 1 0 0

btor 32 14 15 2 2 2 10 11 1 1 1

btor 64 131 132 11 6 5 MO MO 14 9 5

btor 128 TO TO 101 47 40 EE EE EE EE EE

sp-ar-rc 16 4 4 1 1 1 1 1 0 0 0

sp-ar-rc 32 30 30 2 2 1 28 28 2 1 1

sp-ar-rc 64 300 295 11 6 5 MO MO 16 10 5

sp-ar-rc 128 TO TO 102 48 41 EE EE EE EE EE

Table 5 Complex multiplier
architectures, including synthesis
and technology mapping

mult n Mathematica Singular

abc-resyn3-no-comp 4 1 0

abc-resyn3-no-comp 8 2 7

abc-resyn3-no-comp 16 TO TO

abc-resyn3-comp 4 1 0

abc-resyn3-comp 8 TO TO

bp-ar-rc 4 TO 287

bp-ar-rc 8 TO TO

sp-ar-cl 4 1 1

sp-ar-cl 8 TO TO

sp-wt-rc 4 1 1

sp-wt-rc 8 2 1

sp-wt-rc 16 TO TO

decomposed into full- and half-adders, we never have to reduce by the sum output of a full-
or half-adder separately. It is always reduced in parallel with the carry output. Elimination of
the polynomials where the leading term is a sum-output of an adder from the Gröbner basis
(−s) brings further improvements, but loses completeness.

In the experiments shown in Table 5 we consider the more complex multiplier architec-
tures introduced at the beginning of this section. We apply our default incremental-checking
approach without Adder-Rewriting, because usually the regular full- and half-adder struc-
tures are destroyed by synthesis and technology mappings. Synthesizing and application
of complex mappings makes it very hard to verify a circuit. Even an 8-bit multiplier can-
not be verified any more, neither in Mathematica nor in Singular. This confirms the results
of [15,35]. It can further be seen that more complex architectures cannot be verified with the
state-of-the-art approach, which makes more sophisticated reasoning necessary.

In the experiments of Table 6 we apply the column-wise equivalence checking algorithm
of Sect. 8 and check the equivalence of the “btor” and “sp-ar-rc” multipliers. Despite their
architectural similarities neither Lingeling [5] norABC [3] are able to verify their equivalence
for n = 16 within 10h, whereas it takes only around a second using our approach based on
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Table 6 Incremental column-wise equivalence checking with and without Adder-Rewriting

mult n Lingeling [5] ABC [3] −Adder Rew. +Adder Rew.

btor versus sp-ar-rc 8 14 12 2 1

btor versus sp-ar-rc 16 TO* TO* 6 1

btor versus sp-ar-rc 32 – – 44 3

btor versus sp-ar-rc 64 – – 443 15

btor versus sp-ar-rc 128 – – TO 115

computer algebra. In this experiment we only useMathematica as a computer algebra system,
because it supports more variables. We check the equivalence using our incremental equiv-
alence checking algorithm with and without Adder-Rewriting. Enabling Adder-Rewriting
again substantially reduces computation time. We do not use Partial Product Elimination,
because in this setting we would have to manually map the AND-gates which generate the
partial products of the two multipliers.

11 Conclusion

This article presents in detail our incremental column-wise verification approach to formally
verify integer multiplier circuits, as introduced in [8,28,29].

We give a precise mathematical formalization of the theory of arithmetic circuit verifica-
tion using computer algebra including rigorous soundness and completeness arguments. Our
incremental column-wise checking algorithm has tremendously positive effects on computa-
tion time.We discuss several optimizations which rewrite and simplify the Gröbner basis. For
these optimizations we introduce the necessary theory and present a technical theoremwhich
allows to rewrite local parts of the Gröbner basis based on [8]. Furthermore we show how our
incremental verification algorithm can be extended to equivalence checking [29]. As a novel
contribution we revise our engineering techniques and present a simple alternative method
to define column-wise slices. We further improve computation times compared to [28] by
changing the printing process of our tool.

As future work, we want to extend our methods to more complex architectures, i.e., we
want to efficiently verify multiplier architectures used in Table 5. We also want to consider
overflow-semantics and negative numbers. Furthermorewewant to investigate floating points
and other word-level operators.
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