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Abstract We study empirical metrics for software source code, which can predict the perfor-
mance of verification tools on specific types of software. Ourmetrics comprise variable usage
patterns, loop patterns, as well as indicators of control-flow complexity and are extracted by
simple data-flow analyses. We demonstrate that our metrics are powerful enough to devise
a machine-learning based portfolio solver for software verification. We show that this port-
folio solver would be the (hypothetical) overall winner of the international competition on
software verification (SV-COMP) in three consecutive years (2014–2016). This gives strong
empirical evidence for the predictive power of our metrics and demonstrates the viability of
portfolio solvers for software verification. Moreover, we demonstrate the flexibility of our
algorithm for portfolio construction in novel settings: originally conceived for SV-COMP’14,
the construction works just as well for SV-COMP’15 (considerably more verification tasks)
and for SV-COMP’16 (considerably more candidate verification tools).
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1 Introduction

The success and gradual improvement of software verification tools in the last two decades
is a multidisciplinary effort—modern software verifiers combine methods from a variety of
overlapping fields of research including model checking, static analysis, shape analysis, SAT
solving, SMT solving, abstract interpretation, termination analysis, pointer analysis etc.

The mentioned techniques all have their individual strengths, and a modern software
verification tool needs to pick and choose how to combine them into a strong, stable and
versatile tool. The trade-offs are based on both technical and pragmatic aspects: many tools
are either optimized for specific application areas (e.g. device drivers), or towards the in-depth
development of a technique for a restricted program model (e.g. termination for integer
programs). Recent projects like CPA [6] and FrankenBit [22] have explicitly chosen an
eclectic approach which enables them to combine different methods more easily.

There is growing awareness in the research community that the benchmarks in most
research papers are only useful as proofs of concept for the individual contribution, but make
comparison with other tools difficult: benchmarks are often manually selected, handcrafted,
or chosen a posteriori to support a certain technical insight. Oftentimes, neither the tools nor
the benchmarks are available to other researchers. The annual international competition on
software verification (SV-COMP, since 2012) [3–5,12–14] is the most ambitious attempt to
remedy this situation. Now based on more than 6600 C source files, SV-COMP has a diverse
and comprehensive collection of benchmarks available, and is a natural starting point for a
more systematic study of tool performance.

In this paper, we demonstrate that the competition results can be explained by intuitive
metrics on the source code. In fact, the metrics are strong enough to enable us to construct a
portfolio solver which would (hypothetically) win SV-COMP 2014 [12], 2015 [13], and 2016
[14]. Here, a portfolio solver is a software verification tool which uses heuristic preprocessing
to select one of the existing tools [21,26,34].

Of course it is pointless to let a portfolio solver compete in the regular competition (except,
maybe in a separate future track), but for anybodywho justwants to verify software, it provides
useful insights. As an approach to software verification, portfolio solving brings interesting
advantages:

1. A portfolio solver optimally uses available resources.
While in theory one may run all available tools in parallel, in practice the cost of setup
and computational power makes this approach infeasible. A portfolio predicts the n tools
it deems best-suited for the task at hand, allowing better resource allocation.

2. It can avoid incorrect results of partially unsound tools.
Practically every existing software verification tool is partially incomplete or unsound.
A portfolio can recognize cases in which a tool is prone to give an incorrect answer, and
suggest another tool instead.

3. Portfolio solving allows us to select between multiple versions of the same tool.
A portfolio is not only useful in deciding between multiple independent tools, but also
between the same tool with different runtime parameters (e.g. command-line arguments).

4. The portfolio solver gives insight into the state-of-the-art in software verification.
As argued in [43], the state-of-the-art can be set by an automatically constructed portfolio
of available solvers, rather than the single best solver (e.g. a competition winner). This
accounts for the fact that different techniques have individual strengths and are often
complementary.

123



Form Methods Syst Des (2017) 50:289–316 291

Table 1 Sources of complexity for 4 tools participating in SV-COMP’15, marked with + / – / n/a when
supported/not supported/no information is available

Source of complexity CBMC Predator CPAchecker SMACK Corresp. feature

Unbounded loops – n/a n/a – LSB,LST,Lsimple,Lhard

Pointers + + + + PTR

Arrays + – n/a + ARRAY_INDEX

Dynamic data
structures

n/a + n/a + PTR_STRUCT_REC

Non-static pointer
offsets

– + n/a n/a OFFSET

Non-static size of
heap-allocated
memory

+ + n/a n/a ALLOC_SIZE

Pointers to functions + n/a n/a n/a mfpcalls,mfpargs

Bit operations + – + – BITVECTOR

Integer variables + + + + SCALAR_INT

Recursion – – – + mreccalls

Multi-threading + – – – THREAD_DESCR

External functions + – n/a n/a INPUT

Structure fields + + n/a + STRUCT_FIELD

Big CFG (≥100
KLOC)

+ n/a n/a + mcfgblocks,mmaxindeg

Extracted from the competition report [2] and tool papers [10,19]

To choose the software metrics describing our benchmarks, we consider the zoo of tech-
niques discussed above along with their target domains, our intuition as programmers, as
well as the tool developer reports in their competition contributions. Table 1 exemplarily
summarizes these reports for tools CBMC, Predator, CPAchecker and SMACK: the first
column gives obstacles the tools’ authors identified, the following columns show whether
the feature is supported by respective tool, and the last column references the corresponding
metrics, which we introduce in Sect. 2. The obtained metrics are naturally understood in
three dimensions that we motivate informally first:

1. Program variables Does the program deal with machine or unbounded integers? Are
the ints used as indices, bit-masks or in arithmetic? Dynamic data structures? Arrays?
Interval analysis or predicate abstraction?

2. Program loops Reducible loops or goto programs? FOR-loops or ranking functions?
Widening, loop acceleration, termination analysis, or loop unrolling?

3. Control flowRecursion? Function pointers?Multithreading? Simulink-style code or com-
plex branching?

Our hypothesis is that precise metrics along these dimensions allow us to predict tool
performance. The challenge lies in identifying metrics which are predictive enough to under-
stand the relationship between tools and benchmarks, but also simple enough to be used in a
preprocessing and classification step. Sections 2.1, 2.2 and 2.3 describe metrics which corre-
spond to the three dimensions sketched above, and are based on simple data-flow analyses.

Our algorithm for building the portfolio is based onmachine learning using support vector
machines (SVMs) [8,16] over thesemetrics. Section 3 explains our approach for constructing
the portfolio.
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Fig. 1 Decisiveness-reliability plot for SV-COMP’16. The horizontal axis gives the percentage of correct
answers c, the vertical axis the number of incorrect answers i .Dashed lines connect points of equal decisiveness
c + i . The Overall SV-COMP score is given (if available) in parentheses

Finally, we discuss our experiments in Sect. 4. In addition to previous results on
SV-COMP’14 and ’15 in [17], we apply our portfolio construction to new data from SV-
COMP’16, which has recently become available. As before, our portfolio is the hypothetical
winner. As the underlying machine learning problem is becoming harder from year to year
(considerably more verification tasks and candidate tools), this showcases the overall flex-
ibility of our approach. We highlight the major differences between the three SV-COMP
editions ’14–’16 in Sect. 4.1.

Figure 1 depicts our results on SV-COMP’16: Our tool T P (identified by • TP) is the
overall winner and outperforms all other tools (identified by a ◦). Section 4 contains a detailed
discussion of our experiments.

While portfolio solvers are important, we also think that the software metrics we define in
thiswork are interesting in their own right. Our results show that categories in SV-COMPhave
characteristic metrics. Thus, the metrics can be used to (1) characterize benchmarks not pub-
licly available, (2) understand large benchmarks without manual inspection, (3) understand
presence of language constructs in benchmarks.

Summarizing, in this paper we make the following contributions:

– We define software metrics along the three dimensions – program variables, program
loops and control flow – in order to capture the difficulty of program analysis tasks
(Sect. 2).

– We develop amachine-learning based portfolio solver for software verification that learns
the best-performing tool from a training set (Sect. 3).

– We experimentally demonstrate the predictive power of our software metrics in conjunc-
tion with our portfolio solver on the software verification competitions SV-COMP’14,
’15, and ’16 (Sect. 4).

This paper is an extended version of our previous work [17], which additionally covers:

– We apply the portfolio construction from [17] to SV-COMP’16 and report on the results.
In particular, our portfolio is again winning the Overall category (Sect. 4).
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int n = 0, x_old = x;
while (x) {

n++;
x = x & (x-1);

}

(a)

int fd = open(path, flags);
int c, val=0;
while (read(fd, &c, 1) > 0 && isdigit(c)) {

val = 10*val + c-’0’;
}

(b)

Fig. 2 Different usage patterns of integer variables. a Bitvector, counter, linear. b Character, file descriptor

– We include detailed results tables for our experiments on SV-COMP’14–’16. (Sect. 4).
– We extend our experiments on memory usage and runtime as a tie breaker in our tool

selection algorithm (Sect. 3.3).
– We extend the description of loop patterns, which have only been motivated in the con-

ference article (Sect. 2.2).
– We improve the explanation of support vector machines for non-linearly separable data,

motivating their use in our portfolio construction (Sect. 3.1).

2 Source code metrics for software verification

We introduce program features along the three dimensions—program variables, program
loops and control flow—and describe how to derive corresponding metrics. Subsequent sec-
tions demonstrate their predictive power: In Sect. 3 we describe a portfolio solver for software
verification based on our metrics. In Sect. 4 we experimentally demonstrate the portfolio’s
success, thus attesting the descriptive and predictive power of our metrics and the portfolio.

2.1 Variable role based metrics

The first set of features we consider are patterns of variable usage, as introduced in [18]. We
call these variable usage patterns variable roles.

Example 1 Consider the C program in Fig. 2a, which computes the number of non-zero bits
of variable x. In every loop iteration, a non-zero bit of x is set to zero and counter n is
incremented. For a human reading the program, the statements n=0 and n++ in the loop
body signal that n is a counter, and statement x = x & (x-1) indicates that x is a bit
vector.

Example 2 Consider the program in Fig. 2b, which reads a decimal number from a text
file and stores its numeric representation in variable val. Statement fd=open(path,
flags) indicates that variable fd stores a file descriptor and statement isdigit(c)
indicates that c is a character, because function isdigit() checks whether its parameter
is a decimal digit character.

Criteria for choosing roles We define 27 variable roles and give their informal definition in
Table 2. Our choice of roles is inspired by standard concepts used by programmers. In order
to create the list of roles we inspected the source code of the cBench benchmark [11] and
came up with a minimum set of roles such that every variable is assigned at least one role.

Definition of rolesWe define roles using data-flow analysis, an efficient fixed-point algorithm
[1]. Our current definition of roles is control-flow insensitive, and the result of analysis is the
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Table 2 List of variable roles with informal definitions

C type Role name Informal definition

int ARRAY_INDEX Occurs in an array subscript expression

ALLOC_SIZE Passed to a standard memory allocation function

BITVECTOR Used in a bitwise operation or assigned the result of a
bitwise operation or a BITVECTOR variable

BOOL Assigned and compared only to 0, 1, the result of a
bitwise operation, or a BOOL variable

BRANCH_COND Used in the condition of an if statement

CHAR Used in a library function which manipulates characters,
or assigned a character literal

CONST_ASSIGN Assigned only literals or CONST_ASSIGN variables

COUNTER Changed only in increment/decrement statements

FILE_DESCR Passed to a library function which manipulates files

INPUT Assigned the result of an external function call or
passed to it as a parameter by reference

LINEAR Assigned only linear combinations of LINEAR
variables

LOOP_BOUND Used in a loop condition in a comparison operation,
where it is compared to a LOOP_ITERATOR variable

LOOP_ITERATOR Occurs in loop condition, assigned in loop body

MODE Not used in comparison operations other than == and
!=; assigned and compared to constant values only

OFFSET Added to or subtracted from a pointer

SCALAR_INT Scalar integer variable

SYNT_CONST Not assigned in the program (a global or an unused
variable, or a formal parameter to a external function)

THREAD_DESCR Passed to a function of pthread library

USED_IN_ARITHM Used in addition/subtraction/multiplication/division

float SCALAR_FLOAT Scalar float variable

int*, float* PTR_SCALAR Pointer to a scalar value

struct_type* PTR_STRUCT Pointer to a structure

PTR_STRUCT_PTR Pointer to a structure which has a pointer field

PTR_STRUCT_REC Pointer to a recursively defined structure

PTR_COMPL_STRUCT Pointer to a recursively defined structure with more than
one pointer, e.g. doubly linked lists

any_type* HEAP_PTR Assigned the result of a memory allocation function call

PTR Any pointer

Type struct_type stands for a C structure, any_type for an arbitrary C type

set of variables ResR which are assigned role R. For the exact definitions of variable roles,
we refer the reader to [18].

Example 3 We describe the process of computing roles on the example of role LINEAR
for the code in Fig. 2a. Initially, the algorithm assigns to ResLINEAR the set of all variables
{x,x_old,n}. Then it computes the greatest fixed point in three iterations. In iteration 1,
variable x is removed, because it is assigned the non-linear expression x &(x-1), resulting
inResLINEAR = {x_old,n}. In iteration2, variablex_old is removed, because it is assigned
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while (i < N) {
if (nondet ())

i+=2;
else

i+=3;
i--;

}

(a)

i < N

i+=2

i+=3

i ≥ N

i--

(b)

N

false

true
i ≥ N

i

(c)

Fig. 3 Example FOR loop L ∈ LFOR. a Example loop source code. b The loop’s labeled transition system.
c Representing function of the loop’s predicate

variable x, resulting in ResLINEAR = {n}. In iteration 3, ResLINEAR does not change, and the
result of the analysis is ResLINEAR = {n}.
Definition 1 (Variable role based metrics) For a given benchmark file f , we compute the
mapping ResR : Roles → 2Vars from variable roles to sets of program variables of f . We
derive role metricsmR that represent the relative occurrence of each variable role R ∈ Roles:

mR = |ResR |
|Vars| R ∈ Roles (1)

2.2 Loop pattern based metrics

The second set of program features we consider is a classification of loops in the program
under verification, as introduced in [31]. Although undecidable in general, the ability to
reason about bounds or termination of loops is highly useful for software verification: For
example, it allows a tool to assert the (un)reachability of program locations after the loop, and
to compute unrolling factors and soundness limits in the case of bounded model checking.

In [31] we present heuristics for loop termination. They are inspired by definite iteration,
i.e. structured iteration over the elements of a finite set, such as an integer sequence or the
elements of a data structure [37]. We first give a definition of definite iteration, which we
call FOR loops, for the C programming language, as C does not have dedicated support for
this concept. Then, we define generalized FOR loops, which capture some aspects of definite
iteration and allow us to describe a majority of loops in our benchmarks. Table 3 gives an
overview.

FOR loops We start by giving a loop pattern for a restricted set of bounded loops LFOR,
which is designed to capture definite iteration. We exploit that in many cases, local reasoning
is powerful enough to decide termination of loops expressing definite iteration. This allows
us to implement an efficient termination procedure using syntactic pattern matching and
data-flow analysis.

Example Consider the program shown in Fig. 3a. We show termination of the loop in a
straight-forward manner: The value of i is changed by the loop, while the value of N is fixed.
The loop’s condition induces a predicate P(i) : i ≥ N , guarding the edge leaving the loop
(Fig. 3b). We show that during execution, P(i) eventually evaluates to true: The domain of
P can be partitioned into two intervals [−∞, N ) and [N ,∞], for which P(i) evaluates to
false or true, respectively (Fig. 3c). As i is (in total) incremented during each iteration, we
eventually have i ∈ [N ,∞], and thus P(i) holds and the loop terminates.
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Table 3 List of loop patterns with informal descriptions

Loop pattern Empirical hardness Informal definition

Syntactically bounded loops Lbounded Easy The number of executions of the loop body
is bounded (considers outer control flow)

FOR loops LFOR Intermediate The loop terminates whenever control flow
enters it (disregards outer control flow)

Generalized FOR loops LFOR(∗) Advanced A heuristic derived from FOR loops by
weakening the termination criteria. A good
heuristic for termination

Hard loops Lhard Hard Any loop that is not classified as generalized
FOR loop

More formally, we find such a termination proof for a loop L in three steps:

1. For each variable v we establish the set of possible constant integral updates Incs(v) of
v along all possible execution paths of a single iteration of L .
In our example Incs(i) = {1, 2}.

2. We identify control flow edges e leaving the loop for which the corresponding Pe(v)

eventually evaluates to true under updates described by Incs(v).
In our example there is a single such edge with predicate P(i) : i ≥ N . All values in
Incs(i) are positive, thus P(i) eventually becomes true.

3. We impose a constraint to ensure Pe(v) is evaluated in each iteration of L .
In our example P(i) corresponds to the loop condition and this constraint is trivially
satisfied.

We call a loop for which we obtain such a termination proof a FOR loop L ∈ LFOR. In
[31] we show how to efficiently implement these checks using syntactic pattern matching
and data-flow analysis.

Syntactically bounded loopsA stronger notion of termination considers a loop to be bounded
if the number of executions of the loop body is bounded: A loop L is syntactically bounded
L ∈ Lbounded if and only if L itself and all its nesting (outer) loops are FOR loops: L ∈
Lbounded iff ∀Lo ⊇ L .Lo ∈ LFOR.

Generalized FOR loops We impose strong constraints for classifying loops as LFOR. In
order to cover more loops, we systematically loosen these constraints and obtain a family of
heuristics, which we call generalized FOR loops LFOR(∗). We conjecture that this class still
retains many features of FOR loops.We describe details of the constraint weakenings in [31].
Of the family of generalized FOR loop classes presented there, we only consider L(W1W2W3)

for constructing the portfolio.

Hard loops Any loop not covered by Lbounded ⊆ LFOR ⊆ LFOR(∗) is classified as hard: Let
Lany be the set of all loops. Then Lhard = Lany \ LFOR(∗).

Definition 2 (Loop pattern based metrics) For a given benchmark file f , we compute
Lbounded, LFOR, LFOR(∗), Lhard, and the set of all loops Loops. We derive loop metrics mC

that represent the relative occurrence of each loop pattern C :

mC = |LC |
|Loops| C ∈ {bounded,FOR,FOR(∗), hard} (2)
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2.3 Control flow based metrics

Complex control flow poses another challenge for program analysis. To measure the com-
plexity of control flow, we introduce five additional metrics:

– For intraprocedural control flow, we count (a) the number of basic blocks in the control
flow graph (CFG) mcfgblocks, and (b) the maximum indegree of any basic block in the
CFG mmaxindeg.

– To represent indirect function calls, we measure (a) the ratio mfpcalls of call expressions
taking a function pointer as argument, and (b) the ratio mfpargs of parameters to such call
expressions that have a function pointer type.

– Finally, to describe the use of recursion, we measure the number of direct recursive
function calls mreccalls.

2.4 Usefulness of our features for selecting a verification tool

In Sect. 4, we demonstrate that a portfolio built on top of these metrics performs well as a
tool selector. In this section, we already give two reasons why we believe these metrics have
predictive power in the software verification domain in the first place.

Tool developer reports The developer reports in the competition report for SV-COMP’15 [2],
as well as tool papers (e.g. [10,19]), give evidence for the relevance of our features
for selecting verification tools: They mention language constructs, which—depending on
whether they are fully, partially, or not modeled by a tool—constitute its strengths or weak-
nesses. We give a short survey of such language constructs in Table 1 and relate them to
our features. For example, Predator is specifically built to deal with dynamic data struc-
tures (variable role PTR_STRUCT_REC) and pointer offsets (OFFSET), and CPAchecker
does not model multi-threading (THREAD_DESCR) or support recursion (control flow
feature mreccalls). For CBMC, unbounded loops (various loop patterns LC) are an obsta-
cle.

Preliminary experiments In addition, in previous work we have successfully used variable
roles and loop patterns to deduce properties of verification tasks:

– In [18], we use variable roles to predict—for a given verification task—its category in
SV-COMP’13.

– In [31], we show that loop patterns are good heuristics for identifying bounded loops.

These give further evidence for our claim that the features described above are useful in
predicting properties of verification tasks.

3 A portfolio solver for software verification

3.1 Preliminaries on machine learning

In this section we introduce standard terminology from themachine learning community (see
for example [7]).
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3.1.1 Supervised machine learning

In supervised machine learning problems, we learn a model M : Rn → R. The xi ∈ R
n are

called feature vectors, measuring some property of the object they describe. The yi ∈ R are
called labels.

We learn model M by considering a set of labeled examples X ||y = {(xi , yi )}Ni=1. M is
then used to predict the label of previously unseen inputs x′ /∈ X .

We distinguish two kinds of supervised machine learning problems:

– Classification considers labels from a finite set y ∈ {1, . . . ,C}. For C = 2, we call the
problem binary classification, for C > 2 we speak of multi-class classification.

– Regression considers labels from the real numbers y ∈ R.

3.1.2 Support vector machines

A support vector machine (SVM) [8,16] is a binary classification algorithm that finds a
hyperplane w · x + b = 0 separating data points with different labels. We first assume that
such a hyperplane exists, i.e. that the data is linearly separable:

Also called a maximum margin classifier, SVM learns a hyperplane that maximizes the
gap ||w||−1 (margin) between the hyperplane and the nearest data points with different labels.
Maximizing the margin is formulated as

minimize ||w|| subject to yi (w · xi + b) ≥ 1 for i = 1, . . . , N (3)

which is usually encoded as the following quadratic programming problem:

maximize
N∑

i=1

αi − 1

2

N∑

i, j=1

αiα j yi y jxi ·x j subject to αi ≥ 0 and
N∑

i=1

αi yi = 0. (4)

After computing the separating hyperplane on a set of labeled examples, a previously
unseen feature vector x′ is classified using function

M(x′) = sgn
(
w · x′ + b

)
. (5)

Thus M predicts the class of x′ by computing on which side of the hyperplane it falls.
If the data is not linearly separable, e.g. due to outliers or noisy measurements, there are

two orthogonal approaches that we both make use of in our portfolio solver:

Soft-margin SVM. Soft-margin SVM allows some data points to be misclassified while learn-
ing the hyperplane. For this, we associate a slack variable ξi ≥ 0 with each data point xi ,
where

ξi =
{
the distance from the hyperplane if xi is misclassified

0 otherwise
.

We thus replace Eq. 3 with the following equation:

minimize ||w|| + C
N∑

i=1

ξi subject to yi (w · xi + b) ≥ 1 − ξi for i = 1, . . . , N (6)
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and substitute 0 ≤ αi ≤ C for the constraint αi ≥ 0 in Eq. 4. Parameter C > 0 controls the
trade-off between allowing misclassification and maximizing the margin.

Kernel transformations Another, orthogonal approach to data that is not linearly separable
in the input space, is to transform it to a higher-dimensional feature space H obtained by a
transformation φ : Rn → H. For example, 2-class data not linearly separable in R

2 can be
linearly separated inR3 if φ pushes points of class 1 above, and points of class 2 below some
plane.

The quadratic programming formulation of SVM allows for an efficient implemen-
tation of this transformation: We define a kernel function K (xi , x j ) = φ(xi ) · φ(x j )

instead of explicitly giving φ, and replace the dot product in Eq. 4 with K (xi , x j ). An
example of a non-linear kernel function is the radial basis function (RBF): K (xi , x j ) =
exp(−γ ||xi − x j ||2), γ > 0.

For classifying unseen feature vectors x′, we replace Eq. 5 with

M(x′) = sgn
(
w · φ(x′) + b

)
where w =

N∑

i=1

αi yiφ(xi ). (7)

3.1.3 Probabilistic classification

Probabilistic classification is a generalization of the classification algorithm, which searches
for a function M : Rn → Pr(y), where Pr(y) is the set of all probability distributions over y.
M(x′) then gives the probability p(yi | x′, X ||y), i.e. the probability that x′ actually has
label yi given the model trained on X ||y. There is a standard algorithm for estimating class
probabilities for SVM [41].

3.1.4 Creating and evaluating a model

The labeled set X ||y used for creating (training) model M is called training set, and the set
X ′ used for evaluating the model is called test set. To avoid overly optimistic evaluation of
the model, it is common to require that the training and test sets are disjoint: X ∩ X ′ = ∅. A
model which produces accurate results with respect to ||w|| for the training set, but results
in a high error for previously unseen feature vectors x′ /∈ X , is said to overfit.

3.1.5 Data imbalances

The training set X ||y is said to be imbalancedwhen it exhibits an unequal distribution between
its classes: ∃yi , y j ∈ y . num(yi )

/
num(y j ) ∼ 100, where num(y) = |{xi ∈ X | yi = y}|,

i.e. imbalances of the order 100:1 and higher. Data imbalances significantly compromise the
performance of most standard learning algorithms [23].

Acommon solution for the imbalanceddata problem is to use aweighting functionWeight :
X → R [25]. SVM with weights is a generalization of SVM, where we

minimize ||w|| + C
N∑

i=1

Weight(xi )ξi . (8)

Weight is usually chosen empirically.
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3.1.6 Multi-class classification

SVM is by nature a binary classification algorithm. To tackle multi-class problems, we
reduce an n-class classification problem to n binary classification problems: One-vs.-rest
classification creates one model Mi per class i , with the labeling function

Mi (x) =
{
1 if M(x) = i

−1 otherwise

and the predicted value is calculated as M(x) = choose {i | Mi (x) = 1}, where a suitable
operator choose is used to select a single class from multiple predicted classes.

3.2 The competition on software verification SV-COMP

In this section we give an overview of the competition’s setup. Detailed information about
the competition is available on its website [15].

SV-COMP maintains a repository of verification tasks, on which the competition’s par-
ticipants are tested:

Definition 3 (Verification task) We denote the set of all considered verification tasks as
Tasks. A verification task v ∈ Tasks is described by a triple v = ( f, p, type) of a C source
file f , verification property p and property type type. For SV-COMP’14 and ’15, type is
either a label reachability check or a memory safety check (comprising checks for freedom
of unsafe deallocations, unsafe pointer dereferences, and memory leaks). SV-COMP’16 adds
the property types overflow and termination.

For each verification task, its designers define the expected answer, i.e. if property p holds
on f :

Definition 4 (Expected answer) Function ExpAns : Tasks → {true, false} gives the
expected answer for task v, i.e. ExpAns(v) = true if and only if property p holds on
f .

Furthermore, SV-COMP partitions the verification tasks Tasks into categories, a manual
grouping by characteristic features such as usage of bitvectors, concurrent programs, linux
device drivers, etc.

Definition 5 (Competition category) Let Categories be the set of competition categories.
Let Cat : Tasks → Categories define a partitioning of Tasks, i.e. Cat(v) denotes the category
of verification task v.

Finally, SV-COMP assigns a score to each tool’s result and computes weighted category
scores. For example, theOverall SV-COMP score considers ameta category of all verification
tasks, with each constituent category score normalized by the number of tasks in it. We
describe and compare the scoring policies of recent competitions in Sect. 4.1. In addition,
medals are awarded to the three best tools in each category. In case multiple tools have equal
scores, they are ranked by runtime for awarding medals.

Definition 6 (Score, category score, Overall score) Let scoret,v denote the score of tool
t ∈ Tools on verification task v ∈ Tasks calculated according to the rules of the respective
edition of SV-COMP. Let cat_score(t, c) denote the score of tool t on the tasks in category
c ∈ Categories calculated according to the rules of the respective edition of SV-COMP.
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3.3 Tool selection as a machine learning problem

In this section,we describe the setup of our portfolio solverT P .Wegive formal definitions for
modeling SV-COMP, describe the learning task as multi-class classification problem, discuss
options for breaking ties between multiple tools predicted correct, present our weighting
function to deal with data imbalances, and finally discuss implementation specifics.

3.3.1 Definitions

Definition 7 (Verification tool) We model the constituent verification tools as set Tools =
{1, 2, . . . , |Tools|} and identify each verification tool by a unique natural number t ∈ Tools.

Definition 8 (Tool run) The result of a run of tool t on verification task v = ( f, p, type) is
a triple

〈anst,v, runtimet,v,memoryt,v〉
where anst,v ∈ {true, false,unknown} is the tool’s answer whether property p holds on file
f , i.e.

anst,v =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

true if t claims f satisfies p

false if t claims f does not satisfy p

unknown if t claims it cannot decide p on f ,
or t fails to decide p on f (e.g. tool crash, time-/mem-out)

and runtimet,v ∈ R (resp. memoryt,v ∈ R) is the runtime (resp. memory usage) of tool t on
task v in seconds (resp. megabytes).

Definition 9 (Virtual best solver) The virtual best solver (VBS) is an oracle that selects for
each verification task the tool which gives the correct answer in minimal time.

3.3.2 Machine learning data

We compute feature vectors from the metrics introduced in Sect. 2 and the results of SV-
COMP as follows:

For verification task v = ( f, p, type) we define feature vector

x(v) = (mARRAY_INDEX(v), . . . ,mPTR(v),

mbounded(v), . . . ,mhard(v),

mcfgblocks(v), . . . ,mreccalls(v),

type)

where the mi (v) are our metrics from Sect. 2 computed on f and type ∈ {0, 1, 2, 3} encodes
if the property is reachability, memory safety, overflow, or termination.

We associate each feature vector x(v), with a label t ∈ Tools, such that t is the tool
chosen by the virtual best solver for task v. In the following, we reduce the corresponding
classification problem to |Tools| independent classification problems.
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3.3.3 Formulation of the machine learning problem

For each tool t ∈ Tools, T P learns a model to predict whether tool t gives gives a correct or
incorrect answer, or responds with “unknown”. Since the answer of a tool does not depend on
the answers of other tools, |Tools| independent models (i.e., one per tool) give more accurate
results and prevent overfitting.

We define labeling function Lt (v) for tool t and task v as follows:

Lt (v) =

⎧
⎪⎨

⎪⎩

1 if anst,v = ExpAns(v)

2 if anst,v = unknown

3 otherwise

.

I.e., Lt (v) = 1 if tool t gives the correct answer on v, Lt (v) = 2 if t answers unknown, and
Lt (v) = 3 if t gives an incorrect answer. A tool can opt-out from a category, which we treat
as if the tool had answered unknown for all of the category’s verification tasks. Thus, for
each tool t , we obtain training data {(x(v), Lt (v))}v∈Tasks from which we construct model
Mt .

Tool selection based on predicted answer correctness. Let operator choose : 2Tools → Tools
select one tool from a set of tools TPredicted ⊆ Tools (we give concrete definitions of
choose below). Given |Tools| predictions of the models Mt , t ∈ Tools for a task v, the
portfolio algorithm selects a single tool tbest as follows:

tbest =

⎧
⎪⎨

⎪⎩

choose(TCorr(v)) if TCorr(v) �= ∅
choose(TUnk(v)) if TCorr(v) = ∅ ∧ TUnk(v) �= ∅
twinner if TCorr(v) = ∅ ∧ TUnk(v) = ∅

where TCorr(v) and TUnk(v) are the sets of tools predicted to give the correct answer and
respond with “unknown” on v, respectively:

TCorr(v) = {t ∈ Tools | Mt (v) = 1}
TUnk(v) = {t ∈ Tools | Mt (v) = 2}

and twinner is theOverallwinner of the competition, e.g.UltimateAutomizer in SV-COMP’16.

3.3.4 Choosing among tools predicted correct

We now describe three alternative ways of implementing the operator choose:

1. Time: T P time. We formulate |Tools| additional regression problems: For each tool t ,
we use training data {(x(v), runtimenormt,v )}v∈Tasks to obtain a model M time

t (v) predicting
runtime, where

runtimenormt,v = norm(runtimet,v, {runtimet ′,v′ }t ′∈Tools,v′∈Tasks)

and norm normalizes to the unit interval:

norm(x, X) = x − min(X)

max(X) − min(X)
.

The predicted value M time
t (v) is the predicted runtime of tool t on task v. We define

choose(TPredicted) = argmin
t∈TPredicted

M time
t (v).
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Table 4 Comparison of formulations of T P , using different implementations of operator choose

Setting Correct/incorrect/unknown
answers (%)

Score Runtime (min) Memory (GiB) Place

T Pmem 88/2/10 1047 2819 390.2 3

T P time 92/2/6 1244 920 508.4 1

T Pprob 94/1/5 1443 2866 618.1 1

Runtime shown here is de-normalized from the predicted (normalized) value defined above

2. Memory: T Pmem. Similar to T P time, we formulate |Tools| additional regression prob-
lems: For each tool t , we use training data {(x(v),memorynormt,v )}v∈Tasks to obtain a model
Mmem

t (v) predicting memory, where

memorynormt,v = norm(memoryt,v, {memoryt ′,v′ }t ′∈Tools,v′∈Tasks).

We define

choose(TPredicted) = argmin
t∈TPredicted

Mmem
t (v).

3. Class probabilities: T Pprob. We define the operator

choose(TPredicted) = argmax
t∈TPredicted

Pt,v

where Pt,v is the class probability estimate for Mt (v) = 1, i.e. the probability that tool t
gives the expected answer on v.

In Table 4 we present preliminary experiments comparing the choose operators for cate-
goryOverall in the setup of SV-COMP’14.We consider the following criteria: the percentage
of correctly and incorrectly answered tasks, SV-COMP score, runtime, memory usage, and
the place in the competition1.

Discussion. T Pmem and T P time clearly optimize the overall memory usage and runtime,
respectively. At the same time, they fall behind T Pprob with respect to the ratio of correct
answers and SV-COMP score. Our focus here is on building a portfolio for SV-COMP, where
tools are ranked by score. In the following we thus focus on the implementation of choose
from T Pprob and refer to it as T P .

3.3.5 Dealing with data imbalances

An analysis of the SV-COMP data shows that the labels Lt (v) are highly imbalanced: For
example, in SV-COMP’14 the label which corresponds to incorrect answers, Lt (v) = 3,
occurs in less than 4% for every tool. The situation is similar for SV-COMP’15 and ’16. We
therefore use SVM with weights, in accordance with standard practice in machine learning.

Given a task v and tool t , we calculate the weighting function Weight as follows:

Weight(v, t) =Potential(v) × Criticality(v)×
Performance(t,Cat(v)) × Speed(t,Cat(v)).

1 In our previous work [17] there was a discrepancy in the runtime of T P time due to a bug in the code of
T P time. Table 4 shows the corrected result. We thank the anonymous reviewer for pointing out this issue.
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We briefly give informal descriptions of functions Potential, Criticality, Performance,
Speed before defining them formally:

– Potential(v) describes how important predicting a correct tool for task v is, based on
its score potential. E.g., unsafe tasks (ExpAns = false) have more points deducted for
incorrect answers than safe (ExpAns = true) tasks, thus their score potential is higher.

– Criticality(v) captures how important predicting a correct tool is, based on how many
tools give a correct answer. Intuitively, this captures how important an informed decision
about task v, as opposed to a purely random guess, is.

– Performance(t, c) describes howwell tool t does on category c compared to the category
winner.

– Speed(t, c) describes how fast tool t solves tasks in category c compared to the fastest
tool in the category.

More formally,

Potential(v) = scoremax(v) − scoremin(v)

where scoremax(v) and scoremin(v) are the maximal and minimal possible scores for task v,
respectively. For example, in the setup of SV-COMP’14, if v is safe, then scoremax(v) = 2
and scoremin(v) = −8.

Criticality(v) = |{t ∈ Tools | anst,v = ExpAns(v)}|−1

is inversely proportional (subject to a constant factor) to the probability of randomly choosing
a tool which gives the correct answer.2

Performance(t, c) = cat_score(t, c) − cat_scoremin(c)

cat_score(tcbest, c) − cat_scoremin(c)

is the ratio of SV-COMP scores of tool t and the category winner tcbest on tasks from category
c, where

tcbest = argmax
ti∈Tools

cat_score(ti , c)

cat_score(t, c) =
∑

{v∈Tasks|Cat(v)=c}
scoret,v

cat_scoremin(c) =
∑

{v∈Tasks|Cat(v)=c}
scoremin(v)

and scoret,v is the SV-COMP score of tool t on task v.

Speed(t, c) = ln rel_time(t, c)

ln rel_time(tcfst, c)

is the ratio of orders of magnitude of normalized total runtime of tool t and of the fastest tool
tcfst in category c, where

2 We slightly adapt the formula of Performance compared to [17], such that Weight is always positive.
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rel_time(t, c) = cat_time(t, c)∑
ti∈Tools cat_time(ti , c)

tcfst = argmin
ti∈Tools

cat_time(ti , c)

cat_time(t, c) =
∑

{v∈Tasks|Cat(v)=c}
runtimet,v.

3.3.6 Implementation of T P

Finally, we discuss details of the implementation of T P . We use the SVM machine learning
algorithm with the RBF kernel and weights as implemented in the LIBSVM library [9]. To
find optimal parameters C for soft-margin SVM and γ for the RBF kernel, we do exhaustive
search on the grid, as described in [24].

4 Experimental results

4.1 SV-COMP 2014 versus 2015 versus 2016

Candidate tools and verification tasks. Considering the number of participating tools, SV-
COMP is a success story: Figure 4a shows the increase of participants over the years.
Especially the steady increase in the last 2 years is a challenge for our portfolio, as the

2012 2013 2014 2015 2016

10 11
15

22

35

(a)

2012 2013 2014 2015 2016

277

2315
2868

5803
6661

(b)

Tool reports Tool’s answer is SV-COMP score
2012 2013 2014 2015 2016

Unknown n/a 0 0 0 0 0

Property does not hold correct +1 +1 +1 +1 +1
incorrect −2 −4 −4 −6 −16

Property holds correct +2 +2 +2 +2 +2
incorrect −4 −8 −8 −12 −32

(c)

Fig. 4 SV-COMP over the years: number of participants, number of verification tasks, scoring policy. a
Number of participants in SV-COMP over the years. b Number of verification tasks in SV-COMP over the
years. c Scoring policies of SV-COMP 2014, 2015, and 2016. Changing scores are shown in bold
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Table 5 Overall competition ranks for SV-COMP’14–’16 under the scoring policies of SV-COMP’14–’16

Year competition scoring 1st place (score) 2nd place (score) 3rd place (score)

2014 2014 CBMC (3501) CPAchecker (2987) LLBMC (1843)

2015 CBMC (3052) CPAchecker (2961) LLBMC (1788)

2016 CPAchecker (2828) LLBMC (1514) UFO (1249)

2015 2014 CPAchecker (5038) SMACK (3487) CBMC (3473)

2015 CPAchecker (4889) SMACK (3168) UAutomizer (2301)

2016 CPAchecker (4146) SMACK (1573) PredatorHQ (1169)

2016 2014 CBMC (6669) CPA-Seq (5357) ESBMC (5129)

2015 CBMC (6122) CPA-Seq (5263) ESBMC (4965)

2016 UAutomizer (4843) CPA-Seq (4794) SMACK (4223)

number of machine learning problems (cf. Sect. 3.3) increases. As Fig. 4b shows, also the
number of verification tasks used in the competition has increased steadily.

Scoring. As described in Sect. 3.2, SV-COMP provides two metrics for comparing tools:
score and medal counts. As Table 4c shows, the scoring policy has constantly changed (the
penalties for incorrect answers were increased). At least for 2015, this was decided by a close
jury vote [38]. We are interested how stable the competition ranks are under different scoring
policies. Table 5 gives the three top-scoring tools in Overall and their scores in SV-COMP,
as well as the top-scorers of each year if the scoring policy of other years had been applied:

Clearly, the scoring policy has a major impact on the competition results: In the latest
example of SV-COMP’16, UltimateAutomizer wins SV-COMP’16 with the original scoring
policy applied, but is not even among the three top-scorers if the policies of 2015 or 2014
are applied.

Given that SV-COMP score and thus also medal counts are rather volatile, we introduce
decisiveness-reliability plots (DR-plots) in the next section to complement our interpretation
of the competition results.

4.2 Decisiveness-reliability plots

To better understand the competition results, we create scatter plots where each data point
v = (c, i) represents a tool that gives c% correct answers and i% incorrect answers. Figure
5 shows such plots based on the verification tasks in SV-COMP’14, ’15, and ’16. Each data
point marked by an unfilled circle ◦ represents one competing tool. The rectilinear distance
c + i from the origin gives a tool’s decisiveness, i.e. the farther from the origin, the fewer
times a tool reports “unknown”. The angle enclosed by the horizontal axis and v gives a
tool’s (un)reliability, i.e. the wider the angle, the more often the tool gives incorrect answers.
Thus, we call such plots decisiveness-reliability plots (DR-plots).

Discussion. Figure 5 shows DR-plots for the verification tasks in SV-COMP’14–’16:

– For 2014 (Fig. 5a), all the tools are performing quite well on soundness: none of them
gives more than 4% of incorrect answers. CPAchecker, ESBMC and CBMC are highly
decisive tools, with more than 83% correct answers.

– For 2015 (Fig. 5b), the number of verification tasks more than doubled, and there is more
variety in the results:We see that very reliable tools (BLAST, SMACK, and CPAchecker)
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Fig. 5 Decisiveness-reliability plots for SV-COMP’14–’16. The horizontal axis gives the percentage of
correct answers c, the vertical axis the number of incorrect answers i . Dashed lines connect points of equal
decisiveness c+i . TheOverall SV-COMP score is given (if available) in parentheses. aDecisiveness-reliability
plot for SV-COMP’14. b Decisiveness-reliability plot for SV-COMP’15. c Decisiveness-reliability plot for
SV-COMP’16
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are limited in decisiveness—they report “unknown” in more than 40% of cases. The
bounded model checkers CBMC and ESBMC are more decisive at the cost of giving up
to 10% incorrect answers.

– For2016 (Fig. 5c), there is again a closefield of very reliable tools (CPAchecker, SMACK,
andUltimateAutomizer) that give around 50% of correct answers and almost no incorrect
answers. Boundedmodel checker CBMC is still highly decisive, but gives 6%of incorrect
answers.

We also give Overall SV-COMP scores (where applicable) in parentheses. Clearly, tools
close together in the DR-plot not necessarily have similar scores because of the different
score weights prescribed by the SV-COMP scoring policy.

Referring back to Fig. 5a–c, we also show the theoretic strategies Tcat and Tvbs marked by
a square �: Given a verification task v, Tcat selects the tool winning the corresponding com-
petition category Cat(v). Tvbs is the virtual best solver (VBS) and selects for each verification
task the tool which gives the correct answer inminimal time. Neither Tcat nor Tvbs can be built
in practice: For Tcat, we would need to know competition category Cat(v) of verification task
v, which is withheld from the competition participants. For Tvbs, we would need an oracle
telling us the tool giving the correct answer in minimal time. Thus any practical approach
must be a heuristic such as the portfolio described in this work.

However, both strategies illustrate that combining tools can yield an almost perfect solver,
with ≥ 90% correct and 0% incorrect answers. (Note that these figures may give an overly
optimistic picture—after all the benchmarks are supplied by the competition participants.)
The results for Tvbs compared to Tcat indicate that leveraging not just the category winner, but
making a per-task decision provides an advantage both in reliability anddecisiveness.Auseful
portfolio would thus lie somewhere between CPAchecker, CBMC, Tcat, and Tvbs, i.e. improve
upon the decisiveness of constituent tools while minimizing the number of incorrect answers.

4.3 Evaluation of our portfolio solver

We originally implemented the machine learning-based portfolio T P for SV-COMP’14 in
our tool Verifolio [40]. When competition results for SV-COMP’15 became available, we
successfully evaluated the existing techniques on the new data, and described our results in
[17]. For SV-COMP’16, we reused the portfolio construction published there to compute the
additional results in this paper. We present these both in terms of the traditional metrics used
by the competition (SV-COMP score and medals) and T P’s placement in DR-plots:

Setup For our experiments we did not rebuild the infrastructure of SV-COMP, but use numeric
results from held competitions to compare our portfolio approach against other tools. Fol-
lowing a standard practice in machine learning [7], we randomly split the verification tasks
of SV-COMP’year into a training set trainyear and a test set testyear with a ratio of 60:40.
We train T P on trainyear and evaluate it on testyear by comparing it against other tools’
results on testyear . As the partitioning into training and test sets is randomized, we conduct
the experiment 10 times and report the arithmetic mean of all figures. Tables 6a–c show the
Overall SV-COMP scores, runtimes and medal counts. The DR-plots in Fig. 5a–c show the
portfolio marked by a filled circle •.
Discussion First, we discuss our results in terms of Overall SV-COMP score and medals:

– For SV-COMP’14 (Figure 6a), our portfolio T P overtakes the original Overall winner
CBMC with 16% more points. It wins a total of seven medals (1/5/1 gold/silver/bronze)
compared to CBMC’s six medals (2/2/2).
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Fig. 6 Experimental results for the eight best competition participants in Overall (for comprehensive result
tables, cf. Tables 6–8), plus our portfolio T P on random subsets of SV-COMP, given as arithmetic mean of 10
experiments on the resp. test sets testyear . The two last columns show the idealized strategies Tcat , Tvbs (not
competing, for comparison only). The first row shows theOverall SV-COMP score and beneath it the runtime
in minutes. We highlight the gold, silver, and bronze medal in dark gray, light gray and white+bold font,
respectively. The second row shows the number of gold/silver/bronze medals won in individual categories. a
Overall SV-COMP score, runtime and medal counts for SV-COMP’14. b Overall SV-COMP score, runtime
and medal counts for SV-COMP’15. c Overall SV-COMP score, runtime and medal counts for SV-COMP’16

Table 6 Experimental results for the competition participants, plus our portfolio T P on random subsets of
SV-COMP’14, given as arithmetic mean of 10 experiments on the resp. test sets testyear

Category blast cbmc cpa-
checker

cpa-
lien

cseq-
lazy

cseq-
mu esbmc fbit llbmc preda-

tor
symbi-
otic

threa-
der ufo

ulti-
mate-
Auto-
mizer

ulti-
mate-
Kojak

T P Tcat Tvbs

BitVectors - 33
15

30
28 - - - 30

9
- 33

0
-34
1

15
114 - - 4

42
-8
110
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9
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0

33
0

Concurrency - 49
187

0
1 - 53

6
53
9

20
209 - 0

0
0
0

-30
204

40
53 - 0

1
0
1

52
26

53
6

53
1

ControlFlow
202
1763

218
694

418
393

164
523 - - 396

614
406
512
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348

183
792

29
3046 - 373

176
66
563
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694

409
278
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503
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3201
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- - - 941
2013

1066
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0
1

21
83

384
3848

- 1067
163

0
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0
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5
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978
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1494
2211

1732
1310

1840
270

Medals 1/0/0 2/2/2 2/1/1 0/0/0 1/0/0 0/1/0 1/0/1 0/0/2 1/0/1 0/0/1 0/0/0 0/0/0 1/1/0 0/0/1 0/0/0 1/5/1 - -

The two last columns show the idealized strategies Tcat , Tvbs (not competing, for comparison only). The first
rows show the resp. SV-COMP score and beneath it the runtime in minutes. We highlight the gold, silver, and
bronze medal in dark gray, light gray and white+bold font, respectively. The last row shows the number of
gold/silver/bronze medals won in individual categories

– For SV-COMP’15 (Figure 6b), T P is again the strongest tool, collecting 13% more
points than the original Overall winner CPAchecker. Both CPAchecker and T P collect
8 medals, with CPAchecker’s 2/1/5 against T P’s 1/6/1.
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– For SV-COMP’16 (Figure 6c), T P beats the originalOverallwinnerUltimateAutomizer,
collecting 66% more points. T P collects 6 medals, compared to the original winner
UltimateAutomizer with 2 medals (0/2/0) and the original runner-up CPA-Seq with 5
medals (2/1/2).

Second, we discuss theDR-plots in Figure 5a–c. Our portfolio T P positions itself between
CBMC,CPAchecker and the theoretic strategies Tcat and Tvbs. Furthermore, T P falls halfway
between the concrete tools and idealized strategies. We think this is a promising result, but
there is still room for future work. Here we invite the community to contribute further feature
definitions, learning techniques, portfolio setups, etc. to enhance this approach.

In the following we discuss three aspects of T P’s behavior in greater detail: The runtime
overhead of feature extraction, diversity in the tools chosen by T P , and cases in which T P
selects a tool that gives the wrong answer.

4.3.1 Constituent verifiers employed by our portfolio

Our results could suggest that T P implements a trade-off between CPAchecker’s conser-
vative-and-sound and CBMC’s decisive-but-sometimes-unsound approach. Contrarily, our
experiments show that significantlymore tools get selected byour portfolio solver (cf. Fig. 7a–
c). Additionally, we find that our approach is able to select domain-specific solvers: For
example, in the Concurrency category, T P almost exclusively selects variants of CSeq (and
for 2016 also CIVL), which are specifically aimed at concurrent problems.

4.3.2 Wrong predictions

Wemanually investigated cases ofwrongpredictionsmadeby the portfolio solver.We identify
i. imperfect tools and ii. data imbalances as the two main reasons for bad predictions. In the
following, we discuss them in more detail:

Imperfect tools. In SV-COMP, many unsafe (ExpAns(v) = false) benchmarks are manually
derived from their safe (ExpAns(v′) = true) counterparts with minor changes (e.g. flipping
a comparison operator). Two such files have similar or even the same metrics (x(v) ≈ x(v′)),
but imperfect tools don’t solve or fail to solve both of them (Lt (v) �= Lt (v

′)). In particular,
tools in SV-COMP are

– unsound: for example, in SV-COMP’16 the benchmarks loops/count_up_down_
{true,false}-unreach-call_true-termination.i differ in a single
comparison operator, namely equality is changed to inequality. Tool BLAST solves the
unsafe task correctly, and the safe one incorrectly (i.e. gives the same answer for both).

– buggy: similarly to above, in SV-COMP’16 benchmarks recursive-simple/
fibo_2calls_10_{true,false}-unreach-call.c differ in a single com-
parison operator. The tool Forest solves the safe task correctly, and crashes on the unsafe
one.

– incomplete: the benchmarks ldv-regression/mutex_lock_int.c_{true,
false}-unreach-call_1.i, also taken from SV-COMP’16, differ in a single
function call, namely mutex_unlock() is changed to mutex_lock(). The tool
CASCADE correctly solves the safe benchmark, and answers unknown for the unsafe
one.

This is unfortunate, as machine learning builds on the following assumption: Given two
feature vectors x and x′ with actual labels y and y′, if x ≈ x′ (where approximate equality ≈
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Fig. 7 Compositionality of the portfolio T P : Constituent tools selected per competition category. Tools
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SV-COMP’14. b Tools selected by T P for SV-COMP’15. c Tools selected by T P for SV-COMP’16
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is defined by the machine learning procedure), then y = y′. This assumption is violated in
the cases illustrated above.

Counter-measures: In all cases, our metrics do not distinguish the given benchmark pairs.
To mitigate these results, the obvious solution is to improve the participating tools. To solve
the issue on the side of our portfolio, we believe more expensive analyses would have to
be implemented for feature extraction. However, these analyses would i. be equivalent to
correctly solving the verification problem directly and ii. increase the overhead spent on
feature extraction. A practical portfolio is thus limited by the inconsistencies exhibited by its
individual tools.

Data imbalances In our training data we can find feature vectors on which, for a given tool
t , e.g. the number of correct answers noticeably outweighs the number of incorrect answers.
This corresponds to the problem of data imbalances (cf. Sect. 3.1.5), which leads to the
following bias in machine learning: For a verification tool that is correct most of the time,
machine learning prefers the error of predicting that the tool is correct (when in fact incorrect)
over the error that a tool is incorrect (when in fact correct). In other words, “good” tools are
predicted to be even “better”.

Counter-measures: As described in Sect. 3.1.5, the standard technique to overcome data
imbalances are weighting functions. Discovering data imbalances and countering multiple of
them in a single weighting function is a hard problem.Ourweighting function (cf. Sect. 3.3.5)
mitigates this issue by compensating several imbalances that we identified in our training
data, and was empirically tuned to improve results while staying general.

4.3.3 Overhead of feature extraction

By construction, our portfolio incurs an overhead for feature extraction and prediction before
actually executing the selected tool. In our experiments, we measured this overhead to take
a median time of x̃features = 0.5s for feature extraction and x̃prediction = 0.5s for prediction.
We find this overhead to be negligible, when compared to verification time. For example, the
Overall winner of SV-COMP’16, UltimateAutomizer, exhibits a median verification time of
x̃uaverif = 24.9s computed over all tasks in SV-COMP’16.

Note that these numbers are not directly comparable, as x̃uaverif stems from the SV-COMP
results on the SV-COMP cluster, whereas x̃t for t ∈ {features, prediction} was measured
during our own experiments on a different system.

5 Related work

Portfolio solvers have been successful in combinatorially cleaner domains such as SAT solv-
ing [27,35,42], quantified boolean satisfiability (QSAT) [32,33,36], answer set programming
(ASP) [20,29], and various constraint satisfaction problems (CSP) [21,28,30]. In contrast to
software verification, in these areas constituent tools are usually assumed to be correct.

Amachine-learning basedmethod for selectingmodel checkerswas previously introduced
in [39]. Similar to our work, the authors use SVM classification with weights (cf. Sect. 3.1).
Our approach is novel in the following ways:

1. The results in [39] are not reproducible because i. the benchmark is not publicly available,
ii. the verification properties are not described, and iii. the weighting function—in our
experience crucial for good predictions—is not documented.
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2. We demonstrate the continued viability of our approach by applying it to new results of
recent SV-COMP editions.

3. We use a larger set of verification tools (35 tools vs. 3). Our benchmark is not restricted
to device drivers and is >10 times larger (56 MLOC vs. 4 MLOC in [39]).

4. In contrast to structuralmetrics of [39] ourmetrics are computed using data-flow analysis.
Based on tool designer reports (Table 1) we believe that they have superior predictive
power. Precise comparison is difficult due to non-reproducibility of [39].

6 Conclusion

In this paper we demonstrate the importance of software metrics to predict and explain the
performance of verification tools. As software verification is a highly multidisciplinary effort
and tools have highly diverse strengths and weaknesses, we believe that portfolio solving is
a relevant research direction, well worthy of a competition track in its own right. In such a
competition, a part of the benchmarks could be hidden from participating tools to prevent
overfitting.

In future work, we also envision the use of software metrics for self-evaluation, i.e. better
and more systematic descriptions of the benchmarks that accompany research papers in
verification.
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