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Abstract
The Ozawa’s intersubjectivity theorem (OIT) proved within quantum measurement 
theory supports the new postulate of relational quantum mechanics (RQM), the 
postulate on internally consistent descriptions. But from OIT viewpoint postulate’s 
formulation should be completed by the assumption of probability reproducibility. 
We remark that this postulate was proposed only recently to resolve the problem 
of intersubjectivity of information in RQM. In contrast to RQM for which OIT is a 
supporting theoretical statement, QBism is challenged by OIT.
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1  Introduction

Recently Ozawa’s intersubjectivity theorem (OIT) [1] proved within quantum meas‑
urement theory (e.g., [2–8]) is used as objection to QBism [9], to its basic interpreta‑
tional statement about the individual agent perspective on measurement’s outcomes 
[10–12]. (This privacy component of QBism was also criticized in my previous 
articles [13, 14], mainly from the probabilistic perspective.) Now QIT provides the 
strong argument that measurement’s outcome is intersubejctive and, although one 
can still interpret it as a private experience, such interpretation loses its elegance. 
QBists replied to my objection with two papers [15, 16] (the second one presents 
more elaborated counterargument).

In a few words the QBism’s counterargument is that compatible measurement 
devices M1 and M2 considered in OIT should be related not to two distinct observers 
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Q1 and O2 as was done in my article [9], but to one observer O who performs these 
two measurements. As was clearly explained in papers [15, 16], this interpretation 
of such measurements is consistent with the general ideology of QBism. The impor‑
tant impact of article [9] to QBism is that this article attracted the attention (at least 
some) of QBists to quantum measurement theory [2–8]. QBism intensively explores 
one of the basic elements of this theory - POVMs. But QBists don’t employ the 
important part of measurement theory - theory of quantum measurement processes. 
Each POVM is generated by a measurement process [3]. It is important to note that 
the same POVM can be generated by variety of measurement processes.

The discussions on the intersubjectivity problem in QBism stimulated my inter‑
est to this problem for other information interpretations of QM. A reviewer of one 
of my papers pointed that relational quantum mechanics (RQM) [17–21] was suf‑
fering of the same problem. It seems that it can’t be resolved within “old RQM”. 
Its resolution requires invention of an additional postulate on internally consistent 
descriptions (Postulate 6 in [21]). By treating this postulate within quantum meas‑
urement theory, one immediately see that OIT supports this postulate. So, in con‑
trast to QBism which was challenged by OIT, RQM’s Postulate 6 is mathematically 
justified via OIT. However, the OIT view on Postulate 6 leads to the conclusion that 
to match with quantum measurement theory, this postulate should be constrained by 
the probability reproducibility condition [1] (see section 3, equality (4)).

As well as QBism, RQM can earn from closer connection with quantum meas‑
urement theory [2–8]. Besides the present paper, an attempt to proceed in this direc‑
tion was done in article [23]. However, the conclusions of this article are debatable. 
I am not an expert in RQM and I am not able to evaluate whether the authors of [23] 
correctly understood the conceptual premises of RQM.

We start with a brief recollection of the basics of RQM and the problem of inter‑
subjectivity (section 2). We follow article [21]. Then we formulate OIT (section 3), 
see article [1] for its proof. In section 4 we couple OIT with Postulate 6 (on intersub‑
jectivity) of RQM. Matching of quantum measurement theory and RQM is estab‑
lished in section 5. We should modify the interpretation and representation of the 
original von Neumann’s measurement scheme to make it consistent with the RQM 
perspective on observer: “Any system, irrespectively of its size, complexity or else, 
can play the role of the textbook’s quantum mechanical observer.” (See [22]).1 The 
crucial role of probability reproducibility (the basic condition of OIT) in analysis of 
the intersubjectivity problem in RQM is highlighted in section 6.

1  This is the good place to cite another block from article [22]: “In textbook presentations, quantum 
mechanics is about measurement outcomes performed when an “observer” makes a “measurement” on 
a quantum system. What is an observer, if all physical systems are quantum? What counts as a measure‑
ment? Common answers invoke the observer being macroscopic, onset of decoherence, irreversibility, 
registration of information, or similar. RQM does not utilise anything of the sort.”
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2 � Relational quantum mechanics and the problem 
of intersubjectivity

As was stated by Rovelli [17], RQM is based on the idea that “in quantum mechan‑
ics different observers may give different accounts of the same sequence of events.” 
It is crucial that “RQM is built on strong naturalistic intuitions; therefore, in RQM, 
the term ‘observer’ is understood in a broad sense, which allows that any physical 
system can be an ‘observer,’ so we do not have to accept that consciousness plays 
any fundamental role.” [21]. In the last aspect RQM differs crucially from QBism. 
As is emphasized in article [21], RQM has many attractive features and it resolves 
the basic quantum paradoxes (but QBism do this as well).

“However, some problems remain; in particular, there is a tension between 
RQM’s naturalistic emphasis on the physicality of information and the inaccessi‑
bility of certain sorts of information in current formulations of RQM. Thus, in this 
article, we propose a new postulate for RQM which ensures that all of the informa‑
tion possessed by a certain observer is stored in physical variables of that observer 
and thus is accessible by measurement to other observers. The postulate of cross-
perspective links makes it possible for observers to reach intersubjective agreement 
about quantum events that have occurred in the past, thus shoring up the status of 
RQM as a form of scientific realism and allowing that empirical confirmation is pos‑
sible in RQM.

Adding this postulate requires us to update some features of the ontology of 
RQM, because it entails that not everything in RQM is relational.”[21]

For readers convenience, here the list of all RQM’s postulates is presented [21]: 

1.	 Relative facts: Events, or facts, can happen relative to any physical system.
2.	 No hidden variables: Unitary quantum mechanics is complete.
3.	 Relations are intrinsic: The relation between any two systems A and B is inde‑

pendent of anything that happens outside these systems’ perspectives.
4.	 Relativity of comparisons: It is meaningless to compare the accounts relative to 

any two systems except by invoking a third system relative to which the compari‑
son is made.

5.	 Measurement: An interaction between two systems results in a correlation within 
the interactions between these two systems and a third one; that is, with respect to 
a third system W,  the interaction between the two systems S and F is described 
by a unitary evolution that potentially entangles the quantum states of S and F.

6.	 Internally consistent descriptions: In a scenario where O1 measures S,  and O2 also 
measures S in the same basis, and O2 then interacts with O1 to “check the reading” 
of a pointer variable (i.e., by measuring O1 in the appropriate “pointer basis”), the 
two values found are in agreement.

OIT matches with Postulate 6, justifies it mathematically on the basis of quantum 
measurement theory, but with one important reservation: restriction of its applica‑
bility to measurement processes satisfying the probability reproducibility condition. 
Generally RQM can earn a lot from employing quantum measurement theory.
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As was cited above in “RQM the term ‘observer’ is understood in a broad sense, 
which allows that any physical system can be an ‘observer’...”

In quantum measurement theory, ‘apparatus’ plays the key role. I would suggest 
to extend its meaning and operate in this theory with the notion observer. The latter 
has the RQM meaning, i.e., any physical system can be an observer. This the impor‑
tant novelty in application of quantum measurement theory and it will be discussed 
in more details (see section 5).

3 � Ozawa intresubjectivity theorem

Von Neumann [2] described observables mathematically by Hermitian operators 
acting in Hilbert state space H. They represent accurate measurements. Consider 
operators with totally discrete spectra X ⊂ ℝ ∶ A =

∑
x∈X xEA(x), where EA(x) is 

projection on the eigensubspace for the eigenvalue x. The Born rule determines the 
probabilities:

The indirect measurement scheme involves the following components

•	 the states spaces H and K of the systems S and the apparatus M for measure‑
ment of some observable A; 

•	 the evolution operator U = U(t) representing the interaction-dynamics for the 
system S +M;

•	 the meter observable M giving outputs of the pointer of the apparatus M.

Let EM = (EM(x)) be the spectral family of the operator M;   here EM(x) are pro‑
jections in Hilbert space K. It is assumed that the compound system’s evolution is 
driven by the Schrödinger equation, so the evolution operator U(t) is unitary.

Formally, an indirect measurement model for an observable A, introduced in [3] 
as a “measurement process”, is a quadruple

where ��⟩ ∈ K represents the apparatus state.
We explore the Heisenberg picture. To describe meter’s evolution, we represent 

it in the state space of the compound system, i.e., as I ⊗M. The meter observable 
evolves as

By the Born rule

This is the probability distribution for the outputs of measurements done by the 
apparatus and given by the meter.

P(A = x��) = ⟨��EA(x)��⟩.

(1)(K, ��⟩,U,M),

(2)M(t) = U⋆(t)(I ⊗M)U(t).

(3)P(M(t) = x���) = ⟨���EM(t)(x)���⟩.
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Definition  A measurement process (K, ��⟩,U,M) reproduces the probability distri‑
bution for quantum observable A (accurate von Neumann observable) if

Following [1], consider two remote observers O1 and O2 who perform joint 
measurements on a system S, in mathematical terms it means that the meter 
quantum observables of the corresponding measurement processes commute,

Here each apparatus has its own state space, i.e., K = K1 ⊗K2. We call such meas‑
urements local. In this situation the joint probability distribution is well defined

Theorem  (OIT [1]) Two observers performing the joint local and probability repro-
ducible measurements of the same quantum observable A on the system S should get 
the same outcome with probability 1:

4 � Postulate on internally consistent description in the view of Ozawa 
intersubjectivity theorem

In OIT, as in Postulate 6 [RQM], observer O1 measures S,  and observer O2 also 
measures S in the same basis. In our terms the later means that they measure the 
same observable A. Then O2 can interact with O1 to “check the reading” of its 
pointer variable, the two values found are in agreement.

The important condition which is missed in Postulate 6 is the probability 
reproducibility condition, only under this conditions outcomes of measurements 
performed by O1and O2coincide. Therefore, it is natural to complete postulate 6 
by this condition. But this is just my viewpoint and may be Carlo Rovelli would 
not support it.

Moreover, due to OIT observer O2 even need not to perform a measurement 
on O1. If observers are sure in validity of quantum theory, then they can be sure 
that they get the same outcome.

I suggest the following modification of Postulate 6:
Postulate 6[OIT]. Under the condition of probability reproducibility, in a 

scenario where O1measures S, and O2also measures Sin the same basis, the two 
values found are in agreement.

(4)P(A = x|�) = P(M(T) = x|��).

[M1(t),M2(t)] = 0.

(5)P(M1(t) = x,M2(t) = y���1�2) = ⟨��1�2�EM1(t)
(x)EM2(t)

(y)���1�2⟩.

(6)
P(M1(T) = x,M2(T) = y���1�2) = �(x − y)P(E = x��) = �(x − y)‖E(x)�‖2.
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5 � Matching von Neumann’s theory of quantum measurement 
with Rovelli’s interpretation of observer

As was emphasized in introduction, in this paper the meaning of the notion 
“apparatus” is extended, we operate with the notion “observer”. And in RQM any 
physical system can play the role of an observer. The following question naturally 
arises:

Are there some constraints on the notion of “apparatus" as it is defined in 
quantum measurement theory which might prevent it from encompassing all phys-
ical systems?

This paper is based on the modern version of von Neumann’s approach to the 
problem of quantum measurement. Therefore it is natural to return to the origi‑
nal von Neumann’s work [2] (chapter 6). Our aim is to show that, in spite some 
interpretational differences, are von Neumann’s and Rovelli’s viewpoints on the 
quantum measurement process generally close to each other. In fact, elements of 
such comparative analysis can be found in the original article of Rovelli [17]. Our 
discussion is more detailed. Moreover, we bring into our analysis a new theoreti‑
cal construction - “entanglement of observables”, A1A2-entanglement for a pair 
of compatible observables. This generalization of entanglement was presented in 
articles [28, 29]. It matches both with von Neumann’s description of a measure‑
ment process and RQM’s Postulate 5, on measurement. The probability repro‑
ducibility condition of OIT can also be formulated in terms of “entanglement of 
observables”, in the special case of von Neumann’s model.

We start with some interpretational remarks on measurement theory pre‑
sented in [2] (see section  1, chapter  6). In this theory both a quantum system 
and measurement apparatus are described within the quantum formalism. Thus, 
although the apparatus is macroscopic, it is, nevertheless, described as a quantum 
system. Moreover, the mathematical model is symmetric w.r.t. system-apparatus 
interchange. Thus, it is applicable to macroscopic systems, (cf. with RQM). This 
macro-applicability was recently supported by quantum-like modeling, applica‑
tions of the mathematical formalism of quantum measurement theory outside of 
physics, e.g., in cognition and decision making; see [24, 25]. We also remark that 
von Neumann’s description of the measurement process doesn’t involve decoher‑
ence (again cf. with RQM).

At the same time von Neumann’s interpretation differs from RQM, since he 
refers to subjective nature of an observer (cf. with QBism). However, in contrast 
to QBists he didn’t emphasize the private character of observer’s measurement 
experience, he neither use the subjective interpretation of probability. Moreover, 
he diminished the value of subjective experience by referring to psycho-physi‑
cal parallelism. At the same time he states [2] (p. 420): “Indeed experience only 
makes statements of this type: an observer has made a certain (subjective) obser‑
vation; and never any like this: a physical quantity has a certain value” This is 
the Bohr’s viewpoint on quantum observables [26, 27]: their outcomes aren’t the 
objective properties of systems under measurements. They are generated during 
the complex process of interaction between system S and measurement apparatus 
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M used to measure quantum observable A. At this point the positions of von 
Neumann and Bohr coincide. In [2] interaction between the system and apparatus 
is mathematically described by unitary operator U,  see below.

Now we turn to the formalism developed in chapter 6 [2]. The measurement 
process is described in Sect. 3. There are considered three systems: S, observed 
system, M, a measurement apparatus, and O , observer. It is important to remark 
[2] (p. 421) that “... O itself reminds outside of calculations.” (See alo p. 439). 
Hence, all mathematical considerations are related to the pair of physical sys‑
tems, (S,M). And in section 3, “measurement section”, von Neumann refers to 
calculations done in section 2 (“operator entanglement section”).

In fact, von Neumann considered a kind of entanglement which can be called 
“entanglement of observables” (see [28, 29]). Two compatible observables A1 
and A2 can be called entangled in the state �Φ⟩, if their eigenvalues can be enu‑
merated in such a way, (a1k, k = 1, 2, ...) and (a2k, k = 1, 2, ...) that probability

or

or

or

under the constraint P(A1 = a1k,A2 = a2k|Φ) ≠ 0. Here condi‑
tional probability w.r.t. state �Φ⟩ is defined by the Bayes formula, e.g., 
P(A1 = a1k|A2 = a2k|Φ) = P(A1 = a1k,A2 = a2k|Φ)∕P(A2 = a2k|Φ) (since the oper‑
ators commute we can operate within the classical probability framework).

From my viewpoint, the notion of such A1A2-entanglement matches better 
with RQM, than the standard notion of the entangled state (see Postulate 5 of 
RQM). We remark that a state �Φ⟩ can be A1A2-entangled, but not entangled in the 
ordinary sense. Moreover, it was shown that, for any state �Φ⟩, there exist pairs 
of operators which are entangled in this state [2] (section 2). We note that von 
Neumann didn’t use the term “entanglement” for observables. He wrote about 
establishing “one-to-one correspondence between the possible values of certain 
quantities” in two systems. As suggested in articles [28, 29] that such correspond‑
ence can be called observables’ entanglement (and it has some features of state 
entanglement).

In formal mathematical calculations of Sects.2,3 the notations S and M lose 
their meaning and we consider two arbitrary physical systems S1 and S2 in the 

(7)P(A1 = a1k,A2 = a2m|Φ)) = 0, k ≠ m,

(8)
∑

k

P(A1 = a1k,A2 = a2k|Φ)) = 1,

(9)P(A1 =a1k|Φ)) = P(A1 = a1k,A2 = a2k|Φ),

(10)P(A2 =a2k|Φ) = P(A1 = a1k,A2 = a2k|Φ),

(11)P(A1 = a1k|A2 = a2k|Φ) = 1,P(A2 = a2k|A1 = a1k|Φ) = 1,
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states ��⟩ and ��⟩ belonging to the state spaces H1 and H2. Initially the compound 
system (S1, S2) is in the state

belonging to the state space H1 ⊗H2. Consider observables for systems S1, S2 rep‑
resented by Hermitian operators A1,A2. Let (��k⟩) and (��k⟩) be corresponding bases 
consisting of eignevectors, A1��k⟩ = a1k��k⟩,A2��k⟩ = a2k��k⟩, i.e.,

To simplify considerations, we assume that these operators have non-degenerate 
spectra.

It is proved [2] (with the explicit mathematical formula) that there exist a uni‑
tary operator U ∶ H1 ⊗H2 → H1 ⊗H2, such that the initial state �Φ0⟩ is trans‑
ferred into A1A2-entangled state:

where

(cf. with EPR article [30]). This mathematical result can be reformulated in the lan‑
guage of quantum observables, as following. The outcomes of the observables A1and 
A2are perfectly correlated. The outcome A1 = a1k is perfectly correlated with the 
outcome A2 = a2k. Thus, measurement of A2 can be considered as indirect measure‑
ment of A2 and vice verse.

In the light of the above analysis of von Neumann’s construction [2] (chap‑
ter 6), the assignment to the systems S1 and S2 the meaning of a system under 
observation and a measurement apparatus is the purely interpretational issue.

Now turn to sect. 3 (chapter 6 [2]) and set S1 = S, S2 = M and A1 = A, observ‑
able on S measured with M and A2 = M, pointer observable. Due to AM-entan‑
glement M-outcomes can be identified with the corresponding outcomes of the 
observable A. Although the observer O was excluded from calculations, it plays 
the role: the quantity M is observed by Oւ This mathematical description of the 
measurement process matches with RQM Postulate 5:

Measurement: An interaction between two systems results in a correlation 
within the interactions between these two systems and a third one; that is, with 
respect to a third system W,  the interaction between the two systems S and F is 
described by a unitary evolution that potentially entangles the quantum states of 
S and F.

Subjective nature of observable O mentioned (but not so much highlighted) 
by von Neumann doesn’t play any role in the formal scheme presented in [2].

(12)�Φ0⟩ = ��⟩��⟩

(13)A1 =
�

k

a1k��k⟩⟨�k�, A2 =
�

k

a2k��k⟩⟨�k�.

(14)�Φ⟩ = U�Φ0⟩ =
�

k

ck��k⟩��k⟩,

(15)ck = ⟨���k⟩
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6 � Probability reproducibility condition: Postulate 6 [RQM] vs. 
Postulate 6 [OIT]

We point out that the measurement processes modeled by von Neumann satisfy 
the probability reproducibility condition. We remark that (15) implies that

And by using equalities (9), (10) we obtain

We remark that

Here U = U(T) = e−iTH∕ℏ. Set A2(T) = U⋆(T)(I ⊗ A2)U(T). Thus, we obtain the 
probability reproducibility condition:

or by selection a1k = a2k = ak, and setting A1 = A,A2 = M, we get

for any x = ak.

Thus, if one restricts measurement processes to those described in sects.2, 
3 (chapter  6 [2]), then the condition of probability reproducibility in Postulate 
6[OIT] is redundant.

Generally measurement process doesn’t guarantee probability reproducibility. 
Such measurements are noisy. Therefore it is not surprising that intersubjectivity 
postulate can be violated. Measurements performed by O1 and O2 are disturbed by 
noises and their outcomes need not coincide.

It is important to note that the class of measurement processes satisfying the 
probability reproducibility condition doesn’t coincide with von Neumann’s meas‑
urement processes described in [2]. To discuss this important issue, we have to 
refer to the notion of generalized quantum observable, POVM.

Consider only discrete POVMs valued in finite sets, X = {x1, .., xm}. POVM is 
a map x → Π(x) ∶ for x ∈ X,Π(x) is a positive contractive self-adjoint operator: 
0 ≤ Π(x) ≤ I, called an effect; the family of effects form the resolution of unity ∑

x Π(x) = I. This map defines an operator valued measure on algebra of all sub‑
sets of set X. For O ⊂ X, Π(O) =

∑
x∈O Π(x). POVM Π represents statistics of 

measurements:

The resolution of unity condition is the operator-measure counterpart of the condi‑
tion normalization by 1 for usual probability measures. Any observable A given by 

(16)P(A1 = a1k,A2 = a2k�Φ) = �ck�2 = �⟨���k⟩�2 = P(A1 = a1k��).

(17)P(A1 = a1k|�) = P(A2 = a2k|Φ),

P(A2 = a2k�Φ) = �⟨(I ⊗ EA2
)U𝜓𝜉�U𝜓𝜉⟩�2 = �⟨U⋆(I ⊗ EA2

)U𝜓𝜉�𝜓𝜉⟩�2.

(18)P(A1 = a1k|�) = P(A2(T) = a2k|��),

(19)P(A = x|�) = P(M(T) = x|��),

(20)P(Π = x��) = ⟨��Π(x)��⟩.
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Hermitian operator can also be represented as POVM of the special type – PVM 
EA = (EA(x)).

Any measurement process given by quadruple (1) generates a generalized 
observable given by POVM

As was shown by Ozawa [3], any POVM, generalized observable, can be generated 
in this way, from some quantum measurement process. The tricky point which is 
often ignored in quantum information theory is that the same observable, POVM, 
can be generated by a variety of measurement processes.

Now we turn to the probability reproducibity condition. As was shown in 
[1], a measurement process satisfies to this condition if and only if it generates 
POVM, as (21), which coincides with PVM of the operator A,  i.e., for any x ∈ X, 
Π(x) = EA(x). We repeat once again that a plenty of measurement processes can 
generate the same PVM.

The violation of the probability reproducibity condition implies that a meas‑
urement process generates POVM which is not PVM of the von Neumann observ‑
able A.

The original Postulate 6 [RQM] doesn’t involve the probability reproducibility 
condition. Thus, there are the following situations. The general theory of quan‑
tum measurement processes allows outcomes to be different, but Postulate 6 [21] 
would still require them to be the same. One of the possibilities to resolve this 
discrepancy is to proceed with the original Postulate 6 [RQM], but with von Neu‑
mann’s measurement processes [2]. Another possibility is to proceed with Pos‑
tulate 6 [OIT], i.e., restrict the class of quantum measurement processes to those 
satisfying the probability reproducibility condition.

We also remark that we considered measurement processes for von Neumann 
observables, operator A is Hermitian. As is pointed out in article [1], OIT does 
not hold for measurements of generalized observables. In [1] one can find an 
example of generalized observable A represented by POVM A = (A(x), where 
A(x), x ∈ X, are effects, and two compatible measurement processes M1(t) and 
M2(t) satisfying the probability reproducibility condition, but violating the inter‑
subjectivity condition. (Here ‘compatibility’ has the meaning of compatibility of 
generalized observables). Thus, for generalized observables, one should give up 
intersubjectivity. As was already mentioned, generalized observables are unsharp 
and their measurements are noisy. Therefore, one can’t expect coincidence of the 
outcomes of measurements, even for measurement processes satisfying the prob‑
ability reproducibility condition.
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