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Abstract
In a recent article, Halvorson and Manchak (Br J Philos Sci, Forthcoming) claim 
that there is no basis for the Hole Argument, because (in a certain sense) hole iso-
metries are unique. This raises two important questions: (a) does their argument suc-
ceed?; (b) how does this formalist response to the Hole Argument relate to other 
recent responses to the Hole Argument in the same tradition—in particular, that of 
Weatherall (Br J Philos Sci 69(2):329–350, 2018)? In this article, ad (a), we argue 
that Halvorson and Manchak’s claim does not go through; ad (b), we argue that 
although one prima facie plausible reading would see Halvorson and Manchak as 
filling an important hole (no pun intended) in Weatherall’s argument, in fact this 
reading is implausible; there is no need to supplement Weatherall’s work with Hal-
vorson and Manchak’s results.

Keywords  General relativity · Hole argument · Isometries · Mathematical 
structuralism

1  Introduction

In a recent article, Halvorson and Manchak [10] argue that there is no mathematical 
basis for the Hole Argument. They schematise the Hole Argument thus: 
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1.	 Substantivalism.
2.	 Some mathematical facts.
C.	 Pernicious indeterminism.

Substantivalism is a metaphysical claim about the relationship between spacetime 
and matter: the former exists on (at least) the same ontological footing as the latter.1 
Right off the bat, we can identify a concern with the above schema: substantivalism 
is a claim about metaphysics, in the sense that it’s a claim about the the constitu-
ents of possible worlds. In order for any mathematical claim to have traction in this 
discussion, it must be supplemented by a claim about how that mathematical fact 
affects the model-world relationship. So a slight refinement of the schema yields: 

1.	 Substantivalism.
2a.	 Some mathematical facts.
2b.	Some interpretational claim that the mathematical facts in (2a) affect the relation-

ship between models and worlds.
C.	 Pernicious indeterminism.

Halvorson and Manchak argue that there are two mathematical claims in (2a) on 
which the conclusion of the Hole Argument (C) might plausibly be taken to rely2:

Hole isomorphism: There exist distinct models of general relativity that are 
related by hole isomorphisms.
Distinct isometries: For any two isometric Lorentzian manifolds, there 
is more than one diffeomorphism relating those Lorentzian manifolds which wit-
nesses their being isometric.

Halvorson and Manchak claim that Hole isomorphism is “trivially true” (when 
the isomorphism under consideration is an isometry), but concur with Weatherall 
[28] that this is not sufficient to generate the Hole Argument.3 They also claim, 
however, that if Distinct isometries were true, then in principle the Hole 
Argument could be generated within the framework of general relativity—but in fact 
Distinct isometries is false, due to a theorem due to Geroch. Consequently, 
they argue that discussion of the Hole Argument should be closed.4

In a sense—at least as we interpret them (to be clear, this is our own reading 
of Halvorson and Manchak [10]; they don’t make the following claims explicitly 
in their article)—what Halvorson and Manchak seek to achieve in their article is 

1  Of course, there is a variety of ways of spelling out this claim—see e.g. [1, 4, 5, 17, 18]—but for now, 
this characterisation is sufficient.
2  The following is our attempt to regiment Halvorson and Manchak’s discussion, and is thus our termi-
nology, not theirs.
3  For a critique of Weatherall’s arguments with which we engage further below, see [21].
4  To be fair to Halvorson and Manchak [10], in footnote 2 of their article, they write: “Granted, there 
may be yet another mathematical claim upon which the Hole Argument could be built. By eliminating 
two possible mathematical claims, we hope at least to clarify the structure of the argument.”
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to plug a hole left outstanding in Weatherall’s analysis. Roughly speaking (though 
the structure of [28] is complex and requires careful unpacking: see [21] as well as 
our own discussion below), Weatherall claims that for any two hole diffeomorphic 
models of general relativity, those models must be compared using the map which 
witnesses the isometry between them (which is to say that any interpretation must be 
such that if two manifold elements are related by that isometry, then they represent 
the same physical spacetime point); this, however—Weatherall claims—is not suf-
ficient to generate the Hole Argument. However, if there were multiple such maps 
relating the two models, then in principle the Hole Argument could be generated 
within the framework of general relativity. (We spell out the reasoning here in detail 
in Sect. 3.2.) By denying Distinct isometries, Halvorson and Manchak take 
themselves to have closed this (loop)hole.

We have two goals in this article. First: to demonstrate that Halvorson and Man-
chak’s invocation of Geroch’s theorem fails on its own to close the Hole Argument, 
because the theorem is a purely formal result; to have any impact on the Hole Argu-
ment it needs to be supplemented by some claim of the form described in (2b). 
When we canvass some options for this supplementary claim, we discover that Hal-
vorson and Manchak’s claim fails to close the Hole Argument. And second: to argue 
that even to read the central purpose of Halvorson and Manchak [10] as being to 
close the above-described hole (supposedly) left by Weatherall is implausible, for 
whatever one makes of Weatherall’s arguments, it is not necessary for them to be 
supplemented with Halvorson and Manchak’s results. The upshot is that, as far as 
we can see, Halvorson and Manchak’s central results add little to recent formalist 
responses to the Hole Argument.

2 � The Hole Argument

In this section, we discuss the inputs (1), (2a), (2b), and conclusion (C) of the Hole 
Argument, as schematised above. Although this will be well-known to many read-
ers, it is very important for the purposes of later sections of this article to be precise 
and explicit about all relevant moving parts.

2.1 � Substantivalism

Spacetime substantivalism is generally understood to be the claim that spatiotem-
poral structure is on (at least) the same ontological footing as matter. Consider now 
a model of general relativity, ⟨M, gab, Tab⟩.5 The literature discusses two options for 
the substantivalist:

5  Where M is a smooth 4-dimensional manifold, gab is a Lorentzian metric tensor, and Tab is a symmetric 
tensor representing the stress energy of matter.
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Manifold substantivalism: M represents spacetime, which is ontologi-
cally at least on par with the matter content whose stress-energy is represented by 
Tab.
Metric manifold substantivalism: ⟨M, gab⟩ represents spacetime, 
which is ontologically at least on par with the matter content whose stress-energy 
is represented by Tab.

(Authors who hold the first view regarding how to characterise substantivalism 
number among them Earman and Norton [7]; authors who hold the second view 
include Maudlin [14].) The Hole Argument purports to raise a radical indeterminism 
worry for both forms of substantivalism. For dialectical clarity, we discuss the Hole 
Argument in relation to Manifold substantivalism; all the arguments we 
discuss carry over to Metric manifold substantivalism.

The worry about indeterminism, however, does not arise solely because of the 
substantivalist’s commitment to the ontological independence of spacetime and mat-
ter. It requires also an additional commitment, which Pooley [20] calls ‘plurality’:

Plurality: If W is a possible world according to the theory under considera-
tion, then there is a plurality of possible worlds, W ′,W ′′... , that (i) involve the 
same pattern of spatiotemporal properties instantiated in W and contain the same 
material fields as W, but that (ii) differ from W solely over which spacetime points 
have which properties and serve as the locations of common material content.

As Hoefer [11] and Pooley [18] emphasise, substantivalism (of either of the above 
stripes) needn’t entail the acceptance of Plurality. Furthermore, there are ways 
of setting up a substantivalist position which deny Plurality and are immune 
to the Hole Argument. So in order to set up the Hole Argument, the substantivalist 
position needs to be one that accepts Plurality; call this position Pluralist 
substantivalism. But even this on its own is not sufficient to set up the Hole 
Argument; to do so, we first need to introduce some mathematical facts.

2.2 � Mathematical Facts

The mathematical fact about general relativity which is supposed to spell trouble for 
the pluralist substantivalist is the so-called ‘general covariance’ of the Einstein equa-
tion, the central dynamical equation of general relativity. To understand how this 
works, we begin by introducing the concept of a diffeomorphism and its drag-along. 
A diffeomorphism d ∶ M → N is a smooth bijection from manifolds M to N whose 
inverse is also smooth. Insofar as d is a function, it simply associates (uniquely) with 
each element p ∈ M some element p� ∈ N.

A coordinate system on a submanifold U of a (four-dimensional) manifold M is 
a map x� ∶ U → ℝ

4 . In practice, we restrict attention to only smooth coordinate 
systems. Relative to an interpretation linking models and worlds, we can now use 
these coordinate systems to make location claims about certain physical objects in 
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regions of the world represented by U. For example, we can talk about the magni-
tude of some scalar field Φ in some region of W by looking at the value of some 
scalar function F, evaluated at the appropriate element p ∈ U assigned the coor-
dinate x� : F(p) = f◦x�(p) , where f ∶ ℝ

4
→ ℝ . We can extend the action of a dif-

feomorphism to both the coordinate system and the representatives of physical 
fields as follows: (i) for a given coordinate system x� , we can define its ‘drag-along’ 
d∗x�(p) = x�(d(p)) for all p ∈ d−1(U) ; (ii) for a given magnitude F(p), its drag-
along defined by d is the object d∗F such that d∗F(p�) = F(p) . Following the con-
vention in the literature, we refer to models of the form M = ⟨M,O1,O2, ...⟩ and 
d∗M = ⟨d∗M = M, d∗O1, d

∗O2, ...⟩ , where O1,O2, ... are tensorial objects, as diffeo-
morphically-related models.

We can now define general covariance (cf. [19]):

General covariance: Let the models of a theory T be n-tuples of the form 
⟨M,O1,O2, ...⟩ . T is generally covariant iff: if ⟨M,O1,O2, ...⟩ is a structure of the 
relevant type and d is a diffeomorphism between M an N, then ⟨M,O1,O2, ...⟩ is a 
solution of T iff ⟨N, d∗O1, d

∗O2, ...⟩ is also a solution of T.

Standardly, we associate solutions with physically possible worlds. (Precisely how 
this representation is to be achieved, and in particular how redundantly it may be 
achieved, is a subtle issue whose discussion is beyond the scope of this paper, but 
see e.g.  [8, 21, 23] for recent discussion.6) An important point to note is that the 
objects in the tuples needn’t be independent. Indeed, Earman and Norton’s proof of 
the general covariance of general relativity relies on incorporating dynamical equa-
tions into the very structure of the models. For them, a model of general relativity 
is a tuple of the form ⟨M, gab,O2⟩ , where the object O2 = Gab − Tab , (where Gab is 
the Einstein tensor, built out of gab and its derivatives) is constrained dynamically to 
vanish. The vanishing of that object is equivalent to the satisfaction of the Einstein 
equation; the fact that the equation uses only tensors means that it is a fact that if 
O2 vanishes in one model, then it vanishes in all diffeomorphically-related models. 
(NB: this isn’t to say that all such diffeomorphically-related models are in fact kin-
ematically possible, if one stipulates that some of the tensors in question be what 
Pooley calls ‘fixed fields’: see [18]. We return to this below.)7

6  Note that there are also good reasons to question whether this is indeed the most appropriate way of 
understanding what is represented by models of physical theories—see [26, p.  3]—but we’ll set these 
concerns aside here.
7  An important point to highlight is that our discussion of equivalence should take place at the level of 
the full models, including all material tensorial dynamical content, as represented by stress-energy ten-
sors. Often, as a matter of convenience, the standard of equivalence is taken to be the isometry of Lor-
entzian manifolds (we too will do this shortly). But it is important to remember that it is not merely the 
preservation of metrical structure that determines the equivalence of models; it is the further preservation 
of dynamical structure, namely the fact that certain models contain tensorial objects that satisfy dynami-
cal equations like the Einstein equation or the Einstein-Maxwell equations. This is important because, 
as we’ll see, the real physical content of general covariance is contained in the fact that solutionhood is 
preserved under diffeomorphisms, not merely that some diffeomorphisms are isometries.
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Halvorson and Manchak read Earman and Norton’s gauge theorem as follows: 
“[t]he idea here is that � [the hole diffeomorphism] establishes an isomorphism 
between [ ⟨M,�∗gab⟩ ] and [ ⟨M, gab⟩ ] and since the latter is a model of the theory 
so is the former” [10, p. 14]. This is a mistake. First, isometry does not guarantee 
preservation of solutionhood: consider the two isometric models ⟨M, gab, Tab⟩ and 
⟨M, d∗gab, Tab⟩ . In the second model, we have not dragged along the stress-energy 
tensor; generically this will mean that the second model fails to satisfy the Einstein 
equation, and so is not a solution. Second, it is a property of the dynamical equa-
tions (namely their tensorial nature), plus stipulations as to which models represent 
kinematical possibilities (cf. [19]) that ensures the preservation of solutionhood. It is 
therefore a contingent claim that underwrites the general covariance of general rela-
tivity, not a mathematical truism.

This setup allows us to highlight three implicit mathematical commitments in the 
setup of the Hole Argument:

Tensorial dynamics: Our theory’s dynamical equations involve only ten-
sorial objects.
Drag-along: When the manifolds in two models are related by a diffeomor-
phism, the tensorial content of one model is related by the drag-along construc-
tion to the tensorial content of the other.8
No fixed fields: Having fixed the mathematical objects and dynamics of the 
models of one’s theory, one cannot further stipulate that certain models represent 
kinematical possibilities of one’s theories while others do not. (Doing so would 
spoil general covariance, and is accordingly disallowed.)9

The satisfaction by a theory T of Tensorial dynamics, Drag-along and 
No fixed fields ensures that T is generally covariant. So, in particular, general 
relativity is a generally covariant theory. This is to be understood as the claim that 
under diffeomorphisms (and their associated drag-alongs which act on the tensorial 
constituents of the models) solutions are mapped to solutions. Of course, this is a 
substantive physical hypothesis (special relativity in its standard formulation is not 
generally covariant in this sense, for example—see [19]). But we will not quibble 
over nomenclature, and will continue to call this a mathematical fact (after all, a fact 
being mathematical does not preclude its having physical significance).

We are not yet in a position to level a charge of indeterminism to the proponent 
of Pluralist substantivalism in general relativity, even though general 
relativity is generally covariant. We require a further premise according to which the 
inferences we make about diffeomorphically-related models have non-trivial con-
sequences for the worlds deemed possible according to the theory whose models 
are under consideration. After all, diffeomorphisms (and their drag-alongs) can only 

8  To stress, Drag-Along doesn’t hold as a matter of mathematics alone, for the reasons given in [10, 
§3]. It is to be taken as a restriction on the models which one is countenancing when one considers the 
Hole Argument.
9  For more on the definition of fixed fields, see [22].
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be defined on models and not on possible worlds. Again following Pooley [20], we 
introduce an interpretative commitment:

Models: If M = ⟨M, gab, Tab⟩ can be chosen to represent a possible world W 
then, relative to that choice, there is a permissible and natural interpretation 
of the diffeomorophically-related model d∗M = ⟨M, d∗gab, d

∗Tab⟩ according to 
which d∗M represents a distinct possible world W ′ ≠ W .

Call a pluralist substantivalist who accepts Models an acid-test substantival-
ist. But this still does not lead to an indeterminism worry; it does, however, lead 
to an underdetermination worry. Two diffeomorphically-related models M and 
M

′ which (according to Models) can be taken to represent respective worlds W 
and W ′ will prima facie correspond to two distinct possible worlds (according to 
Plurality). Pooley and Read identify the undeterdetermination worry:

[S]uppose that according to M , the observer at the salient stage of their tra-
jectory is located at (the spacetime point represented by) p and that d maps 
p to a distinct point q. According to M′ , therefore, the relevant stage of the 
observer’s trajectory is located at q. It follows that no measurement that the 
observer might perform at that point along their trajectory can determine 
whether they are located at (the point represented by) p or at (the point rep-
resented by) q, for the outcomes of any measurements are the same accord-
ing to M and M′ . [21, p. 3]

Whether this underdetermination worry in fact goes through is a delicate mat-
ter—see [3] and [21, fn. 8] for discussion. But in any case, in general relativity, 
there arises also an indeterminism concern, when one takes the diffeomorphism 
relating the models under consideration to act non-trivially only to the future of 
some spacelike hypersurface. Let’s explore this in more detail. As is common in 
the literature, in what follows, we focus on vacuum spacetimes, so that the only 
physical field being dragged along the relevant diffemomorphisms is the metric 
field. In other words, our standard of model isomorphism is now isometry.

The standard ‘angle bracket’ notation for models of general relativity gives rise 
to an ambiguity regarding how to understand isometries that needs to be ironed 
out before we proceed further. Consider the following definition of an isometry 
from Wald:

If d ∶ M → M is a diffeomorphism and T is a tensor field on M, we can 
compare T with d∗T  . If d∗T = T  , then even though we have “moved T” via 
d, it has “stayed the same”. In other words, d is a symmetry transformation 
for the tensor field T. In the case of the metric gab , a symmetry transforma-
tion—i.e.,  a diffeomorphism d such that (d∗g)ab = gab—is called an isom-
etry. ([25, p. 438])

Contrast this definition with the following characterisation of an isometry from 
Weatherall (with notation adapted for consistency):
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Fix a model of a relativity theory, which is a relativistic spacetime, that is, 
a Lorentzian manifold 

(
M, gab

)
 ... We define a relativistic spacetime 

(
M, g̃ab

)
 , 

whose underlying manifold is once again M, and whose metric is defined by 
g̃ab = d∗gab , where d∗ is the [drag-along] map determined by d. One can easily 
confirm that 

(
M, gab

)
 and 

(
M, g̃ab

)
 are isometric spacetimes, with the isometry 

realized by d. [28, p. 335]

The above two quotes invite, respectively, two distinct notions of isometry:

Isometry1 : For all elements p ∈ M , d∗gab(p) = gab(p).
Isometry2 : For all elements p, q ∈ M , if d(p) = q , then, d∗gab(q) = gab(p).

The fact that the angle bracket notation does not specify which elements are assigned 
which values of gab means that the standard notation of ⟨M, gab⟩ = ⟨M, d∗gab⟩ is 
ambiguous between the above two readings of isometry. Note that Isometry1 
is a much more stringent requirement than Isometry2 . Isometry1 requires 
the existence of Killing vector fields, whereas Isometry2 can very straightfor-
wardly be defined for any generic Lorentzian manifold: every diffeomorphism of 
M can be used to generate an Isometry2 , whereas only specific diffeomorphisms 
will generate an Isometry1 . For example, a Minkowski manifold ⟨M, �ab⟩ is iso-
metric2 to ⟨M, d∗�ab⟩ for any d ∈ Diff(M) , but is isometric1 to ⟨M, d∗�ab⟩ only if 
d ∈ SO(1, 3)⋉ℝ

4.10

Having disambiguated the two types of isometry relevant to diffeomorphisms 
from M to itself, let us divide our manifold M into two regions: (i) H ⊂ M , which 
is a compact open subset of M, and (ii) M ⧵ H , which is the complement of H in M. 
Next, consider a diffeomorphism which we will call a hole isometry: 𝜓̃ ∶ M → M 
such that 𝜓̃ is the identity in M ⧵ H but differs from the identity in H (and the two 
regions join up smoothly). Call this region a ‘hole’. If we drag the tensorial content 
of the model along the hole diffeomorphism—in particular, if we drag along the 
metric—then we construct a hole isometry. Note that in constructing a hole isom-
etry, we do not rely on the metric manifold having any non-trivial Killing vector 
fields; all we are doing is smoothly changing which manifold elements are asso-
ciated with particular tensorial magnitudes, without changing the lawlike relations 
between those tensorial magnitudes. Thus, to the extent that General covari-
ance is what guarantees the existence of a hole diffeomorphism, as it is accord-
ing to the standard understanding of the Hole Argument, every hole isometry is an 
Isometry2 , but not necessarily an Isometry1.

We can now articulate another premise of the Hole Argument:

10  Note that the notion of isometry deployed at [13, p. 85] is yet more general than either Isometry
1
 

or Isometry
2
—our thanks to J. B. Manchak for pointing this out to us. (Isometry

1
 and Isometry

2
 

can thus be regarded as special cases of Malament’s definition.)
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Hole isometry: Given a metric manifold ⟨M, gab⟩ , there exists a distinct 
metric manifold ⟨M, g′

ab
⟩ such that a (non-trivial) hole isometry (in the sense of 

Isometry2 ) exists between them.11

Thus, given a metric manifold ⟨M, gab⟩ , Hole isometry insists that one can con-
struct a distinct metric manifold ⟨M,�∗gab⟩ , isometric to the first, where the metri-
cal content of the latter is dragged along with respect to that of the former using the 
diffeomorphism � , which is (defined to be) the map which witnesses the isometry 
between the former and the latter (note that Weatherall [28] also uses this termi-
nology). Moreover, said isometry is a hole isometry, in the sense presented above. 
Since isometry is the standard of isomorphism for Lorentzian manifolds, in accept-
ing Hole isomorphism (with Weatherall [28]—recall again that this is the 
“trivial claim”), Halvorson and Manchak [10] thereby accept Hole isometry.

Two points are worth stressing at this point. (a) There is (at this point, at least) no 
prohibition on comparing any two isometric models of general relativity using dif-
feomorphisms which do not witnesses those models’ being isometric—in the above 
case, assuming that � is non-trivial, one could for example compare those models 
using the identity map 1M , which (as we’ll return to below) does not witness their 
being isometric (recall that to compare two models using a map means to use said 
map as a standard of cross-model identity of what the points related by that map rep-
resent). (b) At this point at least, nothing guarantees that the diffeomorphism which 
witnesses the isometry between two metric manifolds be unique: as already men-
tioned, such a claim amounts to the denial of Distinct isometries, and will 
be discussed further below.

2.3 � Pernicious Indeterminism

To set up the worry about indeterminism, we restrict our attention to globally hyper-
bolic manifolds: metric manifolds ⟨M, gab⟩ which possess a Cauchy surface, i.e.  a 
closed achronal set Σ whose domain of dependence is the entire manifold M.12 Now 
consider some globally hyperbolic vacuum solution ⟨M, gab⟩ . Hit this solution with a 
hole isometry whose hole H is entirely to the future of some Σt . This new solution is 
identical to the first solution up to time t. The acid-test substantivalist has to accept 
that two worlds W and W ′ , represented by these models and both possible according 
to the theory, are identical up to some time slice, and non-identical thereafter. They 
are thereby committed to (a pernicious form of) indeterminism.

Let us say a little more about determinism. Consider the following definition 
from Pooley [20]:

11  Muller [15] provides an explicit construction of such a hole isometry. Ultimately, we take this work 
of Muller to establish the existence of hole isometries, and Halvorson and Manchak’s result invoking 
Geroch’s theorem to establish the uniqueness of hole isometries. (What we mean by this should be clear 
from the main text to follow.)
12  For definitions of ‘achronal’ and ‘domain of dependence’, see [25, p. 201].
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Intrinsic determinism: A theory T is intrinsically deterministic iff for 
any two worlds W1 and W2 possible according to a given interpretation of T, if the 
past of W up to some timeslice in W is intrinsically identical to the past of W ′ up 
to some timeslice in W ′ , then W are W ′ are intrinsically identical.

Here, we understand two sub-worlds as being intrinsically identical just in case 
they agree not only on the pattern of instantiation of properties (and relations) 
across particulars, but also over which particulars instantiate those properties 
(and relations). We should note that Halvorson and Manchak [10] dispute the 
intelligibility of this talk of intrinsic properties; we discuss this worry in more 
detail in Sect. 4.1. Granting, for now, the intelligibility of talk of intrinsic prop-
erties (Plurality, for example, assumes that such talk is intelligible when 
restricted to spatiotemporal relations and material properties), we would like to 
focus on a different aspect of the definition: determinism is ascribed to theories, 
but only in virtue of the nature of the worlds possible according to those theories. 
This is significant, because it makes the ascription of determinism depend on the 
manner in which theories (i.e., collections of models) represent possible worlds. 
It is not sufficient merely to look at the formalism of a theory; we need in addition 
to attend to the representational conventions involved before we can make any 
claims regarding determinism or a lack thereof.

Putting things together, we can set up the Hole Argument as follows: 

(1)	 Substantivalism: Pluralist substantivalism
(2a)	Mathematical claim: Tensorial dynamics ∧ Drag-along ∧ No fixed 

fields ∧ Hole isometry
(2b)	Interpretative claim: Models
(C)	 Pernicious indeterminism: ¬Intrinsic determinism

Responses to the Hole Argument can be classified by which (and how many) of 
the above premises they deny. How do Halvorson and Manchak [10] fit into this 
classification? To answer this question, begin with Weatherall [28], who (at least 
focussing on his appeal to ‘mathematical structuralism’—see [21] for discussion) 
argues that, when faced with models of general relativity related by a hole diffeo-
morphism, one is mandated by the formalism and/or practice of general relativity 
to compare those models using a map which witnesses those models’ being iso-
metric, in which case general relativity per se does not generate a philosophical 
problem of indeterminism. In other words, Weatherall’s appeal to mathematical 
structuralism underwrites his denial of Models.

Turn now to Halvorson and Manchak [10]. The theorem proved by these authors 
might be claimed to plug a hole in Weatherall’s arguments, for even on Weather-
all’s own terms he requires (so the claim goes) that, for any two models of general 
relativity related by a hole diffeomorphism, there be a unique map witnessing those 
models’ being isometric. Non-uniqueness (the claim continues) would imply a mul-
tiplicity of ‘legitimate’ ways of comparing two models related by a hole diffeomor-
phism, some of which might correspond to redistributing field values on manifold 
points, in which case the spectre of indeterminism might re-arise. This uniqueness 
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of isometries is (the claim ends) assumed by Weatherall, but is only proved by Hal-
vorson and Manchak. Thus (in our reconstruction), Halvorson and Manchak also 
deny Models, but take themselves only to be warranted in doing so having proved 
the results presented in their article: in this sense, they agree with Weatherall, but (as 
we understand them) take themselves to be affording him the mathematical results 
required to underwrite the claims made in his article.

In brief, then: Halvorson and Manchak deny Distinct isometries, and 
this is what allows them (in their view, given their commitment to ‘mathemati-
cal structuralism’ of the kind which Weatherall also endorses) to deny Models 
(which is premise (2b) above), thereby evading the Hole Argument. By embrac-
ing this line of reasoning, they can be situated (with Weatherall) within a broader 
tradition, exemplified by Leeds [12] and Mundy [16], of formalist responses to 
the Hole Argument.13 To anticipate: our response to this is going to be that (a) 
the denial of Distinct isometries needn’t implicate one in the denial of 
Models, and (b) Weatherall’s denial of Models doesn’t rely in any significant 
sense upon the results of Halvorson and Manchak in any case: in this regard, 
then, these latter authors do not add to prior work on formalist responses to the 
Hole Argument.

3 � Halvorson and Manchak’s Reading of the Hole Argument

Halvorson and Manchak subscribe to the Hole Argument schema presented above 
[10, pp. 2–3]. However, they deny Distinct isometries, a denial which (as 
we have seen) they take to be sufficient to deny Models. They base their denial of 
Distinct isometries upon a theorem proved by Rynasiewicz [9]. We begin 
this section in Sect. 3.1 by discussing Geroch’s result and how Halvorson and Man-
chak attempt to co-opt said result for their claim that the Hole Argument can be 
avoided. In Sect. 3.2, we demonstrate that Geroch’s result cannot be used to support 
Halvorson and Manchak’s claim.

3.1 � Geroch’s Theorem and Hole Isometries

In a paper published in 1969, Geroch proved the following theorem [9, pp. 188–9]:

Geroch’s uniqueness theorem: Let M and M′ be connected [metric 
manifolds], and let w be an orthonormal tetrad at a[n element] p ∈ M and w′ at 
p� ∈ M� . Then there is at most one isometry d ∶ M → M� which takes w into w′.

13  In this broad context, our response to Halvorson and Manchak elaborated below is in the anti-formal-
ist tradition of Rynasiewicz [24], who highlights (and argues against) the implicit interpretational claims 
found in the formalists’ discussions. For further discussion of formalist responses to the Hole Argument, 
see [2].
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It is worth discussing the construction that Geroch invokes in order to prove this 
theorem (although we will not discuss the actual proof). Consider an n-tuple of tan-
gent vectors {�a

1
,… , �a

n
} at some element p. The ‘affine geodesic’ �1 is defined to 

be the one whose tangent vector at p is �a
1
 . We can parallel transport the remaining 

(n − 1) vectors {�a
2
, ...�a

n
} along �1 to Tp′M , where p′ is the element at a unit affine 

parameter distance of from p along �1 . We can now repeat this procedure until we 
run out of vectors at some element q. The path composed of subsets of the n geodes-
ics �1,… , �n is called a ‘broken geodesic’. Since M is a connected manifold, every 
element q ∈ M is accessible via some broken geodesic from p. We can therefore, 
in each tangent space, associate uniquely an n-tuple of vectors with each element 
q ∈ M . Let us call the n-tuple associated with a broken geodesic its generating tuple.
Geroch’s uniqueness theorem now tells us that if we map p to d(p), 

and drag along each w at p to some w� = d∗(w) at p′ , then any other isometry � 
that does so will agree with d on the images of all other elements. In other words, if 
d(p) = �(p) and d∗w = w� = �∗w , then d(q) = �(q) for all q ∈ M . It is straightfor-
ward to see why this is the case: the tetrad is a basis of the tangent space, in terms 
of which each vector of the generating tuple can be expressed. If the tetrad is pre-
served, then so too is the generating tuple. Following Geroch, let us call theories of 
whose models the preceding property is satisfied rigid.

Considering now two models of general relativity related by a hole isometry, 
Geroch’s uniqueness theorem states that there is a unique map which 
witnesses those models’ being isometric. This is a special case of Halvorson and 
Manchak’s Theorem 1:

Theorem 1: Let ⟨M, g⟩ and ⟨M′, g′⟩ be relativistic spacetimes. If � and � are 
isometries from ⟨M, g⟩ to ⟨M′, g′⟩ such that �|O = �|O for some non-empty 
open subset O of M, then � = � . [10, p. 17]

Having shown this, Halvorson and Manchak have demonstrated that Distinct 
isometries is false.

Now, at this point one might be confused—for how (one might ask) can Halvor-
son and Manchak’s commitment to Hole isometry be consistent with Corollary 
2 (regarding the “Non-existence of Hole Isomorphism”) to Theorem 1 as presented 
in their article? Here is that corollary:

Corollary 2 (Non-existence of Hole Isomorphism): Let ⟨M, g⟩ be a relativistic 
spacetime, and let O be a subset of M such that M ⧵ O has non-empty interior. 
If � ∶ ⟨M, g⟩ → ⟨M, g⟩ is an isometry that is the identity outside of O, then � 
is also the identity inside O. [10, p. 18]

Despite its name, Corollary 2 is consistent with Hole isometry, because the 
corollary states that any isometry from ⟨M, gab⟩ to itself must be the identity eve-
rywhere, so that non-trivial isometries (including hole isometries) relating ⟨M, gab⟩ 
to itself cannot exist. However, Hole isometry states that there exist two dis-
tinct models ⟨M, gab⟩ and ⟨M,�∗gab⟩ where � is a non-trivial map which witnesses 
those models’ being isometric—and this, of course, is perfectly consistent with Cor-
ollary 2. Since Corollary 2 regards maps from ⟨M, gab⟩ to itself, both it, and any 
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claims regarding the non-existence/triviality of hole isomorphisms with which it is 
associated, are—we contend—irrelevant for discussions of the Hole Argument as 
standardly construed, since those discussions trade on there being distinct models 
⟨M, gab⟩ and ⟨M,�∗gab⟩.

3.2 � Reopening the Hole Argument

It is at this point that it becomes plausible that Halvorson and Manchak can be 
read as plugging a gap in Weatherall’s argument about how the Hole Argument 
is closed. (We have already presented this reading above, but we now elaborate 
upon it in more detail.) Let us briefly recapitulate Weatherall’s argument.

Weatherall [28] claims that the Hole Argument is blocked if one accepts the 
following commitment (which he argues is to be derived from mathematical 
practice):

Structuralism: The standard of cross-model sameness of points repre-
sented by manifold elements in different isometric models is to be given by the 
map which witnesses those models’ being isometric.

This is a core thesis underlying what Pooley and Read [21] refer to as Weather-
all’s ‘argument from mathematical structuralism’. As we have seen, one might 
claim that Halvorson and Manchak’s central contribution to the recent formalist 
discussions of the Hole Argument is that in addition to highlighting that Struc-
turalism is by itself insufficient to block the Hole Argument, they identify 
(and prove) the additional claim which they take to be required here—viz.,  the 
negation of Distinct isometries.

It is easy to see why one might think that Structuralism on its own is 
insufficient to block the Hole Argument: if there were (per impossibile) multiple 
distinct diffeomorphisms that witnessed the isometry between M1 and M2 , then 
there would be multiple legitimate (by the standards of Structuralism) ways 
of associating elements between M1 and M2 , including some that agree on same-
ness of points represented by elements before some time t but disagree thereaf-
ter. On this reading, Weatherall’s argument could be rendered as the following 
conditional:

Structuralism ∧ ¬Distinct isometries→ ¬Models.

The claim which we are countenancing here maintains that Weatherall assumes 
without proof the falsity of Distinct isometries; Halvorson and Manchak 
wield Geroch’s theorem in order to establish this.

Presenting matters in this way raises three pertinent questions: 

1.	 Does Weatherall’s argument indeed presuppose the negation of Distinct 
isometries?
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2.	 Are the commitments which Halvorson and Manchak take to dissolve the Hole 
Argument (namely, Structuralism and the denial of Distinct iso-
metries) warranted?

3.	 Even if we accept said commitments, is the Hole Argument indeed thereby 
closed?

Regarding (1): we in fact think that the above line—that Halvorson and Man-
chak close a hole in Weatherall’s argument by proving the negation of Dis-
tinct isometries—concedes too much to Halvorson and Manchak, and not 
enough to Weatherall. For in fact, the negation of Distinct isometries 
is unnecessary for Weatherall’s argument (i.e.,  what Pooley and Read [21] dub 
the ‘argument from mathematical structuralism’, as presented in [28]) to proceed 
as intended (of course, whether Weatherall’s argument is ultimately successful 
is another matter, to which we turn below). For even if there were to exist mul-
tiple diffeomorphisms witnessing the isometry between models M = ⟨M, gab⟩ 
and M� = ⟨M,�∗gab⟩ , these maps would differ at most by a transformation 
which leaves the metric invariant (i.e.,  an automorphism of the metric)—in 
which case, a multiplicity of such maps would still not imply indeterminism. 
To see this, suppose that there are two pull-backs of the metric which coincide: 
�∗
1
gab(p) = �∗

2
gab(p) . From this, it follows that (�1◦�

−1
2
)
∗
gab(p) = gab(p)—so 

�1◦�
−1
2

 is an Isometry1 of gab . For a generic metric, these isometries are just 
the identity, so �1 = �2 . And in the case in which gab has non-trivial isometries 
(in the sense of Isometry1), �1◦�

−1
2

 is still an automorphism of the metric, and 
so does not shift fields on the manifold in such a way as to lead to the possibil-
ity of the Hole Argument re-arising. Given this, the above reconstruction of the 
contribution of Halvorson and Manchak’s results to Weatherall’s argument does 
not seem compelling: Weatherall’s arguments needed nothing like such results to 
begin with; the denial of Distinct isometries is not a crucial-but-implicit 
element of his reasoning.14

In any case, turn now to (2): are Structuralism and the denial of Distinct 
isometries warranted? Clearly, the denial of Distinct isometries is cor-
rect; after all it is a mathematical claim established by a theorem. So let us focus our 
attention on Structuralism. In this case, we do not agree with the strictures 
which Structuralism imposes: in our view, there is no prohibition on compar-
ing two models of a theory using any map which one pleases (after all, all such 
maps are perfectly well-defined mathematically); moreover, one can articulate the 
Hole Argument of general relativity by comparing hole diffeomorphic models using 
exclusively the identity map 1M —a point made at length by Pooley and Read [21] in 
their discussion of Weatherall’s ‘equivocation argument’. Thus, in our view, the case 
for Structuralism is not compelling.

Regarding (3): suppose that we meet Halvorson and Manchak on their own terms, 
and accept (if only for the sake of argument) both Structuralism and (less 

14  We are very grateful to Henrique Gomes for discussion on the contents of this paragraph.
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controversially) the denial of Distinct isometries. Even then, we do not 
think that the Hole Argument is thereby closed. The reasons here are more deli-
cate, but are essentially those elaborated upon in depth by Pooley and Read [21] 
in their discussion of Weatherall’s ‘argument from mathematical structuralism’. We 
refer the reader to that article for the details, but in brief the point is easy to state: 
indeterminism is a metaphysical issue; simply insisting upon Structuralism, or 
(with Weatherall [28]) stating that isometric models of general relativity have “the 
same representational capacities” does not per se address this metaphysical issue. 
Insofar as one thinks that these metaphysical matters are (at least to some degree) 
independent of the mathematical tools which we use to represent possibilities, 
then—transparently—denying Distinct isometries does not help the advo-
cate of Structuralism to overcome these issues: if one has reason to think that 
there is a plurality of haecceitistically distinct possible worlds (which is, arguably, 
the historically default substantivalist position—one which, indeed, is invited very 
naturally by the formalism of general relativity: see [21, p. 22]), then supplement-
ing Structuralism with the negation of Distinct isometries will not 
assuage one’s worries regarding determinism generated by the Hole Argument.

In brief, then, and in sum: there is a prima facie appealing reading of Halvorson 
and Manchak [10] as attempting to fill a lacuna in Weatherall’s formalist argument 
against the force of the Hole Argument; in fact, however, we have seen that such a 
reading is too charitable to Halvorson and Manchak and insufficiently so to Weath-
erall, for whom—we claim—no such results were needed to begin with. Given this, 
it is unclear what Halvorson and Manchak’s results on this front add to this class 
of recent responses to the Hole Argument. But in any case, we also do not think 
that the combination of Structuralism (the central tenet of all such formalist 
responses) and the denial of Distinct isometries is sufficient to “close” the 
Hole Argument. In fact, closing the Hole Argument, in the structuralist manner that 
Halvorson and Manchak suggest, would, in addition, require either (i) a non-trivial 
argument for the truth of the above conditional, or (ii) a supplementary conjunct in 
the antecedent that renders the conditional true. Halvorson and Manchak provide 
neither.

4 � Outstanding Issues

In this section, we tie up a few loose ends. We discuss three claims made by Halvor-
son and Manchak in support of their view with which we disagree: the first on deter-
minism (Sect. 4.1), the second on the structure of the category of models for general 
relativity (Sect. 4.2), and the third on essentialism (Sect. 4.3).

4.1 � Determinism

Although determinism is at base a metaphysical issue—do the laws plus the state 
of the universe at a particular time fix the state of the universe at some or even all 
other times?—the reasons underlying why determinism is considered problematic 
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are principally epistemic: if we know the laws and the appropriate boundary condi-
tions, but are nonetheless unable to predict all other conditions, then, in particular, 
knowledge of the future via knowledge of the laws and of the past is limited to at 
least some degree.15 By invoking both formal as well as metaphysical considera-
tions, Intrinsic determinism latches onto this sense in which indetermin-
ism is worrisome. That being said, it is important to recognise that Intrinsic 
determinism is far from being the only notion of determinism on the table (for 
an extensive catalogue of plausible alternatives, see [6]).

One might legitimately prefer not to characterise determinism in terms of intrin-
sic properties, depending upon one’s metaphysical views (Halvorson and Manchak 
[10] fall into this camp). But whatever the alternative characterisation at which one 
arrives, it is crucial that, in order to capture the genuine epistemic worry of indeter-
minism, it make explicit the importance of both formal as well as representational 
commitments (more on this below). After complaining that Intrinsic deter-
minism is insufficiently precise, Halvorson and Manchak consider two alternative 
characterisations: (i) MLE determinism,.16 and (ii) Dynamical rigidity:

MLE determinism: A theory T is MLE deterministic iff for any two models 
M and N of T, if there is an initial segment U such that M|U = N|U , then M = N , 
where an ‘initial segment’ U ⊆ I is a suborder of a linear order I such that U is 
nonempty and for any j ∈ U , if i ∈ I and i ≤ j , then i ∈ U.
Dynamical rigidity: A theory T is dynamically rigid iff for any two mod-
els M and N of T, and any two isomorphisms f , g ∶ M → N , if fi = gi for all i in 
some initial segment U, then f = g.

Given our demand that a good definition of determinism capture the epistemic worry 
described above, we can, with Halvorson and Manchak, disregard MLE deter-
minism: it is a purely formal characterisation, and as such, suffers from fairly 
generic worries that stem from Putnam- and Goodman-style paradoxes of refer-
ence, according to which, broadly speaking, nothing in the structure of models fixes 
the ‘semantic glue’ between words and their referents. As Halvorson and Manchak 
observe, “the construction... is not very interesting: it just uses the fact that for any 
set Mi , there is an isomorphic but non-identical set Ni ” [10, p. 21].

Consider, then, Dynamical rigidity. In the present context, where for dia-
lectical clarity we focus on vacuum solutions so that the standard of isomorphism is 
isometry of Lorentzian manifolds, Dynamical rigidity is very closely related 
to Geroch’s uniqueness theorem. Indeed, if the conditions of Geroch’s 
theorem are satisfied, then general relativity turns out to be dynamically rigid. And 
this is precisely what Halvorson and Manchak assume. Unsurprising, then, that if 
this constitutes the standard of determinism, then general relativity is deterministic. 

16  After Montague, Lewis, and Earman: see [10, p. 16].

15  Assuming that we do not have other means of ascertaining the global state of the universe—
e.g., divine insight. It’s an open question whether the resources of indexicals can be brought to bear in 
order to resolve these epistemological issues—see [3] for discussion.
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Here, one might charge Halvorson and Manchak with putting their thumbs on the 
scale by choosing to define the notion in terms of the mathematical property of 
Dynamical rigidity, when in fact there remains a rich metaphysics literature 
on determinism—recall Sect.  2.3—for which the status of general relativity with 
respect to determinism is far from trivial.

Although Halvorson and Manchak do argue that the definition of determinism 
in terms of Dynamical rigidity is preferable to MLE determinism, this 
strikes us as insufficient evidence that theirs is the most appropriate definition tout 
court.

4.2 � A Category Mistake?

Following Halvorson and Manchak [10], consider three categories, Man , ���� , and 
Lor . Objects of Man are differentiable manifolds; morphisms are diffeomorphisms. 
Objects of ���� are pairs ⟨M, gab⟩ of differentiable manifolds M and Lorentzian 
metric fields gab on M; morphisms are again diffeomorphisms between manifolds 
(i.e., the metrical structure of the objects is ignored). Objects of Lor are are again 
pairs ⟨M, gab⟩ , but now morphisms are isometries (of the Isometry2 type) between 
these pairs. There is a forgetful functor relating Lor and ���� : although the objects 
in these categories are the same, the former has fewer morphisms than the latter.17

Halvorson and Manchak point out that diffeomorphisms between differentiable 
manifolds needn’t preserve a great many affine or geometrical features—e.g., lengths 
of curves, the timelike/spacelike nature of vectors, or flatness [10, pp.  9–10]. 
Accordingly, they claim that—historically—philosophers writing on the Hole Argu-
ment have been confused insofar as they have focussed on diffeomorphisms: in their 
preferred language of category theory, the claim is that authors have mistakenly 
focused on Man or ���� , whereas instead authors should have recognised the cor-
rect category as being Lor , which has a more discerning notion of equivalence.

As a statement about the correct category to consider, we can grant that this 
is correct—although we find Halvorson and Manchak’s historical claim not to be 
entirely fair. Indeed, as we mentioned in Sect. 2, the term ‘diffeomorphically related’ 
as it applies to models is really a shorthand for models whose tensorial contents are 
dragged along by a diffeomorphism; nobody ever suggested otherwise. In any case, 
though, the claim that one should use Lor is certainly endorsed implicitly by com-
mentators such as Fletcher [8] and Weatherall [28]. But the real question is: does 
using the standard of equivalence of models afforded by Lor suffice to block the 
Hole Argument? For the reasons already discussed above, we think not: even if one 
thinks (as, we take it, with Weatherall, Fletcher, and Halvorson and Manchak) that 
using the standard of equivalence of models afforded by Lor implies Structur-
alism, we have already seen that this commitment by itself is insufficient to block 
the Hole Argument.

17  For accessible background to the relevant category theory here, see [27].
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4.3 � The Essentialism Tension

Towards the end of their article ([10, §7]), Halvorson and Manchak draw a com-
parison between their own work and Maudlin’s ‘metric essentialist’ response to the 
Hole Argument [14]. Recall that, on metric essentialism, spacetime points have their 
metrical properties essentially, so that in fact only one of the class of possible worlds 
represented by models of general relativity related by a hole diffeomorphism is a 
genuine metaphysical possibility. Halvorson and Manchak profess to being inspired 
by Maudlin’s attendance to the metric as being important in resolutions of the 
Hole Argument—although, quite rightly, they acknowledge that the details of their 
response differ substantially from the details of Maudlin’s (mathematical considera-
tions versus heavy-duty metaphysics, respectively).

They then proceed to make a claim about Maudlin’s views which we find prob-
lematic. Consider a theory T ′ (see [10, p.  26]), according to which (i) there are 
exactly two people, (ii) exactly one of those people has blond hair, and (iii) hair col-
our is an essential property. On T ′ , Halvorson and Manchak write that

if T ′ has a model where Alice has blond hair, then it cannot have a model 
where Bob has blond hair; because if Alice has blond hair in one model, then 
she has blond hair in all models. However, Tim is now in an awkward position: 
he does not know what the models of his theory are until he determines which 
person has blond hair. So, to the extent that knowing a theory is knowing what 
possibilities it permits, Tim does not even know his own theory. In contrast, I 
know exactly which possibilities my theory permits. [10, pp. 26-27]

The idea here seems to be that, if hair colour is an essential property, then Alice 
and Bob cannot be represented as having different hair colours in different models 
of T ′ . This strikes us as confusing mathematics and metaphysics: hair colour being 
an essential property is a metaphysical issue; T ′ can have models in which Alice 
has blonde hair and hair colour is an essential property, and models in which Alice 
has some other hair colour and hair colour is an essential property—it’s simply that 
one of those models—if hair colour is indeed an essential property!—will not corre-
spond to any possible world.18 For this reason, Maudlin’s metric essentialism is not 
confused in the way that Halvorson and Manchak suggest.19
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