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Abstract
We derive the first analytical formula for the density of "Dark Matter" (DM) at all 
length scales, thus also for the rotation curves of stars in galaxies, for the baryonic 
Tully–Fisher relation and for planetary systems, from Einstein’s equations (EE) and 
classical approximations, in agreement with observations. DM is defined in Part I 
as the energy of the coherent gravitational field of the universe, represented by the 
additional equivalent ordinary matter (OM), needed at all length scales, to explain 
classically, with inclusion of the OM, the observed coherent gravitational field. 
Our derivation uses both EE and the Newtonian approximation of EE in Part I, to 
describe semi-classically in Part II the advection of DM, created at the level of the 
universe, into galaxies and clusters thereof. This advection happens proportional 
with their own classically generated gravitational field g, due to self-interaction of 
the gravitational field. It is based on the universal formula ρD = λgg′2 for the density 
ρD of DM advected into medium and lower scale structures of the observable uni-
verse, where λ is a universal constant fixed by the Tully–Fisher relations. Here g′ is 
the gravitational field of the universe; g′ is in main part its own source, as implied in 
Part I from EE. We start from a simple electromagnetic analogy that helps to make 
the paper generally accessible. This paper allows for the first time the exact calcula-
tion of DM in galactic halos and at all levels in the universe, based on EE and New-
tonian approximations, in agreement with observations.
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1  Introduction

The notion of dark matter (DM) was introduced by Zwicky in 1933 to explain 
additional gravitational forces that were noticed in the universe, in very large 
structures. In the ensuing century, hundreds of studies have verified the existence 
of DM in large cosmic structures, in galaxies and their cluster formations. In gal-
axies, DM causes constant rotation velocities of stars in the periphery, instead of 
a r−1/2 decrease predicted by Newtonian dynamics. In clusters of galaxies DM is 
needed to explain their stability and the presence of considerable gravitational 
lensing effects. So far DM revealed itself only through its gravitational effects, 
including lensing.

According to the “Lambda Cold Dark Matter” (ΛCDM) standard cosmologi-
cal model, about 26.5% of the mass of the universe is DM [1]. Ordinary matter, 
including gas, plasma, dust, stars, planetary systems, galaxies and clusters, repre-
sents about 4.9%. The rest is considered to be dark energy [1], of unknown origin, 
represented by the cosmological constant in Einstein’s Equations (EE).

This paper presents, in two Parts, our investigation that identified DM as gravi-
tational field energy of the universe, also solving the DM problem for the first 
time, based only on general relativity (GR) and its classical, Newtonian, approxi-
mation that is applied wherever possible. Part I introduces the notion of coherent 
field mass, evaluates it as the DM, thus defined in the observable universe, and 
explores it both classically and in GR in Sects. 2.2–2.6. It finds DM to be domi-
nant over ordinary matter at the larger and largest scales.

Based on this dominance of DM, Part II anticipates some features and results 
of any exact, all-encompassing solution of Einstein’s equations for the observable 
universe, including structures, fields, their interaction and motion on all length 
scales. It yields a simple universal gravitational field self-interaction formula, a 
key for calculating DM at all lower scales of the observable universe. Surpris-
ingly, this simple field interaction formula, this "key" leads to a remarkable sim-
ple GR-based solution of the DM problem in galaxies and other structures in 
Sects. 3.1–3.7. It correctly describes this situation, where DM becomes mainly its 
own source at the largest scale. Readers may focus directly on this second Part, 
reading first Sects. 3.1–3.7, then Sects. 2.3–2.6. They may accept the presence 
of five times more DM based on GR, or almost that much, classically. They first 
may want to see how this approach can explain all DM GR effects with sur-
prisingly simple, quasi-classical means, including the rotation curves of stars 
in galaxies, the baryonic Tully–Fisher relations, DM distribution in colliding 
clusters of galaxies, and the cosmic web. They also may want to see the deriva-
tion of the general distribution law of DM in structures of any size. At the end, 
these readers may eventually want to go back to Sects. 2.1–2.6, to understand 
intuitively why classical Newtonian calculations were applicable in the second 
part, to the Ansatz on dominant DM in the universe, as they were used success-
fully in detail in Sects. 2.1–2.6, and compared to GR at each step.

Following the actual history of this investigation since 1975, we start in 
Sect.  2.1 with an elementary, generally accessible analogy, by first introducing 
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both, the electromagnetic-coherent kinetic, and mechanical-"incoherent," kinetic 
energy contributions from electric currents. In this analogy, they correspond to 
dark and ordinary matter, as we shall see, in the gravitational case. We then intro-
duce the coherent kinetic gravitational field notion, to evaluate the amount of DM 
at different length scales in Sect. 2.2, showing that almost all DM is actually gen-
erated at the scale of the observable universe, not independently at lower scales. 
Based on the spirit of GR, we early introduce in Sect. 2.2  our "DM key," a sim-
ple formula for the local density ρ of DM, which is caused by, and contributes to, 
the curvature of space–time.

In Sect. 2.3 we present our first general relativistic derivation of the result N′rs, 
starting from the spherically symmetric Schwarzschild solution of Einstein’s equa-
tions. which verifies the classic Sect. 2.1, Our Ansatz in Eq. (2), is verified on the 
basis of GR in Sect. 2.4.

Sect. 2.5 is dedicated to a detailed classical calculation of the energy of the coher-
ent gravitational field of the observable universe in static, spherical, symmetry and 
of its relation to the energy of ordinary matter, expressed in the parameter s".

Sect.  2.6 uses the result of the lowest order static GR calculation in spherical 
symmetry of the coherent gravitational energy density t00 in Appendix 2, to obtain a 
GR derivation of the parameter s″ in spherical symmetry.

The somewhat laborious Part I is important. Indeed, it shows how even low-order 
GR calculations improve the Newtonian approximations in general, increasing the 
agreement with observations within an order of magnitude. The similarity, estab-
lished at the level of the observable universe in two symmetries between Newtonian 
and GR approaches, provides the basis for applying the Newtonian approximation to 
DM in Part II, and the basis for the Ansatz that describes the accretion of universal 
DM to the gravitational fields of lower-scale structures.

In Part II, Sect. 3.1 brings an investigation of expected features of any exact GR 
solution for the whole observable universe at the level of planetary systems, galax-
ies or clusters thereof, and of the whole universe. This shows how the large amount 
of mainly self-generated DM present at the level of the whole universe coherently 
inflates the gravitational field of lower-level structures, with accreted DM described 
by an Ansatz of third-order in the deviations hμν of the metric coefficients gμν from 
their Euclidian values.

In Sect.  3.2 we explain the rotation curves of stars in galaxies, based on the 
observed general proportionality (also expected from the nonlinearity of the GR 
field equations and self-sourcing of DM) of the DM density accreted into galaxies, 
with their own gravitational field, generated by their baryonic matter. This is done 
with our "DM key."

Sect.  3.3 derives the empirical Tully–Fisher relation relating the total ordinary 
(baryonic) mass of a spiral galaxy to its peripheric rotation speed; on this basis we 
adjust both the universal "key" for finding the DM accreted into lower-scale struc-
tures and the exact form of the rotation curves of stars in galaxies. We then look for 
possible DM effects in the solar system in Sect. 3.4, and find them negligible.

In Sect. 3.5 we describe qualitatively, based on GR, how the self-interaction of 
the coherent gravitational field of the universe can yield the cosmic web, with non-
uniformities initially triggered by quantum fluctuations as we assume, and decorated 
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by ordinary matter. Sect. 3.6 brings the connection with the present ΛCDM cosmo-
logical model, with references and a discussion of our first derivation of the well-
known Tully–Fisher relations from the classical approximation of GR.

We discuss our results and further research avenues in Sect. 3.7. We also present 
there our methods based on our gravitational generalization s″ of the s-parameter 
of our universal engineering formulas of the ubiquitous fundamental 1/f noise, as a 
new aspect of quantum mechanics.

The First Appendix describes the electromagnetic classic analogy both in cylin-
dric, and in static, spherically symmetric, symmetry. The Second Appendix brings 
the details of the static, spherically symmetric, GR calculation in lowest order of the 
deviations hμν of the metric coefficients from the Euclidian metric.

This paper is interdisciplinary in nature, and the references to well-known astro-
physical facts are not optimal, but are rather cited as examples. Previous research on 
DM mainly tried to identify weakly interacting particles that could be accounting for 
DM.

2 � Classical and Relativistic Calculation of Dark Matter in Two 
Symmetries for the Universe

2.1 � Conventional and Coherent Kinetic Effects

Consider first a n-type semiconductor wire carrying a current J and a current of par-
ticles J/e. Per unit length of the wire, the conventional kinetic energy of the drift 
motion of the current carriers of mass m and drift velocity vd is N′mvd

2/2. On the 
other hand, the coherent magnetic term, i.e., the magnetic addition to this kinetic 
energy is LJ2/2c2 = Le2vd

2N′2/2c2. Here L is the autoinduction coefficient per unit 
length. Only the latter, coherent, term is quadratic in N′, the number of carriers per 
unit length along the current. At low N′ the coherent (magnetic, ~ N′2) term can be 
neglected, but at large N′, e.g., in a copper wire or heavily doped semiconductor, 
the first term, linear in N′, is negligible. We show here how this carries over to the 
gravidynamic domain, and how it explains the nature of DM. Although this paper is 
in essence completely independent of our universal quantum theory of fundamental 
1/f noise, we show how it grew out of some basic considerations that also led to 
our 1966 turbulence theory of 1/f noise and to the related subsequent discovery of 
the universal Quantum 1/f Effects (Q1/fE), practically important in most domains 
of high-tech engineering. This was immediately applied [2] also to GR, at the same 
time, in 1975.

Indeed, in earlier papers [2, 3] we have discussed the conventional and coherent 
gravidynamic Q1/fE, as well as the proposed indirect observation of gravitons in 
macroscopic streams of matter. The two gravidynamic Q1/fE were derived and dis-
cussed in analogy with the corresponding QED effects. To explain the two forms of 
fundamental 1/f noise observed in electronoc and microelectronic devices, we also 
identified the cause of these Q1/fE and the energy types, or terms in the hamilto-
nian, of the current carriers in semiconductors, connected with both forms of the 
QED-Q1/fE. For the conventional Q1/fE this term is the mechanical kinetic energy 
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mvd
2/2 of the drift velocity vd of the carriers, an energy proportional to the number 

N′ of carriers per unit length of the current path. As for the much larger coherent 
Q1/fE, dominant in large devices or semiconductor samples, it is connected to the 
coherent, collective, magnetic form of kinetic energy, associated with the drift of 
the carriers. This form is proportional to the square of N′, and is therefore consid-
ered “coherent”. The ratio between these two forms of kinetic energy in a given 
current or flow of particles defines the parameter s, which we introduced to predict 
for engineers the fraction of coherent Q1/fE, compared to the conventional Q1/fE 
in solid state devices. Dropping the subscript d in the drift velocity vd, we obtain 
in cylindrical symmetry for the length unit of a long straight current J = N′ev, with 
Boutside = 2 J/cr, with CGS Gauss nonrationalized units

Here J is again the electric current of the particles of mass m and charge e, B its 
magnetic field, and R0 is the radius of the electric circuit, a cut-off for the logarith-
mic divergence. We introduced the classical radius of the electron re = e2/mc2 = 2.8 
10–13 cm. The magnetic energy inside the radius of the wire a, if included also, with 
uniform current density, contributes the term 0.25, simply added to the logarithm 
here (see Appendix 1). This detail was suppressed in the second line of Eq. (1). The 
element of volume per unit length in cylindrical symmetry is dτ = 2πrdr. The loga-
rithm is considered of an order of magnitude not too far from unity and the rectan-
gular bracket with it is set ≈ 1.

It is interesting that the ratio of the mechanical and magnetic field terms of the 
kinetic energy (both proportional to v2) is independent of the drift velocity v, and 
should be constant also in the limit of vanishing velocity v = 0. It is a mass ratio, 
independent of the inclination of the world line, or world corridor, of the hyperbolic 
angle to the time axis in four dimensions. With increased doping, as the number of 
current carriers in a salami slice of thickness re increases and becomes larger than 
1/2, the rest mass (or rest energy) that must be used to calculate the total kinetic drift 
energy of the carriers gradually shifts from the particles to their collective, coher-
ent, electromagnetic field. We do not call the magnetic coupling “non-minimal,” to 
distinguish it from the coupling through the electric field in the rest frame. They are 
the same coupling, seen from different frames of reference, related through Lorentz 
transformation. (see Appendix 1).

The magnetic field B can be written as B = v × E/c, where E is the electric field 
2N′e/r that would be present in cylindric symmetry from the moving current carri-
ers in the semiconductor in the absence of the neutralizing lattice. It can be obtained 
from E by Lorentz transformation.

(1)

s =

[

∫ B2d�∕8π

]/
[
N�mv2∕2

]

=

{
[
4J2∕8πc2

]
[

∫ 2πrdr∕r2
]}/

{
N�mv2∕2

}

= e2N�2v2
[
0.25 + ln

(
R0∕a

)]
∕
{
c2N�mv2∕2

}

= 2N�
(
e2∕mc2

)[
0.25 + ln

(
R0∕a

)]
≈ 2N�re.
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In GR we expect to find also an analogue v × g/c of the magnetic field vec-
tor B, similar to v × E/c, as the kinetic coherent gravitational field generated by 
the axial motion of a straight, very long, column of particles of mass m, with N′ 
particles per unit length. In Sect. 2.3 we show how the results of this conjecture, 
based on analogy, are tested in GR. This kinetic field is expected to be present in 
addition to the static gravitational field g = − 2GmN′/r (Gauss’s law) in cylindri-
cal symmetry. This coherent kinetic gravitational field is obtained from g by cross 
product with its drift (ordered, collective, component of the) velocity v. This 
is not a relativistic invariant calculation. It is done for low v, close to the local 
frame. We obtain thus for the gravidynamics case, by analogy,

Here we introduced the Schwarzschild radius rs = 2Gm/c2 of the particles, bod-
ies, or systems of mass m in the beam, stream, or jet of matter, distributed with 
circular cross sectional area of approximate radius a. R0 is again the radius of the 
very large circuit that would close the stream into a torus for cut-off. The gravita-
tional energy inside the radius of the wire a, if included also, with uniform matter 
current density, contributes again the term 0.25, simply added to the logarithm 
here (see Appendix 1).

The ratio s” is again independent of v. It is again independent of the inclina-
tion of the world line, or world corridor, of the flowing matter, to the time axis. 
Most important, the coherent gravitational energy term in the total kinetic energy 
is again proportional with N′2, similar to the electrodynamic case. (It was always 
known that in the rest frame, the gravitational energy per unit length of the col-
umn -GN′2m2/4 was coherent, i.e., also proportional to N′2; see Appendix 1). In 
addition, there is also a contribution proportional to v2 in a moving frame, like 
the mechanical kinetic energy, at low speed. This corresponds to the presence of 
an additional coherent field mass, Mcoh, proportional to N′2. It is larger than the 
mechanical kinetic (ordinary) mass m by the factor N′rs. This factor may often be 
much less than unity, as we show below even for a system as large as a galaxy. 
However, for very large cosmic streams, for huge material flows of galaxies on 
the scale of the observable universe or beyond, this factor may become notice-
ably larger than unity, as we see below. The additional coherent field mass Mcoh 
is in turn, also the source of a gravitational field in GR, the mass of which adds 
again to the total gravitational field mass, iteratively, thus defining a total coher-
ent field mass Mdark. This important “Additional Nonlinearity,” discussed in the 
next section, contributes to an effective enhancement of the factor N′rs, allowing 
for the definition of a N′rsEff and of an Mdark > Mcoh. The incoherent gravitational 
field contributes to the mass of the particles (e.g., planetary systems including 

(2)

s�� = sg =

[

∫ (� × �∕c)2d�∕8πG

]/
[
N�mv2∕2

]

=
[
4Gm2N�2v2∕(8πc2N�mv2∕2)

]

∫ 2πrdr∕r2

= 2
(
GN�m∕c2

)[
0.25 + ln

(
R0∕a

)]

≈ 2N�Gm∕c2 = N�rs.
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the star), and its ordered-incoherent (negative) energy contribution, proportional 
to N′, is contained in the mechanical kinetic energy of the ordered motion of the 
particles. It is present in the denominator of the first form of Eq. (2), and also in 
the energy of the disordered motion (e.g., of stars).

We consider a simple Lorentz transformation along the streaming direction from 
the local frame of the system of particles with low drift velocity v, to a frame at 
rest with the surroundings. This transformation was expected to only yield the drift 
mechanical kinetic energy of the particles, N′mv2/2 to lowest order in v. However, 
from Eq. (2), we expect the same Lorentz transformation, to also lead to a N′rs times 
“larger” coherent kinetic field energy (also quadratic in v in lowest order. Usually 
N′rs <  < 1 at lower scales than the observable universe, as shown by Eq. (10) below.) 
By comparing the coefficients of v2, we notice the presence of an additional mass of 
coherent gravitational nature, arising as a collective field mass, in fact from GR (see 
Sect. 2.3, 2.5, 2.6,  3.1–3.5). We may call this the coherent mass, the key for under-
standing the DM. This is in fact the gravitational (metric curvature) field energy of 
the large system of particles or objects, as we explain below. It must be a coherent 
mass, present also in the rest system, coherent at all scales, as we reason. It should 
be a result of Einstein’s field equations, Eq.  (6), as we show in Sect. 2.3–3.4. We 
may therefore drop the qualification “kinetic” for this mass.

We do not call the coherent gravitational coupling different, or “non-minimal,” 
to distinguish it from the coupling through the g field in the rest frame. They are the 
same GR coupling, seen from different frames of reference, related through Lorentz 
transformation. (see Appendix 1).

The result s″ = N′rs for the coherent gravitational field energy, or DM fraction, 
was derived in Eq. (2) in cylindrical flow geometry for a very long straight column 
of particles. Since the universe is considered flat, (see after Eq. 6) with the observ-
able universe embedded homogeneously, our derivation would be applicable for the 
observable universe. Indeed, the observable universe would then be seen as part of 
a very long column of particles, moving in axial direction with a virtual, arbitrarily 
low speed v, which drops out from Eq. (2).

Considering on the intermediate scale the observed reticular cosmic web struc-
ture of the observable universe, a small region in any of the long branches of dark 
matter decorated with galaxies and other forms of baryonic matter, could also be 
considered to have cylindrical symmetry, for the purpose of approximating its coher-
ent gravitational field energy.

On all lower scales, N′rs will over-estimate the DM fraction at long distances 
from the center of the structure, and under-estimate it at very small distances. This 
follows from comparing the 1/r dependence with a 1/r2 decrease at distance r. We 
shall still use N′rs even at lower scales as a first approximation for estimating upper 
limits for the field energy, and eventually replace it with the much better calculation 
that uses our "key" ρ = λgg′ for the DM density ρ in Part II below.
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2.2 � Dark Matter Fraction in the Observable Universe

Consider the observable homogeneous, isotropic universe with size Ru = 46.5 109 
light years [4] in all directions, i.e., 4.4 1028 cm, containing about N = 2.1012 galax-
ies [5, 6]. In cylindrical flow symmetry, an approximation of the number of galaxies 
per unit length, N′, in an equatorial plane of the observable universe is obtained by 
multiplying the number density in galaxies/cm3 with the area πRu

2 of that equatorial 
plane

Considering a representative mass of a galaxy [7, 8] to be M = 1045 g, like our 
Milky Way, we obtain

Thus,

This result shows that the expected DM in the observable universe could be about 
five time the amount of ordinary matter noticed, or visible, in various forms: galax-
ies, including stars planets, gas and clouds of dust. This is in agreement with the 
cosmic observations [1]. In fact, we have defined here DM as the additional ordi-
nary matter that would be needed to explain classically the observed gravitational 
fields.

2.2.1 � Additional Nonlinearity

At first sight, this evaluation and identification of the large scale coherent field 
energy of the universe as the mysterious DM seems hard to reconcile with the 
known inhomogeneous distribution of DM along the branches of the observed cos-
mic web, trapping galaxies, gas and dust that decorate the web. However, the addi-
tional iterative nonlinearity mentioned in the preceding section, will cause a large 
field enhancement in places where visible matter and fluctuations have initially cre-
ated a stronger field. This nonlinearity may yield agreement with the number 5 even  
for a lower average galaxy mass in Eq.  (4). The uniform distribution of DM that 
could have perhaps been expected initially from our calculation, would have been 
unstable against small perturbations, due to the attractive nature of gravitation that 
acts also on the field itself according to Einstein’s equations (EE), i.e., due to the 
gravitational field generating its own gravitational field. The latter contributes to the 
curvature of 4-dimensional space, expressed by the Riemann-Christoffel curvature 
tensor Rκ

λμν, by the Ricci curvature tensor Rκ
κμν = Rμν, and by the curvature scalar 

Rμ
μ =  R . The latter includes a contribution from the local density and motion of 

(3)
N� = [2 ⋅ 1012∕1.33πR3

u
][πR2

u
]

= 6 ⋅ 1012∕4Ru = 1.5 ⋅ 1012∕4.4 ⋅ 1028

= 3.4 ⋅ 10−17 cm−1.

(4)rs gal = 2GM∕c2 = 13.3 ⋅ 10−8.1045∕9 ⋅ 1020 = 1.48 ⋅ 1017cm.

(5)N�rs = 3.4 ⋅ 10−17 cm−1.1.48 ⋅ 1017 cm = 5.032 ≈ 5.
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DM, which appears in the total energy -momentum tensor Tμν. Repeated indices are 
summed over.

Einstein’s field equations of general relativity can be written as

where Tμν is the energy–momentum density tensor of matter and field of any nature. 
Λ is the cosmological constant, describing the pressure-like effect of "dark energy." 
The latter is needed to explain the observed acceleration of the Hubble expansion of 
the universe. As a property of vacuum, dark energy flattens the universe, compen-
sating over the largest scale the curvature of spacetime introduced by ordinary and 
dark matter. The latter is calculated by us here as the coherent gravitational field of 
the universe, i.e. as a curvature of space–time. The gravitational field potentials, in 
form of the metric coefficients gμν, are actually present on both sides of Eq. (6). This 
causes the peculiar self-interaction of the gravitational field, a self-amplification at 
largest scales, where the field becomes dominant, also allowing for the accretion 
of coherent gravitational field mass (generated by the universe) by the weaker field 
of smaller structures, causing also field clumping and collapse processes. Making 
from now on abstraction of Λ, which describes the "dark energy," and contracting 
with gμν, we obtain

where T  = Tμ
μ = gμνTμν.

The numerator in Eq.  (2) represents the coherent kinetic gravitational field 
energy, or DM kinetic energy, generated by the ordinary matter in motion. It repre-
sents a part of the t00 component, of the tμν “tensor” density of the gravitational field, 
which will be defined and evaluated in Sects. 2.3, 2.5, and 2.6. This will show, at 
least in a Lorentz covariant way, how the density of DM ties in. The quotation marks 
express this limited covariance, restricted to quasi Minkowskian coordinates, that 
approach the Minkowski metric far from the system considered.

The coincidence with the number 5 can be considered to be fortuitous, since the 
Milky way is above average in mass, but the order of magnitude obtained is our 
most interesting result. Indeed, we can start again in cylindrical flow symmetry from 
the known critical density of matter in the universe, ρcrit = 9.47.10–30 g/cm3, of which 
about 5%, i.e., about ρo = 4.74.10–31  g/cm3 is found to be ordinary matter. Then, 
Mu = ρo4πRu

3/3, (with Ru as the radius of the observable universe), approximates its 
mass. Dividing by N, the estimated total number of galaxies, we obtain the average 
mass of a galaxy Mg = ρo4πRu

3/3N, and its Schwarzschild radius rs = 8GρoπRu
3/3Nc2.

Following the approximation used in Eq. (3) and dividing again N by 4Ru/3 to get 
N′, we obtain N′rs = 2GρoπRu

2/c2. With Ru = 45.109ly = 4.1028 cm, we finally get

We notice that s” is in fact not dependent on both the number and size of galax-
ies, and can be related directly to the contribution of ordinary matter to the critical 

(6)Rμν − gμνR∕2 + Λgμν = 8πGTμν∕c
4,

(7)−R = 8πGT∕c4,

(8)
s�� = N�rs

= 1.33 ⋅ 10−7 ⋅ 4.74 ⋅ 10−31 ⋅ π ⋅ 16 ⋅ 1056∕9 ⋅ 1020 = 0.35.
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mass density of the universe. Our coherence parameter N′rs can actually be written 
as s″ = ΣiN′irsi, where the index i denotes the number N′i per length unit, of various 
groups of galaxies with differing masses and Schwarzschild radius values rsi.

The very largest scale, of the order of the observable universe, is essential for our 
result in Eq. (5). Indeed, if we consider only a single galaxy, e.g., the milky way, we 
show here that the additional coherent gravitational field mass generated locally by 
the galaxy is negligible compared with the mass of the galaxy. The actual amount of 
DM present in the galaxy will thus include mainly DM generated by the universe, and 
attracted by the galaxy in varying amounts, like a foreign substance.

As an example, let us thus evaluate in cylindrical flow symmetry the fraction of the 
own coherent gravitational field energy or DM, generated locally by the ordinary mat-
ter, mostly visible, in a galaxy alone. With about 1011 stars moving along a 104 light 
years thickness of the disk-shaped galaxy, in a flow along the axis of the galaxy, we 
obtain

Considering the mass of the sun M = 2.1033 g, as representative for the mass of a 
star, we obtain the Schwarzschild radius of a star to be

This yields a ratio of coherent gravitational field mass, created in the galaxy, to ordi-
nary mass, given by

When the flow is considered realisically along the 2.105 ly diameter of the galaxy 
(or for a smaller galaxy), the result obtained will be even 20 times smaller. This estima-
tion is qualified by the observation at the end of the preceding Sect. 2.1, on the limited 
validity and likely overestimation connected with the parameter N′rs.

This indicates that the coherent gravitational field mass created specifically by a 
single galactic flow of ordinary matter is indeed negligible. However, we expect also 
a much larger coherent gravitational mass generated by the global flow, represented 
by the observable universe, and attracted in variable proportions into the respective 
galaxy, in a way "guided" by the small amount generated in the galaxy. According to 
Newton’s law of universal gravitation, the force on universe-generated DM of density 
proportional to g′2, which can be attracted into a galaxy, is proportional with both: the 
universe’s DM density ~ g′2, and the field of the galaxy g. Indeed, the field g is defined 
as the force acting on the mass unit. In the local frame Newtonian physics applies. We 
will assume that the advected DM density is proportional to this force density and can 
be approximated by cubic terms like gg′2. This "guidance" or "amplification" of the 
small gravitational field "g," generated by a single galaxy, will be caused through the 
nonlinearity of EE, in which the field interacts with itself, and also generates its own 
field. It can be understood like the coherent addition of a large term g′ to a small term g 

(9)
N� = 1011∕104ly = 1011∕

[
104ly ⋅ 9.5 ⋅ 1017 cm∕ly

]

= 1011∕9.5 ⋅ 1021cm = 1.05 ⋅ 10−11 cm−1.

(9a)
rs = 2GM∕c2 = 2 ⋅ 6.67 ⋅ 10−8.2 ⋅ 1033∕9 ⋅ 1020 cm

= 3.105cm = 3 km

(10)N�rs = 10−11 cm−1
⋅ 3.105 cm = 3 ⋅ 10−6.
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in a higher order term of a series expansion, e.g., a cubic term (g + g′)3 = g′3 + 3gg′2 + 3
g2g′ + g3. This results in terms like 3gg′2 that amplify the energy density caused by the 
original small term g, contributing a much larger term 3gg′2, advected into the galaxy, 
proportional to g; in general this is an advected DM concentration

with a proportionality coefficient λ. This creates the appearance, as if only the 
source of g (i.e., the baryonic matter in a galaxy) would be present, creating and 
commanding the whole dark matter amount present in a galaxy. All DM is assumed 
to be coherent with itself, at most levels, as the coherent gravitational field of the 
observable universe. As we shall see below, this explains the peculiarities seen in 
the well-known Tully–Fisher and Faber-Jackson relations, as well as the rotation 
curves of stars in galaxies: the baryonic make-up of the galaxy determines the larger 
DM effects. Furthermore, being proportional to the small gravitational field g gener-
ated by the galaxy itself, the total DM concentration in the galaxy will not show a 
peak in the centrum of the galaxy where g is zero. DM avoids the center of mass. A 
DM peak, or accumulation, was predicted by ΛCDM models and simulations in the 
center of galaxies. This absence of a DM peak is consistent with the observed New-
tonian rotation velocities of stars in this central region. Nonlinearities higher than 
quadratic, e.g., cubic, known to be present in EE, will shape this amplification of 
the own gravitational field of the galaxy. While g represents the galaxy’s or cluster’s 
own gravitational field in this estimation, and g2 is a measure of its own generated 
DM density, the term g′2 corresponds to the much larger, more uniform DM back-
ground density of the universe, practically constant in the galaxy and in its DM halo 
region. The large amount of universal DM attracted into the galaxy could thus be 
considered to be proportional to gg′2.

The result in Eq.  (5) suggests that DM could exceed the visible matter in 
galaxies. This order of magnitude calculation shows how the observed fluctuat-
ing ratio of dark to visible matter in the universe can be also understood at the 
local level. Practically all of the DM found in galaxies is not locally generated, 
but is attracted into the galaxy, as we mentioned, being generated at the level 
of the observable universe. The fact that DM can be physically independent and 
separated from ordinary matter like a mysterious substance avoiding the center 
of mass, is noticed clearly [9] in the Bullet cluster. Indeed, In the Bullet clus-
ter about 2/3 of the mass is in the hot gas that emits X-rays. That is where the 
center of mass of this structure is, after the collision with the smaller "bullet" 
part happened about 150 million years ago. The dark matter created at the level 
of the universe is attracted into the cluster proportional everywhere, to the much 
smaller own gravitational field of baryonic matter in the cluster. This field avoids 
the center of mass, and is present [9] on the periphery and in front of the bullet 
part, in the direction of its motion, where the total own gravitational field of both, 
the hot gas and the stars that just went through in the collision, is maximal. It is 
also present, with accreted DM, in a general peripheral halo. A more detailed cal-
culation is possible with the "key" λgg′2 introduced in Eqs. (11) and (59) below, 
by first mapping the own gravitational field g of the baryonic matter in the cluster. 

(11)ρ = λgg�2,
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In a second step, using this mapping, the DM is calculated with density ρ = λgg′2 
in every point. This would yield a DM concentration distribution that is very low 
in the vicinity of the center of mass, being close to zero there, while the baryonic 
concentration is finite, as can also be shown in individual galaxies. As shown for 
a single galaxy in Sects. 3.2–3.4 below, the DM will be in general present in a 
halo around the cluster system, where we also find the stars that passed the collid-
ing hot gas region. The DM is observed indirectly also through its lensing effects.

2.3 � General Relativistic Calculation in Cylindrical Symmetry

The ad-hoc expression, based on an electromagnetic analogy, proposed in the 
numerator of Eq.  (2) for the coherent kinetic gravitational field energy may seem 
over-simplified. However, by writing Einstein’s field equations in a form that is not 
manifestly covariant, we can express the energy–momentum “tensor” of the gravi-
tational field of a matter flow system and its 00 component in a form that displays 
its dependence on N′2 and v2 that was obtained in Eq. (2). Indeed, consider a quasi-
Minkowskian coordinate system, with a metric tensor gμν that reverts to the Euclid-
ian-Minkowskian ημν = (1,− 1, − 1, − 1)δμν. at infinity, at large distances. This met-
ric can be written in the form

where hμν vanishes far from the material system considered, but is not considered 
very small. This allows to define an energy–momentum “tensor” density tμκ of the 
gravitational field in terms of the departures hμν from the Minkowski metric. From 
the definition of the curvature tensor Rλμ νκ and of the Ricci tensor Rμκ = gλνRλμνκ 
with Eq.  (12) we can derive series expansions with respect to hμν. Therefore, as 
shown in Eq. 7.6.14 of Weinberg’s well-known book [10], the energy–momentum 
tensor of the gravitational field can also be expanded in terms of hμν and starts with 
quadratic terms in hμν:

Here R(1)
ρσ

 is the part of the (Ricci) curvature tensor linear in hμν,

R(2)ρσ is the second-order part, and repeating indices are always summed over. In 
Eq. (13), the second-order part of Rμκ is given by the subsequent Eq. 7.6.15 in the 
same book [10].

(12)gμν = ημν + hμν,

(13)
tμ� = (1∕8πG)

{
−(1∕2)hμ�R

(1)λ

λ
+ (1∕2)ημ�h

ρσR(1)
ρσ

+ R(2)
μ�

− (1∕2)ημ�η
ρσR(2)

ρσ

}
+ O

(
h3
)
.

(14)
R(1)
μ�

= (1∕2)
[
�2hλ

λ
∕�x��xμ − �2hλ

μ
∕�xλ�x� − �2hλ

�
∕�xμ�xλ + �2hμ�∕�x

λ�xλ

]
.
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In our electromagnetic analogy, the terms of t00 in curly brackets in Eq. (13) are 
the gravitational field counterparts of the electromagnetic energy density

For the cylindrical flow system considered by us, the second (kinetic) term in these 
analogue expressions (16) is expected to be quadratic in v and in the particle concentra-
tion n′ = N′/S, where S is the cross section of the flow and N′ again the number of simi-
lar objects per unit length in the direction of flow. A similar set of terms proportional 
to n′2 and v2 are expected to be present in Eq. (13). From symmetry we do not expect 
terms linear in v for t00 in Eq. (13).

One may start from the static Schwarzschild solution for the metric of a mass m, 
with isotropic coordinates and with units yielding G = c = 1 numerically

If seen from a coordinate system

moving with the velocity v, with γ = (1 − v2)−1/2, this becomes

Here we denoted A|v=0 = A0 in Eq. (17) and

We have switched here from m to the mass density mn′ and we are considering now 
a three-dimensional flow of particles of mass m and concentration n′. Here the position 
of mn′ at t = 0 is at X, Y, Z. Equations (20) and (21) give the metric coefficients gener-
ated at x,y,z by the mass per unit volume. From Eq. (20) one identifies the metric devia-
tions “tensor” h′μν:

(15)

R(2)
μ�

= (1∕2)hλν
[
�2hλν∕�x

��xμ − �2hμν∕�x
��xλ − �2hλ�∕�x

ν�xμ + �2hμ�∕�x
ν�xλ

]

+ (1∕4)
[
2�hν

σ
∕�xν − �hν

ν
∕�xσ

][
�hσ

μ
∕�x� + �hσ

�
∕�xμ − �hμ�∕�xσ

]

− (1∕4)
[
�hσ�∕�x

λ + �hσλ∕�x
� − �hλ�∕�x

σ
][
�hσ

μ
∕�xλ + �hσλ∕�xμ − �hλ

μ
∕�xσ

]
.

(16)(1∕2)[ρV + (�∕c)�] = (−1∕8π)[V◻2V + �◻2�].

(17)

ds2 =
[(
1 − A0

)
∕
(
1 + A0

)]2
dt�

2

−
(
1 + A0

)4(
dx�

2
+ dy�

2
+ dz�

2
)
, with

A0 = m∕2rrest.

(18)t =
(
t� + vx�

)(
1 − v2

)−1∕2
y = y�

(19)x =
(
x� + vt�

))(
1 − v2

)−1∕2
; z = z�

(20)
ds2 = (1 + A)2

(
dt2 − dx2 − dy2 − dz2

)
−
{
(1 + A)4 − (1 − A)2∕(1 + A)2

}
�2(dt − vdx)2.

(21)

A =
[
mn�

(
1 − v2

)1∕2
∕2

]{
(x − X − vt)2 +

(
1 − v2

)[
(y − Y)2 + (z − Z)2-

]}1∕2

= mn�A�
(
v2, x − X − vt, y − Y, z − Z

)
; A� = A∕mn�
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Here v1 = v is the x-component of v. In a way similar to the derivation of the 
Coulomb potential and field at a distance r from an infinite line of charge, we 
define in the weak field limit the metric deviations hμν for a column of n′ particles 
of mass m per unit volume, and N′ per unit length, in cylindrical symmetry, i.e., 
for the flow we considered

We used here the mass density dM/dXdYdZ = mn′, which yields the mass 
per unit length in the X direction by integration over Y and Z. We notice from 
Eq. (21) that the first power of v occurs in A through the expression x-X-vt. How-
ever, we integrate over X from minus infinity to plus infinity along the column, 
and over Y and Z over the cross section S, in Eq.  (23). By integrating over X 
to get hμν = mN′h″μν, we lost the dependence on the first power of v. Therefore, 
with the exception of h01 and h10, these cylindrically symmetric integrated hμν 
will only depend on v2 and no longer explicitly on v. Also, we see from Eqs. (21)-
(23) that h″ or A′ = ∂A/∂(mn′) do not depend considerably on m or N′ in Eq. (23). 
They will remain small when m and N′ are scaled up to the size of the universe.

Equations  (23) for hμν are now substituted into Eqs. (14), (15) and for t00 in 
Eq. (13). Expanding the energy density t00 in a series in terms of v for v <  < 1, we 
omit the first power based on time symmetry:

(22)h�00 = A2 + 2A − [(1 + A)4 − (1 − A)2∕(1 + A)2]�2;

(22a)h�11 = −A2 − 2A − [(1 + A)4 − (1 − A)2∕(1 + A)2]v2�2;

h�22 = −A2 + 2A

h�33 = −A2 + 2A

(22b)h�01 = h�10 = v[(1 + A)4 − (1 − A)2∕(1 + A)2]�2 = v1F(a);

h�02 = h�20 = 0

h�03 = h�30 = 0

h�12 = h�21 = 0

h�32 = h�23 = 0

h�31 = h�13 = 0.

(23)

hμν = ∫ dh�
μν

= ∫
(
�h�μν∕�M

)
dM

= m∫
(
�h�μν∕�A

)
(�A∕�m)n�dXdYdZ

= mN�h��
μν

(
A�, v, v2

)
.
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From Eqs. (15), (14) and (13) we see that, to lowest order in hμν, the 
energy–momentum tensor tμν is bilinear in hμν and therefore, proportional to N′2. 
By integrating over the whole space in and around the matter flow and by intro-
ducing a notation with T″,

we notice that T″ is independent of m, N′ and v. It remains small if the flow is scaled 
up to the size of the universe. We can thus write the ratio between the coherent 
kinetic field gravitational energy and the mechanical kinetic energy, with units 
restored, to second order in v, in the form

This reproduces Eq. (2) with the corrective factor T’’ that remains of the order of 
unity, even including logarithmic terms, when we scale the flow up to the size of the 
universe. This verifies our result, expressed in Eq. (2) at the level of the energy den-
sity, and concludes our general relativistic consideration for cylindric symmetry. We 
obtain this way our results in Eqs. (2)–(11) both ways. In Sects. 2.5 and 2.6 below 
we obtain a similar result in static spherical symmetry in the co-moving frame. This 
is done classically in Sect. 2.5 and in lowest order GR in Sect. 2.6.

2.4 � Discussion of the Ansatz (v × g)2

We mention that in the last term of R00
(2) in Eq. (15), thus also in t00 of Eq. (13), for 

a column of similar objects in stationary laminar flow along an arbitrary axis, not 
necessarily along the x-axis considered so far, we find terms corresponding to our 
Ansatz v × g. These terms are most important for the increase of t00 above v = 0, at 
low v,

In stationary conditions we approximate ∂/∂x0 = 0, so σ and λ can’t be zero in 
this summation. The remaining terms are like the square of a curl of the equivalent 
gravitational “vector potential” (h10, h20, h30).

Indeed, the components h0l, h02 and h03 of h are in general proportional to the 
components of v as, e.g., in Eq. (22b), i.e., h = vF. We see that F = F(A) is a scalar 
function of A with F(0) = 0, with derivative F′ (0) = 6 and F(A)≈6A≈3 m/rrest. This 
is for large r ≈rrest, corresponding to small A, according to Eqs. (17) and (21), for 
spherical symmetry at very low v, with γ ≈ 1. The spherically symmetric gravita-
tional field would then be approximated by g = -Gmr0/r2, with r0 the unit vector of 

(24)too = t00(0) +
(
v2∕2

)(
�2t00�v

2
)|
|
|v=0

+ higher powers of v.

(25)
(
v2∕2

)

∫
(
�2t00�v

2
)|
|||v=0

2πrdr = 2G2m2(v∕c)2N�2T��,

(26)s�� = sg = 2Gm2v2N�2T��∕c2
[
N�mv2∕2

]
= 2N�GmT��∕c2 = N�rsT

��.

(27)(−1∕4)
[
�hσ0∕�x

λ − �hλ0∕�x
σ
][
�hσ

0
∕�xλ − �hλ

0
∕�xσ

]
.
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r. For cylindrical symmetry, we expect to get F(A) = 3mN′ln(rrest) + const. This is 
proportional to the cylindrical gravitational potential, which has the gradient -g. The 
curl of h(h0l, h02, h03) is thus curlh = - v × gradF = -3mN′ v × ro/r. This is obviously 
proportional to v × g., as in Eq. (2).

More detailed derivations of the magneto-gravitational effects, used in our Ansatz 
of Eq. (2) can be found in the literature [11]. Equation (2) was first introduced by 
Handel in 2003 [3].

2.5 � Classical Derivation of the Dark Matter Fraction of the Universe in Spherical 
Geometry

So far we have considered the observable universe as a column in flow through 
the rest of the universe, and found the coherent gravitational field fraction to be 
N′rs = 0.75rsN/Ru in Eqs. (3)–(5). In a way similar to the static electromagnetic anal-
ogy shown in Appendix 1, we consider here a static observable universe, with spher-
ical symmetry, first classically, then in GR. We calculate the fraction of coherent 
gravitational field energy/mass to the energy/mass known to be present in the ordi-
nary (mainly baryonic) matter of the observable universe. This calculation is done in 
the rest frame of the observable universe.

We consider for simplicity again N = (4πa3/3)n galaxies, all of mass m, to be pre-
sent with a uniform density n in the observable universe of radius Ru = a. From the 
Gauss theorem, the gravitational field is

The classical energy of the gravitational field is

The total rest energy of the field is thus,

(28)� = −(4π∕3)Gnm�; r ≤ a

(29)� = −(4π∕3)Gnm
(
a3∕r2

)
�∕r r > a

(30)
Wint = (1∕8πG)∫

a

0

�24πr2dr

= 2(π∕3)2Gn2m2 ∫
a

0

r4dr = 0.1 GN2m2∕a

(31)
Wext = (1∕8πG)∫

∞

a

�24πr2dr

= 2(2π∕3)2Ga6n2m2 ∫
∞

a

dr∕r2 = 0.5 GN2m2∕a

(32)Wtotal = 0.6 GN2m2∕a
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This can be compared with the rest energy of the ordinary matter, Nmc2. Divid-
ing by Nmc2, we obtain this way, similar to Eq. (2),

Here we defined N′ the same way as in Eqs. (2)–(5), as N′ = 3N/4Ru. We recover 
tis way the results obtained in cylindric flow symmetry with a corrective factor of 
0.4. We thus find the result s″ = N′rs = 5, seen in Eq. (5), being replaced in our clas-
sic calculation in spherical symmetry, by 0.4.5 = 2 i.e., s″ = 2 in Eq.  (33). We also 
find the result s″ = N′rs = 0.35, seen in Eq. (8), replaced here, in static spherical sym-
metry, by 0.14, i.e., s″ = 0.14. As we show in the next section, a similar result can be 
obtained by solving EE in spherical symmetry in lowest order. This similarity with 
Newtonian physics is used in Part II to describe the advection of DM generated at 
the level of the universe into lower-scale structures.

2.6 � Relativistic Calculation of the Fraction of Dark Matter in the Universe 
in Spherical Geometry

We start again with the Schwarzschild solution in isotropic coordinates, Eq.  (17) 
that yields

Other gμν and hμν are zero. All this is for r ≥ a = Ru. For r  < Ru, the interior 
Schwarzschild solution must be used.

Guided by the classical solution obtained in the previous section, we estimate 
the gravitational field energy by integrating its density only over the exterior parts 
of the universe, r > Ru.

For distances r > rs/4, we have |A|< 1 and we can expand the metric deviation 
h00

To lowest order in A, we notice that all nonzero metric deviations hμν equal -4A. 
Then, since Eqs. (13) and (15) are bilinear in hμν when terms of higher order than 2 
in hμν are neglected, we can write, consistently limiting ourselves to hμν calculated 
only to first order in A,

(33)
s�� = (0.1 + 0.5) GN2m2∕amNc2

= 0.8
(
3N∕4Ru

)
rs = 0.4N�rs.

(34)

g00 = (1 − A)2∕(1 + A)2; h00 = (1 − A)2∕(1 + A)2 − 1,

g11 = g22 = g33 = −(1 + A)4;

h11 = h22 = h33 = 1 − (1 + A)4; A = mN∕2r = rs∕4r

(35)
h00 = −4A + 8A2 − 12A3 + 10A4 +⋯

h11 = h22 = h33 = −4A − 6A2 − 4A3 − A4.

(36)tμν = m2N2
<
t��
μνi

(r < R),
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where N< is the number N limited to a radial coordinate below r. Here, again the t″μν 
remain small, when m and N are scaled up to the order of magnitude of the whole 
universe. Equations (36)–(37) are important, in particular, for the energy density t00 
of the gravitational field.

In order to outline, or display, e.g., a first estimation of tμνe in spherical static 
geometry up to second order in hμν, from Eq. (13), we limited ourselves in Appen-
dix 2 at large distances r, only to the first, term, − 4A, in Eqs. (34) and (35). With 
units restored, this yields a lowest order estimate

One identifies tμνe″ this way for μ = ν = 0 as

This energy density can then be integrated over the outside region r > Ru = a, sim-
ilar to the classical case in Eq. (31):

If we assume the internal gravitational energy to contribute another 20%, like in 
Eq. (30) and (31), we obtain

By comparison with the rest energy of ordinary matter Nmc2, we obtain with 
N′ = 3N/4a,

This is twice the classical result in Eq. (33). The corrective factor 0.4 of Eq. (33)
is replaced by 0.8. This would yield 0.8.5 = 4 in Eq. (5). The result s″ = N′rs = 0.35, 
seen in Eq. (8), would be replaced here, in static spherical symmetry, by, s″ = 0.28. 
Including all higher-order nonlinearities present in an exact solution of Eq.  (6), it 
may be possible to obtain the observed DM fraction of 5 with a more realistic galac-
tic mass. We thus gain a rough understanding of the relation between classical and 
low-order GR approaches, which inspires the semiclassical derivations in Part II 
below. It is also remarcable that, when applied to the observable universe, the cylin-
dric-flow and spherical geometries yield the same order of magnitude, with some 
over-estimation in cylindrical symmetry.

(37)tμν = m2N2t��
μνe

(r > R),

(38)t00e = 2Gm2N2∕8πr4.

(39)t��
00e

= 2G∕8πr4.

(40)Wext = ∫
∞

a

t00e4πr
2dr = Gm2N2∕a

(41)Wtot = 1.2 Gm2N2∕a

(42)s�� = 1.2(4∕3)Gm2N�N∕Nmc2 = 0.8N�rs.
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3 � Derivation of Rotation Curves, of the Dark Matter Density Formula 
and of the Tully–Fisher Relation with a Newtonian Approximation 
Ansatz

3.1 � Analysis of the Dark Matter Problem

Any exact solution of EE, including all length scales of the universe, should define 
DM, the coherent gravitational field in the observable universe, and its distribution 
in structures at all lower scales. It should explain the observed structures and their 
motion. It should also explain the absence of DM phenomena at the lowest scale 
of planetary systems, their increasing presence at larger, galactic, scales, and their 
dominance at the scale of the observable universe. This dominance is expected, 
since the field generates its own field, more so at large scales and larger masses, 
where the self-interaction of the field becomes more important. In particular, this 
suggests the importance of the mentioned self-interaction for the largest-scale gravi-
tational fields symbolically denoted with g′, which also causes the cosmic web.

These self-interacting gravitational fields g′ and the corresponding DM gener-
ated with concentration proportional to g′2 at the largest scale of the universe, 
will also interact coherently, in this exact GR solution, with the own gravita-
tional fields g of lower-scale structures, like galaxies and their clusters. At the 
largest scale, the self-interaction of the field is expected to become more impor-
tant than its mutual interaction with ordinary matter, mainly baryonic. We have 
seen this demonstrated, and the dominance of the gravitational field discussed, 
in Part I, Sects. 2.2–2.6 in spherical and cylindrical flow symmetries, classically 
and in lowest order GR. This dominance requires other methods describing the 
strong nonlinearity, as we developed here in Sects. 3.2–3.4. The same idea, of 
nonlinear self-interaction of the dominant gravitational field, has been consid-
ered qualitatively before [12] in terms of the well-known mutual interaction of 
gravitons, in a weak field approximation. Here we treat this nonlinearity with an 
elementary physical Ansatz, first introduced in Eq. (11), which yields universal 
quantitative results, in startling, natural agreement with observations, allowing 
the calculation of the observed DM at all lower scales of the observable universe 
… with a classical, Newtonian, approximation applied to DM!

In Part I, Eq.  (11) we have approximated this self-interaction of the largest 
scale field g′ with the fields g of lower-scale structures, through the formula 
ρ = λgg′2. This is our Newtonian approximation of the GR advection or accre-
tion of universal DM ~ g′2 on the field g of lower-scale structures.

Indeed, since g is the gravitational force acting on the mass unit, and since 
g′2 is a measure of the energy or mass density, of the large scale field g′, we 
consider gg′2 a measure of the force density attracting universal DM into the 
galaxy or other structures considered. In our Ansatz, the advected DM den-
sity is simply considered proportional with the force density that causes it, 
with an effective physical coefficient λ. The latter could be somewhat smaller 
for the few structures found in the voids of the cosmic web. It is startling to 
see how the complexity of Einstein’s equations is simplified again at the largest 
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scale, because of the exclusive dominance of DM, the gravitational field, which 
becomes mainly its own source, for the observable universe as a whole. We are 
using in fact Einstein’s equations in the local frame, which revert to Newton’s 
g and g′ fields and to the simple gravitational force notion, to the force density 
proportional to gg′2 in the classical approximation. This creates the appearance 
that no GR would be involved at all in Sects. 3.1–3.4. In fact we are considering, 
in the local co-moving frame, the large-scale GR metric field, the gravitational 
field, which is mainly its own source in Eq. (6). For this largest scale regime we 
apply a Newtonian field approximation for the coherent advection of DM with 
density ρ = λgg′2, enhancing the gravitational field g of smaller scale structures, 
e.g., galaxies and their clusters.

The local frame is restricted in general to the differential neighborhood of 
the co-moving point in space–time. However, if we consider the coherent gravi-
tational field g′ of the universe relatively constant at the very much lower scale 
of a galaxy or a cluster of such galaxies, our Newtonian approximation could 
still find a limited application, in spite of the larger-scale non-uniformities of 
the cosmic web. There are about 2.1012 galaxies estimated to be present in the 
universe.

Mathematically. such a simplification singles out a particularly important type 
of "third-order-in-g" interactions implied by GR, by Eq.  (6) in the field-domi-
nated domain, but neglected in Eq.  (13). Physically it assumes that the accre-
tion of DM generated at the largest scale is proportional to the force exerted by 
the gravitational field g of lower-scale structures on the large-scale DM density, 
whose measure is g′2.

Our identification of the main nonlinearity, describing the large-scale gravita-
tional field in Einstein’s equations, can explain and derive the rotation curves of 
stars in galaxies, as well as the Tully–Fisher relation, and in general the amounts 
of DM present at lower scales, as shown in the next three sections.

Distance
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a

Fig. 1   After reaching a maximum close to the Newtonian prediction, the same prediction suggested a 
decrease of the rotation speed of stars in galaxies at larger distances from the galactic center, as shown 
by curve A. The observed dependence is shown by curve B. By Phil Hibbs—his work in Inkscape 0.42, 
Public Domain, https://​commo​ns.​wikim​edia.​org/w/​index.​php?​curid=​365013

https://commons.wikimedia.org/w/index.php?curid=365013
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3.2 � Derivation of the Rotation Curves of Stars in Galaxies

The rotation speed of stars of mass m in the outer regions of spiral galaxies has been 
noticed to decrease slower than classically predicted with distance r from the galac-
tic center. Instead of decreasing proportional to 1/r1/2 with the distance r from the 
galactic center (Curve A, in Fig. 1), after reaching the maximum predicted by New-
tonian theory from the increase of the cumulative attractive mass with distance r in 
the central region, the rotation speed of stars remains practically constant, instead of 
decreasing with r; see the observed curve B in Fig. 1.

Based on GR, our understanding of DM as the coherent gravitational field of the 
universe easily explains the rotation curve B and the nature, form, and properties of 
galactic halos.  Indeed, let us assume for simplicity that all the baryonic mass M of 
the galaxy is present at distances less than the first rotation speed maximum, which 
is at almost the same distance a on both curves in Fig. 1. According to Newtonian 
concepts, for r > a, the speed v of stars of mass m, rotating at distances r beyond the 
maximum in Fig. 1, should still be determined by 

Here M is the baryonic mass present in the galaxy. However as we mentioned 
before, at the end of Sect. 2.2, in general, DM generated by the universe with aver-
age concentration proportional to g′2 is attracted into the galaxy that has its own 
field g, by gravitational attraction forces proportional to gg′2. We can thus expect, 
based on the spirit of the GR field equations, the deposition of attracted DM from 
the universe to be also proportional with both the field g = GM/r2 of the baryonic 
matter of the galaxy, and the universal DM concentration g′2 that is constant over 
the whole region around the galaxy, varying over larger length scales. This calcula-
tion "key" corresponds to terms in O(hμν

3) in Eqs. (13), (75) and (83). We therefore 
expect a DM concentration given by the key ρ = λg′2 g = λg′2GM/r2 to be attracted 
and deposited proportional with the own gravitational field g = GM/r2, (for r > a) 
and = GMr/a3 (for r < a), that is generated by that galaxy. Here λ is the coefficient 
of proportionality introduced by Eq.  (11). We obtain thus, for r > a, a cumulative, 
spherically symmetric, DM and baryonic mass for the galaxy, M<, present at dis-
tances less than r, given by

For r ≤ a we obtain, with a DM concentration ρ = λg′2GMr/a3,

(43)mv2∕r = GmM∕r2; v2 = GM∕r.

(44)

M< = M + Gg�
2
M

[

∫
a

0

r3∕a3 + ∫
r

a

]

(λ∕r2)4πr2dr

= M + Gg�2M∫
a

0

(λr3∕a3)4πdr

+4λπGg�
2
M(r − a)

= M − 3λπGg�2Ma + 4λπGg�
2
Mr.
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The cumulative DM in Eq.  (44) increases for r > a, proportional to r, while its 
concentration decreases like 1/r2. From Eq. (44) we obtain then for r > a, in the same 
approximation,

For r ≤ a,

By iteration this converges, because G is small. We notice that Eqs. (45) and (45a) 
reproduce the features of curve B in Fig. 1, provided (d/dr)(v2) ≥ 0 always. This hap-
pens when 3λπGg′2a≈1, i.e., it is as large as (or just somewhat larger by a very small 
amount than) the unity. We prove in Eq. (61) below, on the basis of the Tully–Fisher 
relation that this is indeed the case, with 3λπGg′2a = 1.083. The further slight buck-
ling of curve B beyond r = a may be caused by the presence of some stars even at 
r > a in the arms of spiral galaxies, although we assumed for simplicity that all the 
baryonic mass M of the galaxy is present at distances less than the first rotation 
speed maximum, which is at almost the same distance a on both curves in Fig. 1: see 
Eqs. (47)–(52) for relaxing this assumption. We obtain this way a linear Newtonian 
increase of v for r ≤ a in Eq.  (45a) (the DM part ~ r3/2 of v increases slower, with 
vanishing value and vanishing slope at r = 0) and an essentially constant speed at all 
larger distances. This constant rotation speed could be observed up to a very large 
distance D, where the attraction from other galaxies reduces to zero the total gravita-
tional field g of the galaxy (along with reducing to zero its remaining small DM halo 
density ρ). The total g reverses its sign, by entering the domain of other galaxies. Up 
to these large distances D >  > a, (over 106 ly for the Milky Way or Andromeda), the 
total accreted DM still increases, although its concentration has gradually decreased 
proportional to 1/r2 almost to zero. (Note: there may be a faster decrease of the halo 
density of the galaxy, right before D, if g gets below a certain very low background 
value goo).

By setting r = D in Eq. (44), we obtain the total mass of the galaxy

and the total DM in the galaxy, approximated with D > > a,

(44a)
M< = Mr3∕a3 + 4Gλπg�

2
M∫

r

0

r3∕a3dr

= Mr3∕a3 + Gλπg�
2
Mr4∕a3.

(45)

v2 = G
(
M<

)
∕r

= GM[(1 + λπGg�
2
a)∕r + 4λπGg�

2
(1 − a∕r)]

= GM[(1 − 3λπGg�
2
a)∕r + 4λπGg�

2
].

(45a)v2 = G
(
M<

)
∕r = GM

[
r2∕a3 + Gλπg�

2
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]
.

(46)Mt = M − 3πλGg�
2
Ma + 4πλGg�

2
MD,

(46a)M� = −3πλGg�
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If we would set the background goo to be zero, as a reasonable approximation, we 
would obtain from Eqs. (44a) and (46a) a roughly D/a times larger DM halo mass 
than the baryonic mass at r < a.

The calculation in Eqs. (43)–(45) considers the baryonic mass M of the galaxy 
confined with constant density nm in a central sphere of radius a that is negligible in 
size, compared to the distance D > > a to the domain of the next galaxy. This caused 
us to miss the slight bulge in curve B at r > a.

3.2.1 � Improving the Assumed Galactic Mass Distribution

To improve on this approximation that considers all baryonic mass confined to r < a, 
we may consider instead a more realistic rounded-up continuous distribution of bar-
yonic matter with a resulting field go(r) = α/[r−1 + (r2/a3)], with the same dependence 
on r as g, at both small and large distances,

where

Here < nm > is the average baryonic density ρb for r < a. From the Gauss theorem 
(applied at r = ∞ and at r = a), we see that in this case, a is the median radius of the 
galactical baryonic mass distribution ρb = -(1/4πG)divgo: the same baryonic mass is 
located closer than a, and farther than a. Adding again universal DM with a density 
proportional to go(r) like in Eq.  (44), we obtain the total radial gravitational field 
strength g, generated in the galaxy

where

The integral in Eq. (48) yields

This yields for the rotation speed of baryonic matter in the galaxy at a distance r 
from the center

The last, maximum speed term, in Eq. (51),

(47)go(r) = 4πG < nm > ra3∕3
(
r3 + a3

)
= αra3∕

(
r3 + a3

)
,

(47a)α = 4πG < nm > ∕3.

(48)g = GM(r)∕r2 = αra3∕
(
r3 + a3

)
+ (αaβ∕r2)∫

r

0

3a2r3dr∕
(
r3 + a3

)
.

(49)β = 4πλGg�
2
∕3.
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is present also in Eq.  (45). With the right value of the parameter β defined by 
Eq. (49), Eqs. (45) and (52) should reproduce the observed red curve in Fig. 1 even 
better.

The values of β or λg′2 are determined by the observed coefficient present in the 
baryonic Tully–Fisher relation (53) in the next Sect. 3.3. As we also show in the next 
section, these values, determined this way, reproduce the observed rotation speed curve 
exactly, convincingly verifying our approach.

The often used Navarro–Frenk–White profile model [13] of the density of galac-
tic DM halos as a function of r includes a term similar in form to our term (αβ/r)
a4log(1 + r/a) implied in Eqs. (48)–(51). This model, however, is based on N-body 
simulations with hypothetical DM particles, which correspond to a different, assumed, 
physical situation.

3.3 � Derivation of the Baryonic Tully–Fisher Relations and Details of the Rotation 
Curves; Universal Dark Matter Key

R. Brent Tully and J. Richard Fisher published an empirical relation between luminos-
ity and the maximal rotation velocity of spiral galaxies in 1977. The relation is even 
better verified, when it is considered between the baryonic mass M of the galaxy (stars 
plus gas) and the velocity v of baryonic matter in outer regions [14] up to the much 
larger distance D, where the field reverses sign, pointing to a neighboring galaxy:

Here Mʘ is the mass of the sun.
As we have seen in Eqs. (46) and (46a), since D >  > a, we expect the last (DM) term 

in Eqs. (44) and (46), representing matter in the halo, to be dominant for values of r 
approaching D. We can thus approximate the total galactic mass M< at distances r close 
to D in the Halo, with the last term in Eq. (44), i.e., with the DM halo mass. Setting 
r = D in Eq. (44), we obtain thus for the total mass of the galaxy including DM

As we see from Eqs. (2), (5), (8), (33), (42), the DM fraction in the universe 
is about s″ times larger than the baryonic matter in mass, which is about 5 times, 
both experimentally and theoretically based on GR. For a single galaxy, s″ is the 
DM fraction generated as the own coherent gravitational field fraction, which is 
about 10–6 or less, as shown by Eq. (11). However, as mentioned before, DM gen-
erated at the level of the universe is attracted into the galaxy with local concen-
trations proportional to this gravitational field strength generated by the galaxy, 
yielding a much larger actual DM fraction. For spiral galaxies large enough to 
have a measurable rotational speed of (mainly hydrogen gas) matter in their DM 
halos, the Tully–Fisher Eq. (53) is observed. Our Milky Way is a good example 
of these galaxies, and will be considered representative, although the observa-
tions were done on other galaxies. For these galaxies we expect an actual total 

(53)M∕M⊙ = 58(v∕1 km∕s)3.97.

(54)Mt ≈ 4πGλg�
2
MD.
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DM fraction γ much larger than s″. We can estimate the DM fraction also from 
the empirical Tully–Fisher relation, which is derived here as follows.

The actual resulting DM fraction γ in a galaxy can be obtained like the DM 
fraction of the universe in Eq. (33), by dividing the actual resulting gravitational 
energy by the baryonic rest energy. We thus obtain for a spiral galaxy with bary-
onic mass M an approximation of the total gravitational field energy,

The actual (mainly accreted) DM fraction is given here by the parameter γ, 
similar to the s″ parameter in Eq.  (33), applicable to the whole universe. The 
maximal rotational speed v is then given by

where a < r < D. In the last form we have substituted Mt through its value obtained 
from Eq. (55). This spells our derivation of the Tully–Fisher relation in the form

Comparing this with the observed Eq. (53), in which we approximate the expo-
nent 3.97 with 4, we obtain in CGS units, e.g., by multiplying Eqs. (53) and (57), 
with D = 106 ly = 9.5 1023 cm,

This derivation of the Tully–Fisher relation and determination of the parameter 
γ allows for a calculation of the quantity λg′2, which controls the accretion of DM 
of the universe into the galaxy or any other structures at scales well below the 
whole universe. Indeed, by substituting Eq. (54) into Eq. (55), eliminating Mt, we 
obtain from Eq. (11), with 1011 average stellar masses of 0.07 solar masses each, 
in the baryonic mass M of a galaxy as in Eq. (8),

Here λ is the DM accretion constant, which defines the universal key that 
allows us to calculate the amount of universal DM accreted by the own gravi-
tational field of structures at lower scales below the observable universe in the 
spirit of GR. Substituting this into the rotation curve Eq. (45) for r ≥ a, we obtain

(55)G
(
Mt

)2
∕D = �Mc2.

(56)v2 = GMt∕D = [�GMc2∕D]1∕2,

(57)�4 = ����2∕�.

(58)
𝛾 = D(1 km∕s)4∕58Gc2M⊙;

= 106 ⋅ 9.5 ⋅ 1017 ⋅ 1020∕58 ⋅ 6.7 ⋅ 10−8 ⋅ 9 ⋅ 1020.2 ⋅ 1033

= 1.36 ⋅ 10−5.

(59)
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×
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= 1.39 ⋅ 10−16 gs2∕cm4.
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At r = a, the DM terms in curly brackets together yield a quarter of the last DM 
term in curly brackets. This is to be compared with 1/a, which comes from the 
first term in curly brackets, the baryonic contribution. With Eq.  (59) and Milky 
Way parameters a = 1.3.104ly (about the size of the central bar of the Milky way), 
we calculate

From Eqs. (60) and (60a) we obtain for r ≥ a:

Here indeed 1.083 > 1, i.e., 3λπGg′2a > 1, only slightly larger, as suggested in 
Sect. 3.2, right after Eqs. (45) and (45a). It always yields a positive derivative of 
v2, as required to reproduce the observed rotation curve in Fig. 1. Thus, the DM 
term in 1/r with λ in Eq. (45) is slightly larger than the term without λ. This can’t 
just be a coincidence. It rather proves the fascinating precision and consistency 
of our semi-classical formula λgg′2. At r = a, DM is about 36% of the baryonic 
matter, both in cumulative mass and in contribution to v2/r, in our λgg′-based 
approximation of the exact solution of Einstein’s equations. Indeed, we also 
obtain from Eq. (45a) and (59) for r ≤ a:

Equations (61 and (62) show the continuity at r = a, well-known from experi-
ment, with a positive derivative (d/dr)(v2) everywhere, that goes to zero soon for 
r > a and has a discontinuity at r = a. Equations (61) and (62) reproduce indeed 
the curve B in Fig. 1. It also proves the correctness of our DM theory and of 
the Ansatz λgg′2 that we have used to describe the advection of universal DM, 
as inferred from GR, into lower scale structures with own generated field g, 
e.g., into galaxies. The numerical consistency obtained is indeed very good. We 
expect this to be borne out by later direct derivations from Einstein’s nonlinear 
field equations. Note, however, that the slight buckling, visible in Fig. 1 at larger 
distances, can be caused by the presence of some stars in the region r > a. On the 
other hand, the discontinuity of the derivative d/dr(v2) at r = a would be avoided 
by using a more realistic baryonic matter distribution like in Eqs. (46)–(52).

In fact, the accretion of universal DM into the halos of galaxies should stop at 
very large distances, after the 1/r2—like decrease of the own gravitational field g, 
generated directly by the galaxy, drops below the small general background goo that 
was mentioned before. The density of the accreted DM would then be ρ = λg′(g-
goo). A lowest limit of goo is given by quantum fluctuations but the background could 
be much higher. This subtraction of goo would not change our results, except in two 
cases:

(1)	 The evaluation of the total mass including DM mass of a galaxy, where the 
accretion would stop way before the field reversal caused by a neighboring gal-
axy. This limits the total accreted DM to about an order of magnitude above 

(60a)3πλg�
2
Ga = 9.42 ⋅ 1.39 ⋅ 10−16 6.7 ⋅ 10−8 1.3 ⋅ 9.5 ⋅ 1021 = 1.083.

(61)v2 = GM{[1 − 1.083]∕r + 1.444∕a}.

(62)v2 = GM{r2∕a� + πλg�2Gr3∕a3} = GM
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1 + 0.361r∕a
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the galactic baryonic mass. In the Milky way this could be about 8–30 times. 
Indeed, from Eqs. (44a) and (46a) we would obtain about M′/M = D/a = 106ly 
/1.3.104ly = 77 times more DM in the galaxy than baryonic matter, based on our 
approximation of GR.

(2)	 The evaluation of the DM amount in small structures, like the solar system 
(Sect. 3.4) and other planetary systems, where the obtained very small DM 
amount will be reduced even more.

In Eq. (8), the effective average Schwarzschild radius rs of a galaxy should thus 
be considered to be larger than our calculation assumed by including only baryonic 
matter, when the non-linearity of Eq. 6 is included correctly.

DM in the form of the gravitational field of the universe g′, creates more DM 
(≈λgg′2), according to Einstein’s nonlinear equations, where it is present both as a 
source and as a resulting field. This creates paradoxical situations at lower scales, 
in galaxies and in their clusters, where universal DM is accreted coherently in large 
amounts, according to GR, like mysterious halo substance. The nonlinearity causes 
the superposition principle, often still surreptitiously implied in our thinking, to fail.

3.4 � Dark Matter in the Solar System

Knowing the mass of the sun M = Mʘ = 2·1033 g, its radius a′ = 7 1010 cm and the 
distance to earth r = 1AU = 1.5 1013  cm > > a′, we can calculate with Eq.  (11) the 
cumulative DM inside the earth’s orbit, obtaining like in Eq. (44)

We use the "key" λg′2 = 1.39.10–16 gs2/cm4 from Eq. (59). Neglecting the middle 
term, we obtain in Eq. (63), at r = 1AU

This shows that DM is present, but at the earth’s orbit, it only corresponds to a 
negligible increase of the mass of the sun. For the increase of the quadratic rotation 
speed of the earth we obtain with r = D′ = 1AU the same small fractional increase

For the speed of the earth on its orbit this fractional increase would amount to 
0.9 .10–9. This may be too small to be verified experimentally, with the uncertainty 
in the mass of the sun. However, the corresponding small fractional increases in the 
orbital velocities of Jupiter and of the outer planets are proportional to their dis-
tances from the sun. This may cause very small phase differences over time, eventu-
ally observable in their positions on their orbits. Furthermore, the effects that led to 
the well-known confirmation of Einstein’s GR in our solar system, are caused by the 
gravitational field, the curvature of space–time. They are also slightly modified by 

(63)M< = M⊙ − 3λπGg�
2
M⊙ ⋅ a� + 4λπGg�

2
M⊙ ⋅ r.

(64)

M< = M⊙ ⋅ [1 + 4Gλπg�
2
⋅ 1AU] = M⊙[1 + 4 ⋅ 6.7 ⋅ 10−8π ⋅ 1.39 ⋅ 10−161.5 ⋅ 1013]

=
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}
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utterly negligible amounts of DM advected into in the solar system, much smaller 
than the 10–9 of Eq.  (64), according to our universal key formula. These are the 
advance of Mercury’s perihelion and the twice larger deflection of light rays bypass-
ing the sun’s gravitational field.

For the total mass increase of the whole solar system, we consider the limit of 
the solar system at D = 2 ly = 1.9.1018 cm, almost half the distance to the nearest star 
Proxima Centauri. From Eq. (46a), we obtain

This shows that the total DM fraction maximally accreted by the solar system is 
also very small, even if we neglect goo effects.

3.5 � Dark Matter and the Cosmic Web

Dark matter, identified here with the universe’s coherent gravitational field, follows the 
field equations of GR, Eq. (6), and thus interacts gravitationally also with itself, caus-
ing it to clump together, without the opposing pressure present in ordinary matter. This 
pressure is present in regular matter, arising from the random motion of atoms, mole-
cules, ions and electrons. In quantum gravidynamics (QGD) there could be some “pres-
sure” from gravitons, most of them in localized coherent states, creating the coherent 
gravidynamic field, the DM. This may set limits to the collapse. Any initially uniform 
distribution of this DM would have been very unstable to collapse. The formation of 
the observed cosmic web, DM decorated by regular matter, may have yielded a lower 
energy configuration. In some nodal places of the cosmic web, where the local total 
density of all matter and field exceeded the limit for gravitational collapse, this may 
have yielded the early giant black holes in the first billion years. There is a tendency 
to lower the energy of DM, of the coherent gravitational field of the universe, causing 
iteratively its own secondary, attractive, gravitational field. This resulted in its collapse 
into the skeleton of the cosmic web, early in the cosmic evolution after the big bang.

One may ask, why the collapse of the DM does not continue leading to one-
dimensional filament singularities. The answer may be found in a quantum gravidy-
namic field theory, that increases the energy when the coherent field is compressed 
more. Its quanta, introduced for weak field strengths, gravitons, also interact gravi-
tationally. The observed form of the cosmic web could thus help in developing the 
quantum theory of gravitation.

Practically all of the DM found in galaxies is not locally generated, but is attracted 
into the galaxy, as we mentioned, being generated at the level of the observable uni-
verse. Most of the DM found in clusters of galaxies is also not locally generated, 
but attracted into the cluster. The attracted DM is distributed proportional to the 

(66)

M� = −3πλGg�
2
Ma + 4πλGg�

2
MD

≈ 4πλGg�
2
MD

= M⊙

[
4 ⋅ 6.7 ⋅ 10−8π1.39 ⋅ 10−161.9 ⋅ 1018

]

= 2.2 ⋅ 10−4M⊙.
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locally generated coherent gravitational field as we mentioned already in Sect. 2.2. 
Therefore, the attracted DM avoids the center of mass of galaxies or clusters thereof, 
where the own generated gravitational field vanishes. It is present usually as a halo, 
at the periphery, where the own generated field is maximal, and decreases farther 
out. The fact that DM can be physically independent and separated from ordinary 
matter, like a mysterious substance, is noticed clearly [9] in the Bullet cluster and 
agrees in principle with our predictions. As we mentioned before, these important 
Bullet cluster observations do not disprove our identification of DM, they rather 
support it strongly.

In conclusion, a new notion of the coherent gravitational field of the universe, 
described by Eq. (6), with iterative self-interaction, is introduced here and identified 
as DM. Its behavior is quite different from the electromagnetic field, more like an 
immaterial substance interacting through gravitational forces and capable to be dis-
tributed non-uniformly as “dark matter,” lumped together in the cosmic web, attract-
ing and accompanying regular matter.

3.6 � Connection with the ΛCDM Model

The ΛCDM standard “model” will be modified by our present contribution and will 
get closer to a simple application of Einstein’s GR, based on the results disclosed 
through our paper with early forms distributed privately to friends and colleagues 
since 2/10/2022. Our paper differs from a “model.” It allows us for the first time 
to calculate and predict all properties of DM, directly from GR, based on a simple 
approximation of exact solutions of Einstein’s equations. The vast research on DM 
has not lead to understanding its nature yet [15, 16]. The ΛCDM model encountered 
several problems in the past, e.g.:

(a)	 The inability [16] to find known weakly interacting massive particles (WIMPs) 
[17] that could make up the DM and that would also be “cold,” so the structure in 
the DM is preserved; Absence [15, 16] of any success in searches for axions and 
sterile neutrinos; The many unsuccessful attempts to find a reasonable explana-
tion of DM;

(b)	 The inability [15] to explain the observed low number of satellite galaxies [18] 
that accompany galaxies, calculated to be orders of magnitude higher in DM 
simulations with hard spheres; Also the peculiar orientation [19] and low mass of 
the observed satellite galaxies of the Milky Way, Andromeda and others, which 
all show no resemblance with the existing DM simulations;

(c)	 The stability and particular configuration of DM patterns in cosmological time 
intervals [14]. WIMPs would migrate away fast. The coherent gravitational field 
patterns of the observable universe are stable.

(d)	 The deviations caused by DM in galactic dynamics depend only on the bary-
onic (ordinary) matter content, for galaxies of all sizes. This empirical relation, 
known as the “baryonic Tully–Fisher-relation” finds the total baryonic mass of 
a galaxy to be proportional to about the fourth power of its maximal rotation 
speed. We have derived this empirical relation from our GR coherent gravi-
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tational field theory of DM in Sect. 3.3. For elliptic galaxies there is a similar 
Faber-Jackson relation. Why should the deviations caused by DM in galaxies 
depend only on the baryonic matter and not on DM? As shown in Sect. 2.2 after 
Eq. (11), in Eqs. (44), (46) and in Sect. 3.3, the essential coherent proportionality 
of DM patterns with the very small own gravitational field contribution from 
baryonic galactic matter holds the answer, and also explains the absence of a 
DM cusp at the center of galaxies, anticipated by ΛCDM simulations. Indeed, 
as mentioned and shown above, the own gravitational field generated by the 
galaxy is zero in the center of the galaxy as a general feature and Newtonian 
physics dominates the whole central area. If the DM advected from the universe 
is proportional to the field generated by the baryonic matter as shown here, it will 
never produce a DM maximum in the center of the galaxy, DM will be negligible 
in the central region as we have shown. We make abstraction of the presence 
of giant black holes in the center of galaxies, which contribute a few promilles 
to the galactic mass. We actually found the complete answer to the mentioned 
exclusive dependence of galactic features on the baryonic matter (and not on 
DM), in Sects. 3.2 and 3.3: the advected DM itself is dependent on the baryonic 
matter.

In conclusion, we were able to derive the Tully–Fisher relation and the "key" 
for calculating the DM concentrations everywhere in lower-scale structures. This 
allowed us also to finalize the calculation of the rotation curves of stars in galaxies, 
as shown in Sects. 3.2 and 3.3.

Gravitons, with spin 2, and bosons in general, like to stay “on top of each other,” 
even possibly yielding condensates at low temperatures. The 2.76 oK CMB tempera-
ture is in that domain. In general, we expect a better mutual attraction and joint pat-
tern stability of the own galactic field, enhanced by our DM contribution created at 
the level of the universe, than with the WIMP, axion or neutrino type of standard 
DM. The GR field equations can lead to a strong amplification effect, an extreme 
nonlinear enhancement of the locally generated gravitational field. It is equivalent 
to a "guidance" of the accreted DM distribution by the small locally generated field 
pattern, according to the key shown in Eq. (59).

All these problems, and many more, can now be treated on the basis of GR. Like 
in the case of quantum chemistry and experimental chemistry, observation con-
nected with physical, qualitative GR-based, analysis, as shown here, may often be 
more appropriate than laborious exact solution of EE.

3.7 � Discussion

Based on GR and on our identification of DM as energy of the coherent gravita-
tional field of the universe, we were able to show in Sects. 2.1–2.6 that both Ein-
stein’s equations and, to a certain extent, also their Newtonian approximation, could 
explain the observed presence of 5 times more DM in the Universe than ordinary, 
mainly baryonic, matter. Approximative agreement was obtained within an order 
of magnitude. On this basis we have applied in Sects. 3.1–3.4 our new coherent 
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gravitational field approach based on GR, that had been initiated in Sect. 2.2. It cal-
culated DM successfully, for the first time. Indeed, we were immediately able to 
derive in Sects. 3.2 and 3.3 the constant velocity profile shown by the galactic rota-
tion curves, from the dominant gg′2 terms suggested by the gravitational field self-
interaction non-linearity in Einstein’s equations, Eq. (6).

Independently, our identification of DM as the coherent gravitational field led us 
then directly to our derivation in Sect. 3.3 of the Tully–Fisher relation for spiral gal-
axies. This, in turn, allowed a determination of the coefficient λ in our formula for 
the resulting "DM key" of the density ρ = λgg′2 of DM. This key finally allowed us 
to prove that the DM-caused velocity plateau we derived in Sect. 3.2 was not dis-
connected from the known Newtonian velocity profile derived for stars in the cen-
tral galactic region. The plateau fitted perfectly, smoothly reproducing the empirical 
curve B in Fig. 1 and verifying our approach.

Moreover, this key also allowed us to prove in Sect. 3.3 that the DM concentra-
tion ρ = λg′2GMr/a3 at r = 0 is zero, given a uniform distribution of baryonic matter, 
constant down to r = 0. This effectively eliminates DM from the near central region, 
and we were able to calculate the concentration of DM explicitly for the first time 
everywhere in the galaxy, in agreement with observations. This key should also 
allow for an exact calculation of the concentration of DM in and around the Bullet 
cluster with our key for the first time, as we explained at the end of Sect. 3.3. Fur-
thermore, it allowed us also to calculate in Sect. 3.4 the very small DM contribution 
in our solar system.

It is indeed remarkable that our GR-based identification of DM as the coherent 
gravitational field of the observable universe, led not only to the classical and GR 
derivation in cylindric and spherical symmetries, of the observed order of magni-
tude ratio between DM and ordinary, mainly baryonic, matter in the universe. It also 
led to the sudden unraveling of the whole DM puzzle.

In essence, in this paper we are predicting, anticipating, or approximating the 
results of a rigorous, simultaneous, global, all-encompassing solution of Einstein’s 
field equations for the universe, for coupled clusters of galaxies and interacting stars 
in individual galaxies, down to planetary systems like our solar system, coherently 
including all length scales. A solution that agrees with the available evidence.

Based on the analysis presented here, we could also say that DM does not exist as 
a separate concept. Indeed, the gravitational field is a feature of space–time in GR, 
therefore a feature of the event space of our existence. This approach is correct, but 
impractical, as long as an exact all-encompassing solution of Einstein’s equations 
is not available. The approach used here is a first practical step, that yields a first 
approximation. As prisoners of the classical, Newtonian point of view, we were mis-
led by the unexpected consequences of Einstein’s coupled nonlinear field equations 
at all length scales, leading to the self-interaction of the gravitational field (across 
different length scales) and of ordinary matter, as well as to their mutual interaction. 
This causes forces that mimic the existence of a mysterious, strange, substance, the 
"Dark Matter." In the way we understand it here, this concept is nevertheless very 
useful on the way to more exact solutions. It remains to translate our simple GR 
anticipation results of Sects. 3.1–3.4 into the language of the metric.
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The present analysis can be seen as an initial effort to bridge the gap between the 
classical physics and GR, by:

1.	 Actually calculating the amount of DM in the universe, expected even in the low-
est order evaluation form Einstein’s equations (Eq. 42), which is already double 
the classical estimate of the gravitational field energy;

2.	 Deriving the rotation curves in galaxies, Eqs. (45) and (61) with our simple 
anticipation key of the GR results;

3.	 Deriving the Tully–Fisher relation Eq. (57) with the same universal formula or 
key, anticipating the universal solution of Einstein’s equations;

4.	 Deriving the same way the negligible DM amount in the solar system;
5.	 Deriving DM in principle at all lower scales of the observable universe.

We have shown that even simple, classical-looking calculations, combined with 
our understanding of the nature of GR, can foster a correct identification and calcu-
lation of the DM at all length scales. The "key" for our approximate solutions is the 
quantity λg′2 = 1.39 .10–16 gs2/cm4, which controls the GR accretion of the DM of the 
universe into lower-scale structures, e.g., clusters, galaxies, planetary systems. This 
corresponds to a DM concentration ρ = λg′2g being coherently accreted by any grav-
itational field g generated at lower scale. This accretion comes from the gravitational 
field strength g′ generated at the level of the observable universe.

The most important feature of Einstein’s equations at the universe level is the 
large creation of DM as gravitational field from DM which serves mainly as its own 
source. This self-generation feature becomes dominant at the level of the universe 
and leads to the introduction of the mentioned key ρ = λg′2g. The two main princi-
ples we applied here from GR are this universal-level DM dominance feature and 
the return to Newton’s physics in the local frame in the Euclidian differential neigh-
borhood. This apparent return to classicality even includes the interaction of the 
locally produced gravitational field with the field generated at the level of the uni-
verse, as a form of self-interaction of the global gravitational field, which includes 
all length scales.

In fact, our notion of "coherent accretion of DM generated at the level of the 
universe to local baryonic-generated gravitational field" admits another interpreta-
tion. It is the coherent distribution and inclusion of space–time curvature generated 
at the universal level to the locally generated, lower-scale curvature. The resulting 
large-scale curvature is compensated in turn by the expansive pressure effect of the 
vacuum, that flattens out the universe (see Eq. 6). It causes the universe to be per-
ceived as flat, with no resulting universal curvature. With the curvature compen-
sated at the scale L = 1.000,000 ly of galaxies, we multiply our DM key formula 
with (L/r)Log(1+r/L) in general, to cover all higher scales of the universe. The phys-
ical nature of this vacuum pressure, described by the cosmological constant term 
gμνΛ in Einsten’s equations still needs to be understood.
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Our identification of DM as coherent gravitational field naturally satisfies the fol-
lowing observed cold dark matter properties:

(a)	 it seems to be non-baryonic, non-leptonic;
(b)	 it is cold, assumed to be in general equilibrium with the 2.76oK temperature of 

the CMB;
(c)	 it is collisionless;
(d)	 it is dissipationless.
(e)	 Its presence in galaxies and clusters varies considerably from galaxy to galaxy 

and among clusters.

In this investigation we have started from a simple, generally accessible, elec-
tromagnetic analogy. In electric wires and circuits, through Eq.  (1), it divides the 
electromagnetic field contribution to the mass and energy of the electrons into a 
coherent, collective fraction (~ N′2) and an incoherent, "mechanical" kinetic energy 
part (~ N′). The coherent part comes from the magnetic field energy of the ordered 
motion of the electrons, while the incoherent part arises from the mechanical kinetic 
energy of their ordered (drift) motion. The coherent part is N′re times larger than the 
incoherent part that includes also any non-electromagnetic contribution. A similar 
partition N′rs is introduced in Eq. (2) for the coherent gravitational field energy of 
the motion of objects, e.g., galaxies in the observable universe, and for the mechani-
cal kinetic energy of the ordered component of their motion. If the average galaxy 
would be like our Milky way, we would have N′rs = 5, for the observable universe 
in Eq. (5), but with a more realistic smaller average galaxy we found N′rs = 0.35 in 
Eq. (8), and left it to the exact GR solution to come closer to the empirical result of 
5. In part, this discrepancy may come from differing fractions of DM being included 
in the mass estimate of the Milky Way and of other galaxies in the universe. And 
indeed, already in the low order GR approximation of Eq. (42), we got 0.8 N′rs. This 
is 0.28 with the N′rs from Eq. (8), and is also twice the classical result 0.4 N′rs of 
Eq. (33).

As was mentioned at the end of Sect. 2.1, the use of the estimate N′rs for the frac-
tion s″ of DM can be justified only for the observable universe as a whole. For larger 
intermediate distributions of matter and DM along long branches of the cosmic web, 
it could be used as a first approximation or overestimation, in need of a correcting 
factor of the order of unity. In lower-scale structures, our key λgg′2 for the DM den-
sity should be used instead.

Since DM is identified as coherent gravitational field, it may be quantized in low-
field conditions in terms of gravitons of spin 2, similar to photons of spin 1 in QED. 
This way, we can recognize DM as the gravitational analogue of the cosmic radia-
tion background, CMB. Indeed, we have now in the cold dark matter the gravitonic 
counterpart of the photonic CMB. The gravitons could be indirectly observed [2, 
3] in the 1/f low-frequency gravidynamic Q1/fE fluctuation spectra of macroscopic 
matter flows, just like e.l.f. photons are observed in the same way in the technically 
important electrodynamic Q1/fE case [20–22]; see the supplementary information 
referenced below.
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This QED quantum 1/f noise theory was right away translated into the gravidy-
namic domain in 1975 by Handel and the relation between the two gravitational Q1/
fE (coherent and conventional) was established by him in 2003. To find this relation, 
he had to evaluate the ratio [Eq. (2)] between the "coherent- field" and "incoherent/
mechanical" gravitational energy, both referring to the ordered flow motion. This 
led directly to our present paper that identifies and calculates DM everywhere, as an 
anticipation of numerical or analytical future GR calculations.

Our present application of GR differs both from the standard DM model that 
keeps looking for hidden DM particles, or from the Modified Newtonian Dynamics 
(MOND).

MOND [23–25] modifies Newton’s law (and implicitly GR) at low gravitational 
fields, to explain the rotation curves of galaxies and other DM phenomena. MOND 
has no clear theoretical basis, while our approach is on the theoretical ground of GR 
and of its local Newtonian approximation. It introduces only one new parameter, λ, 
fixed by the empirical constant in the baryonic Tully–Fisher relation. This parameter 
can be derived in principle from Einstein’s field equations. Its derivation would be 
performed by descending from the largest scale, where the gravitational field domi-
nates as its own main source in GR.

Appendix 1

At this point we briefly outline the elementary derivation of the field energy of the 
columnar universe, and of the number 0.25 added to the logarithm in Eqs. (1) and 
(2) in cylindrical symmetry, for uniform electric current j and charge ρ distributions. 
This is done first in the rest frame, in which the column moves, and then also in the 
co-moving (local) frame, in which the column is at rest:

(1) Rest frame (of embedding space)

(2) Co-moving (local) frame of the column

(67)
Ampere: 2πrB = 4π2r2j∕c; B = 2πrj∕c ( r < a)

Wr<a = ∫r<a

�2d𝜏∕8π = (πj∕c)2 ∫ r3dr = J2∕4c2

(68)
r > a: � = 2J∕rc; Wr>a = ∫ B2d𝜏∕8π

=
(
J2∕c2

)

∫ dr∕r =
(
J2∕c2

)
ln
(
R0∕a

)
; J = πa2j = N�ev.

(69)
WKtotal =

(
J2∕c2

)[
0.25 + ln

(
R0∕a

)]
,

WKtotal = W0v
2∕c2.
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This is the energy in the co-moving frame, going with the column, where the energy 
is only electrostatic. In the rest frame, in which the column has velocity v, the compo-
nents of the field’s energy–momentum vector are: the time-like energy component

and the space-like component

Here γ = (1 − v2/c2)−1/2 ≈ 1 + v2/2c2).
The last 2 forms of Eq. (73) correspond to the sum of Eq. (69) and (72). In this sum, 

the total v2/c2 contribution is shown explicitly with a factor ½, like in a non-relativistic 
kinetic energy.

The coherent field energy terms, both the kinetic WKtotal part due to current J, and 
static WQ′ total from charge per unit length Q′, are thus proportional to N′2. The rest 
mass corresponding to the field energy in the co-moving system is W0/c2. The same 
rest mass result is obtained in the embedding rest frame.

There is a nice similarity with the gravitational case in cylindrical symmetry, as 
shown in Sects. 2.1, 2.3, 2.5 and 2.6.

Appendix II

Here we use the Schwarzschild solution of Einstein’s Equations and Eqs. (13)–(15) to 
calculate t00, which was used in Eq. (38), with ημν defined at Eq. (12),

The first two terms in curly brackets do not contribute up to second order in h, as 
we see below in Eqs. (77).

(70)

Gauss ∶ 4π ⋅ πρr2 = 2πrE (r < a)

Er<a = 2πrρ; Wr<a = ∫r<a

�2d𝜏∕8π

= (πρ)2 ∫ r3dr = Q�2∕4; Q� = πr2ρ = N�e.

(71)Er>a = 2Q�∕r; Wr>a = ∫r>a

�22πrdr∕8π = Q�2ln
(
R0∕a

)
.

(72)WQ�total = Q�2
[
0.25 + ln

(
R0∕a

)]
= W0

(73)
W = �W0 = �WQ� total = �Q�2

[
0.25 + ln

(
R0∕a

)]

= W∕� + (� − 1)W∕� = WQ� total +WK total,

(74)�WQ� totalv∕c = �Q�2
[
0.25 + ln

(
R0∕a

)]
v∕c.

(75)8πGt00 = (1∕2)
{
−h00R

(1)λ

λ
+ hρσR(1)

ρσ
+ R

(2)

00
− ηρσR(2)

ρσ

}
+ O

(
h3
)
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According to Eq. (35), in lowest (second) order in hμν, we set h11 = h22 = h33 = -4A-
6A2; h00 = -4A + 8A2, with A = mN/2r. This yields, with ∇2(1/r) = 0 (r > a) and with 
∂/∂x0 = 0, from Eq. (14) to first order in hμν and lowest order in A

it yields O(h3) with the hμν factor in front and will be neglected in this lowest 
approximation. In a similar way we can write

These are actually not zero, but yield O(h3) with the factor hμν in front of them.
We also obtain from Eq. (15) to second order in hμν, and lowest order in A, with 

h00 = h11 = h22 = h33 = − 4A = h, ∇2 h = 0 and hμν = 0 for μ ≠ ν:

This yields

We also obtain from Eq. (15)

We obtain thus

(76)R
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00
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From Eq. (75) we get with (77) and ∇2 h = 0

This result t00 = 2Gm2N2/8πr4 = mc2N2rs/8πr4 was inserted above in Eqs. (38) and 
(39) of Sect. 2.6.
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