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Abstract
The ontological models framework distinguishes ψ-ontic from  ψ-epistemic wave-
functions. It is, in general, quite straightforward to categorize the wave-function of a 
certain quantum theory. Nevertheless, there has been a debate about the ontological 
status of the wave-function in the statistical interpretation of quantum mechanics: is 
it ψ-epistemic and incomplete or  ψ-ontic and complete? I will argue that the wave-
function in this interpretation is best regarded as ψ-ontic and incomplete.

Keywords Quantum mechanics · Ontological model framework · Statistical 
interpretation · PBR theorem · Einstein · Ballentine

1 Introduction

In their recent article, Oldofredi and López [50] claim that Harrigan and Spekkens 
[33] define the ontic state � in too restrictive a way so that it does not properly cap-
ture the statistical interpretation of quantum mechanics. Furthermore, they argue 
that Harrigan and Spekkens [33] put the wave-function in the statistical interpreta-
tion in the wrong category: instead of being ψ-epistemic (and incomplete) the wave-
function is ψ-ontic (and complete). They support their argument by historic evidence 
from Albert Einstein and Leslie Ballentine, who are the most prominent proponents 
of the statistical interpretation. I want to challenge all three claims and argue for 
the following: (i) the ontic state in the sense of Harrigan and Spekkens [33] is gen-
eral enough to capture a statistical interpretation of the wave-function, (ii) the wave-
function can be interpreted as ψ-epistemic as perceived by Einstein and Ballentine 
(although it does not merely represent an observer’s knowledge), and (iii) the statis-
tical interpretation is more compatible with an ontic state as described by Harrigan 
and Spekkens [33] than as re-defined by Oldofredi and López [50].
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I will argue that both interpretations face different kinds of problems: the inter-
pretation of Harrigan and Spekkens [33] runs into the PBR-theorem, and the inter-
pretation of Oldofredi and López [50] is in fact incomplete itself and conceptually 
unclear. Ultimately, the status of the wave-function in the statistical interpretation 
depends on the particular completion of this theory. Yet, I will argue that the wave-
function in the statistical interpretation is most plausibly ψ-ontic and incomplete.

2  The Ontological Models Framework

Let me first explain where the notion of ψ-epistemic comes from and what it 
means. Harrigan and Spekkens [33] introduce it within a certain formal frame-
work for quantum mechanics, which they call the ontological models framework. 
The main question they ask is, “Does the quantum state represent reality or only 
our knowledge of reality?” One option is to sidestep this question and take an 
operational approach to quantum mechanics: all one is interested in is predicting 
the behavior of quantum systems without recourse to unobservable objects and 
processes. The ideal case would be an operational quantum theory that describes 
all predictions of the theory in terms of preparation and measurement procedures. 
In doing so, it needs to say what kinds of measurements M and preparation proce-
dures P yield an outcome k. An operational quantum theory specifies a probabil-
ity ℙ for k, given M and P, that is, ℙ(k|M,P).

Often a physical theory tells us more about the world than how certain manip-
ulations on a physical system lead to certain empirical results: it may tell us what 
the measured system is made of, what a measurement device is made of, and 
how measurement and preparation devices interact with the constituents of the 
measured system [37]. In particular, the physical theory should (ideally) spec-
ify a complete description of the system’s properties. This complete description 
is often denoted � . A theory that gives such an ontological story to operational 
quantum theory is an ontological model of operational quantum theory.

Again, an ontological model of an operational theory of quantum mechan-
ics provides more information about the physical system beyond an operational 
level; it describes the complete physical state � of the system. Although meas-
urement and preparation devices can be described with their own ontic state � in 
an ontological theory, they are not reduced to these � ’s in the ontological mod-
els framework. The main problem that the ontological models framework aims 
to tackle is how much an observer can know about the ontic state of the physical 
system if she prepares and measures the system in a certain way. For example, 
a preparation procedure may not uniquely fix the ontic state but rather a prob-
ability distribution ℙ(�|P) for ontic states given a preparation procedure. If the 
observer prepares the system in a state � , this ontic state determines the result k 
once measured, that is, the ontological models framework provides this probabil-
ity distribution ℙ(k|�,M) . We can now explain the predictions of the operational 
theory ℙ(k|M,P) with the machinery of the ontological theory:
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We integrate over all the possible ontic states, where ℙ(�|P) ≠ 0 singles out the 
ontic states that are compatible with the state procedure P.

It is often implied that the ontological model framework is a strong constraint 
on a physical theory (for instance [31]). In my opinion, it is rather a formalization 
of how physics has been ever done until recently with the development of quantum 
physics by identifying the complete physical state of a system and investigating the 
time evolution of this state. One may still agree with me here and still claim that 
the ontological models framework is too restrictive for quantum physics (I thank an 
anonymous reviewer for this remark). Nevertheless, the ontological models frame-
work reaches a large set of quantum theories that does not face the physical, con-
ceptual, and ontological problems as theories that do not fit into this model (see, for 
instance [18, 48]).

Oldofredi and López [50] seem to mischaracterize the relation between an opera-
tional theory and its corresponding ontological model:

It is worth noting that the authors define ontological models employing an 
operational setting, i.e. the primitive notions of such models consist exclu-
sively in preparations procedures of physical systems in certain states and 
measurements performed on them. A complete specification of the properties 
of a given physical system is provided by � , the ontic state of the system under 
scrutiny. [50, pp. 1318–1319]

As we have seen, ontological models consider operational procedures to pre-
pare the state of a quantum system in a certain manner as primitive notions. 
Such procedures are associated with some observable properties, whose val-
ues will be then revealed by the performance of a set of measurements on the 
physical system under scrutiny. [50, pp. 1321]

It is not the ontological model that treats the operational procedures as primitive 
notions. Rather, the ontological model provides the tools for explaining these pro-
cedures and reduce them to the behavior of the ontic state � . More precisely, ”In 
an ontological model of an operational theory, the primitives of description are the 
properties of microscopic systems,” [33, p. 128] and these properties encoded in � 
determine the probabilities and outcomes in preparation and measurement proce-
dures. Of course, the ontological model itself does not tell us exactly how the opera-
tional procedures look like, but it demands, in contrast to an operational theory, that 
the probabilities derive from the interaction with the ontic state of the system. It is 
only on the level of the operational quantum theory, where the operational proce-
dures are taken as primitive. Therefore, the relation between the operational theory 
and the corresponding ontological model is indeed similar to the relation between 
thermodynamics and statistical mechanics.

In quantum mechanics, the wave-function has a double role: it determines the 
probabilities of measurement outcomes via the Born rule, and it also (at least 
partially) describes the ontic state of the physical system. This is also reflected 

ℙ(k|M,P) = ∫ d�ℙ(k|�,M)ℙ(�|P).
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in the ontological models framework. The probabilities of the operational theory 
are determined by the wave-function ℙ(k|M,P) = ℙ� (k|M,P) . The ontological 
models framework zooms in on the relation between the ontic state � and the 
corresponding wave-function describing this state. If the system is prepared to 
have a certain wave-function ψ, the system may be in one of many possible ontic 
states compatible with this ψ. The corresponding probability distribution would 
be ℙ(�|P = �).

Having introduced the ontic state � , one can try to answer the original question 
“Does the quantum state represent reality or our knowledge of reality?”. In other 
words, does the wave-function represent objective properties of the ontic state 
(the complete physical description of the system), or does it rather represent an 
agent’s knowledge about properties of this state?

Harrigan and Spekkens [33] introduce an ingenious and rather general formal 
distinction to make this question more precise. If we prepare two systems with 
different wave-functions, a natural question arises of how the ontic states corre-
sponding to these wave-functions are related. The ontological models framework 
distinguishes between two cases: 

 (i) If the probability distributions ℙ(�|P = �A) and ℙ(�|P = �B) of two different 
wave-functions �A and �B do not overlap, as depicted in Fig. 1a), the wave-
function is called ψ-ontic.

 (ii) If the probability distributions ℙ(�|P = �A) and ℙ(�|P = �B) of two differ-
ent wave-functions �A and �B do overlap, as depicted in Fig. 1b), the wave-
function is called �-epistemic.

For every wave-function, there is a set of ontic states � compatible with this 
wave-function, that is, there is a one-to-many relation from the wave-function 
to the underlying ontic states. If we pick an ontic state, then it depends on the 
wave-function whether the relation from the ontic state to the wave-function is 
one-to-one or one-to-many. More precisely, if the wave-function is �-ontic, fixing 
an ontic state � , there is only one wave-function associated with it. If the wave-
function is �-epistemic, there are ontic states which are associated with at least 
two wave-functions—namely, the ones in the overlap region.

(a) (b)

Fig. 1  a The definition of a �-ontic wave-function: The probability distributions over the ontic states 
associated with the wave-functions �

A
 and �

B
 are disjoint. b The definition of a �-epistemic wave-func-

tion: the probability distributions over the ontic states associated with the wave-function �
A
 and �

B
 share 

a region of overlap
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The definition of �-ontic and �-epistemic was up to now only about whether or 
not a wave-function can be uniquely associated with an ontic state. On this level, 
�-ontic and �-epistemic are merely formal notions. Nevertheless, these definitions 
have been introduced to clarify and make more precise in what way the wave-func-
tion is ontic or epistemic; that is, in what way the wave-function represents objec-
tive features or knowledge about the world. But we will shortly encounter certain 
caveats regarding the ontological and epistemic status of �-ontic and �-epistemic 
wave-functions. �-ontic and �-epistemic carve up the ontic and epistemic landscape 
of the wave-function a bit differently than the notions themselves may suggest.

2.1  How Ontological are Ã ‑Ontic Wave‑Functions?

Let us first discuss in which way a �-ontic wave-function is ontological. If an ontic 
state is uniquely associated with a wave-function, then and only then can we inter-
pret the wave-function as representing certain objective properties of � (what these 
properties exactly are is left open).

We can introduce further definitions that show how a �-ontic wave-function can 
objectively represent these properties (see Fig.  2a). First, the wave-function alone 
can completely describe the state of the system. In this case, we call the wave-func-
tion �-complete. The probability distributions of �-complete wave-functions are 
sharply peaked around � , as shown in Fig. 3.

If the wave-function does not completely describe � , then it is called �-supple-
mented. A �-supplemented wave-function would need additional variables to pro-
vide such a complete description (what these variables are is left open in the onto-
logical models framework).

We can also describe �-ontic wave-functions in a different way, as done in 
Fig. 2b). If the wave-function represents properties of � because it is itself a physi-
cal object (or rather the object it represents is a physical object), then we call it �
-physical. If the wave-function represents an abstract entity that still determines the 
behavior of � , we call it �-nomological.1

(a) (b)

Fig. 2  a �-ontic wave-function can be either �-complete or �-supplemented. A �-complete wave-func-
tion describes completely the ontic state � . A �-supplemented wave-function only gives a partial descrip-
tion. b A �-ontic wave-function can be either a physical object ( �-physical) or an abstract object repre-
senting properties of the system ( �-nomological)

1 An anonymous reviewer challenged my distinction, in the following way (I thank the reviewer for this 
argument). First, Harrigan and Spekkens [33] had in mind a �-physical wave-function when defining a 
�-ontic wave-function; therefore, �-nomological wave-functions cannot be �-ontic. I could not retrieve 
this presupposition in Harrigan and Spekkens’ paper. Harrigan and Spekkens are rather indifferent to 
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We can now build a matrix for the different combinations of �-ontic wave-
functions (see Fig.  4), as the ontological models framework merely provides a 
general categorization of the wave-function that needs to be filled in by specific 

Fig. 3  �-complete wave-function. The wave-functions �
A
 and �

B
 are narrowly peaked around an ontic 

state �

Fig. 4  The many examples of a �-ontic wave-function

Footnote 1 (continued)
the metaphysical status of the wave-function. Instead, they propose a formal relationship between the 
ontic state and the wave-function elucidating how the properties of a physical system are represented by 
the wave-function. Maudlin [45, p. 8] also regards nomological wave-functions as examples of �-ontic 
wave-functions and mentions even more subcategories of �-ontic wave-functions than I do. Second, if 
the wave-function is �-nomological it cannot represent the physical properties of the ontic state � qua 
abstract entity. I suppose that underlying this argument is too strict a reading of the word ”physical” in 
the definition of the reality criterion. A �-nomological wave-function can still represent parts of the com-
plete physical properties of the quantum system, even if it is an abstract nomological entity. The wave-
function does not need to be a physical object, like a field, to be included in the physical properties of the 
quantum system.
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interpretations of quantum mechanics. Example of theories or interpretations that 
construe the wave-function as �-complete and �-physical are wave-function realism 
[47], probably the Copenhagen interpretation, and different versions of the many-
worlds interpretation [16]. Examples of �-supplemented and �-physical are the 
multi-field interpretation within the de Broglie–Bohm theory [38, 52], space-time 
state realism in the many-worlds theory [58], the many-worlds theory with matter 
density [3], and the original version of Albert’s marvelous point interpretation [1]. 
Examples of theories or interpretations with a �-supplemented and �-nomological 
wave-function would be Humean interpretations of the de Broglie–Bohm theory 
(also called Bohumianism, [12, 14, 20, 25, 26, 46]), the dispositional interpretation 
of the wave-function in the de Broglie–Bohm theory [25, 26, 56], the wave-function 
as a nomological entity in the de Broglie–Bohm theory [32], wave-functionalism 
[2], a Humean version of Albert’s marvelous point interpretation [42], and the GRW 
theory with a flash or matter ontology [22, 23, 43].2 A �-nomological interpreta-
tion with a �-complete wave-function has not been proposed, since it is hard to 
grasp how the wave-function can completely represent the ontic state with it being a 
mere nomological entity.

2.2  How Epistemic Are Ã ‑Epistemic Wave‑Functions?

Now let us turn to �-epistemic wave-functions. These are the ones where some 
ontic states � are associated with more than one wave-function. How can that hap-
pen? One obvious way is when two agents have different knowledge about the same 
system and disagree on the the wave-function, as in Fig. 5. It would be a mistake 

Fig. 5  One possibility of a �-epistemic wave-function: two agents assign two different wave-functions to 
the same system

2 The philosophical literature on the GRW theories seems to imply that the universal wave-function is 
�-nomological. It still needs to be worked out what a �-physical wave-function amounts to for collapse 
theories.
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to say that the wave-function in this case is purely epistemic; rather, agents would 
learn something about the system if they assign to the system one of the (correct) 
wave-functions that are associated with the ontic state.3 This kind of �-epistemic 
wave-function emphasizes the relational character between the objective properties 
of � and the agents’ knowledge about � represented in the wave-function. We could 
call such a wave-function �-credal, as there is another way to interpret �-epistemic 
wave-functions (see [44, Ch. 3]).

Oldofredi and López [50] assume that all �-epistemic wave-functions are �
-credal:

If a model is �-epistemic, then it cannot in any case be �-ontic, since it does 
not describe any underlying physical reality, but only the agents’ knowledge of 
it. [50, pp. 1320]4

Even if a �-epistemic wave-function were to represent an agent’s knowledge, the 
wave-function would be referring to the ontic state. So if I assign a correct �-epis-
temic wave-function to a quantum system, I would indeed know some aspects of 
the underlying physical reality, even if another agent may assign a different wave-
function to the same system.

It is indeed possible to interpret a �-epistemic wave-function in a completely 
non-epistemic way.5 Imagine we prepare two beams of particles, one with wave-
function �A and the other with wave-function �B . Let us assume that a particle have 
wave-function �A is primarily a matter of whether it is part of the ensemble being 
prepared to have �A as its wave-function. If the wave-function is �-epistemic there 
are some of the particles in the �A ensemble that may be also correctly described 
by another wave-function, say �B . This means that these particles can be correctly 
associated with either beam, the �A beam or the �B beam. In this case, the wave-
function, although �-epistemic, does not represent an agent’s knowledge but rather 
whether a particle is part of a certain ensemble. Maudlin [44, Ch. 3] calls such a 
wave-function �-statistical (see Fig. 6).

This counterexample challenges two arguments by Oldofredi and López [50]: (i) 
that a �-epistemic wave-function is necessarily epistemic, and (ii) that the wave-
function in the statistical interpretation has to be �-ontic. Having replied to (i), I will 
discuss (ii) in Sect. 4, but before doing so, I shall introduce the PBR-theorem, which 
will be important to answer more completely whether the statistical interpretation of 

3 I thank Travis Norsen for this insight.
4 They say the same also on p. 1318 and 1328.
5 It is also possible to have an epistemic interpretation of the wave-function without it being �-epis-
temic. Therefore, the distinction between �-ontic and �-epistemic wave-functions does not cover 
all the ways one can interpret the wave-function. Pace Oldofredi and López [50, pp. 1320], the wave-
function in QBism would be such an example, as this theory denies the existence of � , which is neces-
sary for a wave-function to be �-epistemic. What the ontology of QBism actually is is still debated (see, 
for instance [13]). On the other hand, Oldofredi and López [50, p. 1341] classify relational quantum 
mechanics to be �-epistemic because: “For RQM, by contrast, the quantum state is merely a useful tool 
for calculation and prediction, and because of this it is �-epistemic.”
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quantum mechanics can be �-epistemic. This will in particular affect how Harrigan 
and Spekkens [33] understand the statistical interpretation.

3  The PBR‑Theorem

The PBR-theorem starts with two crucial assumptions:

– Assumption 1 (Reality Criterion): Every physical system has an underlying 
ontic state that completely describes its physical properties, which is objective 
and independent from observers.6

– Assumption 2 (Preparation Independence): Two preparation devices run inde-
pendently from each other.

Fig. 6  The definition of a �-statistical wave-function: the wave-function of an individual system derives 
from being part of an ensemble of equally prepared quantum systems. In the picture, the upper beam of 
quantum systems is prepared in a spin x-up state; the lower beam in a spin z-up beam. By definition of �
-epistemic, a certain fraction of quantum systems in each beam can be described by two wave-functions. 
Therefore, say, the last system in the upper beam can be also correctly associated with the spin z-up 
ensemble

6 One may think that in order to assign an ontic state to a physical system, one needs to presuppose that 
the system is sufficiently isolated from the environment. For example, if one entangles two electrons in 
the singlet state, neither electron has an ontic state, because we cannot assign a (pure) wave-function to 
either electron. I think this example confuses the ontic state � with the wave-function � , which is sup-
posed to describe or represent properties of the ontic state. The ontic state is independent of a physical 
theory, and it captures all the physical properties of the system. Therefore, both electrons have their own 
ontic state. The ontological model framework investigates whether a pure-state wave-function gives a 
complete or partial physical description of the ontic state of the system. According to quantum mechan-
ics, neither electron in the singlet state can be assigned a pure-state wave-function, but this does not 
mean that there is no complete physical description of them. One may criticize the ontological models 
framework, however, that it ignores density matrices as representations of the ontic state [15]. But this 
criticism is rather about the representation of � than of � itself. It would be a worthwhile project to inves-
tigate the implications for density matrix realism [17], if one generalizes the ontological models frame-
work and the PBR theorem. (I thank Charles Sebens and Eddy Chen for helpful discussions on these 
issues.)
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The first assumption is essential to the ontological models framework, whereas the 
second is added for methodological reasons. The reality criterion basically says that 
we consider a theory that fits into the ontological models framework. Preparation 
independence adds to the ontological models framework that the statistical distribu-
tions of ontic states that are generated in one preparation device do not depend on 
the statistical distributions of ontic states that are generated in another preparation 
device.7

The general argument of the PBR-theorem is the following: if the wave-function 
is �-epistemic and the two assumptions hold, then we get a contradiction with the 
(well-confirmed) predictions of quantum mechanics. Since the two assumptions are 
reasonable, the wave-function cannot be �-epistemic and must therefore be �-ontic. 
It is indeed possible to question the validity of the two assumptions and explore how 
such a quantum theory would look like.8 I just want to emphasize here that it is 
impossible to violate the Reality Criterion and retain a �-epistemic wave-function, 
as is often claimed. For the definition of �-epistemic hinges on the ontological mod-
els framework and thus on the existence of �.

Let us now discuss the experimental set-up of the PBR-theorem. Two preparation 
devices are used to generate particles either in a z-spin up or an x-spin up state (see 
Fig.  7). Alice and Bob can choose in which state the system should be prepared. 
Since it is assumed that the wave-function is �-epistemic, some of the wave-func-
tions in Alice’s ensemble can be correctly associated with another wave-function. 
For simplicity, we assume that if such a system is in an z-spin up state the other 
correct wave-function would be x-spin up and vice versa. The same is the case for 

Fig. 7  The preparation of systems in the PBR-theorem. If the wave-function is �-epistemic, some of 
the prepared systems are associated with two different wave-functions. It is assumed that this happens q 
times

7 One may reason that the preparation devices need to be space-like separated to run independently. That 
is just one way to justify that they have to run independently. Even if the preparation devices are not 
space-like separated assumption 2 may still hold if there is no causal relation between the devices.
8 Theories that deny the reality assumption are QBism [29, 30], radical epistemicism [9–11], relational 
quantum mechanics [21, 49, 50, 53], and pragmatist interpretations of quantum mechanics [34]. Theories 
that deny preparation independence are Spekken’s toy model [55] and different proposals for superdeter-
ministic theories [19, 35, 51, 57]. An excellent critical review of this approach is Chen [18].
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Bob’s systems. To have a concrete number, we say that these ontic states with dou-
ble wave-functions appear q times in such an ensemble. 

Now, Alice and Bob shoot their quantum systems into a measuring device that 
is set up to measure pairs of particles, where one system of the pair comes from 
Alice and the other from Bob. Certain pairs are of particular interest, because these 
are the ones that ultimately yield a contradiction with the predictions of quantum 
mechanics. A fraction of q systems on Alice’s and on Bob’s side are associated with 
two wave-functions: � ↑z⟩ and � ↑x⟩ . Due to preparation independence, the ontic states 
with such double wave-functions on Alice’s side are independent from (or uncor-
related with) the ontic states with double wave-functions on Bob’s side. Therefore, 
q2 times a pair of particles is associated with four wave-functions (each in a product 
state): � ↑z⟩� ↑z⟩ , � ↑z⟩� ↑x⟩ , � ↑x⟩� ↑z⟩ , and � ↑x⟩� ↑x⟩.

The subsequent measurement is set up in such a way to yield one of four possi-
ble measurement outcomes: A, B, C, or D. What are the probabilities for either out-
come if a pair in a product state is measured? The device is prepared that a � ↑z⟩� ↑z⟩ 
state will not get measured as A, that is, the probability for yielding A given this 
product state is zero: Pz,z(A) = 0 . Similarly, for the other product states: Pz,x(B) = 0 , 
Px,z(C) = 0 , Px,x(D) = 0.9 It is now easy to see why these ontic states that are associ-
ated with all these product states are problematic. If we shoot these states into the 
measurement device, the theory tells us that the measurement will not give us either 
of the four possible results. On the other hand, the measurement apparatus by con-
struction will measure something and will yield one of the four possible outcomes.10 
Overall, it happens q2 times that the measurement device will show a result that is 
prohibited by quantum mechanics if the wave-function is �-epistemic.

One can now react in three different ways to the result of the PBR-theorem: 

1. Our best choice of wave-functions is to interpret them as �-ontic.
2. We may deny the preparation independence assumption. These theories would 

fit into the ontological models framework, they would also have a �-epistemic 
wave-function, but they would not lead to the contradiction indicated in the PBR-
theorem.11

3. We may deny the reality criterion. Then the entire set-up of the ontological mod-
els framework would be undermined; in particular, the PBR-theorem would say 
nothing about these kinds of quantum theories.

10 The precise argument why the measurement apparatus has to show a result is a bit technical. Roughly 
speaking it goes like this. We deal here with a four-dimensional Hilbert space. Each outcome of the 
measurement device is associated with a basis vector in this Hilbert space. These basis vectors span the 
complete Hilbert space. So upon measurement any vector in this Hilbert space gets projected on one of 
these basis vectors and yields the corresponding value with a certain probability. In particular, the prod-
uct states � ↑

z
⟩� ↑

z
⟩ , � ↑

z
⟩� ↑

x
⟩ , � ↑

x
⟩� ↑

z
⟩ , and � ↑

x
⟩� ↑

x
⟩ are part of this Hilbert space. So it is impossible 

that the measurement device will yield nothing if fed with one of the problematic ontic states.
11 It is, in principle, a further option to have a �-ontic wave-function and deny preparation independ-
ence. Ciepielewski et al. [19] present such a model, although they do not defend it.

9 For our purposes it is not important to explain the details of this measurement procedure. The product 
states get projected onto a certain entanglement basis that gives rise to these probabilities.
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I do not want to argue for or against either of these strategies in this paper. Instead, 
this overview will give us a scheme for evaluating the status of the wave-function in 
the statistical interpretation of quantum mechanics.

4  The Statistical Interpretation of Quantum Mechanics

For Harrigan and Spekkens [33], the wave-function in the statistical interpretation 
is �-epistemic and �-incomplete, while Oldofredi and López [50] claim it to be �
-ontic and �-complete. I will argue that Einstein and Ballentine regard the wave-
function in the statistical interpretation as �-epistemic and �-incomplete. I will also 
discuss whether the wave-function in the statistical interpretation can be �-statisti-
cal. I will conclude, however, that the wave-function in the statistical interpretation 
needs to be �-ontic and �-incomplete.

Let us first start to introduce the statistical interpretation of quantum mechanics. 
One of the clearest descriptions of it can be found in Einstein’s 1949 Reply to Critics 
in Paul Schilpp’s volume Albert Einstein: Philosopher–Scientist:

Within the framework of statistical quantum theory there is no such thing as 
a complete description of the individual system. More cautiously it might be 
put as follows: The attempt to conceive the quantum-theoretical description as 
the complete description of the individual systems leads to unnatural theoreti-
cal interpretations, which become immediately unnecessary if one accepts the 
interpretation that the description refers to ensembles of systems and not to 
individual systems. In that case the whole ‘egg-walking’ performed in order 
to avoid the ‘physically real’ becomes superfluous. There exists, however, a 
simple psychological reason for the fact that this most nearly obvious interpre-
tation is being shunned. For if the statistical quantum theory does not pretend 
to describe the individual system (and its development in time) completely, it 
appears unavoidable to look elsewhere for a complete description of the indi-
vidual system; in doing so it would be clear from the very beginning that the 
elements of such a description are not contained within the conceptual scheme 
of the statistical quantum theory. With this one would admit that, in princi-
ple, this scheme could not serve as the basis of theoretical physics. Assum-
ing the success of efforts to accomplish a complete physical description, the 
statistical quantum theory would, within the framework of future physics, take 
an approximately analogous position to the statistical mechanics within the 
framework of classical mechanics. I am rather firmly convinced that the devel-
opment of theoretical physics will be of this type; but the path will be lengthy 
and difficult. [54, pp. 671–672]

I want to take home three important points from this passage: 

1. The wave-function in the statistical interpretation describes ensembles instead of 
individual quantum systems.

2. Therefore individual systems are not completely described by the wave-function.
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3. To describe an individual system completely, one would need to go beyond the 
statistical interpretation to search for such a completion.

The statistical interpretation, as Einstein describes it, is a peculiar form of interpre-
tation. Normally, one would seek an interpretation of quantum mechanics that is 
in some sense complete. Even if one were to support an operational or pragmatist 
interpretation of quantum mechanics [34], one would argue that such an interpre-
tation does not need a completion—for example, because one is skeptical that we 
can discover the true nature of unobservable objects. The statistical interpretation, 
on the other hand, rather says that, for all practical purposes, one can think of the 
wave-function describing ensembles, but this is not the complete story of reality. In 
his last words on the statistical interpretation, Einstein emphasized in a letter to A. 
Lamouche just a month before he died on March 20, 1955, that the statistical inter-
pretation is incomplete:

The �-function is not to be considered as a complete description of an individ-
ual state of affairs, rather only as a representation of what we can know about 
a particular state of affairs from an empirical point of view. Then the �-func-
tion is a representation of an “ensemble”, not the complete characterization of 
individual states of affairs. One has thereby renounced the latter in principle.12 
(quoted in [28, p. 9])

We can find the same attitude in Ballentine [5–7], who is probably the most famous 
modern advocate of the statistical interpretation:

The Statistical Interpretation, according to which a pure state provides a 
description of certain statistical properties of an ensemble of similarly pre-
pared systems, but need not provide a complete description of an individual 
system. [5, p. 360]

We see that a quantum state is a mathematical representation of the result of a 
certain state preparation procedure. Physical systems that have been subjected 
to the same state preparation will be similar in some of their properties, but not 
in all of them [...]. [5, p. 361]

The Statistical Interpretation, which regards quantum states as being descrip-
tive of ensembles of similarly prepared systems, is completely open with 
respect to hidden variables. It does not demand them, but it makes the search 
for them entirely reasonable [(]this was the attitude of Einstein (1949)[)]. [5, p. 
374]

The Statistical Interpretation does not prejudice the possibility of introducing 
hidden variables which would determine (in principle) the outcome of each 
individual measurement (Sec. 6). [5, p. 379]

12 I thank Maaneli Derakhshani for this reference.
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For both Einstein and Ballentine, the wave-function does indeed give an incom-
plete description of physical systems and would need a completion to provide such a 
description, as Ballentine’s statements “The Statistical Interpretation does not preju-
dice the possibility of introducing hidden variables” and that the statistical inter-
pretation “is completely open with respect to hidden variables” confirm. On the 
one hand, it seems that Ballentine regards the statistical interpretation as a viable 
interpretation for all practical purposes, but, on the other hand, this interpretation 
is incomplete and can be completed by hidden variables. The statistical interpreta-
tion is a useful interpretation of quantum mechanics, especially for physicists, and it 
gives a clear statistical interpretation of the predictions of quantum mechanics. This 
interpretation does therefore provide a richer picture of the world than pure opera-
tionalism and a less obscure metaphysics than the Copenhagen interpretation, even 
if the wave-function is �-incomplete.

4.1  Ã ‑Epistemic and Incomplete?

Is the wave-function in this interpretation �-ontic or �-epistemic? Einstein does not 
explicitly answer this question in the above quotation. But since the wave-function 
describes ensembles instead of individual quantum systems, it seems plausible that 
an individual system can be associated with two different wave-functions. Einstein 
mentions such a case in his 1935 correspondence with Schrödinger (see [36] Sect. 2 
and [33], Sect. 4.3):

Now what is essential is exclusively that �B and 𝜓B
̄

 are in general different 
from one another. I assert that this difference is incompatible with the hypoth-
esis that the � description is correlated one-to-one with the physical reality 
(the real state). After the collision, the real state of (AB) consists precisely of 
the real state of A and the real state of B, which two states have nothing to 
do with one another. The real state of B thus cannot depend upon the kind of 
measurement I carry out on A [...] But then for the same state of B there are 
two (in general arbitrarily many) equally justified �B , which contradicts the 
hypothesis of a one-to-one or complete description of the real states. (Einstein 
to Schrödinger in 1935, quoted in [36, p. 180])

Einstein concocted several arguments throughout his career to prove that quantum 
mechanics is incomplete. The only option Einstein saw in making sense of quantum 
mechanics was to interpret it as an incomplete statistical theory. So when Einstein 
concludes that quantum mechanics is incomplete, we can also understand this to say 
that the statistical interpretation is incomplete. His arguments also show what this 
incompleteness amounts to. In the above quote, Einstein talks about an entangled 
two-particle system AB, presumably in this state: 𝜓 =

1√
2

�
𝜓A𝜓B + 𝜓A

̄

𝜓B
̄

�
 . We can 

think of two electrons in the singlet state, for example. Einstein presupposed that 
each particle is prepared in an ontic state �A and �B respectively. Whether or not we 
measure particle A, this measurement cannot have any physical influence on the 
other particle, since Einstein strongly believed in locality. Therefore, the ontic state 
of particle B remains the same before and after measurement, and the wave-function 
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representing this state cannot change either. Thus, the ontic state �B is correctly 
described by both �B and 𝜓B

̄

 . Thus quantum mechanics, as well as the statistical 
interpretation, is �-epistemic and �-incomplete.13 Einstein deduces the incomplete-
ness from the issue that several wave-functions can be associated with the same 
ontic state; a complete theory, on the other hand, would uniquely associate a wave-
function to an ontic state. Harrigan and Spekkens also interpret this passage of Ein-
stein’s as arguing for a �-epistemic interpretation of the wave-function. They 
conclude:

By characterizing his 1935 argument as one that merely established the incom-
pleteness of quantum theory on the assumption of locality, Einstein did it a 
great disservice. For in isolation, a call for the completion of quantum theory 
would naturally have led many to pursue hidden variable theories that inter-
preted the fundamental mathematical object of the theory, the wave function, 
in the same manner in which the fundamental object of other physical theories 
were customarily treated-as ontic. But such a strategy was known by Einstein 
to be unable to preserve locality. Thus it is likely that the force of Einstein’s 
1935 argument from locality to the epistemic interpretation of � was not felt 
simply because the argument was not sufficiently well articulated. [33, p. 152]

Ballentine’s answer as to whether the statistical interpretation is �-epistemic or �-
ontic is encrypted in his second quote: “Physical systems that have been subjected to 
the same state preparation will be similar in some of their properties, but not in all of 
them.” This sounds like he regards the wave-function as �-statistical. An individual 
system has a certain wave-function solely in virtue of being part of an ensemble that 
has been prepared in the same quantum state, but some of these systems within this 
ensemble may differ with respect to their physical properties. If these systems can be 
described by another wave-function, they would have a �-statistical wave-function, 
and then the wave-function would be �-epistemic.

If Ballentine would advocate for such a statistical interpretation, it would not be 
able to make correct empirical predictions according to the PBR theorem. The only 
way out would be a �-epistemic completion of the statistical interpretation that vio-
lates the assumption of preparation independence, which would lead to some form 
of super-determinism (see [40, 55], for such a model).14

14 Ballentine could also deny the reality criterion (I thank an anonymous reviewer for raising this 
option). Then the statistical interpretation would not fit into the ontological models framework; it would 
be neither �-ontic nor �-epistemic; and the PBR theorem would not be applicable. The biggest problem 
I see here is that it becomes unclear what the statistical interpretation is about and how the statistical 
pattern is generated in the first place. If there is no ontological underpinning in terms of some objec-
tive properties, it is not obvious what a quantum system is and how this (non-existing?) quantum system 
can interact with a measurement device. Oldofredi and López [50] will take a similar but less radical 
approach by revising instead of abolishing the reality criterion (see Sect. 4.2).

13 Fano et al. [27] contest that this is Einstein’s line of argument. According to them, Einstein argued 
only that if locality holds standard quantum mechanics must be �-epistemic. It’s not so clear whether 
Einstein had a coherent view of what the statistical interpretation actually is. Sometimes Einstein can be 
read to advocate a �-ontic interpretation but also a �-epistemic interpretation in other contexts.
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Let me briefly explain why one needs to violate preparation independence to rescue 
�-epistemic wave-functions.15 Remember the PBR setting in Fig. 8 from Sect. 3. Two 
preparation devices (blue boxes) send a beam of particles to a measurement device 
(orange box). The particles are either prepared in a spin x-up or spin z-up state. Since 
it is assumed that the wave-function is �-epistemic, a fraction q of the particles in each 
beam are described by both the spin x-up and spin z-up wave-functions (double wave-
functions). Due to preparation independence, the ontic states of the left beam are inde-
pendently distributed from the ontic states in the right beam; therefore, q2 of times, a 
pair of particles (one from the left and one from the right beam) are associated with 
four wave-functions. These simultaneous four wave-functions lead to a contradiction 
with the predictions of quantum mechanics. A violation of preparation independence 
would not yield any two-particle system that is correctly described by these four wave-
functions. That is, whenever a particle in the left beam has a double wave-function 
the corresponding particle in the right beam will only have one correct wave-function, 
and vice versa. Thus, the distribution of double wave-functions in each beam are cor-
related such that a particle with a double wave-function in one beam will not be paired 
with a particle in the other beam having also a double wave-function.

There are a couple of problems with violating preparation independence. First, 
how could the ontic states of the two beams be correlated in the first place? This 
becomes particularly problematic when we isolate each preparation device from 
each other—for example, by space-like separation and special isolation materials 
round them. There are two ways to do that, which are both implausible. Either these 

Fig. 8  The proof of the PBR-theorem. Alice and Bob prepare an ensemble of quantum system that are 
either in a z-spin up or and x-spin up state. They send their system to a measurement device (orange box) 
that makes a measurement on pairs of systems, one system in such a pair is from Alice’s and one from 
Bob’s preparation device (Color figure online)

15 In their analysis of the statistical interpretation, Fano et al. [27] interpret the PBR-theorem to make 
such an interpretation impossible. Violation of preparation is in fact a way, although problematic, to 
retain a �-epstemic wave-function.
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correlations happen by pure chance. If that were the case, there needs to be some 
case (even only in principle) where chance is not in our favor and would match two 
systems with a double wave-function. This would, however, undermine the empiri-
cal predictions of the theory. Another way to explain these correlations would be to 
postulate special fine-tuned initial conditions in the past before the preparation (and 
the measurement) were conducted. These fine-tuned initial conditions are ultimately 
traced back to fine-tuned initial conditions of the universe...and these fine-tuned ini-
tial conditions demand further explanation. Especially, when experimentalists do 
not do anything particularly special with the preparation devices, such special initial 
conditions have a mysterious character.

Second, the correlation of the ontic states after preparation is sensitive to the 
future measurement. If we change the measurement device and conduct a different 
kind of measurement, this would necessitate that the particles become differently 
correlated if this measurement is similarly prepared as in the PBR-theorem—other-
wise, we would run into another contradiction. One may explain the influence of the 
measurement device again by special initial conditions, but this would make the set-
up even more fine-tuned. And if the future measurement is not specially designed as 
in the PBR-theorem, does this mean that the particles would be still correlated, or 
are they uncorrelated?

Third, connected to the previous point, a violation of preparation independence 
depends on operational procedures, like measurement and preparation. It is unclear 
where to draw the line between measurement and non-measurement procedures and 
between preparation and non-preparation procedures. It is, therefore, ill-defined in 
which situations one has correlations and in which one does not. Following the argu-
ment by Peter Lewis [41], we can call this a measurement-problem-like-problem.

If the statistical interpretation is �-epistemic and incomplete as claimed by Harri-
gan and Spekkens [33], it has to violate preparation independence and rely on some 
super-deterministic mechanism, otherwise it would not be an empirically adequate 
theory. To avoid a violation of preparation independence, you may seek an inter-
pretation of the wave-function as �-ontic. Oldofredi and López [50] go along this 
route but for different reasons. I present and evaluate their arguments in the next 
subsection.

4.2  Ã ‑Ontic and Complete?

The biggest problem Oldofredi and López [50] identify in Harrigan and Spekkens’s 
classification of the statistical interpretation is that this interpretation demands a dif-
ferent kind of ontic state:

In the second place, another crucial point to highlight is that the ontic space 
of the statistical interpretation is not one of individuals, but of ensembles. 
This allows for an alternative reading of the ontic state: it provides a complete 
description of the properties of an ensemble, not of individuals. And there is 
nothing else to know about ensembles that is not provided by the quantum 
state. The upshot of the present discussion is that the sort of � that the statisti-
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cal interpretation poses is completely different in nature with respect to that 
employed by Harrigan and Spekkens. [50, p. 1330]

According to Oldofredi and López [50], the ontic state that underlies the statistical 
interpretation is not the one that is presupposed in the ontological models frame-
work (which refers to individual systems), but one that only refers to an ensemble 
of systems. With this kind of ensemble-� , one may interpret the wave-function in 
the statistical interpretation to be �-ontic and also �-complete. Since, in the usual 
definition, a �-ontic wave-function requires an ontic state for individual systems, 
Oldofredi and López [50] would need an “ensemble ontological model”, in which 
the wave-function uniquely refers to the ensemble-�.

Oldofredi and López [50] do not argue that a �-epistemic wave-function is trou-
blesome because of the PBR-theorem, that is, there are physical reasons to construe 
the wave-function differently; rather, they mention historical reasons for their take 
on the wave-function and the corresponding ontic state. They argue that Ballen-
tine thought the wave-function in the statistical interpretation to provide a complete 
description of physical systems. Since any �-complete wave-function is necessarily 
�-ontic (see Lemma 6 in [33, p. 133]), the wave-function in the statistical interpreta-
tion is �-ontic.

Their historic argument is quite confusing. First, they present three sources in 
which Einstein explicitly argues that the wave-function has to be incomplete (to not 
violate locality).16 Then they say that “Hence, it is fair to establish a strong theoreti-
cal continuity between Ballentine’s presentation of the ensemble view and Einstein’s 
interpretation of quantum mechanics.” (p. 1330) That is, Ballentine agrees with Ein-
stein on what the statistical interpretation tells us about quantum systems ([6], see 
also).17 In particular, Ballentine is supposed to agree with Einstein that this theory 
is incomplete. As I discussed above, Ballentine sometimes appears to be indecisive 
as to whether his interpretation is complete or incomplete, but he certainly considers 
that his theory can be completed by another quantum theory, but whether it needs 
such a completion is left open. Oldofredi and López seem to suggest that Ballentine 
breaks with Einstein and advocates an interpretation that is complete necessitating 
a different ontic state � that only refers to entire ensembles and not to individual 
systems.

In my reading of Ballentine, I rather think that he considers his theory “complete 
for all practical purposes” to make successful predictions and to apply quantum 
mechanics without dealing with a mysterious metaphysics à la Copenhagen. But to 
get a truly complete theory that tells us what quantum systems really are, Ballentine 
seems to embrace such a completion of the statistical interpretation.

Hence, it is Oldofredi and López’s proposal of an ensemble-� , which renders the 
statistical interpretation a complete theory, and therefore it is them who break with 

16 They are (i) Einstein’s remarks at the 1927 Solvay conference (transcript in [4,  pp. 440–442]), (ii) 
Einstein’s 1936 essay Physics and Reality [24], and (iii) Einstein’s reply to critics in his intellectual auto-
biography [54].
17 Fine [28] also discusses how Einstein interpreted quantum mechanics.
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both Einstein’s and Ballentine’s view of how the statistical interpretation refers to 
the physical world.18 I see the following problems with their suggestion. First, as I 
said, Einstein and Ballentine explicitly mention that their interpretation is incom-
plete. For all practical purposes, one can use the statistical interpretation to have a 
sufficiently clear picture of what quantum physics tells us about the world, but for a 
complete picture one would need to supplement this interpretation. Second, the sta-
tistical behavior of an ensemble is generated by its individual constituents. A natu-
ral question is how these constituents do that. How is the ensemble-� related to the 
individual � s? Third, and connected to the previous point, even if the wave-function 
provides the complete description of an ensemble, it is unclear how the wave-func-
tion could not be �-statistical. Such a statistical interpretation of the wave-function 
would not provide the means to exclude that some particles can be swapped between 
two ensembles. One may respond that it is impossible to talk about the individual 
ontic states since all there is in this statistical interpretation is the ensemble-� . This 
response is problematic, because the individual systems do exist, and it is unclear 
why we are not supposed to completely describe them or why the properties of the 
individual systems do not contribute to the complete description of the ensemble. 
Fourth, ensembles are usually defined to be series or copies of infinitely many sys-
tems. In the real world, we only deal with finite series. It is not clear how an ontic 
state that is about the properties of infinitely many systems is related to the proper-
ties of finitely many systems.

4.3  Ã ‑Ontic and Incomplete!

Because of the just mentioned conceptual problems with an �-ontic and complete 
wave-function for the statistical interpretation and the challenges of the PBR-theo-
rem faced by a �-epistemic and incomplete wave-function, I conclude that a �-ontic 
and incomplete wave-function is the best option.

One may argue that a �-ontic and incomplete wave-function would restrict the 
relation between the ontic state � and � more strictly than the formulation of the 
statistical interpretation justifies, because although the wave-function in the statis-
tical interpretation only describes ensembles, we would need to believe in (a not 
yet specified) completion that would describe individual systems. This description of 
individual systems would make it impossible that an electron can be swapped from 
an x-up beam into a z-up beam. Even if the statistical interpretation does not seem 

18 I also think that Oldofredi and López cite the wrong reason for why Harrigan and Spekkens consider 
the statistical interpretation to be �-epistemic:
 How do Harrigan and Spekkens reinforce their conclusion that the ensemble view is a �-epistemic 
model? They answer it by saying that the notion of ‘ensemble” in Einstein’s jargon is nothing but a way 
to talk about probabilities reflecting an observer’s knowledge[.] [50, p. 1328]
 Harrigan and Spekkens do not make the mistake of identifying �-epistemic wave-functions with epis-
temic interpretations of the wave-function. Instead, they conclude that the wave-function in the statistical 
interpretation to be �-epistemic on two grounds. First, it is incomplete (according to Einstein and Bal-
lentine). Second, Einstein gives an argument for associating two different wave-functions to the same 
quantum system in his 1935 correspondence to Schrödinger.
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to a priori prohibit such a swap of particles, this constraint follows from the wave-
function being �-ontic. That is, a particle is in a certain quantum state � not because 
it happens to be prepared to be part of an ensemble, but because properties of its 
ontic state � make it to be in the quantum state �!

Although it is correct that the statistical interpretation allows for different ways 
the wave-function could be, I have  presented several arguments that uncover the 
problems of a �-epistemic or a complete wave-function. These arguments are simi-
lar in kind to arguments that have been made about the contextuality [39] and non-
locality of quantum mechanics [8]. The Kochen-Specker theorem concludes that a �
-incomplete wave-function can only be supplemented by contextual variables (that 
is, variables that lead to different empirical results depending on how they are meas-
ured); Bell’s theorem says that as long as a certain kind of statistical independence 
is fulfilled the theory cannot explain certain correlations by a local mechanism. So 
even if a certain interpretation of quantum mechanics is incomplete, one can dis-
cover certain hidden structures of the theory or certain features of a possible com-
pletion. The same is the case for my defense of a �-ontic and �-incomplete wave-
function for the statistical interpretation.

This reading of the statistical interpretation would indeed break with Einstein’s 
view of assigning several wave-functions to the same system but seems to back up 
my understanding of Ballentine of using the statistical interpretation for all practical 
purposes, while being open to a possible completion. Such an interpretation would 
also make the statistical interpretation fit into the ontological models framework 
without a revisionary interpretation of the ontic state �.

5  Conclusion

Is the statistical interpretation of quantum mechanics �-epistemic? It could be. The 
core tenets of the interpretation do not settle the question as to whether the wave 
function is �-epistemic or �-ontic. That is left open, to be decided by deeper phys-
ics. If the statistical interpretation allows for the swap of some particles prepared 
with different wave-functions, the wave-function would be �-epistemic, but then it 
would be ruled out by the PBR theorem, unless one is willing to violate prepara-
tion independence and support a quantum theory that invokes some form of super-
determinism. The wave-function would be �-onic, if the statistical interpretation is 
completed by a quantum theory that describes the state of individual systems.

The way the statistical interpretation is formulated by Ballentine would paradoxi-
cally make both the �-epistemic and the �-ontic path viable. The underlying issue is 
that this interpretation in its very definition is incomplete.
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