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Abstract
We observe that Schrödinger’s equation may be written as two real coupled Ham-
ilton–Jacobi (HJ)-like equations, each involving a quantum potential. Developing 
our established programme of representing the quantum state through exact free-
standing deterministic trajectory models, it is shown how quantum evolution may 
be treated as the autonomous propagation of two coupled congruences. The wave-
function at a point is derived from two action functions, each generated by a sin-
gle trajectory. The model shows that conservation as expressed through a continuity 
equation is not a necessary component of a trajectory theory of state. Probability is 
determined by the difference in the action functions, not by the congruence densi-
ties. The theory also illustrates how time-reversal symmetry may be implemented 
through the collective behaviour of elements that individually disobey the conven-
tional transformation ( T ) of displacement (scalar) and velocity (reversal). We prove 
that an integral curve of the linear superposition of two vectors can be derived alge-
braically from the integral curves of one of the constituent vectors labelled by inte-
gral curves associated with the other constituent. A corollary establishes relations 
between displacement functions in diverse trajectory models, including where the 
functions obey different symmetry transformations. This is illustrated by showing 
that a ( T-obeying) de Broglie-Bohm trajectory is a sequence of points on the (non-
T ) HJ trajectories, and vice versa.

1  Introduction. Alternatives to the Wavefunction

In a series of works, the author has presented ways in which quantum evolution may 
be represented exactly using trajectories (nondenumerable ensembles of moving 
points) as state variables in place of the wavefunction. The Schrödinger equation 
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becomes a set of autonomous deterministic  equations governing the trajectories, 
the evolution of the wavefunction version of state being deduced from their collec-
tive flow. Two classes of trajectory models have been investigated, distinguished by 
how they connect with the wavefunction when it is expressed in terms of real func-
tions: using polar variables ( 𝜓 =

√
𝜌 exp (iS∕ℏ) ) ([1–3] and references in [4]), or 

real and imaginary parts ( � = �R + i�I ) [5–7]. The wavefunction at a spacetime 
point is built from either a single path propagating data from a unique initial space 
point (polar model) or two paths emanating from two initial points (real/imaginary 
model). These methods make essential use of the continuity equation whose gen-
eral solution employs trajectories to link the initial and present densities. Borrowing 
terminology from continuum physics, the relation between the wave and trajectory 
varieties of state corresponds to that between the Eulerian and Lagrangian pictures 
[8], for single- or two-phase fluids. To set the new constructive trajectory technique 
proposed in this article in context, we first elaborate on the two existing schemes.

Using the polar representation, the Schrödinger equation

becomes the two real equations

where Q(x, t) = −(ℏ2∕2m
√
𝜌)𝜕ii

√
𝜌  is the quantum potential ( i, j,⋯ = 1, 2, 3 ). 

This formulation suggests the well-known hydrodynamic interpretation [9] in 
which the quantum state is conceived in terms of the density � and velocity poten-
tial S of a putative quantum fluid. An alternative sobriquet for (3) is ‘the quantum 
Hamilton–Jacobi (HJ) equation’, since it is redolent of the classical HJ equation if 
mvi = �iS is identified with momentum, so that 

(
�iS

)2
∕2m is a kinetic energy, and Q 

is regarded as a potential energy additional to the external potential V  . Note, though, 
that this is not an HJ equation in the classical sense because it does not stem from a 
transformation theory [10], and the mutual dependence of the � and S fields means 
that the ‘external’ potential Q is S-dependent and tacitly involves derivatives of S 
higher than the first (example: for a one-dimensional stationary state with a finite 
current, Q = −ℏ2(𝜕S)1∕2𝜕2(𝜕S)−1∕2∕2m) [9] ). The latter property implies that the 
separation into kinetic and potential energies used in (3) is arbitrary and, as we show 

(1)iℏ
𝜕𝜓

𝜕t
= −

ℏ2

2m
𝜕ii𝜓 + V(x)𝜓

(2)
��

�t
+

1

m
�i
(
��iS

)
= 0

(3)
�S

�t
+

1

2m
�iS�iS + Q + V = 0
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below, other hydrodynamic- or HJ-like renderings of (1) are possible, involving 
alternative identifications of these energies as functions of the wavefunction.

The dynamics of the exact self-contained trajectory theory of state corresponding 
to the polar representation is governed by a second-order differential equation, or 
equivalently an integro-differential first-order equation [1–4]. We denote its solu-
tions, which coincide with the trajectories of the de Broglie-Bohm interpretation,1 
by qi

(
q0, t

)
 where qi

0
 uniquely labels a path and may be taken to be the initial loca-

tion. This specification of the state is supplemented by the initial density �0 and 
velocity q̇i

0
= m−1𝜕iS0 . The time-dependent wavefunction is derived from the trajec-

tories, up to a global phase, thus:

with

where q̇i = 𝜕qi
(
q0, t

)
∕𝜕t

||
|q0

 , L
(
q(q0, t), t

)
=

1

2
mq̇i

2
− Q(q) − V(q) , J = det

(
�q∕�q0

)
 

and � = �0J
−1 is substituted in Q . The integral (5) is taken along any line joining the 

points 
(
qi
0
= 0, t = 0

)
 and 

(
qi
0
, t
)
 . The amplitude � at a spacetime point (xi, t) is 

thereby built from a single trajectory propagating �0 from the unique initial point qi
0
 

(the notation q0(x, t) means that qi
0
 is chosen so that qi

(
q0, t

)
= xi ). Note, though, 

that a path does not subsist in isolation, as in a particle-mechanical system, but con-
tributes to a nondenumerable ensemble of paths, analogous in this regard to an opti-
cal ray. Moreover, the assembly is a congruence (so there are no focal points), and 
neighbouring trajectories mutually interact through attractions and repulsions whose 
specifically quantum character is embodied in Q (which depends on the qi

0
-deriva-

tives of qi and �0 ). This is the causal mechanism driving quantum evolution in this 
model.

The trajectory picture undermines ‘wavefunction hegemony’ [11] in conceiving 
the quantum state but the two viewpoints are complementary rather than antagonis-
tic. Indeed, each view is implicit in the other: when wave mechanics is formulated in 
terms of (gauge) potentials for the Eulerian functions � and vi , the two pictures are 
connected by a canonical transformation [1, 4]. A consequence is that the trajectory 
provides an additional perspective on the physical meaning of the wavefunction, 
consistent with its usual (Eulerian) interpretation.

(4)𝜓(x, t) =

√
𝜌0
(
q0
)
J−1

(
q0, t

)
exp

[
i𝜒
(
q0, t

)
∕ℏ

]||||q0(x,t)

(5)𝜒
(
q0, t

)
= ∫ mq̇i

𝜕qi

𝜕q
j

0

dq
j

0
+ L

(
q(q0, t), t

)
dt

1 It is emphasized that the trajectory constructions of state described in this paper are alternative math-
ematical formulations of quantum theory and are neutral as regards interpretation. In particular, in the 
polar theory no path is singled out as physically special or adorned with a substantive corpuscle, the cen-
tral assumption of the de Broglie-Bohm theory. These models do, however, have the potential to expand 
the scope of interpretations, as we show below in this section for the conventional interpretation.
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We shall examine this point briefly by considering the Lagrangian interpreta-
tions of the Eulerian functions � and S . The conventional interpretation of � is that 
�d3x is the probability of finding the position in the domain (xi, xi + dxi) at time t . 
If the measurement of position is formulated in Lagrangian terms (which requires 
extending the trajectory formalism to a many-body system, as in [3]) the outcome 
at an instant t is one of the possible current locations qi

(
q0, t

)
 , distinguished by the 

label qi
0
 . Since the trajectory through a spacetime point is unique, we may infer the 

label qi
0
(q, t) from the outcome and thus treat the process as a measurement of label. 

Hence, we obtain two interpretations of the distribution in measurement results: 
uncertainty in the position (usual Eulerian view) or in the label of a trajectory 
(Lagrangian view). It is easy to see that these interpretations are indistinguishable 
using only position measurements. Thus, in the Lagrangian picture, the local conser-
vation of probability corresponding to (2) reads

where P
(
q0, t

)
= �

0

(
q0
)
J−1

(
q0, t

)
 . The probability of finding the trajectory label in 

the range ( qi
0
, qi

0
+ dqi

0
 ), PJd3q0 , is therefore equal to �d3x for all t and so the two 

interpretations are empirically equivalent.2
Turning to the phase S , its Lagrangian-picture representative � in (5) is an 

action function, specifically the action of a particle of mass m starting from the 
point qi

0
 and moving in a given potential Q + V .3 Two useful forms for the action 

may be obtained from the general expression (5) by choosing integration paths 
(A) (0, 0) → (qi

0
, 0) → (qi

0
, t) or (B) (0, 0) → (0, t) → (qi

0
, t):

where f (t) = ∫ t

0
L
(
q(q0, t), t

)||
|q0=0

dt . To express the action in the Eulerian picture, 
we make the change of variables qi

0
→ qi

0
(x, t) in (5) and, defining 

pi = mvi(x, t) = mq̇i(q0(x, t), t) and H(x, p, t) = pi
2∕2m + V(x, t) + Q(x, t) , we obtain 

the classical-type formula

(6)
�

�t

[
�(q, t)d3q(t)

]|||
|q0

=
�

�t

(
PJd3q0

)|||
|q0

= 0

(7)�
(
q0, t

) A
= S0

(
q0
)
+

t

∫
0

L
(
q(q0, t), t

)
dt

|||
||||q0

(8)
B
= f (t) +

q
j

0

∫
0

mq̇i
𝜕qi

𝜕q
j

0

dq
j

0

|||
||||
|t

2 The measurement of the trajectory velocity is discussed in [4].
3 The action for the congruence is given by ∫ 𝜌0

(
q0
)[

1

2
mq̇i

2
−
(
ℏ2∕8m

)(
𝜕log𝜌∕𝜕qi

)2
− V

(
q
(
q0
))]

d3q0dt . A 

trajectory is subject to a force − �V

�qi
−

1

�

��ij

�qj
 where 𝜎ij = −

ℏ2𝜌

4m

𝜕2 log𝜌

𝜕qi𝜕qj
 . Its coincidence with the path of a par-

ticle of mass m in the potential V + Q follows from the identity 1
�

��ij

�qj
=

�Q

�qi
 [1].
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When extended to Riemannian space, the polar approach provides trajectory 
models for a wide class of quantum and non-quantum systems. As an example, one 
accomplishment is the solution to a longstanding problem that appears insuperable 
in the wavefunction language, that of representing exactly a many-body system in 
terms of states defined in three-dimensional space [3].

In the second class of earlier models of state, connected with real and imaginary 
components, the free Schrödinger equation splits into a pair of coupled continuity 
equations where �R and �I play the role of conserved densities, and the two associ-
ated velocity fields are functions of them [5]. In the associated exact stand-alone 
trajectory theory, the state is defined by two vector functions qi

R

(
qR0, t

)
 and qi

I

(
qI0, t

)
 

alongside the initial densities �R0 and �I0 , and is governed by first-order coupled dif-
ferential equations. The trajectories propagate the system according to the formula

In this case, the amplitude � at a point is built from two trajectories propagating 
the initial values �R0 and �I0 that originate from the points qi

R0
 and qi

I0
 , respectively. 

The formula (10) may be generalized to embrace external fields [5], and the method 
extends to trajectory constructions of solutions to the wave and Klein-Gordon equa-
tions [6], and the Dirac equation [7]. A notable feature of these models is that the 
spacetime boost symmetry is implemented by non-classical transformations of the 
Eulerian velocity fields, in both the non-relativistic [5] and relativistic [7] cases. In 
the latter case it has been shown that the corresponding non-standard Lagrangian 
transformations must be label dependent to achieve Lorentz covariance [7, 12].

The first method described above employs a continuity Eq.  (2) and an HJ-like 
Eq.  (3) as field equations, and the second uses two continuity equations. In this 
contribution we complete the triptych of possible representations of Schrödinger’s 
equation that employ continuity and HJ-like equations by showing how it can be 
expressed as a pair of real coupled HJ-like equations, each involving a quantum 
potential (§2). We show (§3) that this formulation also admits an associated exact 
trajectory construction comprising the autonomous propagation of two coupled con-
gruences, which respectively generate action functions that together represent the 
wavefunction. The bi-HJ-like picture shares some features with the two preceding 
models but exhibits significant differences. It shows that conservation as expressed 
through a continuity equation obeyed by functions of the wavefunction is not a nec-
essary component of a trajectory theory of state; probability is determined here by 
the difference in the action functions. It also illustrates how time-reversal symmetry 
may be implemented by transformations that disobey the conventional transforma-
tion ( T ) of displacement components (scalars) and velocity (reversal); rather, the 
time reversal transform of one flow is the T-reversal of the other (§§2 and 3). We 
are then led to examine how the trajectories in the various models we have proposed 
are connected. In §4.1, we prove that an integral curve of the linear superposition 
of two vectors can be derived algebraically from the integral curves of one of the 

(9)S(x, t) = ∫ pidx
i − Hdt.

(10)�(x, t) = �R0

(
qR0

)
J−1
R

(
qR0, t

)|||qR0(x,t)
+ i�I0

(
qI0

)
J−1
I

(
qI0, t

)|||qI0(x,t)
.
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constituent vectors labelled by integral curves associated with the other constituent. 
A corollary establishes relations between the displacement functions in different tra-
jectory models, including where the functions obey different symmetry transforma-
tions. In §4.2, we employ this construction to show how a conserved flow may be 
built from a non-conserved flow and, applying the theory to the two HJ-like flows, 
prove that the evolution of probability cannot be generated by their trajectory den-
sities. The corollary is illustrated in §5 by showing that a ( T-obeying) de Broglie-
Bohm trajectory is a sequence of points on the (non-T ) HJ-like (and other similar) 
trajectories, and vice versa.

The theory was prompted by a recent unified theory of particle and wave [13, 
14] in which time-reversal covariance plays a significant role. However, as already 
 noted1, the work herein concerns just an alternative formulation of the quantum for-
malism, without the additional physical elements of the unified model.

2  Schrödinger’s Equation as a Bi‑Hamilton–Jacobi‑Like System

We shall represent the Eulerian version of the quantum state, i.e., � , using the two 
real functions S± = S ± (ℏ∕2)log𝜌.4 In terms of them, the wavefunction decomposes 
into a product of two complex amplitudes,

which individually do not obey Schrödinger’s equation. The latter becomes two real 
coupled equations, closed in the fields S±:

where

This formulation must be supplemented by conditions corresponding to those 
obeyed by � . For example, single-valuedness is embodied in the constraints 
∮ �iS±dx

i = nh, n ∈ℤ . An external vector potential may be included in (12), 
(13) and (14) by replacing �iS± → �iS± − Ai but we shall not need this.

We obtain in (12) and (13) what looks like a pair of Hamilton–Jacobi equations if 
we treat the functions S± as potentials for two velocity fields,

(11)𝜓 = e(1+i)S+∕2ℏe(−1+i)S−∕2ℏ,

(12)
�S+

�t
+

1

2m
�iS+�iS+ + Q+ + V = 0

(13)
�S−

�t
+

1

2m
�iS−�iS− + Q− + V = 0

(14)Q± = ∓
ℏ

2m
�iiS∓ −

1

4m

[
�i
(
S+ − S−

)]2
.

4 It is tacitly assumed that the function log� , where � has the dimension l−3 , contains a constant that 
renders it dimensionless. This constant adds to the indetermination in S and does not affect any results.
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and regard the terms Q± , which couple the equations, as ‘quantum potentials’, non-
classical additions to the classical HJ equation. The functions Q± share the distinc-
tive properties of Q in (3) [9]: they are second order in the coordinates, gauge invari-
ant, dependent on the form of � rather than its absolute magnitude, and they do not 
generally fall off with distance. Following our remarks above regarding the arbitrari-
ness in apportioning energy in (3), this representation offers alternative identifica-
tions of potential and kinetic energies as functions of the wavefunction. However, 
as with (3), (12) and (13) are not HJ equations in the classical sense: they have not 
been derived from a transformation theory, the quantum potentials depend (explic-
itly here) on the velocities and their derivatives, and, of course, there are two cou-
pled equations. Nevertheless, as we shall see, there is sufficient commonality in the 
classical and quantum formalisms to warrant use of the ‘HJ’ epithet. Henceforth, we 
shall often write ‘HJ’ for ‘HJ-like’.

Taking the gradients of (12) and (13) gives coupled acceleration equations:

These equations, in conjunction with (15), constitute an alternative version of 
Schrödinger’s equation ((12) and (13) are easily recovered from them). In a hydro-
dynamic analogy, (16) suggests visualizing a quantum system as a mixture of two 
miscible fluids that intermingle throughout space, each point supporting both flows. 
In the Eulerian picture of the mixture, (16) may be interpreted as a pair of Euler 
force equations governing a bi-potential flow (15). The scheme has two notable 
properties. First, adapting ideas of the continuum theory of mixtures [15, 16], the 
coupled character of the equations, i.e., the appearance of vi

∓
 in the equation for vi

±
 , 

is suggestive of a two-phase model that exhibits continual conversion of one spe-
cies of fluid into the other. Second, the theory is couched just in terms of velocity 
fields and is devoid of independent density functions, an uncommon occurrence in 
hydrodynamics. This is evident from the acceleration potentials on the right-hand 
side of (16), and from the absence of continuity equations. The individual fluids may 
be attributed Lagrangian trajectory densities (see §§3 and 4.2), but the correspond-
ing Eulerian fields relate to the velocity fields, and then only indirectly through their 
divergences. The Eulerian probability density is also connected with the velocities, 
but in a quire different way via the potential difference5:

In the context of (12) and (13), the continuous symmetries of the ten-parameter 
Galileo covariance group of the Schrödinger equation take the form

(15)vi
±
(x, t) = m−1�iS±,

(16)
�vi

±

�t
+ v

j
±�jv

i
±
= −

1

m
�i

[

∓
ℏ

2
�jv

j
∓ −

m

4

(
v
j

+ − vj
−

)2

+ V

]

.

(17)� = exp
[(
S+ − S−

)
∕ℏ

]
.

5 The relation (17) evokes Boltzmann’s formula connecting probability and entropy ( P = eSB∕k ), an 
observation that might become significant should a connection be established between action and entropy 
(as suggested by de Broglie [17]).
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where d , ci , aij (with aijaik = �jk ) and wi are constants, and V  is assumed to be a scalar. 
It follows that each of the velocity fields (15) is a Galileo 3-vector ( v�i

±
= aijv

j
± − wi ), 

a property they share with the single velocity vector employed in the de Broglie-
Bohm theory and in classical mechanics. The formalism diverges from the latter 
theories, however, when we consider the time-reversal symmetry of (1) (again, we 
assume V  is a scalar). This transformation involves the complex conjugate wave-
function [18–20] and reads � �

R
= �R,�

�
I
= −�I in the real variables, or

The sign reversal of the phase S ensures the covariance of the HJ Eq. (3) and entails 
the reversal of the de Broglie-Bohm velocity: v�i = −vi . This is in accord with time 
reversal in classical mechanics, where the HJ function reverses. We denote by T this 
‘standard’ transformation. The corresponding transformations of the new fields are

whence

It is readily checked that the functions S�

±
 are solutions of (12) and (13) (in the 

primed variables). Evidently, in this view the velocities characterizing the two flows 
do not exhibit the usual sign reversal property (as do the de Broglie-Bohm and clas-
sical velocities); rather, they map into the negative of each other. The theory is effec-
tively T-covariant, but due to the collective behaviour of elements that individually 
disobey T . Such exchange of roles is a signature of the time-reversal covariance of 
(1), which transforms into its complex conjugate and conversely [18]. Likewise, (12) 
and (13) interchange, as do the Euler Eqs. (16). We shall develop this point in §3.

The formalism we have introduced overlaps with that employed in the stochas-
tic interpretation, which embellishes the quantum formalism with a random com-
ponent in the velocity [21, 22]. Within that scheme, the velocities (15) are inter-
preted as forward and backward drift velocities, ui = vi

+
− vi

−
= (ℏ∕m)�ilog� is the 

osmotic velocity, the local mean vi = 1

2

(
vi
+
+ vi

−

)
 is the de Broglie-Bohm velocity, 

and Eqs.  (54) below are the corresponding Fokker–Planck equations. In this con-
nection, we stress that we are engaged here in finding an alternative expression for 
the deterministically evolving quantum state, and we do not introduce an additional 
stochastic (or any other) mechanism to modify the formalism. Our proposal to write 
the Schrödinger equation as two HJ equations, and to connect the velocities vi

±
 with 

a deterministic trajectory model (which we do next), does not appear to have been 
explored before.

Our approach should also be distinguished from the so-called ‘quantum Hamil-
ton–Jacobi’ theory in which � = eiW∕ℏ , W ∈ ℂ , is inserted in Schrödinger’s equation 

(18)
t� = t + d, x�i = aijx

j − wit + ci,

S�
±
(x�, t�) = S±(x, t) + aijw

ixj + mwi2t∕2,

(19)T ∶ x�i = xi, t� = −t, ��
(
x�, t�

)
= �(x, t), S�

(
x�, t�

)
= −S(x, t).

(20)S�
±

(
x�, t�

)
= −S∓(x, t)

(21)v�i
±

(
x�, t�

)
= −vi

∓
(x, t).
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to turn it into a complex HJ-like equation for the ‘HJ’ function W [23, 24] (still a sec-
ond-order equation in xi , and thus not of the classical type). An interpretation of that 
formalism using complex trajectories has been proposed in which the Schrödinger 
equation is modified by complexifying the real coordinates xi [25]. It is not clear 
that this procedure provides a consistent interpretation of quantum mechanics due 
to problems with defining a locally conserved probability current [25, 26], but this 
issue is beyond the scope of our present investigation.

3  Eliminating the Wavefunction from Quantum Dynamics: 
A Bi‑Trajectory Construction of the Quantum State

Complementing the Eulerian theory of the two interacting fields S± , we shall show 
how the time-varying quantum state may be represented independently by two cou-
pled Lagrangian congruences qi

+

(
q+0, t

)
 and qi

−

(
q−0, t

)
 , supplemented by the initial 

data S±0 . Here, qi
+0

 and qi
−0

 label elements of the respective continuous ensembles 
of trajectories and may be chosen as the initial positions. The velocities in the two 
pictures are connected by the relations

Given �(t) , and hence vi
±
 , the trajectories may be found by solving the differential 

Eqs. (22). Our aim is to invert this procedure and obtain from the wave equation in 
the form (16) exact self-contained trajectory equations whose solutions imply �(t).

Each space point simultaneously supports a trajectory of each genus. Suppose 
that at time t the paths qi

+0
 and qi

−0
 cross the point xi . The relations

uniquely fix the choice of labels qi
±0
(x, t) that ensure this intersection. This implies 

a mutual dependence of the labels: given qi
+0
(x, t) , the corresponding unique 

qi
−0

= qi
−0

(
q+0, t

)
.

There are two steps to turning (16) into stand-alone equations to calculate the 
time dependence of the Lagrangian coordinates. First, relations (22) and (23) are 
employed to generate the following coupled second-order acceleration equations:

which are subject to the initial conditions q̇i
±0

= m−1𝜕S±0
(
q±0

)
∕𝜕qi

±0
 . Here,

(22)q̇i
±
≡ 𝜕qi

±

(
q±0, t

)

𝜕t

|||
||q±0

= vi
±

(
x = q±

(
q±0, t

)
, t
)
.

(23)xi = qi
+

(
q+0, t

)
= qi

−

(
q−0, t

)
, i = 1, 2, 3,

(24)q̈i
+
= −

1

m

𝜕

𝜕qi+

[
�

2

𝜕 log J−1
−

𝜕t
−

m

4

(
q̇
j

+ − q̇j
−

)2

+ V
(
q+, t

)
]

,

(25)q̈i
−
= −

1

m

𝜕

𝜕qi
−

[

−
�

2

𝜕logJ−1
+

𝜕t
−

m

4

(
q̇
j

+ − q̇j
−

)2

+ V
(
q−, t

)
]

,
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J±
(
q±0, t

)
= det

(
�q±∕�q±0

)
 , and we have used the identities 𝜕logJ±∕𝜕t = 𝜕q̇i

±
∕𝜕qi

±
 . 

The second step is to write these coupled equations in terms of a common set of 
independent variables. If we choose the latter as qi

+0
 and t , the dependent variables 

are qi
+

(
q+0, t

)
 and qi

−0

(
q+0, t

)
 . Inverting the latter vector function, the vector func-

tion qi
−

(
q−0, t

)
 is obtained from (23) as qi

+

(
q+0

(
q−0, t

)
, t
)
 . The Eqs. (24) and (25) are 

transformed into the common variables using the formulas

and a corresponding expression for q̈i
−
 . Naturally, we could take qi

−0
 and t as inde-

pendent variables instead. The two subsidiary restrictions corresponding to the sin-
gle-valuedness of � become ∮ q̇i

±
dqi

±
= nh∕m , conditions that are conserved by (24) 

and (25) (a quantum version of Kelvin’s circulation theorem).
We assert that Eqs. (24) and (25) with the stated initial conditions constitute an 

exact free-standing trajectory formulation of Schrödinger’s equation. To demon-
strate this, we shall derive from them Schrödinger’s equation in the Eulerian form 
(12) and (13) using a method that supplies a formula for the time-dependent wave-
function in terms of the trajectories. This is a quantum version of the deduction of 
the classical HJ equation directly from Newton’s law. It is achieved by performing a 
Weber transformation [1, 27], which entails multiplying (24) and (25) by �qi

±
∕�q

j

±0
 , 

respectively, rearranging, and integrating with respect to t . The result is

where

and the integrand in the q̇i
+
 ( q̇i

−
 ) equation is expressed as a function of qi

+0
 ( qi

−0
 ) 

and t . This procedure puts this trajectory version of the Schrödinger equation 
in coupled, integro-differential, first-order form. Inserting the initial conditions 
q̇i
±0

= m−1𝜕S±0∕𝜕q
i
±0

 on the right-hand side of (28) implies that the velocities are the 
qi
±0

-gradients of some potentials �±

(
q±0, t

)
 , forms they retain for all time (a version 

of the classic result of hydrodynamics [28]). Using these potentials, the six dynami-
cal Eqs. (28) may be written in purely differential first-order form as the eight cou-
pled equations

(26)
�

�qi±
= J−1

±
J
j

±i

�

�q
j

±0

, J
j

±i
=

�J±

�

(
�qi±∕�q

j

±0

) ,

(27)q̇i
−
= q̇i

+
−

𝜕qi
−

𝜕q
j

−0

𝜕q
j

−0

𝜕t
,
𝜕qi

−

𝜕q
j

−0

=
𝜕qi

+

𝜕qk
+0

(
𝜕q

j

−0

𝜕qk
+0

)−1

,

(28)mq̇i
±

𝜕qi
±

𝜕q
j

±0

= mq̇
j

±0
+

𝜕

𝜕q
j

±0

t

∫
0

(
1

2
mq̇i

±

2
− Q±

(
q±, t

)
− V

(
q±, t

))
dt

(29)Q± = ±
�

2

𝜕logJ−1
∓

𝜕t
−

m

4

(
q̇
j

+ − q̇j
−

)2
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with initial conditions �±0 = S±0
(
q±0

)
 . We claim that the functions 

�±

(
q±0

(
q±, t

)
, t
)
= S±

(
x = q±, t

)
 . This is easily proved by the change of independ-

ent variables qi
±0
, t → xi, t. Then, (30) is equivalent to (22), and (31) to (12) and (13). 

We have thus obtained, via a coordinate transformation from the trajectory formula-
tion, the Schrödinger equation in its customary form in which the state � is wholly 
decoupled from the trajectories. The sets of Eqs.  (2) and (3), (12) and (13), (16), 
(24) and (25), (28), or (30) and (31), are all equivalent versions of Schrödinger’s 
Eq. (1), written using Eulerian or Lagrangian fields.

Following (11), relations (30) and (31) imply the following formula for the time-
dependent wavefunction:

where L𝜀 =
1

2
mq̇i

𝜀

2
− Q𝜀

(
q𝜀
)
− V

(
q𝜀
)
 and � = ± . We thus construct � from two 

line integrals, each similar to the one appearing in the polar representation (4). 
As with the latter case, the integrals in (32) are action functions for a particle of 
mass m , but now moving in the potential Q+ + V  or Q− + V  . Choosing suitable 
integration paths, each of the line integrals (for = ± ) may be written in either of 
the forms (7) or (8). In addition, writing p±i = mvi

±
(x, t) = mq̇i

±

(
q±0(x, t), t

)
 and 

H± = p±i
2∕2m + Q±(x) + V(x) , the HJ functions have forms similar to (9):6

In these variables, the probability density (17) becomes

Employing the Lagrangian viewpoint, therefore, the wavefunction has been 
expunged from the dynamical equations and features only in the initial conditions. It 
is represented at each point by a brace of coupled action functions S± , each built from 
a single trajectory propagating the initial value S±0 from the point qi

±0
 , respectively. In 

generating the actions, the trajectories may be said to determine the flow of probability 

(30)
𝜕𝜒±

𝜕q
j

±0

= mq̇i
±

𝜕qi
±

𝜕q
j

±0

(31)
𝜕𝜒±

𝜕t
=

1

2
mq̇i

±

2
− Q±

(
q±

)
− V

(
q±

)

(32)𝜓(x, t) =
�

𝜀=±

exp

⎡
⎢
⎢
⎢
⎣

(𝜀1 + i)

2�

q
j

𝜀0
,t

∫
0,0

mq̇i
𝜀

𝜕qi
𝜀

𝜕q
j

𝜀0

dq
j

𝜀0
+ L𝜀

�
q𝜀
�
q𝜀0, t

��
dt

⎤
⎥
⎥
⎥
⎦

�
��
����
�q𝜀0(x,t)

,

(33)S±(x, t) = ∫ p±idx
i − H±dt.

(34)�(x, t) = exp

(
1

ℏ ∫
(
p+i − p−i

)
dxi −

(
H+ − H−

)
dt

)

.

6 It may be of interest to compare such bi-Hamiltonian systems with those that admit more than one 
symplectic structure [29].



 Foundations of Physics (2023) 53:9

1 3

9 Page 12 of 23

density in accordance with formula (17), but they do not follow the lines of probabil-
ity conservation. We shall show later that the trajectories determine probability flow 
in a different sense in that they generate the de Broglie-Bohm paths, which do directly 
reflect the probability flow (§5). Note that the expansion factors J−1

±
 , which in part 

define the trajectory densities and feature in the quantum potentials (29), relate to Eule-
rian velocity divergence terms in (16) and are not to be conflated with the probability 
density (see §4.2).

Using (17), the stationary points xi(t) of � , its peaks and troughs, are character-
ized by points of coincidence of the two brands of velocity: vi

+
(x, t) = vi

−
(x, t) . From 

(27), the trajectories qi
0±
(t) occupying these points are determined by the condition 

�qi
−0

(
q+0, t

)
∕�t = 0 along with (23).

To examine time-reversal symmetry in this formalism, we first note that the Lagran-
gian-picture implementation of the field-theoretic transformation T in (19) is that of a 
classical (and de Broglie-Bohm) displacement:

with q̇�i
(
q�
0
, t�
)
= −q̇i

(
q0, t

)
 . In contrast, the Lagrangian version of (20) for two paths 

that cross the point 
(
xi, t

)
 entails exchange relations for the labels and displacements:

These relations are in accord with the velocity transformations (21), since

The left-hand side here is v�i
±

(
x� = q�

±

(
q�
±0
, t�

)
, t�

)
 and the right-hand side is 

−vi
∓

(
x = q∓

(
q∓0, t

)
, t
)
 , which gives (21), since (23) and (36) imply x�i = xi.

Evidently, the transformation of the function qi
+
 violates T : the time-reversed loca-

tion is qi
−
(−t) , not qi

+
(−t) . Yet, since the accompanying time reversal of qi

−
(t) is qi

+
(−t) , 

the net effect of the transformation applied simultaneously to both orbits is the same as 
that obtained for a pair of paths subject to T . The ensemble of trajectories that define 
the state is thus effectively T-covariant, but, as mentioned in §2, this is accomplished 
through the collective behaviour of elements that individually disobey T (Fig. 1). The 
collective covariance of each pair of Eqs.  (23), (24) and (25), and (28), is achieved 
through the reciprocal transformation of its members, as expected from the exchange of 
equations in the Eulerian picture (§2). In connecting the two pictures, we note that the 
complex conjugation of the Eulerian � in (32) is a deduction from the Lagrangian map-
ping (36) with (37) (as is the conjugation of (4) from (35)).

The extension of the bi-trajectory theory to many-body systems is straightforward 
and essentially involves expanding the index range. We shall not pursue this except to 
observe that, for N bodies, the state comprises N pairs of coupled congruences in three-
dimensional space, where each pair generally depends on the labels of all the pairs. The 
latter property is how nonlocality appears in this model. Each pair is independent of 

(35)T ∶ q�i
0
= qi

0
, t� = −t, q�i

(
q�
0
, t�

)
= qi

(
q0, t

)
,

(36)q�i
±0

= qi
∓0
, t� = −t, q�i

±

(
q�
±0
, t�

)
= qi

∓

(
q∓0, t

)
.

(37)q̇�i
±

(
q�
±0
, t�

)||
|q�

±0

=
𝜕q�i

±

(
q∓0, t

�
)

𝜕t�

|||
||q∓0

=
𝜕qi

∓

(
q∓0, t

)

𝜕(−t)

|||
||q∓0

= −q̇i
∓

(
q∓0, t

)
.
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the others when the wavefunction factorizes into N one-body functions, a property the 
model shares with the polar model [3], but not with the real/imaginary model [5].

4  Connecting Trajectory Models

4.1  Algebraic Construction of an Integral Curve of a Linear Superposition 
of Vector Fields from Integral Curves Associated with the Constituent Vectors

The trajectory model introduced in §3 relates to an Eulerian version of the quan-
tum state obtained by a simple transformation of the dependent variables, namely, 
� ,�∗

→ S+, S− . The two other models described in §1 likewise relate to simple 
Eulerian reformulations (using the pairs of fields �, S or �R,�I , which are con-
nected by a canonical transformation [4]). In contrast, the displacement functions 
used in the Lagrangian coordinate models corresponding to the three Eulerian 
rephrasings appear to be vastly disparate with no obvious connections between 
them. We shall examine this problem, of expressing one species of trajectory in 
terms of another, with reference to the relation between the de Broglie-Bohm 
paths used in the wavefunction construction (4) and non-T paths, including the 
HJ tracks.

One way to obtain a de Broglie-Bohm trajectory from the paths qi
±
 is to com-

pute the associated velocity fields via (22) and then derive an integral curve of 
the vector vi = 1

2

(
vi
+
+ vi

−

)
 . Such an indirect construction does not cast any spe-

cial light on the connection between the models. A second approach is to attempt 
to set up a canonical transformation linking the models, following the approach 

Fig. 1  The time reversal of one of the bi-HJ trajectories is the T-reversal of its partner
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mentioned in §1 [4]. That idea will be examined elsewhere. We shall present here 
a third alternative, an algebraic method of connecting trajectory types (which is 
of wider scope than the quantum application made here). It follows as a corol-
lary to the following construction in which an integral curve of the linear super-
position of two vectors is derived algebraically from the integral curves of one 
of the constituent vectors labelled by integral curves associated with the other 
constituent:

Theorem (composition of trajectories) Let vi
A
(x, t) and vi

B
(x, t) , i = 1, 2, 3 , be two vec-

tor fields in ℝ3 ⊗ℝ
1 . Let xi = qi

A

(
qA0, t

)
 be an integral curve of vi

A
 identified by the 

label qi
A0

 : q̇i
A
= vi

A

(
qA, t

)
 with det

(
�qA∕�qA0

) ≠ 0 . Construct from vi
B
 the following 

vector function of qi
A0
,

and let qi
A0

= Qi
B

(
qC0, t

)
 be its integral curve labelled by qi

C0
 : Q̇i

B
= Vi

B

(
QB, t

)
 . 

Choose qi
C0

 so that Qi
B

(
qC0, t

)
 is the label qi

A0
 of the curve qi

A
 that occupies the point (

xi, t
)
 . Then the vector function

is the integral curve through 
(
xi, t

)
 of the vector superposition vi

C
= vi

A
+ vi

B
 labelled 

by qi
C0

 : q̇i
C
= vi

C

(
qC, t

)
.

Proof Differentiating (39) with respect to t implies

Inverting (38) gives

Hence, evaluating (42) along the track qi
A0

= Qi
B

(
qC0, t

)
 , (41) may be written

(38)Vi
B

(
qA0, t

)
=

�qi
A0

�q
j

A

v
j

B

(
qA
(
qA0, t

)
, t
)
,

(39)qi
C

(
qC0, t

)
= qi

A

(
QB

(
qC0, t

)
, t
)

(40)
�qi

C

�t

|
||||qC0

=
�qi

A

�t

|
||||QB

+
�qi

A

�Q
j

B

|||
|||t

�Q
j

B

�t

|||
|||qC0

(41)= vi
A

(
qA
(
QB

(
qC0, t

)
, t
)
, t
)
+

�qi
A

�Q
j

B

|||
|||t

V
j

B

(
QB

(
qC0, t

)
, t
)
.

(42)vi
B

(
qA
(
qA0, t

)
, t
)
=

�qi
A

�q
j

A0

|||
|||t

V
j

B

(
qA0, t

)
.

(43)q̇i
C

(
qC0, t

)
= vi

A

(
qA
(
QB

(
qC0, t

)
, t
)
, t
)
+ vi

B

(
qA
(
QB

(
qC0, t

)
, t
)
, t
)
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Thus, qi
C
 is the integral curve of the vector field vi

C
= vi

A
+ vi

B
 at the point 

(
xi, t

)
.

Remarks 

1. We may regard xi = qi
A

(
qA0, t

)
 as a time-dependent coordinate transformation 

xi ↔ qi
A0

 whereby a fixed point, attributed the coordinates xi in the space frame, 
is coordinated using the labels qi

A0
=
(
qi
A

)−1
(x, t) of the succession of trajectories 

that pass the point as t changes. Equation (38) expresses the transformation of the 
contravariant vector vi

B
(x, t) into the qi

A0
-coordinates.

2. The labels qi
A0

 and qi
C0

 identify their respective trajectories uniquely. They 
are defined up to time-independent diffeomorphisms and may be cho-
sen as the respective starting points. Then Qi

B
(t = 0) = qi

C
(t = 0) = qi

C0
 and 

qi
A
(t = 0) = qi

A0
= f i

(
qC0

)
 . At time t , Qi

B
 gives (what was) the initial position qi

A0
 

of the trajectory qi
A
 that passes 

(
xi, t

)
.

3. Instead of using the integral curves of vi
A

(
qA, t

)
 and Vi

B

(
qA0, t

)
 , the construction 

could employ the integral curves of vi
B

(
qB, t

)
 and a vector Vi

A

(
qB0, t

)
 defined analo-

gously to (38)
4. The formula (39) may be extended to (a) N space dimensions by extending the 

index range, and (b) the deduction of an integral curve of the superposition of a 
finite number ( > 2 ) of vectors from integral curves associated with the constituent 
vectors by applying the theorem successively to pairs of constituents.

For fixed qi
C0

 , the vector function Qi
B
 is a ‘label generator’: as t  changes, it gen-

erates a continuous sequence of labels qi
A0

= Qi
B
(t) each of which identifies a 

unique trajectory qi
A
(qi

A0
) . The successive points defined by the set of qi

A
 s corre-

sponding to the sequence of qi
A0

 s generate the single trajectory qi
C

(
qi
C0
, t
)
 . The 

instantaneous direction of qi
C
 , q̇i

C
 , is given by 

[
vi
A
(x, t) + vi

B
(x, t)

]||
|x=qC(qC0,t)

 , not vi
A
.

Instead of treating vi
A
 and vi

B
 as given, we may take vi

C
 as given and choose vec-

tors vi
A
 and vi

B
 whose sum composes it. It follows that an integral curve of a given 

vector field vi
C
 may be ascertained algebraically from those of any vector vi

A
 defined 

in the same domain by choosing the complementary vector vi
B
= vi

C
− vi

A
 and evalu-

ating qi
A

(
qA0

)
 along the integral curves of the corresponding vector Vi

B
 . This could 

include, for example, building trajectories in one potential from those in another (an 
idea that has been developed previously [30]) or using vectors vi

A
 that are not usually 

regarded as velocities (such as an electric field). Of special interest here is that the 
vectors qi

C
 and qi

A
 may obey different transformation rules in respect of some space-

time 
(
xi, t

)
 symmetry for which vi

A
 and vi

C
 transform contrarily. We have:

Corollary An integral curve of a vector field vi
C
 may be expressed as a sequence 

of points lying on a set of integral curves of any vector field vi
A
 defined in the 

(44)=
[
vi
A
(x, t) + vi

B
(x, t)

]|
|
|x=qC(qC0,t)

from (39).



 Foundations of Physics (2023) 53:9

1 3

9 Page 16 of 23

same domain by choosing the complementary vector that fixes qi
A
 ’s labels qi

A0
 as 

vi
B
= vi

C
− vi

A
 and applying formula (39).

 It is this implication of the theorem that we shall employ to connect differ-
ent trajectory models of the quantum state. Whether there are general computa-
tional advantages in obtaining the integral curves of a vector vi

C
 through an adroit 

choice of qi
A
 coupled with the calculation of the integral curves of Vi

B
 merits further 

investigation.
Our result formalizes the rather obvious property that each point on a curve in a 

region lies on an element of some region-filling congruence. This observation is not 
bereft of physical interest. It is pertinent to a conception of motion that treats a path 
qi
C
 as a series of points lying on paths from which it is continually displaced by some 

force (whose nature depends on the context). The construction is reminiscent of, and 
generalizes to arbitrary motions, Newton’s conception of the Moon’s orbit as com-
prising a succession of points each of which lies instantaneously on a distinct recti-
linear path, the agent that continually displaces the mass from one rectilinear path to 
another being gravity. In the context of (39), an example where forced and force-free 
motion are connected is obtained by choosing vi

A
= constant.

4.2  Conservation from Non‑Conservation

As an application of the corollary, we shall show how the representation of one spe-
cies of trajectory by another enables the local conservation of probability along a track 
(such as a de Broglie-Bohm qi ) to be derived from a flow (such as qi

+
 ) along each of 

whose tracks the probability is not conserved.
Let vi

C
 be associated with a current that obeys the continuity equation in some 

domain (this could be the de Broglie-Bohm velocity, but that choice is not unique [31]):

Writing vi
C
= vi

A
+ vi

B
 , where vi

A
 is any vector field in the domain, (45) can be written

With respect to the flow vi
A
 this is a continuity equation with a ‘source’ term on the 

right-hand side. Staying for the moment with general vector fields, we shall derive 
two key results from (46) by transforming it into Lagrangian variables via the map-
ping xi → qi

A0
 . The theory will then be applied to the bi-HJ model, below and in §5. 

Using the relations

(45)
��

�t
+ �i

(
�vi

C

)
= 0.

(46)
��

�t
+ �i

(
�vi

A

)
= −�i

(
�vi

B

)
.

(47)
�

�qi
A

= J−1
A
J
j

Ai

�

�q
j

A0

, J
j

Ai
=

�JA

�

(
�qi

A
∕�q

j

A0

) ,
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with JA
(
qA0, t

)
= det

(
�qA∕�qA0

)
 , and applying the identities 𝜕logJA∕𝜕t = 𝜕q̇i

A
∕𝜕qi

A
 

and �Jj
Ai
∕�q

j

A0
= 0 , it is readily verified that (46) can be written

where PA

(
qA0, t

)
= �

(
x = qA

(
qA0, t

)
, t
)
 and Vi

B
 is given in (38).

Our first deduction from (48) stems from the obvious property that the local proba-
bility �d3x is not conserved along vi

A
 ’s integral curves. Thus, multiplying (48) by d3qA0 , 

the probability PAd
3qA(t) = PAJAd

3qA0 is not generally maintained along a track qi
A0

 , 
due to the divergence term. This result may be recast as the statement that the density of 
the trajectories qi

A0
 alone does not determine the flow of probability density. This shows 

the importance of distinguishing the two notions of density. To show this, we integrate 
(48) with respect to t , which puts it into integro-differential form and gives the follow-
ing expressions for �:

where

Suppose the trajectories have the (quantum) density �0 at t = 0 . Then the probability 
density � equals the trajectory density for all t if and only if � obeys a continuity 
equation, i.e., the flow is source-free. This follows from (49). The first term on the 
right-hand side, �0J−1A

 , represents the density of trajectories at time t due to their 
natural evolution. This term satisfies the continuity equation corresponding to the 
velocity vi

A
.7 Clearly, � and �0J−1A

 coincide if and only if the second term, the source 
cA , is zero, which proves our assertion. In the present case cA , which involves � , does 
not vanish. Hence, the trajectory density alone cannot account for � ’s evolution.

Our second result relates to the corollary. To obtain conservation along a path 
derived from the flow vi

A
 , an ensemble of tracks qi

A0
 selected from the entire associated 

congruence must be employed. To demonstrate this, we observe that the Lagrangian-
picture relation (48) has the form of an Eulerian continuity equation in qi

A0
-space for a 

flow of density PAJA and velocity Vi
B
 . Then, treating (48) as such an Eulerian equation, 

we may pass in turn to its Lagrangian version. To effect this passage, we transform 
from what are now regarded as Eulerian coordinates qi

A0
 to Lagrangian coordinates 

(48)
�

�t

(
PAJA

)|
|
|
|qA0

+
�

�qi
A0

(
PAJAV

i
B

)
= 0

(49)PA

(
qA0, t

)
= �0

(
qA0

)
J−1
A

+ cA or �(x, t) =
(
�0J

−1
A

+ cA
)|||qA0(x,t)

(50)cA
(
qA0, t

)
= J−1

A

�

�qi
A0

t

∫
0

PAJAV
i
B
dt.

7 For a single moving point, the microscopic spatial density at the point 
(
xi, t

)
 is �

(
x − qA

(
qA0, t

))
 , which 

obeys the continuity equation (with velocity vi
A
 ) identically. For a continuous ensemble of points, the 

(normalized) trajectory density is ∫ �
(
x − qA

(
qA0, t

))
�0
(
qA0

)
d
3
qA0 = �0J

−1
A

|||qA0(x,t)
 , which, being a linear 

superposition over the path label, obeys the same continuity equation.
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Qi
B

(
qC0, t

)
 , which are the integral curves of the velocity field Vi

B
 in qi

A0
-space. In the 

coordinates 
(
qC0, t

)
 , (48) becomes

where JB
(
qC0, t

)
= det

(
�QB∕�qC0

)
 . Now, PA

(
qA0 = QB

(
qC0, t

)
, t
)
=

�
(
x = qA

(
qA0 = QB

(
qC0, t

)
, t
)
, t
)
 . Enlisting the theorem in §4.1, the function 

qi
A

(
QB

(
qC0, t

)
, t
)
 in the latter relation is an integral curve qi

C

(
qC0, t

)
 of vi

C
 with label 

qi
C0

 . Hence, (51) may be written

where PC

(
qC0, t

)
= �

(
x = qC

(
qC0, t

)
, t
)
 and JC

(
qC0, t

)
= det

(
�qC∕�qC0

)
= JAJB . 

But (52) is just the Lagrangian version of (45), which expresses the conservation of 
the probability PCd

3qC(t) along the integral curves of vi
C
 , that is,

We conclude that Eq. (46) with a source may be construed as a statement about the 
conservation of probability along paths that cross the integral curves of vi

A
 in a spe-

cific way.
Passing now to the bi-HJ theory, we set vi

A
= vi

±
 and (46) becomes a brace of Fok-

ker–Planck equations:

As shown above in connection with (49), neither of the congruences’ spatial densi-
ties, �0J−1±

 , can account for the flow of � . Moreover, they cannot play this role in 
combination. Suppose the initial congruence densities are r�0 (+) and (1 − r)�0 ( − ), 
0 ≤ r ≤ 1 , so that the initial total density is �0 . Then the total density for t ≠ 0 is 
given by the weighted sum of the expressions (49) for A = ±:

Evidently, the total trajectory density (the sum of the first and third terms) fails to 
equal � because the c+ and c− terms do not cancel. As we have seen, the congruences 
generate � instead through the actions accumulated along their elements, in accord-
ance with (17).

(51)
�

�t

[(
PAJA

)(
qA0 = QB

(
qC0, t

)
, t
)
JB
(
qC0, t

)]|
|
|
|qC0

= 0

(52)
�

�t

(
PCJC

)|||
|qC0

= 0

(53)�(x, t) = J−1
C

(
qC0, t

)
�0
(
qC0

)|||qC0(x,t)
.

(54)
��

�t
+ �i

(
�vi

±

)
= ±

ℏ

2m
�ii�.

(55)�(x, t) = r
(
�0J

−1
+

+ c+
)|||q+0(x,t)

+ (1 − r)
(
�0J

−1
−

+ c−
)||
|q−0(x,t)

.
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5  The de Broglie‑Bohm Trajectory as a Succession of Points on Non‑� 
Paths, and Vice Versa

We shall illustrate the corollary (§4.1) by establishing constructive connections 
between T-complying de Broglie-Bohm trajectories and T-violating trajectories in 
the case of a one-dimensional free Gaussian wavefunction at rest, for which

(56)�(x, t) =
(
2��2

)−1∕2
e−x

2∕2�2

, S(x, t) = ℏ�tx2∕4�2 − (ℏ∕2)tan−1�t

Fig. 2  Two views of diffraction at a Gaussian slit (uniform distributions of initial positions). Left: The 
state as a de Broglie-Bohm congruence q

(
q0, t

)
 . The probability density is the normalized path density 

and the phase is the action. The time-reversed solution is q
(
q0,−t

)
 . Right: The state as the pair of con-

gruences q+
(
q+0, t

)
 (solid lines) and q−

(
q−0, t

)
 (dashed lines). The probability density derives from the 

difference in the actions along the paths and the phase is the mean action. The time-reversed solutions 
are q∓

(
q∓0,−t

)

Fig. 3  A de Broglie-Bohm track 
q (thick line) derived from a 
sequence of elements of the 
non-T congruence q+

(
q+0

)
 (thin 

lines) for a Gaussian packet. 
At the instant T  , the path QB(t) 
(dashed line) identifies, through 
what was its initial location q+0 , 
the trajectory whose instantane-
ous location q+

(
q+0,T

)
 equals 

q
(
q0,T

)
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where � = �0
(
1 + �2t2

)1∕2 and � = ℏ∕2m�2
0
 [9]. The de Broglie-Bohm paths are

The bi-HJ trajectories, solutions to (22), are (Fig. 2)

The exponential factors here are suggestive of dissipative or anti-dissipative behav-
iour, a point we shall pursue elsewhere. The scales and constants in Figs. 2 and 3 are 
chosen to accentuate the features of interest.

The technique of obtaining a de Broglie-Bohm path from non-T trajectories will 
be illustrated in two ways, first using HJ paths and then some closely related non-HJ 
trajectories:

 (i) To obtain qi from qi
+
 , choose vi

A
= vi

+
 and vi

B
= −

1

2
ui = −(ℏ∕2m)�ilog� so that 

vi
C
= vi = �iS∕m . Then qi

A
= qi

+
 , qi

C
= qi and

 whose integral curves qi
+0

= Qi
B

(
q0, t

)
 are given by the solutions of 

Q̇i
B
= Vi

B

(
QB, t

)
 . At an instant t , the de Broglie-Bohm path with initial 

point qi
0
 is a point on the track qi

+

(
q+0, t

)
 corresponding to the instantaneous 

label qi
+0

= Qi
B

(
q0, t

)
 . As the label evolves continuously with time, qi com-

prises a succession of points on different qi
+
 curves. For the Gaussian, we 

have QB

(
q0, t

)
= q0e

tan−1�t . Substituting the latter for q+0 in (58) gives (57) 
(Fig.  3). Note that qi coincides with some qi

+

(
q+0

)
 for a finite time when 

vi = vi
+
 , i.e., �i� = 0 , a case where S is classical (since Q = 0).

 (ii) To obtain a de Broglie-Bohm track from a non-T trajectory qi
A
≠ qi

+
 , 

choose vi
A
=
1

2
vi
+
 and vi

B
=

1

2
vi
−
 , whence vi

C
= �iS∕m and qi

C
= qi as in 

(i). For the Gaussian, the paths are qA = qA0
(
1 + �2t2

)1∕4
e−tan

−1�t∕2 and 
QB

(
q0, t

)
= q0

(
1 + �2t2

)1∕4
etan

−1�t∕2 . Substituting QB for qA0 gives (57).

To demonstrate the converse procedure, the construction of a non-T curve from 
a sequence of de Broglie-Bohm paths, we choose vi

A
= vi and vi

B
= vi

+
− vi =

1

2
ui . 

Then qi
A
= qi , qi

C
= qi

+
 and Vi

B
 is given by the negative of (59). For the Gaussian, 

QB

(
q+0, t

)
= q+0e

−tan−1�t so that, substituting QB for q0 in (57), q+ in (58) follows.

(57)q
(
q0, t

)
= q0

(
1 + �2t2

)1∕2
.

(58)q±
(
q±0, t

)
= q±0

(
1 + �2t2

)1∕2
e∓tan

−1�t.

(59)Vi
B

(
q+0, t

)
= −

1

2

�qi
+0

�q
j

+

uj
(
q+

(
q+0, t

)
, t
)
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6  Conclusion

We have presented a novel formulation of quantum evolution based on an exten-
sion of the Hamilton–Jacobi method whereby the dynamics is represented by a pair 
of real HJ-like equations that are coupled by terms we have identified as quantum 
potentials. The four principal results are as follows:

 I. The quantum state may be taken to comprise two vector displacement functions 
qi
±

(
q±0, t

)
 . In this setting, the Schrödinger equation becomes an autonomous 

coalition of Eqs. (24) and (25), or (28), from which the wavefunction has been 
eliminated and appears only in the initial conditions. Each pair of trajectories 
through a spacetime point generates the wavefunction as a pair of action func-
tions S± by propagating S±0 from unique initial points qi

±0
 . Varying the latter, 

the formula (32) gives the time-dependent wavefunction throughout space. 
Each description of state − wave or trajectory—inheres in the other, the con-
nection being mediated by a transformation of independent variables.

 II. Hitherto, quantum trajectory theories, both constructive and interpretative, 
have relied upon conserved flows associated with continuity equations obeyed 
by the probability density � or other functions identified as densities (§1). This 
is not necessary: quantum propagation may be attributed to trajectory flows 
without reference to conservation, including that of probability. Indeed, we 
have shown that the conserved flows of the two congruence densities do not 
suffice to reproduce � ’s development (§4.2). The latter is derived instead from 
the difference in the actions: � = e(S+−S−)∕ℏ . Its peaks and troughs are charac-
terized not by the relative bunching of trajectories but by points at which the 
relative velocity vi

+
− vi

−
= 0 . The mean action is the phase.

 III. We have illustrated in a new way a feature we found previously in connection 
with continuous symmetries of quantum field equations: that the Eulerian 
and Lagrangian elements of a Galileo- or Lorentz-covariant theory may not 
obey classical transformation rules [5, 7, 12]. In the context of discrete sym-
metries of the Galileo-covariant bi-HJ theory, we have found that microscopic 
time-reversal covariance is implemented through non-standard mappings of 
the velocity fields (Eulerian view: (21)), and of the labels and displacements 
(Lagrangian view: (36)). The theory exhibits effective T-symmetry through 
the collective properties of non-T elements.

 IV. Using formula (39), we have shown how a trajectory, an integral curve of 
a vector field, may be computed algebraically from the integral curves of 
another vector field (bestriding the same region) labelled by integral curves 
associated with the complementary vector. The construction establishes rela-
tions between the displacement functions in qualitatively distinct trajectory 
models, including where the functions have different symmetry properties. The 
method transcends our quantum examples but finds fecund application there, 
as illustrated in §5. It also invites further examination of instances where it is 
fruitful to regard force as an agent of continual deviation from a sequence of 
‘fiducial’ motions, whose choice depends on the context.
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In relation to the single task of visualizing quantum evolution using trajectories, the 
two ways of seeing described in §1 together with the third view introduced in this paper 
are not contradictory or inimical to objectivity; rather, they extend the transformation the-
ory of quantum mechanics and expand the horizon of how its empirical content, about 
which they all agree, may be apprehended. In this work, we have focused on formal prop-
erties of the bi-HJ trajectory model. Further work is needed to bring out more fully how 
the technique extends the HJ language, and to examine its efficacy in solving the wave 
equation. Regarding the latter, it is evident that the bi-HJ paths give more detailed infor-
mation about the wavefunction than those of de Broglie and Bohm. Consider the class 
of wavefunctions �n =

√
�n(x, t) exp

�
i
�
fn(t) + s(x, t)

�
∕ℏ

�
 itemized by the parameter n 

(e.g., the Gauss-Hermite functions [32]). The de Broglie-Bohm paths are identical for all 
choices of the probability density �n whereas the bi-HJ tracks depend on n and hence dis-
tinguish the densities. A further remark on methods of solution is that one may envisage 
developing numerical schemes to solve the Eulerian and Lagrangian equations simultane-
ously, analogous to the synthetic method pioneered by Wyatt and colleagues for the de 
Broglie-Bohm paths [33]. Since the bi-HJ trajectory densities are not tied to probability, 
the paths may be useful in exploring domains of low probability, which the de Broglie-
Bohm trajectories tend to avoid.
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