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Abstract
A hodological law causes the evolution of the universe to tend to follow particular 
types of path. I give simple illustrations in toy models and discuss how Kolmogorov 
complexity characterises the extent to which hodological laws explain, rather than 
merely describe, data.
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1 Introduction

If the probabilities we calculate in quantum theory are probabilities of some well-
defined, objective, observer-independent features of nature, then a complete formu-
lation of quantum theory has to include a sample space on which these probabili-
ties are defined. The elements of that sample space form configurations of beables, 
in Bell’s terminology. Whatever form they take, if they form part of physics as we 
understand it they presumably have a mathematical structure. It then makes sense to 
consider generalisations of quantum theory in which the probabilities depend on that 
structure as well as the Born rule.

This motivates looking at alternatives [1, 2] to cosmological theories inspired 
by the standard understanding of quantum theory. Whatever the fine-grained form 
of the beables, generalised probability laws associated with them could also affect 
the probabilities of coarse-grained large-scale features of the universe. The very 
large scale seems perhaps the most promising regime in which to look for empiri-
cal evidence of such deviations from quantum theory, since the strongest evidence 
for quantum theory comes from small scale phenomena, the relationship between 
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quantum theory and gravity is not known, and there are other outstanding cosmo-
logical puzzles that suggest other lacunae in our understanding.

Theories that are based on quantum theory but guide the universe along paths 
other than those implied by standard unitary quantum dynamics are not yet part 
of standard mainstream discourse. They impose constraints, in a statistical sense. 
However, these theories are qualitatively different from quantum theory applied to 
constrained systems [3]. They are far more general than theories with independent 
initial and final boundary conditions. They are also far more general than dynamical 
collapse models, although dynamical collapse models can be seen as examples and 
can motivate others. Indeed, the generality they allow may raise a concern that con-
sidering such theories takes us out of the domain of science: that they can describe 
data but cannot explain them in any standard scientific sense.

I explain below why this concern is misplaced, using simple models that show 
why these “hodological” theories are qualitatively different, illustrate their general-
ity and explain the extent to which they could nonetheless be scientifically useful.

2  Hodology in the Ehrenfest Urn Model

The Ehrenfest urn model [4] nicely illustrates the effect of laws describing a statis-
tical evolution from an initial state. It can be generalized to illustrate cosmologi-
cal laws with independent initial and final boundary conditions [5]. As we discuss 
below, it can also be generalized to illustrate hodological laws.

The standard version of the Ehrenfest urn model begins with N labelled balls dis-
tributed between two urns (A and B) in some initial configuration (for example, all in 
urn A, or balls 1 to ⌊N

2
⌋ in A and the rest in B). The model’s state changes in discrete 

time steps, at each of which one label is chosen randomly, and the corresponding 
ball switches urn. It is easy to see (analytically or numerically) that low entropy 
distributions typically evolve quickly towards and then fluctuate around equiparti-
tion, spending nearly all the time close to equipartition and returning to low entropy 
states very infrequently.

We simplify the discussion by considering the model with some number T of 
time steps that is fixed in advance. One might think of this as a toy model of 
a universe with a fixed cosmological lifetime between its initial and final state. 
More generally, one might think of this as a toy model of a universe governed 
by a law that includes a finite number of statistical constraints on states through 
which it evolves in between its initial and final state. Such states could be iden-
tified by parameters other than cosmological time intervals. The Ehrenfest urn 
model as given is non-relativistic in spirit, in that it uses a fixed time coordi-
nate, and it also uses a discrete time coordinate. This idealisation allows a sim-
ple illustration of hodological theories, their confirmability and refutability, and 
the sense in which they have explanatory power. However, these idealisations are 
inessential. The statistical constraints defining a hodological theories can refer to 
covariant quantities and can be continuous rather than discrete, and these would 
be the natural types of cosmological hodological theory to consider. The model, 
and our discussion of hodological theories within the model, can also be extended 
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to allow an indefinite or infinite number of time steps, with statistical constraints 
chosen so that relative credences are defined for the relevant theories. In this 
case, to model the implications for human science (rather than that of a hypotheti-
cal “timeless” observer who observes the full evolution of the model) it would be 
natural to consider theories whose relative credences can be quantified from the 
data given by a finite number of steps.

In our model, we take the numbers of balls N
A
 and N

B
= N − N

A
 in urns A, B to 

represent macro-physical variables of interest, and the locations of each labelled 
ball to represent micro-physical variables. Macrophysically, the possible evolu-
tions from the initial state N

A
= N

0
A
 are thus given by sequences

where Ni

A
= N

i−1
A

± 1 . The sequence N
A
 has probability

We are interested in hodological generalisations of the standard Ehrenfest model 
that alter, and are defined in terms of, the macrophysics. To define such a model, we 
modify Eq. (2), reweighting the probabilities by non-negative factors w(N

A
) that 

depend on the form of the path N
A
 through configuration space. Thus

where C is a normalisation constant chosen so that

2.1  Simple Examples

Example 1 (fixed macrophysical path points): Let N = 10 , T = 20 , N0
A
= 5 , and 

take

This weighting ensures that the realised evolution path has an equipartition as its 
initial and final states and also at the midpoint of its evolution. A sample evolution is 
shown in Fig. 1.

Example 2 (weighting towards a given macrophysical path): If, again with 
N = 10 , T = 20 , N0

A
= 5 , we take

(1)N
A
= (N0

A
,N1

A
,… ,NT

A
) ,

(2)Prob(N
A
) =

T∏

i=1

(
�(Ni

A
− N

i−1
A

, 1)
N − N

i−1
A

N
+ �(Ni

A
− N

i−1
A

,−1)
N

i−1
A

N

)
.

(3)Probmod(NA
) = Cw(N

A
)Prob(N

A
) ,

(4)
∑

N
A

Probmod(NA
) = 1.

(5)w(N
A
) = �(N10

A
, 5)�(N20

A
, 5).
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then the realised evolution path is likely to be relatively close to the line 
N
A
(t) = (5 −

t

4
) . Sample evolutions are shown in Fig. 2.

(6)w(N
A
) = exp

(
−
1

6

20∑

t=1

(
N
A
(t) − (5 −

t

4
)
)2

)
,

Fig. 1  Single run of N = 10 balls, constrained to N
A
= N

B
= 5 at t = 0, 10 and 20

Fig. 2  5 runs of N = 10 balls, initial state N
A
= N

B
= 5 at t = 0 , drawn from an ensemble with evolution 

probabilities modified by the weight factor (6)
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2.2  Testing Hodological Laws

Suppose now, for the sake of discussion, that we observe a new physical system 
whose properties are opaque to us, except for one discrete physical parameter that 
appears to evolve as though following some type of Ehrenfest urn model. That is, 
there is one observable discrete parameter, N

A
 , which appears always to lie in the 

range 0 ≤ N
A
≤ 10 . We observe its value only at discrete time steps t, after each 

of which it increases or decreases by 1. Suppose we cannot measure anything else 
about the system (perhaps it is effectively a black box, or a very distant cosmologi-
cal object that regularly emits a discrete signal). Suppose also that, while we can-
not directly observe the system’s internal structure, extrapolating our knowledge of 
other better understood systems, and examining the evolution statistics of N

A
 , lead 

us to the strong hypothesis that it is characterised by some Ehrenfest model, with 
labelled subsystems playing roles analogous to those of the balls and urns. Sup-
pose also that we have no information or good hypothesis about any interaction with 
other systems. And suppose that the system goes through repeated runs of 20 time 
steps, apparently resetting (say after a gap of 10 time steps, so that individual runs 
are identifiable) after each, with each run starting with N

A
= 5.

After a while, we will conclude that, so long as we learn nothing more about the 
system, the only immediately scientifically fruitful theories we can make about it are 
defined by generalised Ehrenfest urn models of the form (3). We can evaluate these 
by Bayesian reasoning. Informally, this would run roughly as follows. First, if our 
physical theories (the new system aside) take their current form, defined by initial 
states and standard evolution laws, then before we examine the data we would assign 
a high prior weight to the standard Ehrenfest probability law (2), i.e. to Cw(N

A
) = 1 

for all paths N
A
 . We might assign a lower prior weight to the hypothesis that any 

modification of the form (3) gives a better theory, and we would almost certainly 
assign low prior weights to specific modified laws like (5) and (6). But since the sys-
tem is novel and mysterious, we should and probably would be undogmatic: every 
specific law L would be assigned a non-zero prior weight Probprior (L).

Suppose that on the first run we observed an evolution of the form of Fig.  1. 
According to the standard Ehrenfest probability law (2), the probability of equiparti-
tion of 10 balls at t = 10 , given initial equipartition, is 964533

1953125
≈

1

2
 . The probability 

of equipartition at both t = 10 and t = 20 , given initial equipartition, is thus ≈ 1

4
.

Bayesian hypothesis testing, given data D, assigns the posterior probability 
weight

where the sum is over the set (which we assume countable) of all laws considered.
After the resulting Bayesian reweighting, our posterior weights for some of our 

modified laws would thus be smaller or zero, and our weight for (5) would (for sensible 
values of Probprior (Li) ) be somewhat larger. If our prior confidence in the law defined 
by Eq. (2) was high, our posterior confidence would still be high. However, if we saw 
M runs, all of which produced evolutions with equipartition at t = 10 and t = 20 , the 

(7)Probpost (L) =
Prob(D � L)Probprior (L)∑
i
Prob(D �L

i
)Probprior (Li)

,
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numerator in our posterior weight for (2) will be scaled by ( 1
4
)M , while the correspond-

ing expression for Eq. (5) remains unchanged. If the evolutions appear to be otherwise 
random, then our posterior weights for Eq. (5) increase with M, tending to 1 for large 
M. In other words, we would eventually become very confident that the system is in 
fact governed by Eq. (5),

Suppose instead that we saw an evolution of the type illustrated by Fig. 2. According 
to the standard Ehrenfest urn model, the probability of an evolution as close as these to 
the line N

A
(t) = (5 −

t

4
) is roughly 1 in 50,000. Even after a single run, unless our prior 

weight for any law other than (2) was significantly less than 2 × 10−5 , we would signifi-
cantly lose confidence in (2) and begin considering alternative laws seriously. After a 
small number of runs, we would likely arrive at something like Eq. (6) as our best fit to 
the data.

Since known physical laws are based on probabilistic or deterministic evolution 
from initial conditions, we might think a system apparently described by a modified 
Ehrenfest urn model such as (5) or (6) must very likely have some additional internal 
mechanism and associated variables hidden from us, so that the complete system is 
described by a more conventional law. We might then continue to search for ways of 
observing the hidden variables and obtaining a better and more detailed model. Still, 
unless and until we succeeded, the relevant modified Ehrenfest urn model would be our 
best description. And we might not succeed: there need not necessarily be any internal 
mechanism that gives any deeper explanation.

Formally, these calculations can be underpinned by the theory of Solomonoff induc-
tion and the principle of minimum description length (MDL) for hypothesis identifi-
cation [6]. Roughly speaking, according to the MDL principle, the best hypothesis to 
fit the data is the one that minimizes the sum of the length of the program required to 
frame the hypothesis and the length of the string required to characterize the data given 
the hypothesis. The latter is approximately the Shannon entropy S(H) of the probabil-
ity distribution on paths in variable space implied by the hypothesis H. The former is 
the length L(H) of a program mapping ≈ S(H) bit strings to paths that, according to 
hypothesis H, are typical. If H0 is given by (2), H1 by (5) and H2 by (6), then for a single 
run

For M runs, L(H
i
) is fixed, while

Hence, if H1 or H2 fit the data, their description length becomes less than that of H0 
for large M, and they become preferred to H0 ; if no more refined hypothesis fits the 
data then they become the MDL hypothesis. The same is true of any hypothesis H 
such that S(H0) − S(H) > 0.

(8)S(H0) − S(H1) ≈ 2 , S(H0) − S(H2) ≈ 16.

(9)S(H0) − S(H1) ≈ 2M , S(H0) − S(H2) ≈ 16M.
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3  Discussion

The Ehrenfest urn model illustrates how a model with probabilistic microdynamics 
can be modified by macrodynamical laws that guide macroscopic variables towards 
particular paths. Such laws themselves may be either deterministic [as in example 
(5)] or probabilistic [as in example (6)]. It also illustrates how standard scientific 
inference can identify such laws, if they offer a sufficiently compressed description 
of the observed data.

A common initial objection is that hodological laws can explain nothing, because 
they can describe everything. This confuses the class of all hodological laws with its 
individual members. The class of hodological laws indeed is defined to include arbi-
trarily complex laws. For example, one could defined a cosmological law that speci-
fies some initial conditions together with a list of the present observed positions of 
every observed star and planet. Such a law would indeed be scientifically uninterest-
ing, because it simply lists the observed data rather than explaining it. More for-
mally, such a law would not be selected by the MDL principle, because the program 
required to frame it includes a very long uncompressed list of data. However, as our 
toy examples illustrate, the class also includes relatively simple hodological laws 
that are stated by short programs. If such a law is selected by the MDL principle, it 
has genuine explanatory power.

The second toy example above illustrates the distinction well. Suppose we 
observed one of the evolutions displayed in Fig.  2. A hodological law describing 
precisely the observed evolution would be valid, but uninteresting, unexplana-
tory, and unsupported by the MDL principle. On the other hand, the hodological 
law encapsulated in (6) is relatively simple and fits the data well. In this sense it is 
explanatory, and it would be supported by the MDL principle, in that its credence 
would be significantly enhanced by the data. If similarly confirmed in a sufficiently 
long run of trials, it would be effectively selected as the best explanation. A similar 
law applied to a system with sufficiently many states and a sufficiently long time run 
would, likewise, be selected in a single trial.

All these points apply when we consider a microdynamics given by any ver-
sion of quantum theory that makes probabilistic predictions about the micrody-
namics underpinning the physics of a macroscopic system, including in principle 
the evolution of the universe. As we have seen, one can model the evolution of 
a physical system via an Ehrenfest urn model without committing to identify-
ing specific subsystems as balls and urns, or even committing to the belief that 
such subsystems necessarily exist. Similarly, one can search for modified macro-
dynamical laws in nature while remaining agnostic about precisely which events, 
beables, or histories define the fundamental sample space for quantum theory.1 

1 Examples of relevant versions of quantum theory include theories with some form of Copenhagen col-
lapse rule, quantum theory supplemented by mass-energy beables determined mathematically by (ficti-
tious) asymptotically late time measurements, a consistent history version of quantum theory defined via 
some appropriate set selection rule, an one-world version of quantum theory defined by some appropriate 
selection rule for Everettian branches, or some version of de Broglie-Bohm theory.
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The task is more complicated, because there are many more possibly relevant var-
iables and types of law. Nonetheless, the methodology of Solomonoff induction 
applies.

A systematic search for modified macrodynamical laws that might fit observa-
tion better than standard quantum theory should be a major goal of cosmological 
science, since in a strong sense it would necessarily advance our knowledge. Null 
results, excluding all laws of a given type up to a given degree of complexity, would 
solidify and parametrise our confidence in the standard paradigm. New hodologi-
cal laws that were strongly empirically confirmed would qualitatively and radically 
change our understanding of nature.

Cosmological models in which initial and final states and unitary evolution laws 
are all independently fixed ( [5], cf. [7]) already provide a clear, if still under-appre-
ciated, counter-example. However, if taken as showing that time-neutral quantum 
cosmology is the single natural generalisation of standard quantum cosmology, they 
risk reinforcing the intuition that cosmologies are necessarily defined by boundary 
conditions and dynamics, against which we have argued here (and previously, e.g. 
[1]).

The idea that a hodological law could constitute as complete an explanation as 
possible of some fundamental aspect of physics, such as the evolution of the uni-
verse, runs contrary to some strongly held intuitions. I would argue that this is 
because these intuitions conflate familiar types of scientific explanation with the 
very definition of scientific explanation. Our intuitions derive from the types of law 
or model that have become familiar in classical and quantum physics and in cosmol-
ogy. In these laws and models, the most complete explanation available is given by 
a description of the initial state and evolution equations that are time-independent 
and (if probabilistic) Markovian, or have appropriately analogous properties in the 
relativistic context. Many scientists do not see the fact that nature is described by 
laws and models of this type as something that itself needs explanation or indeed 
that could be further explicable, but instead see it as the necessary basis of science. 
In fact, though, if the fundamental theory of nature is probabilistic, there would 
ultimately no more or less of a puzzle if it were described by a simple hodological 
law than a comparably simple standard law involving an initial state and standard 
dynamics. In either case, there would be strong regularities that allow the appar-
ently astronomical complexity of the universe to be reduced to comparatively sim-
ple rules. In either case, one could ask why those simple rules apply, and whether 
there is any deeper mechanism that enforces them. No further explanation or deeper 
mechanism is logically or scientifically necessary, though, in either case.

Rather, on the view argued here, science is ultimately the search for simple 
hypotheses that most compellingly explain all the available data. The fact that initial 
condition theories have been so successful should certainly affect our priors at this 
point. It is presently reasonable to have strong credence that successor theories will 
have the same form. However, it is not reasonable to elevate this into dogma. Like 
any other scientific hypothesis, it is open to question, and sufficiently compelling 
data could make it reasonable to shift credence to alternative hodological hypoth-
eses. The application of Solomonoff induction requires a choice of model, and our 
illustrative models are admittedly simple. Nonetheless they make the point: with 
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sufficient data, the evidence for hodological models can overcome any finite degree 
of scepticism.

It is worth mentioning in this context the dark energy problem (see e.g. [8]), a 
notoriously puzzling feature of cosmological evolution that currently has no com-
pelling theoretical explanation. It is somewhat tempting to speculate that a suitable 
hodological model might possibly give a more succinct description of the phenome-
non than standard models. Any such claim would need a very careful analysis of the 
relevant data and the associated uncertainties. It would nonetheless be worthwhile to 
include the possibility in future extensions of Bayesian analyses [9].
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