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Abstract
Given an ontological model of a quantum system, a “genuine measurement,” as 
opposed to a quantum measurement, means an experiment that determines the value 
of a beable, i.e., of a variable that, according to the model, has an actual value in 
nature before the experiment. We prove a theorem showing that in every ontological 
model, it is impossible to measure all beables. Put differently, there is no experi-
ment that would reliably determine the ontic state. This result shows that the posi-
tivistic idea that a physical theory should only involve observable quantities is too 
optimistic.
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1  Introduction

“Beables” is a word coined by Bell [1] for variables that have values in nature even 
when nobody looks. The “ontic state” of a quantum system [8, 10] means the actual, 
factual, physical state in reality. The ontic state could be described through the val-
ues of all beables. An “ontological model” of quantum mechanics [8, 10] is a pro-
posal for what the ontic states might be and which laws might govern them. We 
denote an ontological model by M (definition below), the ontic state by � , and the set 
of ontic states by Λ.

We prove a theorem asserting that, given any ontological model M that is empiri-
cally adequate (i.e., whose observable predictions agree with the rules of quantum 
mechanics) and covers sufficiently many “observables,” there is no experiment that 
would determine � . Here, we take the ontological model M as known and only ask 
whether an experiment would reveal � in a (hypothetical) world governed by M.
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Our result goes against some kinds of positivism, as it poses a limitation to knowl-
edge: It shows that not everything that exists in reality is observable, and not every 
variable that has a value can be measured. Various theories of quantum mechanics 
have been criticized for postulating the real existence of objects (or variables) that 
are not fully observable (respectively, measurable); in view of our result, this criti-
cism appears inappropriate because every theory of quantum mechanics will have 
this property.

Our proof makes use of the concept of POVM (positive-operator-valued meas-
ure1) and of the main theorem about POVMs (see [6] or [14, Sect.  5.1]), which 
asserts that for every experiment E  on a quantum system S whose possible outcomes 
lie in a set Ω (equipped with sigma algebra2 F  ), there exists a POVM E on (Ω,F) 
such that, whenever S has wave function � at the beginning of E  , the random out-
come Z has probability distribution given by

We emphasize that in contrast to the concept of an ideal quantum measurement of a 
self-adjoint operator, which corresponds only to very special experiments, the con-
cept of a POVM covers, according to the main theorem about POVMs, all possible 
experiments that could in principle be performed on a single given quantum system 
S.

2 � Definitions

Let �(H) = {� ∈ H ∶ ‖�‖ = 1} denote the unit sphere of the Hilbert space H  and 
POVM the set of all POVMs acting on H .

Definition 1  An ontological model M of a quantum system with Hilbert space H  
consists of 

(i)	 a set Λ called the ontic space with sigma algebra L ;
(ii)	 for every � ∈ �(H) , a probability measure �� over (Λ,L);3

(iii)	 an index set EXP representing the set of possible experiments;

(1)ℙ(Z ∈ B) = ⟨��E(B)��⟩ ∀B ∈ F .

1  A POVM on the set Ω acting on the Hilbert space H  is defined to be an association E of a positive 
operator E(B) on H  with every (measurable) subset B of Ω such that E is countably additive on disjoint 
subsets and E(Ω) = I . For more detail, see, e.g., [12] or [14, Sect. 5.1].
2  A sigma algebra on a set Ω is defined to be a collection F  of subsets of Ω that is closed under the 
operations of finite or countable union, finite or countable intersection, and complement. Its elements are 
called the “measurable subsets” of Ω . Measures (such as volume, probability, or POVMs) are defined on 
a sigma algebra.
3  One could imagine that different procedures for preparing � lead to different distributions over Λ ; for 
our purposes, we can simply choose one such distribution for each �.
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(iv)	 a mapping E ∶ EXP → POVM associating with every experiment the POVM 
according to the main theorem about POVMs;4

(v)	 for every ontic state � ∈ Λ and every experiment E ∈ EXP , a probability dis-
tribution P�,E  over the value space Ω of E  (thought of as the distribution of the 
outcome when E  is applied to a system in state �).5

Example 1  Bohmian mechanics [4, 7, 14] is an ontological model for H = L2(ℝ3N) 
with ontic state given by the pair � = (Q,Ψ) consisting of the configuration Q and 
the wave function Ψ , so (i) Λ = ℝ

3N × 𝕊(H) for N particles. (ii)  The probability 
measure over Λ is

(iii) An experiment E  can be specified by providing the Hilbert space HA = L2(ℝ3M) 
of the apparatus, the wave function �A ∈ �(HA) of the apparatus at the beginning of 
E  , the Hamiltonian H of S and A together during E  , the duration T of E  , and the 
“calibration function” � ∶ ℝ

3M
→ Ω that extracts the outcome Z from the configura-

tion of A. (iv) Then [6, 14]

defines a POVM EE  on Ω acting on H  , where the inner product is the partial inner 
product in HA , I is the identity operator on H  , and PA is the position POVM of A, 
i.e., PA(BA) is the multiplication operator by the characteristic function of the set 
BA ⊆ ℝ

3M . (v) To define P�,E  for � = (Q,Ψ) , solve the Schrödinger equation with H 
and initial datum Ψ⊗𝜙A and Bohm’s equation of motion with initial datum (Q,QA) , 
where QA is random with distribution |�A|2 . Call the solution (QS(t),QA(t)) . Then

It is known (e.g., [6, Sect. 7.2] and [14, Sect. 5.1.3.]) that inhabitants of a Bohmian 
world can measure Q but not Ψ (so it is ironic that Q gets called a “hidden variable”).

Definition 2  An ontological model M is said to be empirically adequate if and only 
if for every � ∈ �(H) , every E ∈ EXP , and every B ∈ F ,

Example 2  Bohmian mechanics is empirically adequate; in fact, it is well known that 
its observable predictions agree with the rules of quantum mechanics. Specifically, 
the calculation verifying (5) with (2), (3), and (4) can be found in [6, Sect. 5] and 
[14, Sect. 5.1.2].

(2)�� (dQ × dΨ) = |�(Q)|2 �(Ψ − �) dQdΨ .

(3)EE(B) ∶= ⟨𝜙A�eiHT [I ⊗ PA(𝜁
−1(B))]e−iHT �𝜙A⟩

(4)P�,E(B) ∶= ℙ
(
�(QA(T)) ∈ B

)
∀B ∈ F .

(5)∫
Λ

�� (d�)P�,E(B) = ⟨��EE(B)��⟩ .

4  In essence, it is assumed here that the experiments in EXP are physically possible.
5  For mathematicians: P�,E(B) is required to be a measurable function of � for every E  and B.
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For any 1d subspace g of H  , let Pg denote the projection to g (i.e., Pg = ��⟩⟨�� 
for g = ℂ� with ‖�‖ = 1 ) and Fg the POVM on {0, 1} given by

with I the identity operator.

Definition 3  We call an ontological model M line complete if for every 1d subspace 
g of H  , there is an experiment E ∈ EXP with EE = Fg.

Example 3  For spin space H = ℂ
2 and � ∈ �(H) , the Stern–Gerlach experiment 

with magnet oriented in the direction �†
�� in physical 3-space and outcome “up” 

(“down”) represented by Z = 1 ( Z = 0 ) has POVM F
ℂ� . Here, � = (�x, �y, �z) is the 

triple of Pauli matrices.

3 � Result

Our claim is that it is impossible to measure � . That is, there is no experiment 
G ∈ EXP that, when applied to a system in state � , yields � as the outcome. 
Formally:

Theorem  1  Given a Hilbert space H  with dimH ≥ 2 and an empirically ade-
quate, line complete ontological model M for H  , there is no G ∈ EXP such that 
(Ω,F) = (Λ,L) and

Equivalently, (7) can be rewritten as P�,G = �� with the notation �� for the nor-
malized measure concentrated in the single point � . A key step toward Theorem 1 is 
the following statement:

Theorem 2  Given a Hilbert space H  with dimH ≥ 2 and an empirically adequate, 
line complete ontological model M for H  , there is no POVM G on (Λ,L) acting on 
H  such that

for all A ∈ L  and � ∈ �(H).

4 � Proofs

Proof of Theorem  1 from Theorem  2  If such a G ∈ EXP existed, it would be associ-
ated with a POVM G = EG  on (Λ,L) acting on H  . By (5) for E = G ,

(6)Fg({1}) = Pg and Fg({0}) = I − Pg

(7)P�,G(B) = 1�∈B ∀B ∈ F .

(8)�� (A) = ⟨��G(A)��⟩

(9)∫
Λ

�� (d�)P�,G(B) = ⟨��G(B)��⟩
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for all � ∈ �(H) and B ∈ F  . By (7), the left-hand side equals

so

for all � ∈ �(H) and B ∈ F = L  , which is impossible by Theorem  2. 	�  ◻

Before we give the full proof of Theorem  2, let us give an outline. We will first 
deduce that for every experiment E  , EE  is the G-average of P�,E  . Then we consider 
yes/no experiments corresponding to 1d subspaces g of H  and the regions Λg in the 
ontic space where the probability of a yes answer is non-zero. We find that Λg and 
Λh must be disjoint (up to G-null sets) whenever g and h are distinct, even if they 
are not orthogonal. This leads to a conflict with the requirement that, for any subset 
S ∈ L  of Λ , G(S) ≤ G(Λ) = I.

Proof of Theorem  2  We assume that such a G exists and will derive a contradiction. 
Putting (5) and (8) together, we obtain that

for all B ∈ F  . The left-hand side can be re-written as

Since ⟨��R��⟩ = ⟨��S��⟩ for all � ∈ �(H) only if R = S (by the polarization iden-
tity), we have that

for all B ∈ F  . Since M is assumed to be line complete, there is, for every 1d sub-
space g of H  , an experiment E(g) ∈ EXP so that EE(g) = Fg as in (6). For B = {1} , 
we obtain that

Note that for every g, P�,E(g)({1}) is a function of � with values in [0, 1], and define

It follows that P�,E(g)({1}) ≤ 1Λg
(�) and thus

(10)∫
Λ

�� (d�) 1�∈B = ∫B

�� (d�) = �� (B) ,

(11)�� (B) = ⟨��G(B)��⟩

(12)∫
Λ

⟨��G(d�)��⟩P�,E(B) = ⟨��EE(B)��⟩

(13)
⟨
�
|||∫

Λ

G(d�)P�,E(B)
|||�

⟩
.

(14)∫
Λ

G(d�)P�,E(B) = EE(B)

(15)∫
Λ

G(d�)P�,E(g)({1}) = Pg .

(16)Λg ∶= {𝜆 ∈ Λ ∶ P𝜆,E(g)({1}) > 0} .
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On the other hand, for any set A ∈ L  with A ⊆ Λg , G(A) must be a non-negative 
multiple of Pg : indeed, G(A) is a positive operator, and if G(A) had any eigen-
vector ∉ g with nonzero eigenvalue, then there would exist 0 ≠ � ∈ g⟂ with 
⟨𝜒�G(A)�𝜒⟩ > 0 and so

in contradiction to (15) together with ⟨��Pg��⟩ = 0.
Since G(A) is a multiple of Pg,

Two consequences: First, by (17),

Second, for 1d subspaces g ≠ h , Λg and Λh must be disjoint up to G-null sets,

(because this operator must be ≤ Pg and ≤ Ph , and the only positive operator achiev-
ing that is 0).

Now let �1 and �2 be mutually orthogonal unit vectors, set �3 =
1√
2
(�1 + �2) and 

gi = ℂ�i for i = 1, 2, 3 . Then

which has eigenvalue 2 in the direction of �3 , in contradiction to G(S) ≤ G(Λ) = I 
for every S ∈ L  . 	� ◻

5 � Concluding Remarks

The result is robust against small perturbations in the sense that even an approxi-
mate measurement of � is impossible in an ontological model that is approximately 
empirically adequate and contains experiments whose POVMs are approximately 
Fg . After all, the final contradiction consisted in the fact that a certain eigenvalue 
that should be ≤ 1 actually equals 2; if the eigenvalue were not exactly 2 but merely 
close to 2, it would still lead to a contradiction.

With regards to the broader significance, the result is in line with a sentiment 
expressed by Bell [2, Sect. 1]:

To admit things not visible to the gross creatures that we are is, in my opinion, to 
show a decent humility, and not just a lamentable addiction to metaphysics.

(17)G(Λg) = �
Λ

G(d�) 1Λg
(�) ≥ �

Λ

G(d�)P�,E(g)({1}) = Pg .

(18)
⟨
𝜒
|||∫

Λ

G(d𝜆)P𝜆,E(g)({1})
|||𝜒

⟩
> 0,

(19)0 ≤ G(A) ≤ Pg .

(20)G(Λg) = Pg .

(21)G(Λg ∩ Λh) = 0

(22)G
(
Λg1

∪ Λg2
∪ Λg3

)
= G(Λg1

) + G(Λg2
) + G(Λg3

) = Pg1
+ Pg2

+ Pg3
,
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The question of limitations to knowledge has been addressed for various specific 
interpretations (e.g., [4, 5, 14]). It is also known that every interpretation of quantum 
mechanics must entail limitations to knowledge. (See [14, Sect. 5.1]; the earliest proofs 
allowing this conclusion were given in [11] (translated and simplified in [13]) and 
[10].) One way of arriving at this conclusion is to note that wave functions cannot be 
measured [6] and that the Pusey–Barrett–Rudolph theorem [8, 9] shows that, under rea-
sonable assumptions on the ontological model, the wave function is a beable.

Compared to these previous results, however, our present result addresses the ques-
tion in a particularly direct way.
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