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Abstract
All causal Lie products of solutions of the Klein-Gordon equation and the wave 
equation in Minkowski space are determined. The results shed light on the origin of 
the algebraic structures underlying quantum field theory.
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1 Introduction

In this note we analyze the structure of causal Lie products (brackets) of solutions of 
the Klein-Gordon equation in Minkowski space with mass m ≥ 0 . This problem was 
studied in the Wightman framework of quantum field theory by several people: for 
massive free fields by Jost [1], Schroer [2], Federbush, Johnson [3], and for mass-
less fields by Pohlmeyer [4]. It revealed the fact that free fields must have c-number 
commutators. However, these results depend crucially on the assumptions of some 
underlying Hilbert space structure and spectral properties of a Hamiltonian (the 
existence of a vacuum sector). It is the aim of the present note to establish the prop-
erties of free fields in a more general framework, shedding some light on the origin 
of the algebraic structures underlying quantum field theory.
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2  Framework and Results

Let S(ℝd) be the Schwartz space of real scalar test functions on Minkowski space 
ℝ

d , d > 2 , with its standard metric. We consider a Lie algebra � over ℝ that is gen-
erated by symbols �(f ) which are real linear with regard to f ∈ S(ℝd) . Thus we have 
for their Lie products the standard relations (anti-symmetry and Jacobi identity), 
f1, f2, f3 ∈ S(ℝd),

In addition, we assume that � is a solution of the Klein-Gordon equation (includ-
ing the wave equation for mass m = 0 ) and that its Lie products comply with the 
condition of Einstein causality (locality). Thus we have the additional relations 
for f1, f2 ∈ S(ℝd) , K ∶= ◻ + m2 being the Klein-Gordon operator and ⟂ denoting 
spacelike separation,

We assume that there exist (multi)linear forms on � which are tempered distribu-
tions with regard to the underlying test functions. We also assume that the collec-
tion of all such forms on � is faithful, i.e. the intersection of their kernels is trivial. 
(Frobenius Lie algebras are examples with this property.) Given any such form l, we 
want to show that

Since the collection of all functionals is faithful, this implies that the Lie products 
[�(f1),�(f2)] lie in the center of �.

We begin by noting that by the Schwartz kernel (nuclear) theorem, the distribu-
tion (3) extends by continuity in f1 ⊗ f2 ⊗ f3 to arbitrary test functions f ∈ S(ℝ3d) . 
Thus it is sufficient to consider for any h ∈ S(ℝd) the distributions

from which the original l can be recovered. Because of locality, lh vanishes for 
(x − y)2 < 0 and, by the Jacobi identity, this also obtains if, both, x2 < 0 and y2 < 0 . 
Picking any fixed spacelike y, it follows that the distribution vanishes if x2 < 0 or 
(x − y)2 < 0 . Thus it vanishes with regard to x in some open time slice. Since it is a 
solution in x of the Klein-Gordon equation, it vanishes for all x.

With this information we pick now any x. According to the preceding step, the 
distribution then vanishes in y for y2 < 0 and, again by locality, for (x − y)2 < 0 . If x 
is spacelike, the preceding step implies that the distribution vanishes for all y.

If x is positive timelike, the distribution vanishes for y in the interior of the 
complement of (V+ + x) ∪ V− ∪ D , where V± are the forward and backward light-
cones, respectively, and D is the double cone fixed by the timelike line segment 

(1)
[�(f1),�(f2)] = −[�(f2),�(f1)]

[[�(f1),�(f2)],�(f3)] + [[�(f3),�(f1)],�(f2)] + [[�(f2),�(f3)],�(f1)] = 0 .

(2)
�(Kf1) = 0 ,

[�(f1),�(f2)] = 0 if supp f1 ⟂ supp f2 .

(3)l([[�(f1),�(f2)],�(f3)]) = 0 , f1, f2, f3 ∈ S(ℝd) .

(4)x, y ↦ lh([[�(x),�(y)],�(0)]) ∶= ∫ dz h(z) l([[�(x + z),�(y + z)],�(z)]) ,
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from 0 to x. We pick now any timelike line segment L in this complement which 
does not touch D and the boundaries of (V+ + x) and V− , cf. Fig.  1. Since L is 
localized in the interior of this complement, the solution of the Klein-Gordon 
equation with regard to y vanishes in a timelike tube and hence in the double 
cone fixed by it; this is a consequence of standard theorems on solutions of hyper-
bolic differential equations with constant coefficients [5] or of Borchers’ double 
cone theorem [6]. Performing this step for all such line segments, we find that the 
distribution vanishes for all y with support in the interior of the complement of 
(V+ + x) ∪ V− . Making again use of the fact that the distribution is a solution of 
the Klein-Gordon equation in y, this implies that it vanishes for all y. A similar 
argument applies if x is negative timelike.

We finally discuss the case that x is positive lightlike. As in the preceding step, 
the distribution vanishes with regard to y in the interior of the complement of the 
region (V+ + x) ∪ V− ∪ D , where D now denotes the degenerate double cone con-
sisting of the lightlike line segment connecting 0 and x. At this point it matters 
that the dimension d of spacetime is larger than 2. If d = 2 and the field is mass-
less, that complement cannot be enlarged. This follows from the observation that 
in the quantum field theoretic example of local chiral fields their normal ordered 
products still satisfy the wave equation, but their double commutators do not van-
ish. Yet if d > 2 , there exist timelike line segments L in the interior of the above 
complement that cross the characteristic hyperplane defined by the lightlike line 
segment at an arbitrarily small distance from it. The corresponding double cones 
fixed by L then intersect the lightlike segment in some open interval. Hence the 
distribution vanishes again in y in some time slice and consequently vanishes eve-
rywhere. A similar argument works if x is negative lightlike. We summarize these 
results in a first proposition.

Fig. 1  Initial support of the Lie product (gray), which is further restricted by the existence of timelike 
line segments L in its complement and the Klein-Gordon equation
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Proposition 2.1 Let � be a Lie algebra with properties given above. Then the Lie 
product of any two elements lies in the center of this algebra.

It remains to determine the possible form of the Lie products. To this end we con-
sider the distribution, canonically extended to complex test functions h,

It is a solution of the Klein-Gordon equation which vanishes because of locality if 
x2 < 0 . So its Cauchy data at time 0 are tempered distributions on space which are 
localized at the origin. Hence they are finite sums of derivatives of the Dirac meas-
ure, supported at 0. It follows that

where Ph is a polynomial in the zero and spatial components of p of the form 
p ↦ Ph(p) = p0 Qh(p) + Rh(p) ; it depends in a complex linear and tempered manner 
on h. In order to determine the dependence of Ph on h, we exploit the fact that the 
second field in this distribution also satisfies the Klein-Gordon equation and proceed 
to

Applying the Klein-Gordon operator, we get

Making use of the preceding result (6) on the structure of lh , we obtain for the result-
ing polynomials the equality on the mass shell p2 = m2

Thus we have for arbitrary test functions h

where the tilde ̃ denotes Fourier transforms. Since this expression is to be a polyno-
mial in the components of p for arbitrary h, it follows that B = 0 and that A is a poly-
nomial. Hence p ↦ Ph(p) = h̃(0)A(p) , where A is of the special form given above. 
Summarizing these observations, we have arrived at our second proposition.

(5)x ↦ lh([�(x),�(0)]) ∶= ∫ dz h(z) l([�(x + z),�(z)]) .

(6)lh([�(x),�(0)]) = ∫ dpPh(p) �(p0)�(p
2 − m2) eipx ,

(7)x ↦ lh([�(x),�(0)]) = ∫ dz h(z − x) l([�(z),�(z − x)]) .

(8)

0 = ∫ dz (◻xh(z − x) + 2 �x�h(z − x) ��
x
) l([�(z),�(z − x)])

= −∫ dz (◻h)(z) l([�(x + z),�(z)]) − 2 ��
x ∫ dz (��h)(z) l([�(x + z),�(z)])

= −2 ��
x
l ��h([�(x),�(0)]) − l

◻h([�(x),�(0)]) .

(9)2ip�P ��h
(p) + P

◻h(p) = P(2ip���+◻)h
(p) = 0 .

(10)Ph(p) = ∫ dq (A(p)�(q) + B(p)�(q2 + 2qp))h̃(q) ,
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Proposition 2.2 Let � be a Lie algebra with properties given above. Then one has 
for any tempered functional l the equality in the sense of distributions

where Al is some even (as a consequence of the antisymmetry of the Lie product) 
polynomial.

In view of the preceding results one can fix the central elements of the Lie alge-
bra � . This is accomplished by first extending the algebra by complex multiples of 
an identity 1 and then taking the quotient with regard to the ideal generated by

In this manner, the Lie products are identified with multiples of the identity with the 
concrete numerical factors, given by Proposition 2.2. Let us emphasize that the poly-
nomial Al in this proposition depends on the choice of the functional l. Its specific 
form is not encoded in the Lie algebra � . As a matter of fact, every even polynomial 
A defines by equation  (11) some admissible functional on � and thereby some “pri-
mary” non-commutative Lie algebra whose center consists of multiples of 1.

3  Conclusions

Starting from the assumption that the action induced by free fields on each other 
can be described by a Lie algebra, in analogy to the Poisson brackets in classical 
physics, we have determined the possible realizations of these algebras which are 
compatible with Einstein causality. It turned out that the Lie products of the fields 
are elements of the center of the algebra with very specific properties: all functionals 
on the Lie products are invariant under simultaneous translations of the fields and 
they are finitely covariant with regard to Lorentz transformations, i.e. they transform 
like components of a tensor field [7]. Any such functional determines a primary Lie 
algebra with c-number commutation relations.

The best known examples which are compatible with these results are the scalar 
free fields �0 in quantum field theory, where the polynomial A0 appearing in the Lie 
product is some positive constant, depending on the dimension d. In that case the 
Lie-algebra can consistently be extended to a non-commutative *-algebra which is 
faithfully represented on Fock space and where the Lie product is given by the com-
mutator of the field operators.

It turns out that any other “primary” Lie algebra for a given even polynomial A is 
obtained from �0 by a real linear map

Here B is a multiplication operator in momentum space. The underlying function 
p ↦ B(p) has the following properties: it is even with regard to momentum, its 

(11)l([�(x),�(y)]) = ∫ dpAl(p) �(p0)�(p
2 − m2) eip(x−y) ,

(12)[�(f ),�(g)] − l([�(f ),�(g)]) 1 , f , g ∈ S(ℝd) .

(13)�0(f ) ↦ �0(Bf ) , f ∈ S(ℝd) .
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square equals A, and it is continuous almost everywhere on ℝd , cf. the appendix. 
The corresponding fields are faithfully represented on Fock space as well. Since 
𝜙0(Bf )

∗ ⊃ 𝜙0(Bf ) , these operators are not symmetric, however, unless B is real in 
momentum space. This can only happen if A is positive and hence the value of the 
commutator (11) is purely imaginary. In the general case, the fields and also their 
adjoints have local commutators on Fock space, but they are not relatively local. 
Alternatively, these cases can be realized by components of tensor fields on indefi-
nite Fock spaces.

So we conclude that the appearance of the familiar algebraic structures of quan-
tum field theory can be traced back in the case of free fields to Einstein causality. 
Results pointing into a similar direction were also established in [8], but the exist-
ence of a ∗-operation (of a complex structure) was assumed there from the outset. As 
we have seen here, this feature is a consequence of the representation theory of the 
specific Lie algebras, which emerge from our assumptions. They have faithful repre-
sentations by Hilbert space operators as a consequence of Einstein causality.

Appendix

For completeness, we give here a proof of the elementary fact, used in the main 
text, that any complex polynomial A on ℝd (which is not necessarily of the special 
type considered here) has a square root B which is continuous almost everywhere. 
We proceed from the principal square root z ↦

√

z on the complex plane, which is 
defined for −𝜋 < arg z ≤ 𝜋 and vanishes at 0. It is continuous along the real axis. In 
the complement of the (closed) negative axis it is analytic and it is discontinuous 
across the cut at the negative reals.

With this choice, we put p ↦ B(p) ∶=
√

A(p) . If A is symmetric in p, as in the 
present investigation, it is clear that B is symmetric as well since the principal square 
root does not depend on p. Discontinuities of B can only appear at points where the 
values of A cross the cut at the negative reals from imaginary directions. Defining 
the set

there are the following possibilities: (i) S = � . Then B is continuous (even real ana-
lytic). (ii) S = ℝ

d . Then A is real, hence B is continuous. (iii) S ⊂ ℝ
d is a proper 

subset. If the imaginary part ImA of A vanishes on ℝd , then A is real again and B is 
continuous. If ImA varies on ℝd , then, being a polynomial, it can vanish only on sets 
of zero Lebesgue measure, cf. [9]. Thus S, being a closed subset, has zero measure 
as well. Only in the latter case it can happen that B is discontinuous on such negligi-
ble sets of ℝd.
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