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Abstract
The Lorentz transformation of space and time between two reference frames is one 
of the pillars of the special relativity theory. As a result of the Lorentz transfor-
mation, space and time are only relative and are entangled, while the Minkowski 
metric is Lorentz invariant. For this reason, the Lorentz transformation is one of the 
major obstructions in the development of physical theories with quantized space and 
time. Here is described the Lorentz transformation of a physical system with a dis-
crete dynamical time and a continuous space that fulfills Lorentz invariance while 
approximating the Lorentz transformation at the time continuous limit and the Gali-
lei transformation at the classical limit. Furthermore, the discreteness of time is not 
mixed with the continuous nature of space, making time distinct from space.

Keywords Discrete time · Quantum time · Special relativity

1 Introduction

With the advent of quantum mechanics and its discrete nature of system properties, 
discrete-time physics was also introduced [1–9]. However, the quantum nature of 
time and space has only recently gained thorough attention in investigations towards 
unified physical theories such as quantum loop gravity theory [10], causal set theo-
ries [11] and others [7, 9, 12–14] reviewed in part in [8]. One of the major obstacles 
therein appeared to be the Lorentz transformation [15]. In special relativity both time 
and space are only relative and are entangled since the value of the time variable in 
one reference frame depends on the values of the time and space variables in the 
other frame as described by the Lorentz transformation [15, 16]. With the geometri-
cal approach of Minkowski and Poincaré, time and space are further merged into a 
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single entity, establishing a cornerstone of general relativity: spacetime [17–20] (but 
see [21]; please note, general relativity is not further considered here).

Lorentz invariance of the Minkowski metric [17, 18] and the Lorentz transfor-
mation per se as introduced by Einstein [15] thereby appear to request a continu-
ous time and space and are violated by the discreteness of both time and space [8, 
10] unless a probabilistic approach is introduced as in the causal set theory [11] 
or non-physical systems are considered [12]. It is here demonstrated that a physi-
cal theory with a discrete, non-random dynamical time and a continuous space is 
Lorentz covariant. Apart from its conceptual novelty, this approach paves the way 
for discrete-time physics in fundamental physics theories. Furthermore, it supports 
the notion of time as a series of events that are linked together by causality [22], 
yielding a time that is only relative in character (as we know it from special relativ-
ity) and highlights the difference between time and space, feeding into the debates 
between special relativity and the line element nature of spacetime by Minkowski 
[21, 23, 24]. After a short summary on special relativity theory (2.1), and the intro-
duction of discrete dynamical time physics following the approach by Lee (2.2), the 
Lorentz transformation between two reference frames is derived for a system having 
a discrete dynamical time and a continuous space (2.3) followed by a discussion (3) 
and finished by a conclusion (4).

2  Theory

2.1  The Lorentz Transformation Within Special Relativity Theory

Here, special relativity theory (under a continuous time) is revisited [15, 16]. By 
studying the coordinates of a point particle in two different inertial reference frames 
S and S′ (i.e. t, � and t′, �′ with t the time and the space vector � = (x1, x2, x3) 
describing the coordinates of the particle within the three dimensional space) which 
move relative to each other with the velocity � = (v1, 0, 0) , the Minkowski metric 
given by

is preserved (please note, c is the speed of light and constant by definition). The Lor-
entz transformation describing the transformation of the system from the reference 
frame S to S′ is defined by

and

(1)s2 = (ct)2 − �2 = (ct�)2 − ��2 = s�2

(2)x
�

1
=

x1 − v1t√
1 − (v1∕c)

2

x
�

2
= x2

x
�

3
= x3
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It is evident that time is relative with the Lorentz transformation and that time and 
space are entangled (eqs. (2) and (3)), forming together, according to Minkowski 
[17], a single entity (ct, x1, x2, x3) called spacetime, noting that the x0 component is 
not time but rather the product between the velocity of light and time [21]. In special 
relativity theory, causality is preserved, however, time and space are relative and no 
longer absolute. That is, an observer sitting in the S or the S′ reference frame will not 
monitor the time-dependent location and velocity of the particle under observation 
on an absolute scale. If the observer looks at the particle from the S reference frame, 
at a given time point t he observes the particle at position x, while from the reference 
system S′ , he observes the particle at time point t′ and position x′ related to t and x 
from S by the Lorentz transformation. Considering the mixing/entanglement of time 
and space by the Lorentz transformation between two frames of reference, it is not 
obvious that time can be discrete and space continuous.

2.2  Discrete Time Physics

In the dynamical discrete-time non-relativistic approach by Lee [9] time is a discrete 
dynamical variable of tensor nature [14]

The continuous space function �(t) of a system (such as a point particle) is thereby 
replaced by a sequence of discrete values

and

yielding:

with (�0, �0, t̂0) the initial and (�N+1, �N+1, t̂N+1) the final “time position”. In this 
description �n and �n are still continuous, while t̂n is of discrete character (and n is 
only changing if there is something happening [14, 18]). Under these circumstances 
Δt̂n = t̂n − t̂n−1 , which is dynamic in nature if a time reversible/symmetric descrip-
tion is invoked that can approximate the continuous time theories [9]. Or alterna-
tively Δt̂n = Δt̂ is constant if a time irreversible description is permitted/requested 
[14].

(3)t� =
t − (v1∕c

2)x1√
1 − (v1∕c)

2

.

t̂n =

⎡⎢⎢⎣

t1,n 0 0

0 t2,n 0

0 0 t3,n

⎤⎥⎥⎦
.

�n =
(
x1,n, x2,n, x3,n

)
=
(
x1
(
t1,n

)
, x2

(
t2,n

)
, x3

(
t3,n

))

�n = (v1(t1,n), v2(t2,n), v3(t3,n))

(4)(�0, ��, t̂0), (�1, �1, t̂1), ........, (�n, �n, t̂), ......, (�N+1, �N+1, t̂N+1)
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There are several possible definitions for the velocity within a discrete-time 
physical theory. Here, the definition introduced in reference [14] is used

defining the velocity �n at time n from information at time point n (i.e. �n ) and the 
past time point n − 1 (i.e. �n−1 ), which is a logical definition regarding causality 
since only present and past information is used to decipher the present velocity.

This approach must be distinguished from discrete formalisms in dynamic sim-
ulations (including special and general relativity) in which discrete algorithms are 
used, as exemplified here with the leapfrog integration method [25] whereby

and

The leapfrog algorithm is time-reversible and symplectic in nature and thus con-
serves the energy of a dynamical system. However, velocity and position are calcu-
lated at different time points and the acceleration is defined by the second deriva-
tive of the position vector, highlighting its limited applicability to simulations. Other 
algorithms have similar properties.

The introduction of discrete-time physics (eqs. (4) and (5)) may not only describe 
experimental physics (which is always of discrete time nature due to finite energy 
sources) more precisely than its continuous counterpart, but has the profound effect 
of imparting an arrow of time and time-irreversibility at the microscopic level 
(before ensemble and statistical averaging as done in statistical thermodynamics) 
[14]. As such it also allows the introduction of causality which must be a unidirec-
tional entity because a cause is antecedent of its effect [22]. While the reader is 
invited to read relevant literature on discrete time physics if interested [9, 14, 22] the 
two following points of relevance are recapitulated. First, discrete time naturally 
defines casual chains of events. For this a classical description of the Hamilton func-
tion H(�, �) with � = (q1, q2, q3) and � = (p1, p2, p3) for the generalized phase space 
canonical position and momentum, respectively, and the acting potential V(�) is 
introduced (in cartesian coordinates the Hamilton function is given as 
H(�, �) =

1

2m
�2 + V(�) ). Using the Hamilton equation ṗi = −

𝜕H

𝜕��
 , Newton’s second 

law is obtained

which in the discrete-time approach (i.e. without the lim) and by redistributing the 
variables in the equation becomes

(5)vi,n ∶=
xi,n − xi,n−1

Δti,n
with i = 1, 2, 3

�
n+

1

2

= �
n−

1

2

+
d
2�n

dt
2

�n+1 = �n + �
n+

1

2

Δt .

(6)−
�V

�qi
= limΔt→0

pi(ti + Δti) − pi(ti)

Δti
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thereby connecting the cause described by the force (expressed through its compo-
nents − �V

�qi,n
 ) that acts on �n with the effect described by �n+1 . Hence, the sequence of 

discrete values of eq. (4) can thus be interpreted as causal hopping from event n to 
event n + 1 and if nothing is happening (i.e. if there is no force acting) no new event 
occurs. Second, a discrete-time approach yields a time-irreversible physics in the 
presence of a changing force. This is described by eq. (8) in which a step forward 
n → n + 1 is followed by a step backward in “time”:

To request time reversibility pi,n+2 = pi,n (note that the step backward gives a nega-
tive time) must hold after the second step, which in presence of a changing force 
(i.e. �V

�qi,n
≠

�V

�qi,n+1
 ) is only obtained if

this being possible with the dynamic nature of time (for consequences thereof, we 
refer to references [14, 22]). In other words, with the introduction of a discrete time, 
an arrow of time at the microscopic physics level is introduced, thereby yielding one 
of the principle properties of time, namely directionality. Once its discrete nature 
is introduced, time can be replaced by a series of events n. The discrete nature of 
time was thereby introduced as a means to get an arrow of time and causality and 
not because of its potential quantum nature requested from quantum mechanics, 
although in principle it could be exploited as such.

2.3  The Lorentz Transformation Under a Discrete Time and a Continuous Space

The discrete-time physics introduced in Sect. 2.2 is now extended to the special 
relativity theory. In particular the Lorentz transformation under a discrete time 
and a continuous space between the reference frames S (tn, �� ) and S′ (t�

n
, ��

�) 
with S′ moving with a constant velocity �� = (v1,n, 0, 0) in respect to S (without 
loosing generality) is now investigated as in the standard description above (Sect 
2.1). The corresponding Lorentz transformation for a single time step is given by

and

(7)pi,n+1 =pi(ti + Δti) = −
�V

�qi
Δti + pi(t) = −

�V

�qi,n
Δti,n + pi,n

(8)pi,n+2 = −
�V

�qi,n+1
Δti,n+1 + pi,n+1 = −

�V

�qi,n+1
Δti,n+1 −

�V

�qi,n
Δti,n + pi,n

(9)
�V

�qi,n
Δti,n =

�V

�qi,n+1
Δti,n+1

(10)x�
1,n

=
x1,n − v1,nΔt1,n√
1 − (v1,n∕c)

2

, x�
2,n

= x2,n, x
�
3,n

= x3,n
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with v1,n(tn) =
x1,n−x1,n−1

Δt1,n
 and c ∶=

xc
1,n
−xc

1,n−1

Δt1,n
 denoting ��c , the wavefront coordinate 

vector of light at time point n.
In the classical limit in absence of a velocity (i.e. �� = (0, 0, 0) ), the Galilei transfor-

mation is obtained with x�
i,n

= xi,n with i = 1...3 and Δt�
n
= Δtn.

In the limit Δt1,n → 0 , limΔt1,n→0 Δt1,n = dt , limΔt1,n→0 �n = � , limΔt1,n→0 v1,n = v1 
and the standard Lorentz transformation is obtained with

It is evident, that neither x′
1,n

 nor x1,n are required to be of granular nature because

is independent of the time step size as is

Thus, space is (allowed to be) of continuous nature while time is discrete, distin-
guishing the space from time as mandated from the arrow of time in thermodynam-
ics [14, 18]. In other words, the discrete nature of time and the continuous nature of 
space do not mix in the Lorentz transformation of eq. (10).

Furthermore, the discrete-time time vector given by

is of continuous nature.
The discrete-time Minkowski metric reads

By replacing Δt�
1,n

 and �′n from eq. (10) into s′2
n

 from eq. (13) it is evident that the 
discrete-time Minkowski metric is Lorentz invariant:

Δt�
1,n

=
Δt1,n − (v1,n∕c

2)x1,n√
1 − (v1,n∕c)

2

x�
1
=

x1 − v1dt√
1 − (v1∕c)

2

dt� =
dt − (v1∕c

2)x1√
1 − (v1∕c)

2

v1,n

c
=

x1,n−x1,n−1

Δt1,n

xc
1,n
−xc

1,n−1

Δt1,n

=
x1,n − x1,n−1

xc
1,n

− xc
1,n−1

(11)x�
1,n

=
x1,n − v1,nΔt1,n√
1 − (v1,n∕c)

2

=

{
x1,n−1∕

√
1 − (v1,n∕c)

2 for v1,n > 0

x1,n for v1,n = 0.

(12)(cΔt1,n, x1,n, x2,n, x3,n) = (xc
1,n

− xc
1,n−1

, x1,n, x2,n, x3,n)

(13)s2
n
= (cΔt1,n)

2 − ��
2 = (xc

1,n
− xc

1,n−1
)2 − ��

2.

(14)(cΔt�
1,n
)2 − ��

�

2
= (cΔt1,n)

2 − ��
2.
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Of course, the time step size differs between the two reference frames. Starting from 
eq. (10)

which corresponds to the time dilation in the standard description, while time is still 
of a discrete nature. In other words, although the time step size is relative, the time 
step number n is absolute. Hence, causality is guaranteed with n always being the 
n’th causal event regardless of the reference frame (i.e. n� = n ). This finding is in 
line with the proposition that discrete time is the metric of causality as suggested in 
referene [22]. Furthermore, in contrast to the time step number, the time step size is 
not fundamental and thus the irrelevancy of the time step as well as the time dilation 
in the standard special relativity theory becomes obvious.

In summary, with the presented axiom of a dynamic discrete time, a Lorentz 
transformation is defined that separates the discrete nature of time from the continu-
ous nature of space and preserves the Lorentz invariance of the Minkowski metric.

3  Discussion

3.1  Discrete‑Time Physics

The rather simple derivation presented shows that dynamic discrete-time physics 
enables Lorentz invariance. This is an important finding because discrete-time phys-
ics approaches are usually challenged and criticized by the lack of Lorentz covar-
iance and the lack of Lorentz invariant entities, limiting their use not only to the 
classical limit but questioning their fundamental character per se. With the findings 
presented, the discrete nature of time can thus be revisited. The concept of a dis-
crete time is inspired by various physical considerations. Starting with thermody-
namics, with the definition of time as the variation of the macroscopic entropy of 
irreversible processes, time becomes the footprint of irreversibility and as such is of 
granular nature [26]. Alternatively, the introduction of a microscopic entropy and 

(15)

Δt�
1,n

=
Δt1,n − (v1,n∕c

2)x1,n�
1 − (v1,n∕c)

2

=

Δt1,n −

⎛
⎜⎜⎝

x1,n−x1,n−1

Δt1,n�
xc
1,n

−xc
1,n−1

Δt1,n

�2
⎞
⎟⎟⎠
xi,n

�
1 −

�
x1,n−x1,n−1

xc
1,n
−xc

1,n−1

�2

=

Δt1,n

�
1 −

�
x1,n−x1,n−1�
xc
1,n
−xc

1,n−1

�2

�
xi,n

�

�
1 −

�
x1,n−x1,n−1

xc
1,n
−xc

1,n−1

�2
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an arrow of time at the microscopic scale is only possible if time is discrete [9, 14, 
22] (see also section 2.2). A theory that treats time as discrete and space continuous 
(see also section 3.3 which is on discrete time and discrete space) distinguishes time 
from space and is consistent with our every experience, in which objects move for-
ward and backward in space but not in time, but is not consistent with the standard 
physics, including special relativity. In other words, the introduction of the discrete-
ness of time allows it to be distinguished from from space because it yields thereby, 
most importantly, time-irreversibility of a dynamic system and correspondingly an 
arrow of time with all its consequences including entropy [14]. Furthermore, the 
Dirac equation which describes the free relativistic electron is more sound in pres-
ence of a discrete time (termed “chronon”) than its continuous analog because it 
lacks runaway solutions and contains the field of the particle itself [3, 4] and simi-
larly, a discrete time is introduced to study the exact equation of motion for a mov-
ing (accelerated) charged particle [27]. In addition, the evolution of the universe at 
the Newtonian limit of general relativity using discrete time physics exposes the 
inflation of the universe and the cosmic constant as artifacts of a time continuous 
description [28]. Furthermore, others state that irrational numbers are not physical 
due to the information content therein, thereby demanding discreteness of reality 
[29]. Finally, discrete time physics will likely play a central role in the development 
of unified physical theories and does so already in quantum loop gravity theory [10], 
causal set theories [11] and others [7, 9, 12–14].

3.2  Absolute Causality, Relative Time

The introduction of a discrete time allows for a straightforward definition of causal-
ity, relating an antecedent cause with its resulting event due to the existence of an 
arrow of time [22]. As described in the example given above with the discrete-time 
analog of Newton’s second law (eq. (7)), a causal relationship with the momentum at 
event n + 1 by the acting potential and the momentum at point n is straightforward. 
Importantly, causality is observer independent since n = n� as shown by eq. (14). 
Hence, causality along with its metric, the discrete time number n, is absolute and 
evidently Lorentz invariant as also shown by Zeeman [30]. In contrast, time in terms 
of time length (usually described by a continuous time) is relative. These statements 
get to the heart of the fundamental difference between the absoluteness of causality 
and the causal chain and the relativeness of time. This differs from the classical phil-
osophical view point of Aristoteles, Kant and others (but not Reichenbach) where 
either causality and time can be interchanged or time is more fundamental than cau-
sality [31, 32]. Within this context it is interesting to note that causality is usually 
addressed in special relativity only at the level of argumentation [31].

Furthermore, Zeeman showed that if causality is required to be invariant, the Lor-
entz group is obtained [29]. The Lorentz transformation thereby provides for a kin-
ematic calculation of a process from different observers/reference frames and relates 
their observations to each other as demonstrated by Einstein in 1905 [15] and now 
shown above also for the case of discrete time (eqs. (11), (14), and (15)). The dis-
crete extension shows in addition that while discrete time and continuous space are 
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connected they cannot entail a single line element (i.e. a spacetime vector) since 
time stays discrete and space continuous. This is in principle already obvious con-
sidering the difference in units of time (second) and space (meter) [21]. Only if time 
is replaced by ct it can be merged with space into the four dimensional spacetime 
vector introduced by Minkowski and Poincaré [17–19] because unlike t, ct is a dis-
tance of continuous nature. The spacetime vector along with the Minkowski metric 
thereby allows for the determination of relativeness between two chains of causality 
that are not correlated with each other (or the past connection is unknown) via the 
distance that light travels between the two, thereby giving rise to a causal intercon-
nection between them. We hope that this discussion may also help to resolve the 
dispute on the relationship between special relativity and spacetime geometry and 
the physical nature of the spacetime [21, 23, 24].

3.3  Discrete Time, Discrete Space

Towards the unification of quantum mechanics with the general relativity theory and 
field theories [8, 20] a granular nature of both time and space has been invoked and 
studied, including quantum loop gravity [10, 33, 34] and causal set theories [11]. 
However, unless a probabilistic argument is introduced such as in the causal set the-
ory [11] or the existence of a physical time is neglected or different times for differ-
ent purposes are introduced [35] the concurrent discreteness of both time and space 
appears to interfere with the Lorentz transformation and the Lorentz invariance of 
the spacetime vector metric of Minkowski [8] but as demonstrated here, these barri-
ers do not exist for a discrete time and a continuous space.

Next, it is elaborated on whether, in addition to a discrete dynamical time, a dis-
crete space could be introduced. Towards answering this question it is stated that 
both time and space are continuous in quantum mechanics. Furthermore, it is noted 
that time in quantum mechanics is the classical time reflected by the lack of a time 
operator. The time-dependent Schrodinger equation is thus of semi-classical nature 
with a time therein that comes from an adjacent classical clock [36, 37]. The time 
evolution of the wave function described by the time-dependent Schrodinger equa-
tion demonstrates thereby the time evolution of the classical outcome (after the 
measurement). Hence, the introduced discrete nature of time holds also for quantum 
mechanics. The request of a granular nature of space is owed to the Heisenberg 
uncertainty principle between momentum and space (determinants) [38], which can 
be associated to the accuracy of a measurement of a system because of the observer 
interference to the system by the measurement. It thus must not be per se a funda-
mental property. If however a fundamental length (such as the Planck length) is 
demanded, then by definition space has an absolute character (and is by definition 
Lorentz invariant) which is in contradiction to theories of relativity for which space 
is relative. The remaining possibility of a discrete space is thus a dynamic discrete 
space in analogy to the dynamic discrete time introduced above. The realization of a 
discrete dynamical space might be possible because as shown above time and space 
do not mix. But it is not straightforward and appears to require additional condi-
tions/assumptions. For example, the important ratio of the velocity of the system 
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studied and the velocity of light at time point n given by the ratio of the distance 
traveled by the system versus light v1,n

c
=

x1,n−x1,n−1

xc
1,n
−xc

1,n−1

 may only be approximatively 

defined. Moreover and more fundamental, while the space steps are relative, an 
unknown entity of unknown origin (which in the case of time is causality) may be 
absolute. Furthermore, with the request of a reversible space (unlike time) the same 
space can again and again be explored and revisited with experiments approximat-
ing its infinitesimal nature (please note, that these experiments are however not pos-
sible in the spacetime manifold description). In short, a discrete dynamical symmet-
rical space that is not mixed with the discreetness of time, but is entangled with time 
through the Lorentz transformation, can be introduced in principle but appears not 
to be necessary and may eventually open up other issues.

4  Conclusion

The finding that a discrete-time/continuous-space physics obeys the Lorentz trans-
formation opens an avenue for a (dynamic) discrete time description in fundamen-
tal physics theories. Moreover, it demonstrates the difference between space and 
time, challenging the line element character of the spacetime moiety along with the 
Minkowski metric. Furthermore, it gives causality a prominent role as a fundamen-
tal entity and gives further insights into the relationship between time and causality 
and on the nature of time [39–42]. The reader is invited to explore these findings 
further.
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