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Abstract
Experiments witnessing the entanglement between two particles interacting only via 
the gravitational field have been proposed as a test whether gravity must be quan-
tized. In the language of quantum information, a non-quantum gravitational force 
would be modeled by local operations with classical communication (LOCC), which 
cannot generate entanglement in an initially unentangled state. This idea is criticized 
as too constraining on possible alternatives to quantum gravity. We present a para-
metrized model for the gravitational interaction of quantum matter on a classical 
spacetime, inspired by the de Broglie–Bohm formulation of quantum mechanics, 
which results in entanglement and thereby provides an explicit counterexample to 
the claim that only a quantized gravitational field possesses this capability.

Keywords  Semiclassical gravity · Entanglement · Quantum gravity phenomenology

1  Introduction

Contemporary physics, at its most fundamental level, is in a somewhat peculiar situ-
ation, relying on two separate and apparently incompatible theories. On one hand, 
there is matter, described by the Fock space states of interacting quantum fields 
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or, more specifically, the Standard Model with its 12 elementary fermions and 
its SU(3) × SU(2) × U(1) gauge symmetry, from which nonrelativistic, quantum 
mechanical behavior follows, at least in principle1. On the other hand, there is space-
time, a Lorentzian 4-manifold which provides the metric and differential structures 
with which dynamical laws for matter can be defined and whose curvature is deter-
mined by the matter distribution via Einstein’s equations.

The quest of “quantum gravity”, in its broadest meaning, refers to the goal of 
finding some common mathematical framework which, in the appropriate limits 
of observed physical phenomena, can embed the predictions of both quantum and 
gravitational physics. By virtue of the largely different mathematical structures, the 
prevailing believe is that this must be achieved by some sort of “quantization” of 
gravity, for instance in the sense of promoting some objects in the theory of general 
relativity (the metric, curvature, connection, volume, or area elements, ...) to a Hil-
bert space structure, albeit the precise meaning remains obscure and differs from 
model to model.

Contrariwise, one may pose the question what would need to change about the 
formalism of quantum physics in order to be compatible with the principles of gen-
eral relativity—a “gravitization of quantum mechanics” in the words of Penrose 
[1]—such that quantum matter could be consistently described on a (classical) spa-
cetime manifold, including its backreaction on spacetime. Leaving aside (important) 
mathematical details, the dynamics of quantum fields on a curved spacetime can be 
formulated as a well-defined theory [2, 3]. The more fundamental challenge is the 
opposite question: how does one model the effect of quantum matter on spacetime 
curvature?

The most straightforward approach to model this coupling of quantum matter to 
classical gravity is via the semiclassical Einstein equations [4, 5]

where the left-hand side is the Einstein tensor, constructed from the scalar and ten-
sor curvatures R and R�� as well as the metric g�� , and the right-hand side con-
tains the expectation value of the stress-energy operator in the quantum state � . 
Its consistency as a fundamental model has been the subject of discussions [6–10], 
although with no conclusive result; see also reference [11] for a recent review. In 
nonrelativistic situations, it can be understood [12] as resulting in a wave function 
dependent Newtonian gravitational potential
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1  Note that, whereas typically one would consider the less fundamental theory as a limiting case of the 
more fundamental one, the traditional formulation of quantum field theories also allows for the opposite 
interpretation, seeing it as a consequence of quantum mechanics combined with special relativity.
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for two particles of masses m1 and m2 , where 
⟨
⋅

⟩
 denotes the expectation value in 

the two-particle state with spatial wave function 𝛹
(
t, r⃗1, r⃗2

)
 and

is the self-gravitational potential of the i-th particle. This self-gravitational attraction 
of even a single particle has previously been considered as a route towards experi-
mentally testing semiclassical gravity [13–16]. Recently, experiments have been 
proposed [17, 18] which would be looking for the difference between the first two 
mutual interaction terms in the semiclassical potential (2) as compared to the poten-
tial expected from perturbatively quantized gravity:

Quantized gravity then predicts an entangled two-particle state, whereas the semi-
classical model would leave an initially separable state unentangled.

The claim made by the proponents of these tests, however, goes beyond distin-
guishing the two potentials  (2) and  (4), stating instead that it is “impossible” for 
two particles to develop entanglement from a classical field [19] and that “anything 
capable of entangling two quantum systems and satisfying locality (plus a few other 
assumptions) must itself be quantum.” [20] Therefore, so the idea, experimental evi-
dence for entanglement would not only rule out the potential (2) but any semiclas-
sical model for gravity. This idea has been criticized by Hall and Reginatto [21] 
who point out that entanglement is strictly prohibited only for the specific type of 
classical interactions as introduced by Koopman [22] and show that in the hybrid 
model of quantum-classical ensembles [23] entanglement can increase. Similarly, 
Pal et al. [24] show that entanglement can occur between two initially unentangled 
qubits through a third qubit whose reduced density matrix remains diagonal for the 
whole experiment, if there is some initial entanglement already present in the entire 
three-qubit system. For a recent review of the subject, see also reference [25].

Here, we present a different model as a counterexample to the claim that gravi-
tational entanglement is evidence against semiclassical theories; one that makes 
use of the trajectory2 as an additional “hidden” variable in the de Broglie–Bohm 
theory (see, for instance, the book by Oriols [27] for a recent introduction), and is 
closer in spirit to the mean-field approach based on the semiclassical Einstein equa-
tions  (1). Contrary to the mean-field approach, a dependence of the gravitational 
field on these hidden variables allows it to possess information about the outcome 
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(t, r⃗i) = −Gm2

i ∫ d3r�
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|||𝛹
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(4)Vqg

(
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)
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2  This “trajectory approach” is briefly mentioned, but not elaborated upon, also by Hall and Reginatto 
[21]. Another brief consideration [26] of the spin entanglement proposals [17, 18] from the perspective 
of Bohmian trajectories was brought to our attention shortly before finalizing this work.
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of measurements beyond the classical information encoded in expectation values. 
Furthermore, it allows for the definition of hybrid models in which the gravitational 
potential depends on both the trajectories and the wave function, and which thereby 
interpolate between the maximally entangling model with a point particle source 
and the non-entangling semiclassical potential (2).

The structure of this paper is as follows: In the next Sect. 2, we present explic-
itly how the Bohmian trajectories can be used to source a Newtonian gravitational 
potential with the correct classical limit, and predicting entanglement between two 
gravitationally interacting particles. We review how, in the de Broglie–Bohm pic-
ture, entanglement of localized particles can be understood as arising from addi-
tional local fields on physical 3-space as the effect of conditional potentials [28, 
29], and we discuss the implications for semiclassical gravity. Section 3 provides an 
example how this approach can be generalized to a class of models, with the mean-
field potential (2) and the trajectory based model from Sect. 2 as limiting cases. In 
Sect. 4 we explicitly calculate the spin-entanglement witnesses [17, 30] proposed for 
non-classicality tests of gravity, and show how they would confirm entanglement for 
the semiclassical models presented. The discussion Sect. 5 reviews the implications 
of our results for the interpretation of experimental tests of gravitationally induced 
entanglement and addresses important limitations.

2 � Gravity Sourced Along Bohmian Trajectories

Consider a number of quantum particles with nonrelativistic energies, whose gravi-
tational interaction we would like to describe within the frameworks of both the de 
Broglie–Bohm approach to quantum theory and classical general relativity. Gravity, 
according to general relativity, is modeled by the curvature of a classical spacetime 
manifold—which in nonrelativistic situations is fully determined by the Newtonian 
potential to good approximation.

In addition to classical spacetime and the wave function, we introduce particle 
coordinates q⃗i, which in the de Broglie–Bohm theory satisfy a guiding equation,

depending on the N-particle wave function � . Having these trajectories q⃗i(t) at our 
disposal, enables us to use them as point-particle sources for a Newtonian gravita-
tional interaction. In the Schrödinger equation for N = 2 particles we then introduce 
the potential

(5)
dq⃗i(t)

dt
=

�
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Im

(
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−
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such that the two dynamical equations form a coupled system. Let us study the 
consequences of this potential, starting with its classical limit. We notice that the 
Schrödinger equation yields the usual Ehrenfest theorem

which results in the same classical equations of motion for the expectation values as 
the quantum potential  (4). Whereas for the quantum potential a single term deter-
mines the motion of both particles, for the potential (6) the first term determines the 
motion of the first particle in the gravitational field of the second, the second term 
the motion of the second particle in the field of the first. The final term �0 in Eq. (6) 
is a function of only the Bohmian trajectories q⃗i and does not contribute to the clas-
sical limit. It is necessary in order to maintain consistency with the experimentally 
confirmed gravitational phase shift [31–33].

For the further analysis, we turn to the local formulation of the de Broglie–Bohm 
theory [28, 29], defined via the conditional wave functions

We consider only one spatial dimension for the subsequent discussion, with the gen-
eralization to three dimensions being straightforward. The guiding equations  (5) 
then can be written in terms of these conditional wave functions,

implying that the evolution for the i-th particle depends only on the conditional wave 
function �i . The evolution of �i itself, however, depends nontrivially on both the 
other particle coordinates and the remaining conditional wave functions, thereby 
allowing for the quantum mechanical entanglement. This is expressed through the 
n-th order entanglement potential fields

The conditional wave functions then satisfy the Schrödinger equations

with the time dependent effective potentials 
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 The potential fields � (n)

i
 depend, of course, on the conditional wave functions. For a 

solution consistent with the full 2-particle Schrödinger equation, each potential field 
must itself obey a partial differential equation depending on higher order entangle-
ment fields [29]. The locality of the Schrödinger equation (11) comes at the price of 
this dependency on an infinite number of entanglement fields, which can be trun-
cated at some order n for an approximate treatment, capturing entanglement up to 
a certain degree. For our purpose, this approach has its main advantage in how it 
explicitly reveals the entanglement.

For any given solution � of the full 2-particle Schrödinger equation, one can calcu-
late the four potential fields of first and second order and treat them as given external 
potentials. Equations (11) together with the guiding equation (9) then describes a sys-
tem of equations which is coupled only through the dependence of the effective poten-
tials (12) on the trajectories qi(t) . Of course, knowing the full solution � the solutions 
for the �i and qi follow immediately. In this sense, this system is of little use for the pur-
pose of solving the dynamical equations. It can, however, be useful in order to analyze 
the dynamical properties of the system.

The trajectories described by Eq.  (9) generally diverge from each other in a way 
determined by the spreading of the wave function. In a classical situation, where the 
wave function remains sharply peaked over the relevant time period, the trajectories, 
therefore, remain close to the classical trajectories ui(t) =

⟨
xi
⟩
 , which solve the classi-

cal equations of motion

Approximating qi(t) ≈ ui(t) in Eq. (12) rather than using the guiding equation, one 
obtains from  (11) two fully decoupled Schrödinger equations for the conditional 
wave functions �i . As ususal, to lowest semiclassical order the effective potentials 
result in a phase

(12a)Veff
1
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�
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1
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after time � . Consider an intially separable wave function,

such that

and, choosing �0(q1, q2) = Gm1m2
||q1 − q2

||−1 as well as assuming Gaussian wave 
functions of widths �i peaked at x1 = u1 and x2 = u2 , respectively,

with the entanglement potentials

These entanglement potentials only result in a trajectory-independent phase, 
whereas the gravitational potential yields a phase

for each conditional wave function, where we assume a constant separation 
�u = ||u1(t) − u2(t)

|| . This identical phase of �1 and �2 can be interpreted as a phase 
of the 2-particle wave function � . Note that it is identical to the phase predicted 
from the quantum potential (4) and used in Ref. [17], if the function �0 is chosen as 
the positive gravitational energy between the two Bohmian particle locations, i.e. if 
the first two terms in Eq. (12) cancel. For other choices it differs, specifically by a 
factor of two when choosing �0 ≡ 0.

Thus far, we only considered classical states with a well defined trajectory. Adress-
ing the experimental situation [17] of a superposition of two classical trajectories for 
each of the two particles, u±

1,2
 , we have the initially separable wave function

with � and � symmetric functions sharply peaked around zero. Then the conditional 
wave functions, which generally depend on the other particle’s trajectory, are the 
trajectory independent
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both describing a superposition of two classical trajectories. For a given potential 
Veff
1

 , each of the two trajectories in �1 acquires its own phase, and accordingly for 
�2 . However, the effective potentials Veff

i
 explicitly depend on the other particle’s 

trajectory. Therefore, each of the four possible combinations (u±
1
, u±

2
) acquires a dif-

ferent phase depending on the specific combination of trajectories, resulting in the 
same phases �++

grav
 , �+−

grav
 , �−+

grav
 , and �−−

grav
 as predicted from the quantum potential (4).

We conclude that the potentials (6) and (4) make the same predictions for both 
the classical limit and the gravitational phase shift; in other words, they agree with 
respect to experimentally tested gravitational phenomena, including the yet untested 
gravitational entanglement [17, 18]. Nonetheless, the de Broglie–Bohm inspired 
model has a semiclassical interpretation in which curvature of a classical spacetime 
is sourced by the trajectories q⃗i(t) of the particles. One may argue that this is pure 
semantics and that a model that makes the same physical predictions is, for all prac-
tical purposes, equivalent to quantized gravity. This is why, in the next Sect. 3, we 
opt for a hybrid potential that interpolates between the potentials (2) and (4) by inte-
grating the modulus-squared of the wave function only about a radius R around the 
particle coordinates q⃗i.

The local description provides us with an intuitive understanding of the origins 
of entanglement. In the limit of weak entanglement, starting with initially separa-
ble states, the entanglement resulting from the potential fields � (n)

i
 is negligible 

compared to that resulting from the interaction potential. A typical quantum poten-
tial V(x1, x2) results in an effective potential Veff

1
(x) = V(x, q2) for the first particle, 

depending on the second particle’s trajectory, and vice versa. The particles become 
entangled due to this dependency on the other trajectory. It is then evident, that the 
same entanglement can be achieved if instead of the 2-particle interaction V(x1, x2) , 
the 2-particle wave function � experiences a potential that already has an explicit 
dependence on the trajectories, such as our potential (6).

3 � Mean‑Field Trajectory Hybrid Model

In the previous section we presented a model, based on the de Broglie–Bohm tra-
jectories, in which gravity can be understood as curvature of a single classical spa-
cetime, despite inducing entanglement between two particles. This model presents 
a counterexample against taking such gravitational entanglement as evidence for a 
quantized gravitational field. Nonetheless, one may be tempted to argue that this 
model should be considered a quantum theory in some sense of the word, that it 
does not have a consistent relativistic generalization, or disqualify it as a legitimate 
counterexample for some other reason. In order to make the relation to mean-field 

(21)
�1(0, x) =

�(0) + �(�u)

2

(
�
(
x − u+

1

)
+ �

(
x − u−
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�2(0, x) =
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2

(
�
(
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)
+ �

(
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2
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semiclassical gravity more visible, we introduce a hybrid potential that interpo-
lates between the potentials (2) and (6) by integrating the modulus-squared of the 
wave function only about a radius R around the particle coordinates q⃗i . It, therefore, 
describes an entire class of models, parametrized by R, which include mean-field 
semiclassical gravity as a limiting case. We show how the entanglement between 
the particles decreases as R grows larger, reaching no entanglement only in the limit 
R → ∞ of the semiclassical Einstein equations.

For introducing our semiclassical model, we begin with the most general N-particle 
Schrödinger equation

where ∇i is the gradient with respect to the coordinate r⃗i , and the potential V, besides 
an explicit dependence on time and position coordinates, has both a functional 
dependence on the wave function and depends on the Bohmian particle coordinates 
q⃗i(t) which are determined by the guiding equation (5).

Equations (22) and (5) form a coupled nonlinear system, which can in principle be 
solved for both the wave function solutions � and the particle trajectories q⃗i . We spec-
ify the potential to take the following form, depending on the parameter R: 

with

a regularization function freg ∶ ℝ+ → [0, 1] with

(22)
i�
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(23c)
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 and �R a, for now, arbitrary function of only the q⃗i with �R → 0 for R → ∞ . Pi is 
simply the marginal probability distribution for the i-th particle. � is the character-
istic function for a sphere of radius R, limiting the integration to a spherical region 
around the particle positions; the functions Ni ensure normalization. VR has no 
explicit time dependence but is implicitly time dependent through the coordinates 
and wave function. Additional linear potentials can be straightforwardly added to the 
Schrödinger Eq. (22). The regularization function freg is required, such that no diver-
gent self-interaction terms appear in the limit R → 0 ; its precise form is irrelevant 
for the further discussion, as self-gravitational effects will be neglected.

Evidently, the potential VR mimics the behavior of the Bohmian potential (6) in 
the limit R → 0 . In this limit, the wave function dependence of VR vanishes. This 
implies that one also recovers the empirical consequences of the quantum poten-
tial  (4) in the same sense as discussed in Sect.  2. Specifically, the potential  (6) 
produces the correct classical limit for any choice of �R , and given the proper �R it 
results in the same effective potentials, 

 as the quantum potential (4). Note that the system of Eqs. (9)–(11) with these effec-
tive potentials is equivalent to the system of the two-particle Schrödinger equation 
and the guiding equation  (5) [29]; hence the physical equivalence to the quantum 
potential (4) in the limit R → 0 follows.

In the limit R → ∞ , on the other hand, VR turns into the semiclassical poten-
tial (2), in which case it no longer depends on the Bohmian trajectories q⃗i . Having 
both the semiclassical, nonlinear coupling to the wave function and the Bohmian 
trajectories at our disposal, we can source the gravitational potential by a mass dis-
tribution associated with |� |2 , as in the semiclassical model, with the distinction 
that only that part of the wave function contributes which lies within a radius R of 
the actual particle position, as determined by q⃗i.

3.1 � Classical Limit

The Schrödinger equation (22) yields the usual equations of motion

(23e)freg(R) →

{
0 for R → ∞

1 for R → 0 “sufficiently fast”,

(24a)Veff
1
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Gm1m2

||x − q2
||
+ iℏ
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dt
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1
−
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for the position expectation values. Note that the function �R does not appear. In the 
limit R → 0 , the potential limits to Eq. (6) and the classical equations of motion fol-
low as derived in Sect. 2. For finite R we introduce the characteristic function �  of 
the complement of the sphere of radius R such that � + � ≡ 1 . We then have 

with

(25)

𝜕2
t

⟨
r⃗i
⟩
= −

1

mi

⟨
∇iVR

(
t;r⃗1,… , r⃗N ;q⃗1,… , q⃗N ;𝛹

)⟩

= G

N∑
j=1

mj

1 − 𝛿ijfreg(R)

Nj(t,R) ∫ d3r 𝜒(R, q⃗j − r⃗)Pj(t, r⃗)

⟨
r⃗ − r⃗i

||r⃗i − r⃗||3
⟩

(26a)
𝜕2
t

⟨
r⃗i
⟩
=

N∑
j = 1

j ≠ i

(
a⃗ij + 𝛥a⃗ij

)
+ a⃗self

i

(26b)a⃗ij =
Gmj

Nj(t,R) ∬ d3r d3r� Pj(t, r⃗)Pi(t, r⃗
�)

r⃗ − r⃗�

||r⃗ − r⃗�||3

Fig. 1   Schematic depiction of the double Stern–Gerlach experiment as proposed by Bose et al. [17]. Two 
spin-1

2

 particles are each brought into superposition of two possible trajectories in an inhomogeneous 
magnetic field, resulting in a total of four possible trajectory combinations located around x coordinates 
u
s
1,2

1,2

= ±(�x∕2) + s
1,2

(�x∕2) depending on the spin eigenvalues s
1,2

= ±1
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 Note that inside the sphere of radius R, where � ≡ 1 , the self-force integral (26d) 
vanishes due to the antisymmetry under r⃗ ↔ r⃗′.

For quasi-classical particles, localized around q⃗i ≈
⟨
r⃗i
⟩
 with a spatial extent far 

smaller than R, we have Pj(t, r⃗) ≈ 𝛿(r⃗ − q⃗j) . The integrals via �  outside the radius 
R then yield negligible contributions, 𝛥a⃗ij ≈ 0 ≈ a⃗self

i
 . Furthermore, Nj(t,R) ≈ 1 , 

and we find the classical Newtonian equations of motion

3.2 � Two Equal Mass Particles in a Double Stern–Gerlach Experiment

For the further discussion, we consider the double Stern–Gerlach experiment pro-
posed by Bose et al. [17] and depicted in Fig. 1. We focus on the special case of 
two particles of equal mass m. Ignoring the self-gravitational terms, that affect 
only each particle at its site but not both together, we find

We consider a situation where the quasi-classical trajectories for two spin-1
2
 parti-

cles are split in a magnetic field gradient over a short time period �a and recom-
bined after some free flight time � . Assuming 𝜏 ≫ 𝜏a , we can neglect the gravi-
tational effects during the acceleration period, and only consider the four 
classical trajectories u⃗s1,2

1,2
= (u

s1,2

1,2
, 0, vt) for t ∈ [0, �] , split along the x-axis with 

u
s1,2

1,2
= ±(�x∕2) + s1,2(�x∕2) depending on the spin eigenvalues s1,2 = ±1.

Due to the gravitational attraction, and to lowest order semiclassical approxi-
mation, the particles acquire spin-dependent phases obtained by integrating the 

(26c)𝛥a⃗ij = −
Gmj

Nj(t,R) ∬ d3r d3r� 𝜒(R, q⃗j − r⃗)Pj(t, r⃗)Pi(t, r⃗
�)

r⃗ − r⃗�

||r⃗ − r⃗�||3

(26d)

a⃗self
i

= −Gmi

1 − freg(R)

Ni(t,R) ∬ d3r d3r� 𝜒(R, q⃗i − r⃗)Pi(t, r⃗)Pi(t, r⃗
�)

r⃗ − r⃗�

||r⃗ − r⃗�||3
.

(27)
𝜕2
t
q⃗i ≈ G

N∑
j = 1

j ≠ i

mj

q⃗j − q⃗i

|||q⃗j − q⃗i
|||
3
.

(28)

VR(r⃗1, r⃗2;q⃗1, q⃗2;𝛹 ) ≈ −
Gm2

N1(t,R) ∫ d3r
𝜒(R, q⃗1 − r⃗)P1(t, r⃗)

||r⃗2 − r⃗||
−

Gm2

N2(t,R) ∫ d3r
𝜒(R, q⃗2 − r⃗)P2(t, r⃗)

||r⃗1 − r⃗||
+ 𝛾R(q⃗1, q⃗2).
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potential VR along the classical trajectories (cf. the “Appendix” for a detailed 
discussion):

These phases still depend nonlinearly on the solution � of the Schrödinger equation. 
As long as the gravitational effects are weak, however, the wave function in Eq. (29) 
can be approximated by the solution of the free Schrödinger equation [34]. For the 
proper choice of parameters—m 𝜎2 ≫ �𝜏 , where � is the initial width of the wave 
function—we can also ignore the free spreading and, therefore, consider only the 
time independent wave function 𝛹 (r⃗1, r⃗2) representing the superposition of all four 
possible spin combinations. In the case where the particles follow quasi-classical 
trajectories, the Bohmian trajectories follow closely, q⃗i(t) ≈ u⃗

si
i
(t) . The time depend-

ence can then be transformed away or omitted entirely by choosing v = 0 , resulting 
in

with the constant � = Gm2�∕ℏ of the dimension of a length. We ignore the phase 
contribution �s1s2

�  of �R for now, choose length units in which the width of wave pack-
ets around the trajectories is of order unity, and consider a Gaussian wave function

in cylindrical coordinates, (x, y, z) = (x, r cos �, r sin �) . Each of the four contribu-
tions to � is spherically symmetric with respect to the corresponding trajectory. We 
have 

with

(29)𝜙
s1s2
R

≈ −
1

� ∫
𝜏

0

dt VR(u⃗
s1
1
(t), u⃗

s2
2
(t);q⃗

s1
1
(t), q⃗

s2
2
(t);𝛹 (t;u⃗

s1
1
(t), u⃗

s2
2
(t))) .

(30)𝜙
s1s2
R

≈ 𝛤 ∫ d3r

⎛⎜⎜⎝
𝜒(R, u⃗

s1
1
− r⃗)P1(r⃗)

N1(R)
���u⃗

s2
2
− r⃗

���
+

𝜒(R, u⃗
s2
2
− r⃗)P2(r⃗)

N2(R)
���u⃗

s1
1
− r⃗

���

⎞⎟⎟⎠
+ 𝜙s1s2

𝛾
,

(31)� (x1, r1, x2, r2) =
�
s1

�
s2

exp
�
−

1

2

�
r2
1
+ r2

2
+ (x1 − u

s1
1
)2 + (x2 − u

s2
2
)2
��

2
√
�3

�
1 + exp

�
−

�x2

4

��

(32a)Pi(x, r) =
e−r

2

2
√
�3

Q(x − u+
i
, x − u−

i
)
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and the normalization

 where N1(R) = N2(R) = N(R) regardless of the trajectory. Defining

(32b)Q(p, q) =
e−p

2

+ e−q
2

1 + exp
(
−

�x2

4

) +

2 exp

(
−
(

p+q

2

)2
)

1 + exp
(

�x2

4

)

(32c)

N(R) =
(
1 − e−R

2
)[erf

(
R +

�x

2

)
+ erf

(
R −

�x

2

)

2
(
1 + exp

(
�x2

4

))

+
erf(R + �x) + erf(R − �x) + 2erf(R)

4
(
1 + exp

(
−

�x2

4

))
]
,

(a) (b)

(c) (d)

Fig. 2   Change of phases �+
R
 , �−

R
 , ��

R
 as functions of R for different situations; a wide wave function: 

�x = 0.25 , �x = 0.1 , b narrow wave function: �x = 2.5 , �x = 1 , c large distance: �x = 3 , �x = 0.5 , d 
small distance:�x = 2 , �x = 1.9 , according to Eqs. (35) and (36)
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and writing �us1s2 = u
s1
1
− u

s2
2

 , using Q(p, q) = Q(q, p) = Q(−p,−q) , we find

Considering the four spin combinations independently, we find a global phase 
�R = �++

R
= �−−

R
 , as well as the relative phases

and their average

The difference 2��
R
= �+

R
− �−

R
 is always nonzero and can, therefore, be tuned to take 

any value by adjusting the prefactor �  . Figure 2 shows the phases as a function of R 
for different relative distances �x and �x with respect to the wave function width �.

The additional phase contribution from a nonzero �R is

(33)JR(�) =
2√
� ∫

R

0

dr
r e−r

2

√
r2 + �2

= e�
2
�
erf

�√
R2 + �2

�
− erf

�√
�2
��

(34)

�
s1s2
R

≈
�

N(R) ∫
R

−R

dx∫
R

0

dr

�
2�r P1(x + u

s1
1
, r)

√
(x + �us1s2 )2 + r2

+
2�r P2(x + u

s2
2
, r)

√
(x − �us1s2)2 + r2

�

=
�

2N(R) ∫
R

−R

dx

�
Q(x + u

s1
1
− u+

1
, x + u

s1
1
− u−

1
)

+ Q(x − u
s2
2
+ u+

2
, x − u

s2
2
+ u−

2
)

�
JR(x + �us1s2).

(35)
�±
R
= �±∓

R
−�R ≈

�

N(R) ∫
R

−R

dxQ(x, x + �x)

×

(
JR(x ± �x + �x) −

JR(x + �x) + JR(x − �x)

2

)

(36)

��
R
=

�+
R
+ �−

R

2
=

�+−
R

+ �−+
R

2
−�R

≈
�

2N(R) ∫
R

−R

dxQ(x, x + �x)
(
JR(x + �x + �x) + JR(x − �x + �x)

− JR(x + �x) − JR(x − �x)
)
.

(37)𝜙s1s2
𝛾

= −
𝜏

�
𝛾R
(
u⃗
s1
1
, u⃗

s2
2

)
.
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Assuming that 𝛾R(q⃗1, q⃗2) = 𝛾R(
||q⃗1 − q⃗2

||) is a function of relative distance only, we 
have �++

�
= �−−

�
 contributing only to the global phase �R . The relevant phase contri-

butions then are

3.3 � Small R Expansion

In the limit R → 0 , both the integral from −R to R and the normalization function N(R) 
tend to zero like R3 . Three-fold application of l’Hôpital’s rule yields the phases

We can generalize this to an expansion around small R ≪ 1 , by approximating up to 
and including O(R5):

Therefore,

For arbitrary functions q(x), f(x), g(x), we have to cubic order in R:

and hence, with q(x) = Q(x, x + �x),

(38)�±
�
=

�

ℏ

(
�R(�x) − �R(�x ± �x)

)
.

(39)�±
0
=

2�

|�x ± �x| −
2�

|�x| + �±
�
.

(40)JR(�) ≈
R2

√
��2

�
1 −

R2

2

�
1 +

1

2�2

��

(41)

N(R) ≈
R3 e−�x

2

√
�
�
1 + e−

�x2

4

�
��

1 + e
�x2

2

�2�
1 −

5R2

6

�
+

R2 �x2

3

�
2 + e

�x2

2

��
.

(42)
JR(�)

N(R)
≈

�
1 + e−

�x2

4

�

�
1 + e−

�x2

2

�2

⎡
⎢⎢⎢⎣

1

R��� +
R

3���
⎛
⎜⎜⎜⎝
1 −

3

4�2
− �x2

2 + e
�x2

2

�
1 + e

�x2

2

�2

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎦
.

(43)
∫

R

−R

q(x)

(
f (x + �)

R
+ Rg(x + �)

)
dx ≈ 2q(0)f (�)

+
R2

3

(
q(0)

(
6g(�) + f ��(�)

)
+ 2q�(0)f �(�) + q��(0)f (�)

)
,
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The phases are then

To lowest order, we again obtain the phases  (39). As expected, this is the phase 
obtained from the Bohmian potential (6), as discussed in Sect. 2. Without the func-
tion �R , it is twice the phase expected from quantum gravity [17], although it can 
be easily amended to recover the quantum result in the limit R → 0 by choosing 
�R(�) → Gm2I0(�) in this limit. Since the prediction of entanglement is based solely 
on these phases, we expect to be able to witness the same entanglement as for quan-
tum gravity. The maximum amount of entanglement is independent of the choice of 
�R , only requiring an appropriate rescaling of the parameter �  via the particle mass 
m and the flight time �.

3.4 � Large R Expansion

In the limit R → ∞ , using the asymptotic expansion of the error function,

we find N(R) → 1 and

In order to expand the solution for large R we notice that approximately

where only the �-dependent part of JR(�) contributes to the phases (35). With

we find

(44)IR(�) =
�

2 ∫
R

−R

dx q(x)
JR(x + �)

N(R)
≈

�

|�|

[
1 +

R2

12�2

(
1 +

8� �x

1 + e
�x2

2

)]
.

(45)�±
R
= 2IR(�x ± �x) − IR(�x) − IR(−�x) + �±

�
.

(46)erf(x) = 1 −
e−x

2

√
� x

�
1 −

1

2x2
+

3

4x4
−

15

8x6
+⋯

�
,

(47)J∞(�) = e�
2

(1 − erf(|�|)).

(48)
JR(�)

N(R)
≈ J∞(�)

�
1 +

e−R
2

R

2
√
�
�x2

1 + 2e�x
2∕4

1 + e�x
2∕4

�
−

e−R
2

√
�R

�
1 −

�2

2R2

�
,

(49)h±(x) = Q(x, x + �x)

(
J∞(x ± �x + �x) −

J∞(x + �x) + J∞(x − �x)

2

)
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and hence, assuming �±
�
→ 0 sufficiently fast,

Since ��
∞
= 0 , we find

Although the phase average vanishes exponentially for large R, it yields nonzero val-
ues for any finite value of R.

(50)
∫

R

−R

h±(x) = ∫
∞

−∞

h±(x) − ∫
∞

R

�
h±(x) + h±(−x)

�

≈
�±
∞

�
+

�x ± �x

1 + e−�x
2∕4

e−R
2

√
�R3

,

(51)

�±
R
≈ �

�
1 +

e−R
2

R

2
√
�
�x2

1 + 2e�x
2∕4

1 + e�x
2∕4

�
∫

R

−R

dx h±(x) ±
� �x�x

eR
2
R3

≈

�
1 +

e−R
2

R

2
√
�
�x2

1 + 2e�x
2∕4

1 + e�x
2∕4

�
�±
∞

+
� e−R

2

√
�R3

�
�x

1 + e−�x
2∕4

± �x

�
1

1 + e−�x
2∕4

+
√
� �x

��
.

(52)��
R
≈

� e−R
2

�x√
�R3

�
1 + e−�x

2∕4
� .

Fig. 3   Entanglement witness W defined in equation (55) as a function of R for the wide wave function 
case �x = 0.25 , �x = 0.1 and with values for �  of 0.5, 1, 2
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4 � Witnesses for Spin Entanglement

With the phases derived in the previous section, we can now turn towards the task 
of witnessing the gravitationally induced entanglement experimentally. Consider-
ing the double Stern–Gerlach experiment described in Sect. 3.2 and depicted in 
Fig. 1, we first notice that the entanglement in the position degree of freedom gets 
transferred to the spin wave function of the whole system, which after passing 
through the interferometer and factoring out the global phase �R reads

with the phases �±
R
 given by Eq. (35). From the state (53) we can calculate expecta-

tion values for chosen spin observables and their correlations. Bose et al. [17] pro-
pose to witness spin entanglement via the function

where �(i)
x,y,z

 denote the Pauli matrices acting on the spin of the i-th particle. Writing 
explicitly

in the basis {�↑↑⟩, �↑↓⟩, �↓↑⟩, �↓↓⟩} and with the state  (53), this witness function 
evaluates to

(53)��⟩ = ei�R

2

�
�↑↑⟩ + ei�

+
R �↑↓⟩ + ei�

−
R �↓↑⟩ + �↓↓⟩

�
,

(54)W =
||||
⟨
𝜎(1)
x

⊗ 𝜎(2)
z

⟩
+
⟨
𝜎(1)
y

⊗ 𝜎(2)
y

⟩||||,

𝜎(1)
x

⊗ 𝜎(2)
z

=

⎛⎜⎜⎜⎝

0 0 1 0

0 0 0 − 1

1 0 0 0

0 − 1 0 0

⎞⎟⎟⎟⎠
, 𝜎(1)

y
⊗ 𝜎(2)

y
=

⎛⎜⎜⎜⎝

0 0 0 − 1

0 0 1 0

0 1 0 0

−1 0 0 0

⎞⎟⎟⎟⎠

Fig. 4   Change of special cases: W
3

= WG(
3�

2

) ; small and W
4

= WG(
�

2

) ; maximally entangled cases of 
the system, by the values of R with respect to the chosen numbers of �  ; 0.5, 1, 2 and Rmax = 0.5 with the 
help of Eq. (58)
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This equation shows the dependence on the parameter R via the phase �±
R
 . Having 

learned, both from the plots in Fig. 3 and the explicit form  (52), that in the limit 
R → ∞ of mean-field semiclassical gravity one has �+

∞
= −�−

∞
 , with the symmetry 

of the cosine, one can see immediately that the witness function can only take values 
0 ≤ W ≤ 1 , depending on the phase difference ��

∞
 . It is also straightforward to show, 

that W ≤ 1 for any separable spin wave function, implying that it witnesses entangle-
ment for any value W > 1.

Since we can freely fix the phase difference ��
R
 by adjusting the constant �  , Eq. (55) 

suggests that for any combination of phases with an average phase 𝜙𝛴
R
> 0 entangle-

ment witnessing values of W > 1 are possible, which is the case for any finite R. This is 
confirmed by the plot in Fig. 3, where the value of the entanglement witness is shown 
for different choices of the constant �  for small R. For large R, we can approximate and 
expand around ��

∞
= −�∕2 in order to obtain

which exceeds unity for any 𝜙𝛥
∞
> −𝜋∕2 . For large �x = 2�x , we find approximately 

��
∞
≈ −�∕(3�x) , i.e. we can achieve entanglement for 2� ≈ 3��x . However, in 

order to obtain an observable phase, the distances �x = 2�x , and thus also �  , must 
grow exponentially with R2.

Hence, we can claim that our class of deterministic models with a classical gravita-
tional interaction predicts entanglement for an experimental setup such as the consid-
ered one, except in the strict limit R → ∞ , although the entanglement decreases rapidly 
with increasing R.

A more general treatment of spin entanglement witnesses has been presented by 
Guff et al. [30]. Generalizing the state (53) to

one can introduce a class of witness functions WG(�) , parameterized by � and 
defined via the projection on the state ��⟩ = 1√

2

���(0, 0)⟩ + ei���(�,�)⟩�:

(55)
W =

1

2

|||cos
(
�−
R

)
+ cos

(
�−
R
− �+

R

)
− cos

(
�+
R

)
− 1

|||
=
|||sin�

�
R

(
sin��

R
− sin��

R

)||| .

(56)WlargeR ≈

������
1 +

√
�

2
Re−R

2

�x2
1 + 2e�x

2∕4

1 + e�x
2∕4

�
�Δ
∞
+

�

2

�������
,

(57)��(�, �)⟩ = 1

2

��↑↑⟩ + ei��↑↓⟩ + ei��↓↑⟩ + �↓↓⟩� ,

(58)

WG(𝜃) =
�
2I − 4�𝜃⟩⟨𝜃��

=
�
I(1) ⊗ I(2)

�
−
�
𝜎(1)
x

⊗ 𝜎(2)
x

�
+ cos(𝜃)

��
𝜎(1)
y

⊗ 𝜎(2)
y

�
−
�
𝜎(1)
z

⊗ 𝜎(2)
z

��

+ sin(𝜃)
��

𝜎(1)
y

⊗ 𝜎(2)
z

�
+
�
𝜎(1)
z

⊗ 𝜎(2)
y

��
,
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with I denoting the identity operator. This witness is scaled differently from W 
above, with negative values indicating entanglement. Evaluating the expectation val-
ues in the state (53), one finds

A large area of the two-dimensional parameter space spanned by the phases �+
R
 and 

�−
R
 can be covered with only the witnesses W3 = WG

(
3�

2

)
 and W4 = WG

(
�

2

)
 [30], 

which can be seen as witness functions optimized for the detection of small entan-
glement and maximally entangled states of the system, respectively. Plots of these 
witnesses for different values of the parameter R are shown in Fig. 4, again confirm-
ing that entanglement can be observed for finite values of R.

Because we can always choose parameters m and � such that ��
R
 is a multiple of � , 

WG(�) can then always take negative values unless ��
R

 is also a multiple of � . Spe-
cifically, no entanglement can be observed in the limit R → ∞ where ��

R
→ 0 , 

whereas for large but finite R one finds 0 <
|||𝜙𝛴

R

||| ≪ 𝜋 and negative values of WG(�) 
are possible at least in principle, if decoherence effects can be kept small.

5 � Discussion

We presented a class of models for nonrelativistic quantum systems on a classical 
spacetime, where the curvature of spacetime is sourced in a semiclassical fashion, 
depending on both the wave function and the particle trajectory in the sense of de 
Broglie–Bohm theory. Except for the limiting case R → ∞ , where our models yield 
the pure mean-field semiclassical gravity model based on the semiclassical Einstein 
equations (1), all models in this class have the capability to generate entanglement 
between two particles.

The main objective for these models was to present an explicit counterexample 
to the claim that only quantized gravity can entangle two quantum particles. We are 
not making any claim for these models to be a realistic representation of how grav-
ity works in the regime of nonrelativistic quantum systems. However, they show as 
a proof of principle that there can be models that (1) result in entanglement between 
two particles, (2) allow for an interpretation as the nonrelativistic limit of a theory 
for quantum matter on a classical spacetime, and (3) are physically inequivalent to 
standard quantum mechanics, i.e. the nonrelativistic limit of perturbative quantum 
gravity in analogy to the limit of quantum electrodynamics to the Coulomb poten-
tial. In this regard, our models provide explicit counterexamples to the arguments 
that experimental evidence of entanglement would prove the necessity to quan-
tize the gravitational field. Note that by “quantized” we mean the impossibility to 
describe spacetime as a classical Lorentzian 4-manifold. One could, of course, adopt 
a different notion of quantumness in which entanglement is a defining feature; this, 

(59)WG(�) = 2 sin2
(
�

2

)
sin2 ��

R
+ sin �

(
sin�−

R
+ sin�+

R

)
.
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however, would render the argument that entanglement provides evidence for quan-
tization tautological.

An important caveat concerns the function �R we added to the potentials  (6) 
and (23a). Without this function, the semiclassical interpretation of the gravitational 
field as being sourced by the mass m distributed with the modulus squared of the 
wave function over a radius R around the Bohmian positions is evident, and it pro-
vides the desired counterexample. If, however, R is below the size of superpositions 
for which the gravitational phase shift [31–33] has been observed, a nonzero �R is 
required for consistency with these observations. The interpretation of the gravi-
tational force as a consequence of a single, classical spacetime then becomes less 
convincing.

Note also that the conclusion from our discussion here is not that any of the theo-
rems regarding entanglement via classical and nonclassical channels, e.g. in refer-
ence [35], are incorrect. Rather our models show that for the purpose of explor-
ing semiclassical alternatives to quantum gravity, the assumptions underlying these 
theorems could be too constraining. In this context, it is interesting to have a closer 
look at the one assumption stated explicitly by Marletto and Vedral [20], namely 
the locality assumption “that the two objects to be entangled should not be interact-
ing directly, but only locally, at their respective locations, with the mediator.” [20] 
The mediator of the gravitational interaction is spacetime curvature, with which the 
wave function interacts entirely locally via the Newtonian potential, exactly like in 
standard quantum mechanics. There is, however, a different nonlocal element in our 
models—as it must be in order to account for the violation of Bell’s inequalities—
which is the dependence of the source of spacetime curvature not only on the local 
value of the wave function (as in the mean-field approach) but also on the Bohmian 
trajectories.

In this context, it is important that the models defined in Sects. 2 and 3 are non-
relativistic, and perfectly consistent as such. The attempt to find a relativistic version 
is met with difficulties, as the particle coordinates—or their field theoretic comple-
ments—in the de Broglie–Bohm theory do not conserve energy [36]. Nonetheless, 
the proposed experimental tests for entanglement are only formulated nonrelativisti-
cally themselves. To this effect, one must keep in mind that not only are the semi-
classical Einstein equations equally inconsistent if not endowed with some objective 
collapse mechanism [8]; even the quantum potential (4) is the nonrelativistic limit 
of a theory (perturbative quantum gravity) known to be non-renormalizable at high 
energies. The question whether for a given nonrelativistic potential there is any com-
plete and consistent relativistic theory that limits to said potential should, therefore, 
be considered an open one for both semiclassical and quantized gravity.

Experiments in physics ultimately serve two purposes. On one hand, they can 
increase our trust in the established theoretical frameworks by confirming their pre-
dictions. An experimental confirmation of gravitational entanglement could consid-
erably increase our confidence in perturbative quantum gravity as the low-energy 
limit of whatever the correct quantum theory of gravity may be. A failure to dem-
onstrate entanglement, by contrast, would create serious doubt about traditional 
approaches. In this sense, tests for gravitationally induced entanglement are an 
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invaluable tool. On the other hand, experiments can never give proof of any particu-
lar model. What they can do instead, is rule out certain elements from a set of plau-
sible alternative models. If one puts the bar for theories describing the gravitational 
interaction of quantum systems as high as only allowing fully consistent relativistic 
models into this set of possibilities, one is effectively ruling out elements from an 
empty set—and all experiments seem equally useless. In order to arrive at meaning-
ful statements about what is truly known empirically about quantum gravity, one 
should allow for candidate models to possess limitations, and carefully distinguish 
inconsistency in a strict mathematical sense from mere incompleteness for which 
it cannot be conclusively ruled out that there might be a mathematically consistent 
way—as implausible as it may appear—towards a full theory. Our point of view 
is that there are models that fall into the latter category and predict entanglement 
through interaction with a classical spacetime.

Appendix

Let � ∶ ℝ
1+N → ℂ , q⃗ ∶ ℝ → ℝ

N be a solution of the coupled system

and let �f ∶ ℝ
1+N → ℂ be the solution of the free Schrödinger equation

with the same initial conditions, 𝛹f (0, x⃗) = 𝛹 (0, x⃗) . Define the free classical 
trajectories

and the phase function S ∶ ℝ → ℝ by

Furthermore, we define

(60)i�
𝜕

𝜕t
𝛹 (t, x⃗) = −

N∑
i=1

�2

2mi

𝜕2

𝜕x2
i

𝛹 (t, x⃗) + V[𝛹 ](t, x⃗, q⃗)𝛹 (t, x⃗)

(61)
d

dt
qi(t) =

�

mi

Im

(
𝜕𝛹 (t, x⃗)∕𝜕xi

𝛹 (t, x⃗)

)|||||x⃗=q⃗(t)
,

(62)i�
𝜕

𝜕t
𝛹f (t, x⃗) = −

N∑
i=1
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2mi
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𝜕x2
i

𝛹f (t, x⃗)

(63)ui(t) = ∫ dNx xi
|||𝛹f (t, x⃗)

|||
2

(64)S(t) = −
1

� ∫
t

0

dt� V[𝛹f ](t
�, u⃗, u⃗) .
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which satisfy the Schrödinger equation

Assume that 𝛹f (t, x⃗) remains confined to an open neighborhood 𝛴t ⊂ ℝ
N of u⃗(t) for 

any time t ∈ [0, T] , i.e. there is an 𝜖1 > 0 such that

As a consequence of the quantum equilibrium hypothesis [37], which states that the 
Bohmian trajectories q⃗ are distributed with ||𝛹 (0, x⃗)||2 , one expects them to remain 
close to the classical ones and we can approximate u⃗ ≈ q⃗ . Further assume that 
within each �t the potential changes sufficiently slowly with position and wave func-
tion, i.e. there is an 𝜖2 > 0 such that

The L2 norm of �� then satisfies, using the Cauchy-Schwarz inequality,

and we find

(65)𝛿𝛹 (t, x⃗) = 𝛹 (t, x⃗) − eiS(t)𝛹f (t, x⃗)

(66)𝛿V(t, x⃗) = V[𝛹 ](t, x⃗, q⃗) − V[𝛹f ](t, u⃗, u⃗)

(67)

i�
𝜕

𝜕t
𝛿𝛹 (t, x⃗) = −

N∑
i=1

�2

2mi

𝜕2

𝜕x2
i

𝛿𝛹 (t, x⃗) + V[𝛹 ](t, x⃗, q⃗)𝛿𝛹 (t, x⃗) + 𝛿V(t, x⃗)eiS(t)𝛹f (t, x⃗) .

(68)∀t ∈ [0, T], ∀x⃗ ∈ ℝ
N�𝛴t ∶

|||𝛹f (t, x⃗)
||| < 𝜖1 .

(69)∀t ∈ [0, T], ∀x⃗ ∈ 𝛴t ∶
||𝛿V(t, x⃗)|| < 𝜖2.

(70)
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Hence, � is well approximated by eiS(t)�f  for at least some time T, as long as �f  is 
sufficiently constrained around the classical trajectory u⃗(t) and the potential depends 
slowly on position and reacts sufficiently slowly to changes in the wave function.

If the system under consideration is initially in a superposition state 
𝛹 (0, x⃗) = 𝛹f (0, x⃗) =

∑
𝛼j𝛹j(0, x⃗) , and the Schrödinger equation  (60) is linear, then 

the previous considerations hold for every branch �j independently, which acquire 
independent phases Sj(t) . This is no longer true for a nonlinear potential V[� ] , where 
a mixing of branches can occur. However, due to the linearity of the free Schrödinger 
equation  (62) no mixing occurs for the branches of �f  . If, as for the gravitational 
potential (23a), V[� ] only depends on the modulus and not the acquired phases Sj(t) 
of the wave function, no mixing occurs in the approximation where V[� ] ≈ V[�f ] , 
which renders the Schrödinger equation for � effectively linear. In this approximate 
sense, one can justify the description of the gravitational effect as introducing phases 
to each possible combination of classical trajectories.
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