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Abstract
The spin geometry theorem of Penrose is extended from SU(2) to E(3) (Euclidean) 
invariant elementary quantum mechanical systems. Using the natural decomposition 
of the total angular momentum into its spin and orbital parts, the distance between 
the centre-of-mass lines of the elementary subsystems of a classical composite sys-
tem can be recovered from their relative orbital angular momenta by E(3)-invariant 
classical observables. Motivated by this observation, an expression for the ‘empiri-
cal distance’ between the elementary subsystems of a composite quantum mechani-
cal system, given in terms of E(3)-invariant quantum observables, is suggested. It is 
shown that, in the classical limit, this expression reproduces the a priori Euclidean 
distance between the subsystems, though at the quantum level it has a discrete char-
acter. ‘Empirical’ angles and 3-volume elements are also considered.

Keywords  Spin networks · Spin-Geometry Theorem · Quantum geometry · 
Empirical distance

1  Introduction

In 1966, Penrose suggested the so-called SU(2) spin network as a simple model for 
a quantum spacetime (which was published much later only in [1], see also [2, 3, 
4]). In this model, angles between elementary quantum mechanical subsystems of 
the Universe were expressed in terms of SU(2) Casimir invariants, and, using com-
binatorial/graphical techniques, he showed that, in the classical limit, these angles 
tend to angles between directions in the Euclidean 3-space. The significance of this 
result is that the (conformal structure of the) ‘physical 3-space’ that we use as an 
a priori given ‘arena’ in which the physical objects are thought to be arranged and 

Dedicated to András A. Márton, who is able to transform geometry, physics and philosophy into 
poetry: www.​marto​naand​ras.​hu.

 *	 László B. Szabados 
	 lbszab@rmki.kfki.hu

1	 Wigner Research Centre for Physics, 114, P. O. Box 49, Budapest 1525, Hungary

http://crossmark.crossref.org/dialog/?doi=10.1007/s10701-022-00617-2&domain=pdf
http://www.martonaandras.hu


	 Foundations of Physics (2022) 52:102

1 3

102  Page 2 of 34

the interactions between them occur is determined by the quantum physical systems 
themselves in the classical limit. Later, this result was derived in [5] (and recently 
in [6]) in the usual framework of quantum mechanics; and, following [5], it became 
known as the Spin Geometry Theorem.

In [5], Moussouris investigated the structure of networks with other symmetry 
groups, in particular with the Poincaré group, and derived relations between various 
observables of such systems. However, as far as we know, recovering the distance, 
i.e. the metric (rather than only the conformal structure of the Euclidean 3-space/
Minkowski vector space) from these models is still lacking.

According to the traditional view, the distance in a metric space is associated 
with a pair of points. Thus, the points are usually considered to be the primary 
concept. Nevertheless, from a positivistic, or rather a Machian view, the position 
in physical 3-space/spacetime in itself is meaningless, and it seems reasonable to 
speak only about relative positions of different elementary subsystems of the Uni-
verse. This view might suggest to consider the distance, or, in general the relations 
between points, to be more fundamental than the points; and that the points them-
selves should be defined by these relations.

In classical general relativity the spacetime geometry, and, in particular, the dis-
tance between the spacetime points, is determined by standard clocks, light rays and 
mirrors. However, at the fundamental level no such instruments exist and, also, the 
light rays are formed by infinitely many photons in special configurations. Thus, 
the instrumentalist approach of defining the spacetime and its properties, using e.g. 
some form of ‘quantum clocks’ (see e.g. [7]) at the fundamental level, does not seem 
to work.

The philosophy of the present investigations is the positivistic, Machian one of 
[1, 2, 3, 4] (that we also adopted in [6]), even from two points of view: first, no a 
priori notion of ‘physical 3-space’ or ‘spacetime’ is used. These notions should be 
defined in an operational way using only existing (material) quantum subsystems of 
the Universe. Second, we speak about angle and distance only between two (elemen-
tary) subsystems of the Universe, without introducing ‘directions’ and ‘points’ at all, 
e.g. in the form of some ‘position operator’. (For a well readable summary of the 
approaches based on the position operators, see [8].)

A potentially viable mathematical realization of such a program could be based 
on the use of the algebra of (basic) quantum observables in the algebraic formula-
tion of quantum theory. We consider the quantum system to be specified completely 
if its algebra of (basic) quantum observables (and, if needed, its representation, too) 
is given. We think that the notion of space(time) and all of its properties should be 
defined in terms of the observables of elementary systems. Roughly speaking, an 
elementary quantum system is a system whose observables are the self-adjoint ele-
ments of the universal enveloping algebra of some ‘small’ Lie algebra, mostly of the 
symmetry group acting on the system, and the states of the system belong to the car-
rier space of some of its unitary, irreducible representations. From our point of view, 
su(2) and the Lie algebras e(3) and e(1, 3) of the Euclidean and the Poincaré group, 
E(3) and E(1, 3), respectively, are particularly interesting. (This general idea of the 
‘G-invariant elementary quantum mechanical systems’ is motivated by that of the 
Poincaré invariant systems of Newton and Wigner [9].) The observables belonging 
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to this ‘small’ Lie algebra will be called the basic observables. All the structures 
on the algebra of observables may be used in the construction, but additional extra 
structures may not. In particular, in the present investigations we use only the gen-
eral kinematical framework of quantum mechanics, but e.g. no evolution equation 
for the quantum states.

The above strategy yields apparently paradoxical results: we have well defined 
distance between ‘points’ (or rather straight lines, as we will see) that are not defined 
at all in the quantum theory, just like the angles between ‘directions’ that are not 
defined either. The ‘true’ geometry of the physical 3-space/spacetime should ulti-
mately be synthesized from the ‘empirical’ distances, angles, etc. introduced via the 
quantum observables.

As a first step in this strategy, in [6] we gave a simple proof of (a version of) the 
Spin Geometry Theorem by showing how the conformal structure of the Euclid-
ean 3-space can be recovered in this algebraic framework from the basic quan-
tum observables of SU(2)-invariant systems. The present paper provides one more 
step: we extend the Spin Geometry Theorem to recover the metric of the Euclidean 
3-space by extending the symmetry group from SU(2) to the quantum mechanical 
Euclidean group E(3). Here, by quantum mechanical Euclidean group we mean the 
semi-direct product of SU(2) and the group of translations in the Euclidean 3-space, 
rather than the classical E(3), which is the semi-direct product of SO(3) and the 
group of translations.

Technically, the key idea is that the spin part of the total angular momentum of 
a composite system is built from the spin of the constituent subsystems and their 
relative orbital angular momentum; and the latter, in the traditional formulation, 
contains information on the distance between the subsystems. (In fact, already in 
the last but one sentence of [1], Penrose raised this possibility in Poincaré-invariant 
systems.) This idea can in fact be used to define the distance between the elementary 
Poincaré-invariant quantum mechanical systems as well. However, since the latter 
is technically different and considerably more complicated, results of those inves-
tigations will be published separately. This distance, expressed by E(3)-invariant 
classical observables of the composite system, is our key notion, and is called the 
empirical distance. The analogous notion in the quantum theory, defined exclusively 
in terms of the E(3)-invariant basic quantum observables, is motivated by this clas-
sical expression.

The main result of the present paper is that although in quantum theory this 
empirical distance has some discrete and highly non-Euclidean character, but in the 
classical limit it reproduces the a priori Euclidean distance between the classical 
centre-of-mass lines of point particles, i.e. of the straight lines in ℝ3 . This can be 
considered to be an extension of Penrose’s Spin Geometry Theorem from SU(2) to 
E(3)-invariant systems. Therefore, the metric structure of the Euclidean 3-space can 
be recovered from the quantum theory in the classical limit. Note, however, that in 
the present approach it is the straight lines rather than the points that emerged as the 
elementary objects in ℝ3 . This feature of the present approach is analogous to that 
of twistor theory [10, 11, 12], where, classically, the elementary objects are the (in 
general twisting) null lines in Minkowski spacetime with given vorticity or ‘twist’. 
The quantity here that is analogous to twist is the spin of the elementary systems. 
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Also, at the quantum level, E(3)-invariant ‘empirical angles’ and ‘empirical 3-vol-
ume elements’ are suggested, and it is shown that they reproduce the angles and 
3-volume elements in ℝ3 in the classical limit.

In the next section we show how the distance of the centre-of-mass lines of E(3)-
invariant elementary classical mechanical systems can be expressed by their E(3)-
invariant classical observables. This expression will provide the basis of our empiri-
cal distance in the quantum theory. In Sect. 3, we define E(3)-invariant elementary 
quantum mechanical systems and summarize their key properties. In particular, we 
determine their centre-of-mass states, which are the closest analogs of those of the 
classical systems, which turn out to be given just by the spin weighted spherical 
harmonics. Section 4 is devoted to the calculation of the empirical distance, angles 
and 3-volume elements. We clarify their classical limit there. Some final remarks are 
given in Sect. 5. The paper is concluded with appendices, in which certain technical 
details that we used in the main part of the paper are presented.

In deriving the results we use complex techniques developed in general relativity. 
The related ideas, notations and conventions are mostly those of [10, 13], except that 
the signature of the spatial 3-metric is positive, rather than negative definite. We do 
not use abstract indices.

2 � E(3)‑Invariant Classical Systems

2.1 � The Definition of the Elementary Systems

A physical system will be called an E(3)-invariant elementary classical mechanical 
system if its states can be characterized completely by its linear momentum pa and 
angular momentum Jab , a, b, ... = 1, 2, 3 ; under the action of SO(3), they transform 
as a vector and anti-symmetric tensor, respectively, and, under the translation by 
�a ∈ ℝ

3 , as (pa, Jab) ↦ (p̃a, J̃ab) ∶= (pa, Jab + 𝜉apb − 𝜉bpa) . Then

are invariant with respect to these transformations. Here �abc is the Levi-Civita alter-
nating symbol, and �ab is the Kronecker delta. The space of the linear and angular 
momenta, endowed with the Lie products

form the Lie algebra e(3) of E(3). Then P2 and W have vanishing Lie bracket both 
with pa and Jab , i.e. they are Casimir invariants. Lowering and raising the Latin indi-
ces will be defined by �ab and its inverse, respectively.1

(2.1)P2 ∶= �abp
apb, W ∶=

1

2
Jab�abcp

c

(2.2){pa, pb} = 0, {pa, Jbc} = �abpc − �acpb,

(2.3){Jab, Jcd} = �bcJad − �bdJac + �adJbc − �acJbd

1  Strictly speaking, the abstract Lie algebra e(3) is the semi-direct sum of a 3-dimensional commuta-
tive ideal and so(3) ≈ su(2) ; and the linear and angular momenta belong to the dual space of these sub-
Lie algebras. Hence, the natural positive definite metric �ab on the commutative ideal (coming from the 
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If pa = 0 , then P = 0 and W = 0 . In this degenerate case the subsequent strategy 
to recover the metric structure of ℝ3 in terms of the basic observables does not seem 
to work. Thus, in the present paper, we consider only the pa ≠ 0 case.

Next we form Ma ∶= Jabpb , for which it follows that Map
a = 0 , and the identity

holds. Since the first term on the right of (2.4) is translation invariant while 
Ma

↦ M̃a = Ma + (P2𝛿a
b
− papb)𝜉

b , this identity is usually interpreted as the 
decomposition of the angular momentum to its spin (or rather helicity) and orbital 
parts, and Ma as ( P2-times) the centre-of-mass vector of the system. Note that 
�a
b
− papb∕P

2 is the projection to the 2-plane orthogonal to pa . Thus one can always 
find a 1-parameter family of translations, viz. �a = −Ma∕P2 + upa , u ∈ ℝ , which 
yields vanishing centre-of-mass vector, M̃a = 0 . The resulting total angular momen-
tum is J̃ab = 𝜀abcpcW∕P2 , which is just the piece of the angular momentum that 
the Casimir invariant W represents. Thus the straight line qa(u) ∶= Ma∕P2 + upa is 
interpreted as the trajectory of the centre-of-mass point of the system, and will be 
called the system’s centre-of-mass line. For the sake of brevity, we call an elemen-
tary system with given P and W a single particle.

Since Map
a = 0 , the set of the pairs (pa,Ma) is the cotangent bundle T∗SP of the 

2-sphere SP ∶= {pa ∈ ℝ
3|P2 ∶= papb�ab = const} of radius P in the momentum 

space. Clearly, those and only those pairs (pa,Ma) can be transformed to one another 
by an Euclidean transformation whose Casimir invariants P and W are the same. In 
particular, (pa,Ma) can always be transformed into (pa, 0) by an appropriate transla-
tion. This single particle state space, T∗SP , is homeomorphic to the manifold of the 
directed straight lines in ℝ3 : a line L is fixed if its direction and any of its points are 
specified. Now, the direction of L is fixed by the unit vector pa∕P , while for a point 
of L we choose the point where L intersects the 2-plane containing the origin of 
ℝ

3 and orthogonal to pa∕P . This latter is given by Ma∕P2 . The scale on these lines 
is fixed by P. W is an additional structure on L: it fixes the component of the total 
angular momentum vector 1

2
�abcJbc in the direction pa∕P.

2.2 � The Empirical Distance of Two Particles

The aim of the present subsection is to express the distance between any two straight 
lines of the Euclidean 3-space, considered to be the centre-of-mass lines of elemen-
tary classical systems, by E(3)-invariant classical observables.

(2.4)P2Jab = �abcpcW +Mapb −Mbpa

Killing–Cartan metric on so(3) via the SU(2) group action on it) yields the metric �ab on the classical 
momentum space and the whole tensor algebra over this space. Also, the natural volume 3-form �abc on 
the momentum 3-space comes from the natural volume 3-form on the ideal. The transformation proper-
ties of the linear and angular momenta follow from the E(3) multiplication laws. Although, formally, 
the dual e(3)∗ of e(3) is not Lie algebra, but it has a natural (linear) Poisson manifold structure with the 
bracket operation (2.2)–(2.3). With this structure e(3)∗ is isomorphic with the Lie algebra e(3). Thus, all 
these algebraic/geometric structures are manifestations of those on the abstract Lie algebra e(3).

Footnote 1 (continued)
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Let (pa
�
, Jab

�
) , � = 1, 2 , characterize two elementary classical mechanical sys-

tems, and let us form their formal union with the linear and angular momenta 
pa ∶= pa

1
+ pa

2
 and Jab ∶= Jab

1
+ Jab

2
 , respectively. Then P2 and W for the composite 

system are defined in terms of pa and Jab according to the general rules (2.1). 
Since the Lie algebra of the basic observables of the composite system is the 
direct sum of the Lie algebras of those of the constituent subsystems, it is easy to 
check that pa and Jab satisfy the commutation relations (2.2)–(2.3), i.e. generate 
the Lie algebra e(3); and that P2 , P2

1
 , P2

2
 and also W, W1 , W2 are all commuting with 

pa and Jab . Hence, P2
12

∶= �abp
a
1
pb
2
=

1

2
(P2 − P2

1
− P2

2
) and W12 ∶= W −W1 −W2 

are also commuting with pa and Jab . It is P2
12

 and W12 (and their quantum mechan-
ical version) that play fundamental role in the subsequent analysis.

Since P1P2 ≠ 0 , by (2.1) and (2.4) we obtain

Since our aim is to express Ma
1
∕P2

1
−Ma

2
∕P2

2
 from (2.5), for a moment we 

assume that the linear momenta of the constituent systems are linearly independ-
ent. This requirement is equivalent to the condition P2

1
P2
2
> P4

12
 . In this case, the 

last term on the right in (2.5) is not zero, and then this equation can be solved for 
Ma

1
∕P2

1
−Ma

2
∕P2

2
 . This solution is

for arbitrary u1, u2 ∈ ℝ . Although its components in the 2-plane spanned by pa
1
 and 

pa
2
 are ambiguous, its component in the direction orthogonal to both pa

1
 and pa

2
,

is well defined. Similarly, although under a translation Ma
1
∕P2

1
−Ma

2
∕P2

2
 changes as 

(Ma
1
∕P2

1
−Ma

2
∕P2

2
) ↦ (Ma

1
∕P2

1
−Ma

2
∕P2

2
) − (pa

1
pb
1
∕P2

1
− pa

2
pb
2
∕P2

2
)�b , its component 

in the direction orthogonal both to pa
1
 and pa

2
 is invariant. Therefore, the vector da

12
 

defined by the right hand side of (2.6) with u1 = u2 = 0 is uniquely determined, it 
is orthogonal both to pa

1
 and pa

2
 and points from a uniquely determined point �21 

of the straight line qa
2
(u) ∶= qa

2
+ upa

2
 , u ∈ ℝ , to a uniquely determined point �12 of 

the straight line qa
1
(u) ∶= qa

1
+ upa

1
 , u ∈ ℝ . Its physical dimension is length, and it is 

invariant with respect to the P1 ↦ �P1 , P2 ↦ �P2 rescalings for any 𝛼, 𝛽 > 0 . Thus 
da
12

 is the relative position vector of the first subsystem with respect to the second; 
and d12 is the (signed) distance between the centre-of-mass lines of the two constitu-
ent, elementary subsystems. In particular, d12 = 0 holds precisely when the two cen-
tre-of-mass lines intersect each other. This can always be achieved by an appropriate 

(2.5)

W12 =
1

2
Jab
1
�abcp

c
2
+

1

2
Jab
2
�abcp

c
1
= W1

P2
12

P2
1

+W2

P2
12

P2
2

+
(Ma

1

P2
1

−
Ma

2

P2
2

)
�abcp

b
1
pc
2
.

(2.6)

Ma
1

P2
1

−
Ma

2

P2
2

=
1

P2
1
P2
2
− P4

12

(
W12 −W1

P2
12

P2
1

−W2

P2
12

P2
2

)
�abcp

b
1
pc
2
+ u1p

a
1
+ u2p

a
2

(2.7)

d12 ∶=
(Ma

1

P2
1

−
Ma

2

P2
2

) �abcp
b
1
pc
2√

P2
1
P2
2
− P4

12

=
1√

P2
1
P2
2
− P4

12

(
W12 −W1

P2
12

P2
1

−W2

P2
12

P2
2

)
,
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translation of one of the two subsystems, and hence da
12

 can always be characterized 
by such a translation.

If pa
1
 and pa

2
 are parallel, then, as we are going to show, the distance of the two corre-

sponding centre-of-mass lines that do not coincide can be recovered as the limit of the 
distances between centre-of-mass lines with non-parallel tangents, i.e. as a limit of clas-
sical observables above. Since both the numerator and the denominator in (2.7) are van-
ishing if pa

1
 and pa

2
 are parallel, we should check that these tend to zero in the same order 

and that their quotient is finite and well defined. Since the two centre-of-mass lines are 
parallel but do not coincide, they lay in a 2-plane, and the vector Ma

1
∕P2

1
−Ma

2
∕P2

2
 is 

non-zero, tangent to this 2-plane and is orthogonal to pa
1
 (and hence to pa

2
 , too). Thus, 

there is a unit vector wa which is orthogonal both to pa
1
 and Ma

1
∕P2

1
−Ma

2
∕P2

2
 . Then 

let us consider the 1-parameter family of momenta pa
2
(�) ∶= P2(cos � v

a + sin � wa) , 
where va ∶= pa

1
∕P1 = pa

2
∕P2 . In the � → 0 limit, pa

2
(�) → pa

2
 . A straightforward calcu-

lation gives that P2
1
P2
2
(�) − P4

12
(�) = P2

1
P2
2
sin2 � , �abcpb1p

c
2
(�) = P1P2�

a
bcv

bwc sin � 
and

Hence, the � → 0 limit of da
12
(�) for the centre-of-mass lines with the tangents pa

1
 

and pa
2
(�) is, indeed, the well defined finite value

Hence, the distance d12 is also well defined and finite. In this case, however, the 
points analogous to �12 and �21 above are undetermined.

To summarize: we found an alternative expression |d��| for the Euclidean distance,

between the centre-of-mass straight lines of any two elementary classical systems in 
terms of E(3)-invariant basic observables of the composite system. Since the latter 
is given by the observables of the composite system, we call d�� the ‘empirical dis-
tance’ between the two subsystems. However, if we know the distance between any 
two straight lines in ℝ3 , then we can determine the Euclidean distance function, too. 
Hence, our empirical distance determines the metric structure of ℝ3 . We will see 
that the analogous empirical distance in quantum theory deviates from the a priori 
Euclidean distance D�� , but in the classical limit the former reproduces the latter.

W12(�) −W1

P2
12
(�)

P2
1

−W2(�)
P2
12
(�)

P2
2

=

=
1

2

(
Jab
1
�abcw

cP2 − Jab
2
�abcw

cP1 cos � + Jab
2
�abcp

c
1
sin �

)
sin �.

1

2

(
Jde
1
P2 − Jde

2
P1

P1P2

�def w
f

)
�abcv

bwc =

(
Md

1

P2
1

−
Md

2

P2
2

)
�def v

ewf �abcv
bwc.

(2.8)D�� ∶= inf
{√

�ab(q
a
�
(u�) − qa

�
(u�))(q

b
�
(u�) − qb

�
(u�)) | u�, u� ∈ ℝ

}
,
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2.3 � Empirical Angles and Volume Elements

In [6], we considered SO(3)-invariant elementary classical systems in which the 
only basic observable was the angular momentum vector Ja ; and we introduced an 
empirical angle between the angular momenta of two subsystems in a well defined 
and SO(3)-invariant way. However, in the present case the symmetry group is the 
Euclidean group E(3), and although the analogously defined empirical angles would 
still be SO(3)-invariant, but they would not be invariant under translations. Thus, 
in E(3)-invariant classical systems, the empirical angles between the subsystems 
should be defined in terms of quantities that are invariant under translations and 
covariant under rotations.

The primary candidate for such quantities is the linear momentum. Thus we 
define the ‘empirical angle’ �12 between pa

1
 and pa

2
 according to

with range �12 ∈ [0,�] . This angle is clearly E(3)-invariant, and if e.g. pa
1
∕P1 can be 

obtained from pa
2
∕P2 by a rotation with angle �12 in the 2-plane spanned by pa

1
 and 

pa
2
 , then �12 = �12 . Thus �12 reproduces the angles of the a priori Euclidean geom-

etry of ℝ3 (see also [6]). However, as we will see, they split in the quantum theory, 
and they coincide only in the classical limit.

The natural volume 3-form �abc on the space of the translation generators in e(3) 
makes it possible to introduce the ‘empirical 3-volume element’ by the 3-volume of 
the tetrahedron spanned by three linear momenta, pa

1
 , pa

2
 and pa

3
 , of a three-particle 

system by

Just in the case of empirical angles, in quantum theory the corresponding empirical 
3-volume element and the 3-volume element of the a priori Euclidean geometry of 
ℝ

3 do not coincide. They do only in the classical limit (see also [6]). In Sect. 5 we 
raise the possibility of another notion of empirical angles and 3-volume elements, 
based on the relative position vectors da

��
 of three-particle systems, rather than the 

linear momenta.

3 � E(3)‑Invariant Elementary Quantum Mechanical Systems

3.1 � The Definition and the Basic Properties of the Elementary systems

Adapting the idea of Poincaré-invariant elementary quantum mechanical systems 
of Newton and Wigner [9] to the present case, a Euclidean-invariant elementary 
quantum mechanical system will be defined to be a system whose states belong 

(2.9)cos�12 ∶=
�abp

a
1
pb
2

P1P2

(2.10)v123 ∶=
1

3!
�abc

pa
1
pb
2
pc
3

P1P2P2

.
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to the carrier space of some unitary, irreducible representation of the (quantum 
mechanical) Euclidean group E(3); and, in this representation, the momentum and 
angular momentum tensor operators, �a and �ab , are the self-adjoint generators of 
the translations and rotations, respectively. These representations are labelled by 
a fixed value P2 ≥ 0 and w, respectively, of the two Casimir operators

Thus, the quantum mechanical operators will be denoted by boldface letters. 
Clearly, in the states belonging to such representations, the energy �2 = �2 + m2 
or � = �2∕2m of the relativistic or non-relativistic systems of rest mass m, respec-
tively, has a definite value. The commutators of �a and �cd are

which are just the Lie brackets (2.2)–(2.3) with the pa ↦ �a and Jab ↦ (i∕ℏ)�ab 
substitution.

Nevertheless, 

 is not self-adjoint, because 

Thus we form �a ∶=
1

2
(�a +�†

a
) = �a + iℏ�a , which is, by definition, the self-

adjoint part of �a , and we consider this to be the centre-of-mass operator. The com-
mutators of these operators can be derived from those for �a and �ab above:

As a consequence of the definitions,

i.e. the analog of (2.4) holds for the operators, too.
The unitary, irreducible representations of the quantum mechanical Euclidean 

group has been determined in various different forms (see e.g. [14–17]). The form 
that we use in the present paper is given in the appendices of [18, 19], and is based 
on the use of the complex line bundles O(−2s) over the 2-sphere SP of radius P in 
the classical momentum 3-space, where 2s ∈ ℤ . Here O(−2s) is the bundle of spin 
weighted scalars on SP with spin weight s (see e.g. [10]). The wave functions of the 
quantum system are square integrable cross sections � of O(−2s) , and the Hilbert 
space of these cross sections will be denoted by HP,s , or simply by H . Thus, SP is 
analogous to the mass shell of the Poincaré invariant systems (see e.g. [20]). The 

(3.1)�2 ∶= �ab�
a�b, � ∶=

1

2
�abc�

ab�c.

(3.2)[�a, �b] = 0, [�a, �cd] = −iℏ
(
�ac�d − �ad�c

)
,

(3.3)[�ab, �cd] = −iℏ
(
�bc�ad − �bd�ac + �ad�bc − �ac�bd

)
;

�a ∶= �ab�
b

�†
a
= �b�

ab
= �

a
+ [�b, �

ab
] = �

a
+ 2iℏ�

a
.

(3.4)[�a,�b] = −iℏ(�ab�
2 − �a�b), [�a,�b] = −iℏ�2�ab.

(3.5)�2�ab = �a�b − �b�a + �abc�
c�,
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radius P is fixed by the Casimir operator �2 . The spin weight s of � is linked to the 
value of the other Casimir operator, � , in the irreducible representation: w = ℏPs.

The SU(2) part of E(3) acts on SP as pa ↦ Ra
bp

b , where Ra
b is the rotation 

matrix determined by UA
B ∈ SU(2) via Ra

b ∶= −𝜎a
AA�U

A
BŪ

A�

B�𝜎BB�

b
 . Here �AA′

a
 are 

the three non-trivial SL(2,ℂ) Pauli matrices (including the factor 1∕
√
2 ), accord-

ing to the conventions of [13]. Raising/lowering of the unprimed and primed 
spinor name indices, A, B and A′,B′ , are defined by the spinor metric �AB and its 
complex conjugate, respectively. Then the action of SU(2) on the spin weighted 
function � is �(pe) ↦ exp(−2is�)�((R−1)ecp

c) ; while that of the translation by �a is 
simply2 �(pe) ↦ exp(−ipa�

a∕ℏ)�(pe) . Here, exp(i�) is just the phase that appears 
in the action, �A

↦ exp(i�)�A , of SU(2) on the spinor constituent �A of pa (see [18, 
19]). This representation of E(3) is analogous to that of the (quantum mechanical) 
Poincaré group on the L2-space of spinor fields on the mass shell [20].

The spin weighted spherical harmonics sYjm with spin weight s and indices 
j = |s|, |s| + 1, ... , m = −j,−j + 1, ..., j are known to form an orthonormal basis in 
the space of the square integrable cross sections of O(−2s) on the unit 2-sphere (see 
[13, 21]). Hence, the space that the functions sYjm on SR span is precisely the carrier 
space of the unitary, irreducible representation of E(3) labelled by the Casimir invar-
iants P > 0 and w = ℏPs , in which sYjm∕P form an orthonormal basis with respect 
to the natural L2 scalar product.

In this representation, the action of �a and �a ∶=
1

2
�abc�

bc on � is

where ma and m̄a are the complex null tangents of SP and normalized by mam̄
a = 1 , 

and ð and ð′ are the edth operators of Newman and Penrose [21]. The explicit form 
of the vectors pa , ma and m̄a as well as the operators ð and ð′ in the complex ste-
reographic coordinates (𝜁 , 𝜁 ) on SP is given in Appendix A.1. The first two terms 
together on the right of (3.7) give the orbital part of the angular momentum opera-
tor, denoted by �a , while the third its spin part. Since the spin weighted harmonics 
form a basis in HP,s , the basic observables �a and �a can also be given by their action 
on these harmonics, too. Their matrix elements are calculated in Appendix A.2.

�a and �a are known to be SO(3) vector operators. Thus, if the unitary operator � 
represents UA

B ∈ SU(2) on HP,s , then

If � = exp(−ipa�
a∕ℏ)� , then by (3.6) and (3.7)

(3.6)�a� = pa�,

(3.7)�a𝜙 = P�
(
mað�𝜙 − m̄að𝜙

)
+ s�

pa

P
𝜙,

(3.8)�†�a� = Ra
b�

b, �†�a� = Ra
b�

b.

(3.9)�a� = exp
(
−
i

ℏ
pe�

e
)
�a� , �a� = exp

(
−
i

ℏ
pe�

e
)(

�a� + �abc�
b�c�

)
.

2  In [19] we defined the translation by multiplication by the phase factor exp(ipa�a∕ℏ) . Here, to be com-
patible with the standard sign convention, we changed the sign in the exponent to its opposite.
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Hence, for � = exp(−ipa�
a∕ℏ)��,

These are just the transformation laws of the classical basic observables under the 
action of the classical E(3).

Finally, it is straightforward to derive the explicit form of the centre-of-mass 
operator:

This is also an SO(3) vector operator. A detailed discussion of the line bundle 
O(−2s) and the derivation of these equations are also given in the appendices of [18, 
19].

3.2 � The Centre‑of‑Mass States

In this subsection we show that the spin weighted spherical harmonics form a distin-
guished basis among the orthonormal bases in HP,s in the sense that they are adapted 
in a natural way to the basis in the abstract Lie algebra e(3) of the basic quantum 
observables (but not to a Cartesian frame in the ‘physical 3-space’). In particular, they 
are just the eigenfunctions of the square of the centre-of-mass vector operator, �a�

a , 
they are the critical points of the functional � ↦ ⟨���a�

a��⟩ , and the expectation 
value of the centre-of-mass vector operator in these states is zero. We will calculate 
the expectation value of our empirical distance and angle in the states that are obtained 
from these special ones by some E(3) transformation.

Using (3.11) and ðpa = ma (see Appendix A.1), by integration by parts it is straight-
forward to form the centre-of-mass-square operator �a�

a . It is

Since the operators �a are self-adjoint, �a�
a is a positive self-adjoint operator. 

Similar calculations yield the square of the total and the orbital angular momentum 
operators:

Thus �a�
a , �a�a and �a�

a deviate from one another only by a constant times the 
identity operator, and hence, in particular, their spectral properties are the same. 
Note also that (ðð� + ð�ð) is just the metric Laplace operator on SP.

First we show that the critical points of the functional � ↦ ⟨���a�
a��⟩ on HP,s are 

just the combinations of the form � =
∑

m cmsYjm of spin weighted spherical harmonics 
sYjm with given j. Using ⟨���⟩ = 1 , by integration by parts (3.12) gives

(3.10)
⟨���a��⟩ = Ra

b⟨���b��⟩, ⟨���a��⟩ = Ra
b⟨���b��⟩ + �abc�

bRc
d⟨���d��⟩.

(3.11)�a𝜙 = i�
(
P2mað�𝜙 + P2m̄að𝜙 − pa𝜙

)
.

(3.12)�a�
a� = ℏ2P2

(
−P2

(ðð� + ð�ð)� + �

)
.

�a�
a� = ℏ2

(
−P2

(ðð� + ð�ð)� + s2�
)
, �a�

a� = −P2ℏ2
(ðð� + ð�ð)�.
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The critical points of this functional with respect to the variations �� constrained 
by ⟨���⟩ = 1 are just the critical points of the functional ⟨���a�

a��⟩ + �ℏ2P4⟨���⟩ 
with respect to unconstrained variations, where � is some real Lagrange multiplier. 
The vanishing of the variation of the latter functional yields

Thus � must be an eigenvalue of the Laplace operator ðð� + ð�ð acting on spin weight 
s functions on SP , and then the critical configurations are given by the corresponding 
eigenfunctions. These can be determined by expanding � as � =

∑
j,m cjmsYjm with 

complex constants cjm , where j = |s|, |s| + 1, |s| + 2, ... and m = −j,−j + 1, ..., j ; and 
using the general formulae (A.7) how the operators ð and ð′ act on sYjm . Substitut-
ing all these into (3.13), we find that � = −P−2(j2 + j − s2) . Hence, � is linked to j, 
and the corresponding eigenfunctions have the form � =

∑
m cm sYjm . These eigen-

functions are the critical points of the functional ⟨���a�
a��⟩ , and the corresponding 

critical values are

The smallest of these corresponds to j = |s| , and the corresponding eigen-
function is � =

∑
m cm sY�s�m , which is holomorphic if s = −|s| , and it is anti-

holomorphic if s = |s| (see Appendix A.1). Forming the second variation of 
⟨���a�

a��⟩ + �ℏ2P4⟨���⟩ at the critical points, one can see that the only minimum 
does, in fact, correspond to j = |s| , and all the other critical points are only inflec-
tion. Thus the right hand side of (3.14) is the sharp strictly positive lower bound for 
the expectation values of �a�

a.
This analysis shows also that the spectrum of all the operators �a�

a , �a�a and 
�a�

a is discrete (as it must be since ðð� + ð�ð is an elliptic differential operator act-
ing on cross sections of a vector bundle over a compact manifold), their eigenvalues, 
respectively, are

and the corresponding common eigenfunctions are of the form 
∑

m cmsYjm . These 
imply, in particular, that the expectation value of any of these operators is not zero 
for s ≠ 0.

By integration by parts and using how the edth operators act on pa , ma and m̄a , we 
can write

⟨𝜙��a�
a�𝜙⟩ = �2P2

�
P2 �

SP

�
(ð𝜙̄)(ð�𝜙) + (ð�𝜙̄)(ð𝜙)�dSP + 1

�
.

(3.13)
(ðð� + ð�ð)� = ��.

(3.14)⟨���a�
a��⟩ = ℏ2P2

�
1 + j2 + j − s2

� ≥ ℏ2P2
�
1 + �s��.

P2ℏ2(1 + j2 + j − s2), ℏ2 j(j + 1), ℏ2(j2 + j − s2);

⟨𝜙��a�𝜙⟩ =i�P2 �
SP

𝜙̄
�
ma ð�𝜙 + m̄a ð𝜙 + 𝜙 ðm̄a

�
dSP =

=i�P2 �
Sp

�
𝜙̄ma ð�𝜙 − 𝜙 m̄a ð𝜙̄�dSP = i�P2 �

SP

pa
�
𝜙 ð�ð𝜙̄ − 𝜙̄ ðð�𝜙�dSP.
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Since � =
∑

m cm sYjm for some given j, by (A.7) we have that 
𝜙̄(ðð�𝜙) = −(j + s)(j − s + 1)𝜙̄𝜙∕2P2 . Using this and its complex conjugate, finally 
we obtain

Thus, the 2j + 1 dimensional subspaces in HP,s spanned by the harmonics sYjm with 
given j are specified e.g. by �a�

a (or, equivalently by �a�a or by �a�
a ) in a natural 

way, while the basis in these subspaces, the index m is referring to, is linked to our 
choice for the basis in the sub-Lie algebra su(2) ⊂ e(3).

To summarize, {sYjm∕P} is not only one of the many L2-orthonormal bases in 
HP,s , but it is adapted in a natural way to the centre-of-mass operator, too. Although 
the expectation value of �a is zero in any eigenstate of �a�

a , the expectation value 
of �a�

a can never be zero, even if s = 0 . Its smallest expectation value, which is its 
smallest eigenvalue, cannot be made zero e.g. by any translation (in contrast to the 
classical case). It corresponds to j = |s| , and the corresponding eigenfunctions, 
� =

∑
m cmsY�s�m , are holomorphic if s = −|s| , and anti-holomorphic if s = |s| . We call 

these states the centre-of-mass states. These form a 2|s| + 1 dimensional subspace in 
HP,s , and these are the states of the E(3)-invariant elementary quantum mechanical sys-
tems that are the closest analogs of the states of the classical systems with vanishing 
centre-of-mass vector.

4 � The Two‑Particle System

4.1 � The Quantum Observables of Two‑Particle Systems

Let us consider two E(3)-invariant elementary quantum mechanical systems, whose 
basic quantum observables are �a

�
 and �ab

�
 , � = 1, 2 . These observables are self-

adjoint operators on H� . The corresponding Casimir operators are denoted by �2
�
 

and �� . The Hilbert space of the joint system is H1 ⊗H2 , and we can form the 
operators �1 ⊗ �2 , �1 ⊗�2 ∶ H1 ⊗H2 → H1 ⊗H2 for any �� ∶ H� → H� , where �� 
are the identity operators on the respective Hilbert spaces H� . Clearly, �1 ⊗ �2 and 
�1 ⊗�2 are commuting. In particular, �2

1
⊗ �2 , �1 ⊗ �2 , �1 ⊗ �2

2
 and �1 ⊗�2 are 

Casimir operators of the composite system.
Analogously to (3.1), we form

(3.15)⟨���a��⟩ = 0.

(4.1)
�2 ∶= 𝛿ab

(
�a
1
⊗ �2 + �1 ⊗ �a

2

)(
�b
1
⊗ �2 + �1 ⊗ �b

2

)
=

= �2
1
⊗ �2 + �1 ⊗ �2

2
+ 2𝛿ab�

a
1
⊗ �b

2
,

(4.2)
� ∶=

1

2
𝜀abc

(
�ab
1
⊗ �2 + �1 ⊗ �ab

2

)(
�c
1
⊗ �2 + �1 ⊗ �c

2

)
=

= �1 ⊗ �2 + �1 ⊗�2 +
1

2
𝜀abc

(
�c
1
⊗ �ab

2
+ �ab

1
⊗ �c

2

)
.
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Although � does not commute with any of �a
1
⊗ �2 , �1 ⊗ �a

2
 , �ab

1
⊗ �2 and �1 ⊗ �ab

2
 , 

the observables of the subsystems in the algebra of observables of the composite 
system, and �2 does not commute with �ab

1
⊗ �2 and �1 ⊗ �ab

2
 , but both � and �2 

do commute with �a
1
⊗ �2 + �1 ⊗ �a

2
 and �ab

1
⊗ �2 + �1 ⊗ �ab

2
 , i.e. with the linear and 

angular momentum operators of the composite system. Therefore, though �2 and 
� are not Casimir operators of the composite system, they are commuting with 
the generators of the symmetry group E(3), i.e. they are E(3)-invariant. Moreover, 
[�2,�] = 0 also holds. Hence,

are also E(3)-invariant and [�2
12
,�12] = 0 holds. These operators characterize the 

relationship between the two subsystems in the composite system, and hence they 
will have particular significance for us.

Using the definitions above and the first of (3.4), the identity (3.5) yields

Let the two subsystems be elementary, characterized by the Casimir invariants 
(P1, s1) and (P2, s2) , respectively. Then by (3.6) �2

12
 is a multiplication operator on 

H1 ⊗H2 , and hence, for any 𝜙1 ⊗𝜙2 ∈ H1 ⊗H2 , (4.5) gives

This is analogous to the classical equation (2.5), and the operators on both sides are 
E(3)-invariant. Nevertheless, their physical dimension is momentum times angular 
momentum, rather than length. Thus, just as in the classical case (and motivated by 
(2.7)), we should consider the component of �a

1
⊗ �2∕P

2
1
− �1 ⊗ �a

2
∕P2

2
 in the direc-

tion �abcpb1p
c
2
.

This is just (4.6) divided by 
√

P2
1
P2
2
− (�abp

a
1
pb
2
)2 , the length of �abcpb1p

c
2
 , and we 

could consider the operator

This is a well defined, self-adjoint and E(3)-invariant operator, which is analogous 
to the classical expression (2.7). However, in contrast to the classical case, the coef-
ficient under the square root sign in the denominator is not constant. Hence it could 
be difficult to use this expression e.g. in the calculation of the expectation values. To 
cure this difficulty, using

(4.3)�2
12

∶=
1

2

(
�2 − �2

1
⊗ �2 − �1 ⊗ �2

2

)
= 𝛿ab�

a
1
⊗ �b

2
,

(4.4)�12 ∶= � −�1 ⊗ �2 − �1 ⊗�2 =
1

2
𝜀abc

(
�c
1
⊗ �ab

2
+ �ab

1
⊗ �c

2

)

(4.5)

(
�2
1
⊗ �2

2

)
�12 = 𝜀abc

(
�b
1
⊗ �c

2

)(
�a

1
⊗ �2

2
− �2

1
⊗ �a

2

)
+ �2

12

(
�2
1
⊗�2 +�1 ⊗ �2

2

)
.

(4.6)

𝜀abcp
b
1
pc
2

(�a
1

P2
1

⊗ �2 − �1 ⊗
�a

2

P2
2

)
𝜙1 ⊗𝜙2 =

(
�12 − �

( s1
P1

+
s2

P2

)
�2
12

)
𝜙1 ⊗𝜙2.

(4.7)
𝜀abcp

b
1
pc
2√

P2
1
P2
2
− (𝛿dep

d
1
pe
2
)2

(
1

P2
1

�a
1
⊗ �2 −

1

P2
2

�1 ⊗ �a
2

)
.
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 for the Taylor expansion of 1∕
√

P2
1
P2
2
− (�abp

a
1
pb
2
)2 we obtain

Using this and recalling that �2
12

 is a multiplication operator, the above candidate 
for the ‘distance operator’ becomes an expression of the positive powers of �12 
and �2

12
 . Nevertheless, now the infinite series makes the application of the resulting 

expression difficult in practice. Thus, although in principle this might yield a well 
defined operator for the distance of the two subsystems, and certainly it would be 
worth studying this, in the present paper we choose a different strategy and look for 
only the ‘empirical distance’. This is the one that we followed in [6] in defining the 
angle between the angular momentum vectors of SU(2)-invariant elementary quan-
tum mechanical systems.

4.2 � The Empirical Distance

Based on equation (4.6) and the discussion above, we define the empirical distance 
of the two E(3)-invariant elementary quantum mechanical systems (characterized by 
their Casimir invariants (P1, s1) and (P2, s2) ) in their states �1 and �2 , respectively, by

d�� can, in fact, be defined in any state of the composite system consisting of any 
number of elementary systems, �, � = 1,⋯ ,N , represented by a general density 
operator 𝜌 ∶ HP1,s1

⊗⋯⊗HPN ,sN
→ HP1,s1

⊗⋯⊗HPN ,sN
 , not only in pure tensor 

product states of a bipartite system. However, if the density operator represents a 
pure vector state which is an entangled state of the constituent systems, or if it is a 
genuine mixed state of the composite system, then the state of the constituent sys-
tems would necessarily be mixed; moreover the empirical distance d�� would depend 
on the state of the subsystems other than the � ’s and the �’s. Hence, in these cases 
the interpretation of d�� would not be obvious. Therefore, in the present paper, we 
assume that the states of the composite system are tensor products of pure vector 
states of the constituent systems; and hence, without loss of generality, the compos-
ite system could be assumed to consist only of two subsystems.

In this subsection, we calculate d12 using (4.9) and discuss its properties at the 
genuine quantum level. The classical limit will be considered in subsection 4.4.

Let us write �1 = exp(−ip1e�
e
1
∕ℏ)�1�1 , where �1 is the unitary operator on 

HP1,s1
 representing an SU(2) matrix UA

1 B
 and �e

1
 is a translation. Or, in other words, 

�
dk

dxk
1√
1 − x

�
(0) =

1

2

3

2

5

2
⋯

2k − 1

2
=

1

2k
1 ⋅ 2 ⋅ 3 ⋅ 4⋯ (2k − 1) ⋅ (2k)

2 ⋅ 4⋯ (2k)
=

1

22k
(2k)!

k!
,

(4.8)
1√

P2
1
P2
2
− (�abp

a
1
pb
2
)2

=
1

P1P2

∞∑
k=0

1

22k
(2k)!

(k!)2

(
�ab

pa
1

P1

pb
2

P2

)2k
.

(4.9)d12 ∶=
⟨𝜙1 ⊗𝜙2��12 − �

�
s1∕P1 + s2∕P2

�
�2
12
�𝜙1 ⊗𝜙2⟩�

P2
1
P2
2
− ⟨𝜙1 ⊗𝜙2��4

12
�𝜙1 ⊗𝜙2⟩

.



	 Foundations of Physics (2022) 52:102

1 3

102  Page 16 of 34

�1 is considered to be obtained from the state �1 by some E(3) transformation. 
The state �2 is assumed to have the analogous form. Then by (4.4), (3.8) and 
(3.10) the first term in the numerator in (4.9) is

In a similar way, the relevant factor in the second term of the numerator and the non-
trivial term in the denominator, respectively, are

Thus, it is only �a
1
− �a

2
 , i.e. only the relative ‘position’ of the two systems, that mat-

ters in the empirical distance. We will see that, in a similar way, it is only the rela-
tive ‘orientation’ of the two subsystems that matters. Next we specify the states �1 
and �2.

If � = sYjm∕P , then by (A.19), (A.22), (A.25) and (A.28)–(A.30)

Thus, roughly speaking, in the state sYjm∕P both the linear and angular momenta 
point in the ‘z-direction’ (with respect to the basis in the momentum space). Using 
(A.18)–(A.26), a direct calculation gives that

and that all the other components of ⟨sYjm��a�b�sYjm⟩ are vanishing. (4.14) and 
(4.15) imply that �ab⟨sYjm��a�b�sYjm⟩ = P4 , as it should be. These expectation values 
may appear to be singular when j = 0 or 1/2, but these are not. In fact, in these cases 
s = 0 and |s| = 1∕2 , and hence j = n and j = 1∕2 + n , n = 0, 1, 2, ... , respectively. 
Writing these into (4.14) and (4.15) and then substituting n = 0 , we obtain that these 
are P4∕3 in both cases.

Choosing both �1 and �2 in the above way, and substituting (4.13) into (4.10) 
and (4.11), we find, respectively, that

(4.10)

⟨𝜙1 ⊗𝜙2��12�𝜙1 ⊗𝜙2⟩ =
�
𝜉a
1
− 𝜉a

2

�
𝜀abc(R1)

b
d⟨𝜓1��d1�𝜓1⟩(R2)

c
e⟨𝜓2��e2�𝜓2⟩+

+ (R−1
1
R2)ab

�
⟨𝜓1��a1�𝜓1⟩⟨𝜓2��b2�𝜓2⟩ + ⟨𝜓1��a1�𝜓1⟩⟨𝜓2��b2�𝜓2⟩

�
.

(4.11)⟨𝜙1 ⊗𝜙2��2
12
�𝜙1 ⊗𝜙2⟩ = (R−1

1
R2)ab⟨𝜓1��a1�𝜓1⟩⟨𝜓2��b2�𝜓2⟩;

(4.12)
⟨𝜙1 ⊗𝜙2��4

12
�𝜙1 ⊗𝜙2⟩ = (R−1

1
R2)ab(R

−1
1
R2)cd⟨𝜓1��a1�c1�𝜓1⟩⟨𝜓2��b2�d2�𝜓2⟩.

(4.13)⟨���a��⟩ = �a
3
P

ms

j(j + 1)
, ⟨���a��⟩ = �a

3
ℏm.

(4.14)

⟨sYjm��1�1�sYjm⟩ = ⟨sYjm��2�2�sYjm⟩ = P4

j(j + 1)(2j − 1)(2j + 3)

�
−3s2m2+

+ j(j + 1)
�
s2 + m2

�
+ j(j + 1)

�
j2 + j − 1

��
,

(4.15)
⟨sYjm��3�3�sYjm⟩ = P4

j(j + 1)(2j − 1)(2j + 3)

�
6s2m2−

− 2j(j + 1)
�
s2 + m2

�
+ j(j + 1)

�
2j2 + 2j − 1

��
;
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Hence, the numerator of (4.9) is

If s1s2m1m2 = 0 , then this is zero. In this case at least one of the expectation values 
⟨�1��a1��1⟩ and ⟨�2��a2��2⟩ is vanishing (see the first of (4.13)). This case is analo-
gous to the classical situation when pa

1
= 0 or pa

2
= 0 , and that we excluded from our 

investigations (see the second paragraph in subsection 2.1). It might be worth noting 
that (4.16) is just ( P1P2 times) the expectation value of the distance operator (4.7) in 
the zeroth approximation according to the expansion (4.8).

Using ⟨sYjm��1�1�sYjm⟩ = ⟨sYjm��2�2�sYjm⟩ , we obtain that, in the states above, 
(4.12) takes the form

If the SU(2) matrix UA
B is parameterized by the familiar Euler angles (�, �, �) 

according to

then the corresponding rotation matrix is

⟨𝜙1 ⊗𝜙2��12�𝜙1 ⊗𝜙2⟩ =
�
𝜉a
1
− 𝜉a

2

�
𝜀abc(R1)

b
3(R2)

c
3P1P2

s1s2m1m2

j1(j1 + 1)j2(j2 + 1)
+

+ (R−1
1
R2)33�m1m2

� P1s1

j1(j1 + 1)
+

P2s2

j2(j2 + 1)

�
,

⟨𝜙1 ⊗𝜙2��2
12
�𝜙1 ⊗𝜙2⟩ = (R−1

1
R2)33P1P2

s1s2m1m2

j1(j1 + 1)j2(j2 + 1)
.

(4.16)

⟨𝜙1 ⊗𝜙2��12 − �
� s1
P1

+
s2

P2

�
�2
12
�𝜙1 ⊗𝜙2⟩ =

= P1P2

��
𝜉a
1
− 𝜉a

2

�
𝜀abc(R1)

b
3(R2)

c
3+

+ (R−1
1
R2)33�

� j2(j2 + 1) − s2
2

s2P2

+
j1(j1 + 1) − s2

1

s1P1

�� s1s2m1m2

j1(j1 + 1)j2(j2 + 1)
.

(4.17)

⟨𝜙1 ⊗𝜙2��4
12
�𝜙1 ⊗𝜙2⟩ =

��
(R−1

1
R2)11

�2
+
�
(R−1

1
R2)12

�2
+
�
(R−1

1
R2)21

�2
+

+
�
(R−1

1
R2)22

�2�⟨𝜓1��11�11�𝜓1⟩⟨𝜓2��12�12�𝜓2⟩+
+
��

(R−1
1
R2)13

�2
+
�
(R−1

1
R2)23

�2�⟨𝜓1��11�11�𝜓1⟩⟨𝜓2��32�32�𝜓2⟩+
+
��

(R−1
1
R2)31

�2
+
�
(R−1

1
R2)32

�2�⟨𝜓1��31�31�𝜓1⟩⟨𝜓2��12�12�𝜓2⟩+
+
�
(R−1

1
R2)33

�2⟨𝜓1��31�31�𝜓1⟩⟨𝜓2��32�32�𝜓2⟩.

(4.18)UA
B =

(
exp

( i

2
(� + �)

)
cos(�∕2) i exp

(
−

i

2
(� − �)

)
sin(�∕2)

i exp
( i

2
(� − �)

)
sin(�∕2) exp

(
−

i

2
(� + �)

)
cos(�∕2)

)
,
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This yields, in particular, that

and that �12 is just the angle between the unit vectors (R1)
a
3 and (R2)

a
3 , too: 

cos �12 = �ab(R1)
a
3(R2)

b
3 . Also, the combinations of the matrix elements ((R−1

1
R)ab)

2 
in (4.17) are all expressions of cos2 �12 alone:

Since the length of the vector �abc(R1)
b
3(R2)

c
3 in (4.16) is sin �12 , (4.21) shows that 

d12 depends only on the �12 , i.e. on the relative ‘orientation’ of the two constituent 
systems, rather than the individual Euler angles (�1, �1, �1) and (�2, �2, �2).

Denoting the denominator in (4.9) by P1P2D and substituting (4.14) and (4.15) into 
(4.21), a lengthy but straightforward calculation gives that

If j1 and j2 take their smallest value, viz. j1 = |s1| and j2 = |s2| , i.e. when �1 and �2 
are centre-of-mass states (see subsection 3.2), then this expression reduces to

If at least one of j1 = |s1| and j2 = |s2| is 0 or 1/2, then D2 = 2∕3 , and hence, in 
particular, it is not zero and it does not depend on �12 . For small spins the depend-
ence of D2 on �12 is weak. The higher the spins s1 and s2 , the closer the D2 to zero for 
|m1| = j1 , |m2| = j2 and cos2 �12 = 1 . Nevertheless, we show that D2 is strictly posi-
tive for any finite |m1| ≤ j1 = |s1| and |m2| ≤ j2 = |s2| and any angle �12.

Suppose, on the contrary, that D2 = 0 , i.e. that for some m1 , m2 and �12

(4.19)

Ra
b =

⎛⎜⎜⎝

cos � cos � − sin � cos � sin � − sin � cos � − cos � cos � sin � sin � sin �

cos � sin � + sin � cos � cos � − sin � sin � + cos � cos � cos � − sin � cos �

sin � sin � cos � sin � cos �

⎞⎟⎟⎠
.

(4.20)cos �12 ∶= (R−1
1
R2)33 = cos �1 cos �2 + cos(�1 − �2) sin �1 sin �2;

(4.21)

⟨𝜙1 ⊗𝜙2��4
12
�𝜙1 ⊗𝜙2⟩ =

�
1 + cos2 𝛽12

�⟨𝜓1��11�11�𝜓1⟩⟨𝜓2��12�12�𝜓2⟩+
+
�
1 − cos2 𝛽12

�⟨𝜓1��11�11�𝜓1⟩⟨𝜓2��32�32�𝜓2⟩+
+
�
1 − cos2 𝛽12

�⟨𝜓1��31�31�𝜓1⟩⟨𝜓2��12�12�𝜓2⟩+
+ cos2 𝛽12 ⟨𝜓1��31�31�𝜓1⟩⟨𝜓2��32�32�𝜓2⟩.

(4.22)

D2 = 1 −
1

(2j1 − 1)(2j1 + 3)(2j2 − 1)(2j2 + 3)

(
5j1(j1 + 1)j2(j2 + 1)+

+ (s2
1
− 4)j2(j2 + 1) + (s2

2
− 4)j1(j1 + 1) − 3s2

1
s2
2
+ 3

)

−

(
j1(j1 + 1) − 3s2

1

)(
j2(j2 + 1) − 3s2

2

)
(2j1 − 1)(2j1 + 3)(2j2 − 1)(2j2 + 3)

( m2
1

j1(j1 + 1)
+

m2
2

j2(j2 + 1)
−

3m2
1
m2

2

j1(j1 + 1)j2(j2 + 1)

)

−

(
j1(j1 + 1) − 3s2

1

)(
j1(j1 + 1) − 3m2

1

)(
j2(j2 + 1) − 3s2

2

)(
j2(j2 + 1) − 3m2

2

)
j1(j1 + 1)(2j1 − 1)(2j1 + 3)j2(j2 + 1)(2j2 − 1)(2j2 + 3)

cos2 �12.

(4.23)D2 =
2

3
+

(
3m2

1
− j1(j1 + 1)

)(
3m2

2
− j2(j2 + 1)

)
3(j1 + 1)(2j1 + 3)(j2 + 1)(2j2 + 3)

(1 − 3 cos2 �12).
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holds. Since the left hand side is positive, 3 cos2 �12 ≠ 1 , 3m2
1
≠ j1(j1 + 1) , 

3m2
2
≠ j2(j2 + 1) and j1 ≠ 0 ≠ j2 must hold. First, let us suppose that 

−1 ≤ 3 cos2 𝛽12 − 1 < 0 . Then by (4.24) 3m2
1
> j1(j1 + 1) and 3m2

2
< j2(j2 + 1) or 

3m2
1
< j1(j1 + 1) and 3m2

2
> j2(j2 + 1) follow. Let us consider the first case. Then, 

also by (4.24),

This implies 8j2
1
j2 < 2(j1 + 1)(4j1j2 + 6j1 + 6j2 + 9) ≤ 3j2

1
j2 , which is a contradic-

tion. The proof is similar if 3m2
1
< j1(j1 + 1) and 3m2

2
> j2(j2 + 1) . Next suppose that 

0 < 3 cos2 𝛽12 − 1 ≤ 2 . Then (4.24) implies that

and that either 3m2
1
> j1(j1 + 1) and 3m2

2
> j2(j2 + 1) or 3m2

1
< j1(j1 + 1) and 

3m2
2
< j2(j2 + 1) . In the first case this yields

which is a contradiction. In the second case,

which is also a contradiction. We expect that the denominator D, given by (4.22), is 
not zero even in the general case when j1 > |s1| and j2 > |s2|.

The other extreme case is when both j1 and j2 tend to infinity. Now there are 
three sub-cases: when m1 and m2 remain bounded, and when one of them, say m1 , 
or both tend to infinity with j1 and j2 . As equations (4.13) show, in all these cases 
the expectation value of the linear momenta tends to zero, but in the first case the 
expectation value of the angular momenta remain finite; in the second the expec-
tation value of �a

1
 diverges but that of �a

2
 remains finite; while in the third the 

expectation value of �a
1
 and �a

2
 diverges. By (4.22) these limits of D2 are

respectively. These are independent of the spins, and none of them is zero.
Therefore, the empirical distance d12 between the elementary systems is well 

defined, finite or zero, at least in the states obtained from centre-of-mass states 

(4.24)
2(j1 + 1)(j2 + 1)(2j1 + 3)(2j2 + 3) =

(
3m2

1
− j1(j1 + 1)

)(
3m2

2
− j2(j2 + 1)

)
(3 cos2 �12 − 1)

2(j1 + 1)(j2 + 1)
(
4j1j2 + 6(j1 + j2) + 9

) ≤ −
(
3m2

1
− j1(j1 + 1)

)(
3m2

2
− j2(j2 + 1)

)

< 3m2
1
j2(j2 + 1) − 3m2

2

(
3m2

1
− j1(j1 + 1)

)
− j1j2(j1 + 1)(j2 + 1) < 3m2

1
j2(j2 + 1)

≤ 3j2
1
j2(j2 + 1).

(j1 + 1)(j2 + 1)
(
4j1j2 + 6j1 + 6j2 + 9

) ≤ (
3m2

1
− j1(j1 + 1)

)(
3m2

2
− j2(j2 + 1)

)
,

(j1 + 1)(j2 + 1)
(
3j1j2 + 6j1 + 6j2 + 9

) ≤ 9m2
1
m2

2
− 3m2

1
j2(j2 + 1) − 3m2

2
j1(j1 + 1)

≤ 9m2
1
m2

2
− 3m2

1
j2
2
− 3m2

2
j2
1
≤ 3m2

1
m2

2
− 3m2

1
(j2
2
− m2

2
) − 3m2

2
(j2
1
− m2

1
)

≤ 3m2
1
m2

2
≤ 3j2

1
j2
2
,

(j1 + 1)(j2 + 1)
(
3j1j2 + 6j1 + 6j2 + 9

) ≤ 9m2
1
m2

2
− 3m2

1
j2(j2 + 1) − 3m2

2
j1(j1 + 1)

< 9m2
1
m2

2
− 9m2

1
m2

2
− 9m2

1
m2

2
= −9m2

1
m2

2
,

(4.25)
11

16
−

1

16
cos2 �12,

5

8
+

1

8
cos2 �12,

3

4
−

1

4
cos2 �12,
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by E(3) transformations, and also in the j1, j2 → ∞ limit, and depends only on the 
relative ‘position’ and ‘orientation’ of the subsystems. Next we discuss the result-
ing expression of d12 in these two extreme cases.

In the first case, i.e. when j1 = |s1| and j2 = |s2|,

where now D is given by (4.23), and the components of the unit vectors (R1)
a
3 and 

(R2)
a
3 can be read off from (4.19). The first term in the brackets can be zero when 

these unit vectors are parallel, (R1)
a
3 = ±(R2)

a
3 , i.e. when �12 = 0 or � , or when 

�a
1
− �a

2
 is zero or at least it lays in the 2-plane spanned by (R1)

a
3 and (R2)

a
3 . This 

term can be arbitrarily large, depending on �a
1
− �a

2
 . This does not contain Planck’s 

constant and the Casimir invariants P1 and P2 , and gives the ‘classical part’ of the 
distance, being analogous to the last term on the right of equation (2.5).

The second term in the brackets, being proportional to ℏ , is a genuine quantum 
correction to the classical part. d12 depends on P1 and P2 only through this term. 
This can be zero only if �12 = �∕2 ; and, for �12 ≠ �∕2 , only in the very exceptional 
case when P1 = P2 and sign(s1) = −sign(s2) , i.e. if one of �1 and �2 is holomorphic 
and the other is anti-holomorphic.

Even if �a
1
− �a

2
 , (R1)

a
3 and (R2)

a
3 are given, d12 is not fixed: it depends on the 

discrete ‘quantum numbers’ m1 and m2 of the actual states in an essential way. In 
particular, for s1 = s2 = 1∕2 (4.26) gives

Its ‘classical part’ is less than one-sixth of the distance between the two classical 
point particles with the same ((R1)

a
b, �

a
1
) and ((R2)

a
b, �

a
2
).

If cos �12 = ±1 , then the first term between the brackets in (4.26) vanishes, and 
d12 becomes an expression of the Casimir invariants (P1, s1) , (P2, s2) of the elemen-
tary systems and the discrete quantum numbers m1 and m2 alone. So the distance in 
this case is ‘universal’, it is of purely quantum mechanical origin, and, apart from 
the very exceptional case above, non-zero. Thus, at the quantum level, the expres-
sion for d12 is well defined, in contrast to the classical case when, by the discussion 
of subsection 2.2, the distance between two centre-of-mass lines with parallel linear 
momenta could be recovered only as a limit.

As we concluded above, d12 is well defined also in the other extreme case when s1 
and s2 are fixed but j1, j2 → ∞ . Now we determine the distance in this case explic-
itly. As (4.16) shows, in the first two cases considered in (4.25) the empirical dis-
tance d12 tends to zero, while in the third (i.e. when |m1| = j1 , |m2| = j2 → ∞ ) it 
tends to

(4.26)

d12 =
1

D

(
(�a

1
− �a

2
)�abc(R1)

b
3(R2)

c
3 + ℏ

( s1

|s1|P1

+
s2

|s2|P2

)
cos �12

) s1s2

|s1s2|
m1m2

(|s1| + 1)(|s2| + 1)
,

d12 = ±
1

3
√
6

��
�a
1
− �a

2

�
�abc(R1)

a
3(R2)

c
3 + ℏ

P1 + P2

P1P2

cos �12

�
.

2ℏ
� s1
P2

+
s2

P1

� cos �12√
3 − cos2 �12

.
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In particular, this limit is independent of �a
1
− �a

2
 , and d12 reduces to the quantum 

correction. Nevertheless, this extreme case corresponds to a rather exotic situation, 
since by (4.13) the expectation value of the angular momenta tend to infinity while 
that of the linear momenta to zero.

As we noted, in the states with the choice for �1 , �2 above all the expectation 
values are vanishing for s1 = 0 , s2 = 0 . To get non-zero results in this case, more 
general states with � =

∑
j,m cjmsYjm should be considered, because the matrix ele-

ments ⟨sYj±1,n��a�sYj,m⟩ are not all zero even for s = 0 (see Appendix A.2). However, 
the explicit form of the resulting expectation values are much more complicated.

4.3 � The Empirical Angles and Volume Elements

Dictated by the classical formula (2.9), we define the ‘empirical angle’ between the 
linear momenta of two elementary subsystems (characterized by (P1, s1) and (P2, s2) , 
respectively) in their pure tensor product state 𝜙 = 𝜙1 ⊗𝜙2 by

with range �12 ∈ [0,�] . Also, motivated by the classical expression (2.10), we 
define the ‘empirical 3-volume element’ for three elementary systems in the pure 
tensor product state 𝜙 = 𝜙1 ⊗𝜙2 ⊗𝜙3 by

Since these quantities are built only from the momentum operators, and the momen-
tum operators are invariant with respect to translations, it is enough to evaluate these 
expressions only in the states of the form � = ��.

Thus, if �1 = �1�1 and �2 = �2�2 , then

In particular, if �1 = s1
Yj1,m1

∕P1 and �2 = s2
Yj2,m2

∕P2 , then

The angle �12 has the same qualitative properties that the empirical angle �12 has in 
the SU(2)-invariant systems [6]. In particular, for given s1 and s2 and angle �12 , the 
empirical angle �12 is still not fixed, that may take different discrete values. Moreo-
ver, �12 is never zero even if �12 = 0 , and is never � even if �12 = � . With given s1 
and s2 the empirical angle �12 takes its minimal value in the special centre-of-mass 

(4.27)cos𝜔12 ∶=
⟨𝜙�𝛿ab�a1 ⊗ �b

2
�𝜙⟩

�
⟨𝜙��2

1
�𝜙⟩

�
⟨𝜙��2

2
�𝜙⟩

=
⟨𝜙1��a1�𝜙1⟩𝛿ab⟨𝜙2��b2�𝜙2⟩

P1P2

(4.28)v123 ∶=
1

3!
𝜀abc

⟨𝜙��a
1
⊗ �b

2
⊗ �c

3
�𝜙⟩

�
⟨𝜙��2

1
�𝜙⟩

�
⟨𝜙��2

2
�𝜙⟩

�
⟨𝜙��2

3
�𝜙⟩

.

(4.29)
cos�12 =

1

P1P2

⟨�1��†

1
�a
1
�1��1⟩�ab⟨�2��†

2
�b
2
�2��2⟩ =

=
1

P1P2

(R−1
1
R2)ab⟨�1��a1��1⟩⟨�2��b2��2⟩.

(4.30)cos�12 = s1s2
m1m2

j1(j1 + 1)j2(j2 + 1)
cos �12.
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states when m1 = j1 = |s1| and m2 = j2 = |s2| , and �12 = 0 . In particular, for 
|s1| = |s2| = 1∕2 this angle is �min

12
≈ 83.62◦ , while for |s1| = |s2| = 1 it is ≈ 75.52◦ . 

The maximal value of �12 is �max
12

= � − �min
12

 . This minimal/maximal value tends to 
zero/� only in the |s1| , |s2| → ∞ limit. For a classical model of the ‘geometry of the 
quantum directions’, see Section 4 of [6].

The evaluation of the empirical 3-volume element in the analogous states is simi-
lar. By the first of (4.13) we obtain

The second factor in (4.31) is just the Euclidean 3-volume of the tetrahedron 
spanned by the unit vectors (R1)

a
3 , (R2)

a
3 and (R3)

a
3 . Hence, even for given (R1)

a
3 , 

(R2)
a
3 and (R3)

a
3 , the empirical 3-volume element takes different discrete values, 

depending on the ‘quantum numbers’ of the states of the constituent subsystems. By 
(4.31) v123 is always smaller than the Euclidean 3-volume element, even if all the j’s 
take their minimal, and all the m’s take their maximal value, viz. m = j = |s|.

4.4 � The Classical Limit of the Empirical Geometrical Quantities

Traditionally, the classical limit of an SU(2)-invariant system is defined to be the 
limit in which m = j → ∞ (see e.g. [22]). However, by |m| ≤ j and (4.13), in the 
present E(3)-invariant case, the expectation value of the linear momentum tends to 
zero unless the spin s also tends to infinity; and this expectation value can tend to a 
large macroscopic value if P is also growing appropriately. Thus, formally, the clas-
sical limit of the E(3)-invariant systems should be defined to be the limit in which 
|s| = m = j → ∞ and P → ∞ . Moreover, if we expect that the expectation value of 
the linear and angular momenta tend to the corresponding large classical value in the 
same order, then by (4.13) we should require that asymptotically P = pj + O(1∕j) 
holds for some positive p. We use this latter condition in the calculation of the clas-
sical limit of the uncertainty of the empirical distance. Note that by j = |s| the states 
in such a sequence are obtained from centre-of-mass states by some E(3) transfor-
mations. In the present subsection, we determine this limit of the empirical distances 
and their uncertainty, and also that of the angles and 3-volume elements. We find 
that these are just those in the Euclidean 3-space.

The s1 = m1 = j1 , ±s2 = m2 = j2 → ∞ limit of the numerator in the expression 
(4.26) of the empirical distance is

while, by (4.23), the same limit of its denominator is sin �12 . But the latter is just the 
magnitude of �abc(R1)

b
3(R2)

c
3 , and hence, apart from the quantum correction, for 

�12 ≠ 0,� this gives just the classical (signed) distance between the centre-of-mass 
lines of the two classical point particles characterized by ((R1)

a
b, �

a
1
) and ((R2)

a
b, �

a
2
) , 

respectively. If, in addition, P1,P2 → ∞ , then the quantum correction goes away, 
and the whole expression reduces to the classical empirical distance.

(4.31)v123 =
s1s2s3m1m2m3

j1(j1 + 1)j2(j2 + 1)j3(j3 + 1)

1

3!
�abc(R1)

a
3(R2)

b
3(R3)

c
3.

±(�a
1
− �a

2
)�abc(R1)

b
3(R2)

c
3 ± ℏ

P1 ± P2

P1P2

cos �12;
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Since d12 is not the expectation value of some quantum observable, its standard 
deviation/variance cannot be defined in the standard manner. Nevertheless, its uncer-
tainty can be introduced by importing the idea from experimental physics how the error 
of a quantity, built from experimental data, is defined. Namely, if Q = Q(q1, ..., qn) is a 
differentiable function of its variables and, in a series of measurements, we obtain the 
mean values q̄𝛼 and errors �q� of the quantities q� , � = 1, ..., n , then the mean value and 
error of Q are defined to be Q̄ ∶= Q(q̄1, ..., q̄n) and

respectively. Hence, since the empirical distance has the structure

with �12 ∶= �12 − ℏ(s1∕P1 + s2∕P2)�
2
12

 and �12 ∶= P2
1
P2
2
− �4

12
 , it seems natural 

to define the uncertainty of d12 in the state 𝜙 = 𝜙1 ⊗𝜙2 to be

Here 

 and 

the two familiar variances. We are going to show that, in the classical limit defined 
above, both terms between the brackets tend to zero. Since |d12| in this limit is 
bounded, this means that the uncertainty ��d12 also tends to zero.

Since the subsequent calculations are quite lengthy but elementary, we do 
not provide all the details. We indicate only the key steps. First, let us consider 
⟨��(�12)

2��⟩ = ⟨��(�2
12
− 2ℏ(j1∕P1 ± j2∕P2)�

2
12
�12 + ℏ2(j1∕P1 ± j2∕P2)

2�4
12
)��⟩  . 

The expectation values in

can be calculated by using (3.9). These are

𝛿Q ∶= | 𝜕Q
𝜕q1

(q̄𝛼)|𝛿q1 +⋯ + | 𝜕Q
𝜕qn

(q̄𝛼)|𝛿qn,

d12 =
⟨���12��⟩√⟨���12��⟩

(4.32)��d12 ∶=
� Δ��12

�⟨���12��⟩� +
1

2

Δ��12

⟨���12��⟩
�
�d12�.

(Δ��12)
2 = ⟨��(�12)

2��⟩ − (⟨���12��⟩)2

(Δ��12)
2 = ⟨��(�12)

2��⟩ − (⟨���12��⟩)2,

⟨𝜙1 ⊗𝜙2��2

12
�𝜙1 ⊗𝜙2⟩ =⟨𝜙1��a1�b1�𝜙1⟩𝛿ac𝛿bd⟨𝜙2��c2�d2�𝜙2⟩ + ⟨𝜙1��a1�b1�𝜙1⟩𝛿ac𝛿bd⟨𝜙2��c2�d2�𝜙2⟩

+⟨𝜙1��a1�b1�𝜙1⟩𝛿ac𝛿bd⟨𝜙2��c2�d2�𝜙2⟩ + ⟨𝜙1��a1�b1�𝜙1⟩𝛿ac𝛿bd⟨𝜙2��c2�d2�𝜙2⟩
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where some of the expectation values with � = ±jYjj∕P have already been given 
by (4.14) and (4.15), while the others can be calculated by (A.18)–(A.26) and 
(A.28)–(A.30). These are

Using (4.20) and that, for large j, asymptotically P = pj + O(1∕j) , we obtain

The calculation of the expectation value of the other terms is similar, and for them 
we obtain

Comparing this with (4.33) and recalling that the first term on the right of (4.33) is 
just the classical limit of the square of ⟨𝜙1 ⊗𝜙2��12 − �(j1∕P1 ± j2∕P2)�

2

12
�𝜙1 ⊗𝜙2⟩∕P1P2

 , 
we find that the first term in the brackets in (4.32) is of order O(1∕j1) + O(1∕j2).

Using (4.21), (4.14) and (4.15), we immediately obtain the asymptotic form of the 
expectation value of the first two terms in �2
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2
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2
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Thus, we should calculate only the asymptotic form of

with �1 = j1
Yj1,j1∕P1 and �2 = ±j2

Yj2,j2∕P2 when j1, j2 → ∞ . Since by (A.18)–(A.26)

and all the other matrix elements of the form ⟨±jYjj��a�±jYlm⟩ fall off as 1∕
√
j for 

large j, we have that

Thus, by (4.20)

Hence

which yields that the second term in the brackets in (4.32) is also vanishing in the 
j1, j2 → ∞ limit.

Therefore, as a summary of the results of the above calculations, we have proven 
the following statement:

Theorem  Let L1,⋯ , LN be straight lines in ℝ3 such that no two of them are parallel. 
Then there are E(3)-invariant elementary quantum mechanical systems S1, ...,SN 
and a sequence of their pure quantum states �1k,...,�Nk , k ∈ ℕ , indexed by pairs 
(s1k,P1k),...,(sNk,PNk) of their Casimir invariants, respectively, such that, in the 
(|s1|,P1), ..., (|sN|,PN) → ∞ limit, the magnitude |d��| of the empirical distances tend 
with asymptotically vanishing uncertainty to the Euclidean distances D�� between the 
straight lines L� and L� , given by (2.8), for any �, � = 1, ...,N.

Thus, the metric structure of the Euclidean 3-space could be recovered in the 
classical limit from appropriate quantum observables of Euclidean invariant elemen-
tary quantum mechanical systems.

1
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Following the same strategy, the calculation of the classical limit of the empiri-
cal angles and 3-volume elements is quite straightforward: the m1 = j1 = s1 , 
m2 = j2 = s2 → ∞ limit of the empirical angles �12 , given by (4.30), is �12 ; and the 
analogous limit of the 3-volume element given by (4.31) is just the Euclidean 3-vol-
ume element. These results, together with the Theorem above, provide an exten-
sion of the Spin Geometry Theorem of Penrose [1–4] from SU(2) to E(3)-invariant 
systems.

5 � Final Remarks

The relative position vectors da
��
 , �, � = 1, 2, 3 , of a three-particle system also make it 

possible to define a notion of angle that is different from that we considered in sub-
sections 2.3 and 4.3:

with range �12,32 ∈ [0,�] defines the angle between the relative position vectors 
pointing from the second subsystem’s centre-of-mass line to that of the first and the 
third subsystems, respectively. The angles �23,13 and �21,31 are defined analogously. 
Although at the classical level this angle coincides with the Euclidean one, the anal-
ogous empirical angle in the quantum theory deviates from ��� . Another concept of 
the empirical 3-volume element could also be introduced, as the volume of the tetra-
hedron spanned by the three vectors �abcpb� p

c
�
 . Thus, at the fundamental, quantum 

level there might not exist unique, a priori obvious analog of the classical geometri-
cal notions, like angle, distance or 3-volume element. In addition to the requirement 
of their correct behaviour in the classical limit (and their ‘naturalness’ and ‘useful-
ness’), can we have some selection rule to choose one from the various 
possibilities?

The states of the composite system by means of which the correct classical limit 
of the various empirical geometrical quantities could be derived are pure tensor 
product states, built from the pure vector states of the elementary subsystems. Thus, 
in deriving these, we did not need to use entangled states of the composite system. 
But then, if the subsystems are independent, how can one obtain the distance, angle, 
etc. between them? The answer is that the entanglement of the subsystems can be 
considered to be already built into the structure of the observables of the compos-
ite system. In fact, the operators by means of which the empirical distances, angles 
and 3-volume elements are defined have the structure �12 =

1

2
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a
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2
+ �a

1
�b
2
) , 

�2
12

= �ab�
a
1
�b
2
 and �abc�a1�

b
2
�c
3
 , respectively. These observables of the composite sys-

tem are ‘entanglements’ of the observables of the subsystems. The states of the sub-
systems do not need to be entangled.

As we already noted in subsection  4.2, if the state of the composite system is 
mixed or entangled, then the interpretation of the empirical distance (and of the 
angles and 3-volume elements, too) is not obvious, and e.g. the distance between 
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two subsystems may depend on the state of other subsystems. In this case, the result-
ing distances cannot be expected to be compatible with the structure of any met-
ric space. Thus, by assuming that the state of the composite system is a pure ten-
sor product state we implicitly assumed that the subsystems are independent, and 
hence interact with one another weakly. If, however, the subsystems are inextricably 
entangled (e.g. since they are very strongly interacting with one another), then the 
‘quantum geometry’ defined by such systems may not be expected even to resemble 
to the Euclidean geometry at all. The Euclidean structure of the classical ‘physical 
3-space’ that we see appears to be defined only by the independent, very weakly 
interacting subsystems of the Universe.

A. Appendix

A.1 Complex Coordinates and the Line Bundles O(−2s) over SP

In the complex stereographic coordinates (𝜁 , 𝜁 ) on SP , defined by � ∶= exp(i�) cot(�∕2) 
in terms of the familiar spherical polar coordinates (�,�) , the Cartesian components of 
the ‘position vector’ pa in the classical momentum space and the complex null tangent 
ma , respectively, are

These imply that pa𝜀abc = −iP(mbm̄c − m̄bmc) , where m̄a is the complex conjugate 
of ma . Also in these coordinates, the line element of the metric and the correspond-
ing area element on SP , respectively, are

These are just the metric and area element inherited from the metric and volume 
element of momentum 3-space, respectively. The complex null vectors ma and m̄a 
are unique up to a phase as they are (1, 0) and (0, 1) type vectors, respectively, in the 
natural complex structure of SP ≈ S2 (see e.g. [10]). As a differential operator, ma is 
given by

The contraction of the complex null vectors, ma and m̄a , as well as of the ‘posi-
tion vector’ pa in the momentum space with the Pauli matrices can also be 
expressed by the vectors {oA, �A} of the (normalized) Newman–Penrose spinor 
basis: ma𝜎AA�

a
= −oA𝜄A

� , m̄a𝜎AA�

a
= −𝜄AōA

� and pa𝜎AA�

a
= P(𝜄A𝜄A

�

− oAōA
�

)∕
√
2 . The 

(A.1)

pa = P
�
𝜁 + 𝜁

1 + 𝜁𝜁
, i
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1 + 𝜁𝜁
,
𝜁𝜁 − 1

1 + 𝜁𝜁

�
, ma =

1√
2

� 1 − 𝜁2
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, i
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components of the vectors of the Newman–Penrose basis in the spinor basis {OA, IA} 
associated with the Cartesian vector basis are

Note that this basis is well defined only on SP minus its ‘north pole’, which is the 
domain of the coordinate system (𝜁 , 𝜁 ) , as well as of the complex null vectors ma and 
m̄a.

A scalar � is said to have spin weight s = 1

2
(p − q) if under the rescaling 

{oA, �A} ↦ {�oA, �−1�A} , � ∈ ℂ − {0} , the scalar � transforms as 𝜙 ↦ 𝜆p𝜆̄q𝜙 (see 
[10, 13]). The bundle of such scalars is denoted by O(−2s) . The complex line 
bundle O(−2s) is globally trivializable precisely when s = 0 ; otherwise it has a 
twist. The domain of the coordinate system (𝜁 , 𝜁 ) is a local trivialization domain 
for O(−2s) for any s. For a detailed discussion of the line bundles O(−2s) , see e.g. 
[10, 13].

The edth and edth-prime operators of Newman and Penrose [21] acting on spin 
weighted functions, e.g. on the cross section � of O(−2s) , can be defined by

and hence for their commutator we obtain that (ðð� − ð�ð)� = −(1∕P2)s� . It is not 
difficult to check that ðpa = ma , ðma = 0 and ð�ma = −pa∕P2.

A purely algebraic introduction of the spin weighted spherical harmonics, 
given in [13], is based on the comparison of the appropriate symmetrized prod-
ucts of the vectors of the Cartesian spinor basis {OA, IA} and those of the New-
man–Penrose spinor basis {oA, �A} adapted to the unit sphere (and given explicitly 
by equation (4.15.98) of [13]):

where the coefficient Ns,j,m is

and 2s ∈ ℤ , j = |s|, |s| + 1, |s| + 2, ... and m = −j,−j + 1, ..., j . This choice of the 
normalization factor yields that the spherical harmonics 0Yjm coincide with the 
standard expressions for the ordinary spherical harmonics Yjm . The action of the edth 
operators on the harmonics sYjm is
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−i√
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The harmonics sYjm form an orthonormal basis in the space of the spin weighted 
functions with spin weight s with respect to the L2 scalar product on the unit 
2-sphere (see e.g. [13]).

A spin weighted scalar � is called holomorphic if ð�� = 0 , and anti-holomorphic 
if ð� = 0 . It is known (see e.g. [10, 13]) that dim ker ð = dim ker ð� = 0 for s < 0 
and s > 0 , respectively; and dim ker ð = dim ker ð� = 2|s| + 1 for s ≥ 0 and s ≤ 0 , 
respectively. By (A.7) these kernels are spanned by the special spherical harmon-
ics sY|s|m . Hence the spin weight of the holomorphic cross sections is non-positive, 
s = −|s| , while that of the anti-holomorphic ones is non-negative, s = |s| . They form 
2|s| + 1 dimensional subspaces in HP,s.

A.2 The Evaluation of ⟨sYkn��a� sYjm⟩ and ⟨sYkn��a� sYjm⟩

(A.5) implies that in the product of two spherical harmonics, s1Yj1m1 s2
Yj2m2

 , the 
difference of the total number of the IA and of the OA spinors is 2(m1 + m2) , and 
the difference of the total number of the oA and of the �A spinors is 2(s1 + s2) . 
Hence, the spin weight of s1Yj1m1 s2

Yj2m2
 is s1 + s2 , and in its expansion in terms of 

spin weighted spherical harmonics only the harmonics of the form s1+s2Yj(m1+m2)
 

appear. Thus, there are constants C(s1, j1,m1;s2, j2,m2|j) such that

where, as one can show, max{|j1 − j2|, |s1 + s2|} ≤ j ≤ j1 + j2 . These constants are 
analogous to the (inverse) of the usual Clebsch–Gordan coefficients, and hence these 
may also be called the (inverse) C-G coefficients.

By (A.1) and the explicit expression of the ordinary spherical harmonics in the coor-
dinates (𝜁 , 𝜁 ) , the components of the linear momentum are

Hence, to determine the matrix elements ⟨sYkn��a�sYjm⟩ , we need to calculate the 
expansion (A.8) only for 0Y1n sYjm.

This calculation is based on (A.5), in which, following [13], we introduce the nota-
tions Z(j,m)A1...A2j

∶= O(A1
⋯OAj−m

IAj−m+1
⋯ IA2j)

 and sZ(j,m) ∶= (Ns,j,m)
−1

sYjm . Then 
for any MA and any totally symmetric spinor ZA1...A2j

 the complete algebraically irreduc-
ible decomposition of their product is

Applying this formula to IA and Z(j,m)A1...A2j
 , we obtain

(A.8)s1
Yj1m1 s2

Yj2m2
=
∑
j

C
(
s1, j1,m1;s2, j2,m2|j

)
s1+s2

Yj(m1+m2)
,

(A.9)pa = P

�
2�

3

�
0Y1−1 − 0Y11, i(0Y1−1 + 0Y11),

√
2 0Y10

�
.

ZA1...A2j
MA = Z(A1...A2j

MA) +
1

2j + 1
�A1A

MBZBA2...A2j
+⋯ +

1

2j + 1
�A2jA

MBZA1...A2j−1B
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In a similar way

These two are the key formulae on which the present calculation of the (inverse) 
C-G coefficients is based. In particular, using the technique of complete algebraic 
irreducible decomposition of the various spinors, the repeated application of these 
formulae yields

(A.10)

Z(j,m)A1...A2j
IA =Z(j +

1

2
,m +

1

2
)AA1...A2j

+

+
1

2j + 1
�A1A

IBO(BOA2
⋯OAj−m

IAj−m+1
⋯ IA2j)

+⋯+

+
1

2j + 1
�Aj−mA

IBO(A1
⋯OAj−m−1

OBIAj−m+1
⋯ IA2j)

=

=Z(j +
1

2
,m +

1

2
)AA1...A2j

+

+
1

(2j + 1)2j

{
(j − m)�A1A

O(A2
⋯OAj−m

IAj−m+1
⋯ IA2j)

+⋯+

+ (j − m)�A2jA
O(A1

⋯OAj−m−1
IAj−m

⋯ IA2j−1)

}
=

=Z(j +
1

2
,m +

1

2
)AA1...A2j

−
j − m

2j + 1
�A(A1

Z(j −
1

2
,m +

1

2
)A2...A2j)

.

(A.11)

Z(j,m)A1...A2j
OA = Z(j +

1

2
,m −

1

2
)AA1...A2j

+
j + m

2j + 1
�A(A1

Z(j −
1

2
,m −

1

2
)A2...A2j)

.

(A.12)

Z(j,m)A1...A2j
IAIB = Z(j + 1,m + 1)ABA1...A2j

−

−
j − m

2(j + 1)

(
�A(A1

Z(j,m + 1)A2...A2j)B
+ �B(A1

Z(j,m + 1)A2...A2j)A

)
−

−
(j − m)(j − m − 1)

2j(2j + 1)
�A(A1

Z(j − 1,m + 1)A2...A2j−1
�A2j)B

,

(A.13)

Z(j,m)A1...A2j
IAOB = Z(j + 1,m)ABA1...A2j

−
1

2
�ABZ(j,m)A1...A2j

+

+
m

2(j + 1)

(
�A(A1

Z(j,m)A2...A2j)B
+ �B(A1

Z(j,m)A2...A2j)A

)
+

+
(j − m)(j + m)

2j(2j + 1)
�A(A1

Z(j − 1,m)A2...A2j−1
�A2j)B

,

(A.14)

Z(j,m)A1...A2j
OAOB = Z(j + 1,m − 1)ABA1...A2j

+

+
j + m

2(j + 1)

(
�A(A1

Z(j,m − 1)A2...A2j)B
+ �B(A1

Z(j,m − 1)A2...A2j)A

)
−

−
(j + m)(j + m − 1)

2j(2j + 1)
�A(A1

Z(j − 1,m − 1)A2...A2j−1
�A2j)B

.
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Since Z(
1

2
,
1

2
)A = IA , Z(

1

2
,−

1

2
)A = OA , Z(1, 1)AB = IAIB , Z(1, 0)AB = I(AOB) and 

Z(1,−1)AB = OAOB , equations (A.10)–(A.14), together with (A.5) and (A.6), already 
give

where recall that, on the right hand sides, the spherical harmonics sYj,m are vanishing 
if j < |s| or j < |m| . (In these formulae, to avoid confusion, we inserted a comma 
between the indices j and m of sYjm.)

Then, using (A.9) and (A.15)–(A.17), we find that the only non-zero matrix ele-
ments of �a are

(A.15)

0Y1,1 s
Y
j,m =

�
3

8�

1

j + 1

�
(j − s + 1)(j + s + 1)(j + m + 1)(j + m + 2)

(2j + 1)(2j + 3) s
Y
j+1,m+1−

−

�
3

8�

s

j(j + 1)

√
(j + m + 1)(j − m)

s
Y
j,m+1−

−

�
3

8�

1

j

�
(j − s)(j + s)(j − m − 1)(j − m)

(2j − 1)(2j + 1) s
Y
j−1,m+1;

(A.16)

0Y1,0 s
Y
j,m =

√
3

4�

1

j + 1

√
(j + 1 + s)(j + 1 − s)(j + 1 + m)(j + 1 − m)

(2j + 1)(2j + 3) s
Y
j+1,m+

+

√
3

4�

sm

j(j + 1) s
Y
j,m+

+

√
3

4�

1

j

√
(j − s)(j + s)(j + m)(j − m)

(2j − 1)(2j + 1) s
Y
j−1,m;

(A.17)

0Y1,−1 s
Y
j,m =

�
3

8�

1

j + 1

�
(j + 1 + s)(j + 1 − s)(j − m + 1)(j − m + 2)

(2j + 1)(2j + 3) s
Y
j+1,m−1+

+

�
3

8�

s

j(j + 1)

√
(j + m)(j − m + 1)

s
Y
j,m−1−

−

�
3

8�

1

j

�
(j + s)(j − s)(j + m)(j + m − 1)

(2j − 1)(2j + 1) s
Y
j−1,m−1;

(A.18)

⟨sYj+1,n��1�sYj,m⟩ = P3

2(j + 1)

�
(j + s + 1)(j − s + 1)

(2j + 1)(2j + 3)

×
�√

(j − m + 1)(j − m + 2)�n,m−1 −
√
(j + m + 1)(j + m + 2)�n,m+1

�
,

(A.19)

⟨sYj,n��1�sYj,m⟩ = P3s

2j(j + 1)

×
�√

(j + m)(j − m + 1)�n,m−1 +
√
(j − m)(j + m + 1)�n,m+1

�
,
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Thus, the subspaces spanned by sYj,m with given s and j are not invariant under 
the action of the momentum operators; and while �3 does not change the index m, 
�1 ± i�2 increases/decreases the value of m.

Next, we calculate the matrix elements of the angular momentum operator using 
ma = ðpa , m̄a = ð�pa , equations (A.7) and the expression (3.7) for the angular 
momentum vector operator. By integration by parts we obtain

(A.20)

⟨sYj−1,n��1�sYj,m⟩ = P3

2j

�
(j + s)(j − s)

(2j − 1)(2j + 1)

×
�√

(j − m)(j − m − 1)�n,m+1 −
√
(j + m)(j + m − 1)�n,m−1

�
;

(A.21)

⟨sYj+1,n��2�sYj,m⟩ = i
P3

2(j + 1)

�
(j + s + 1)(j − s + 1)

(2j + 1)(2j + 3)

×
�√

(j + m + 1)(j + m + 2)�n,m+1 +
√
(j − m + 1)(j − m + 2)�n,m−1

�
,

(A.22)

⟨sYj,n��2�sYj,m⟩ = i
P3s

2j(j + 1)

×
�√

(j + m)(j − m + 1)�n,m−1 −
√
(j − m)(j + m + 1)�n,m+1

�
,

(A.23)

⟨sYj−1,n��2�sYj,m⟩ = −i
P3

2j

�
(j + s)(j − s)

(2j − 1)(2j + 1)

×
�√

(j + m)(j + m − 1)�n,m−1 +
√
(j − m)(j − m − 1)�n,m+1

�
,

(A.24)

⟨sYj+1,n��3�sYj,m⟩ = P3

j + 1

�
(j + s + 1)(j − s + 1)(j + m + 1)(j − m + 1)

(2j + 1)(2j + 3)
�n,m,

(A.25)⟨sYj,n��3�sYj,m⟩ = P3ms

j(j + 1)
�n,m,

(A.26)⟨sYj−1,n��3�sYj,m⟩ = P3

j

�
(j + s)(j − s)(j + m)(j − m)

(2j − 1)(2j + 1)
�n,m.
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Hence, the matrix elements of the angular momentum vector operator are simple 
expressions of those of the linear momentum. Using (A.18)–(A.26) and (A.27), we 
find that the only non-zero matrix elements of �a are

These are precisely the well known matrix elements of the angular momentum oper-
ator in quantum mechanics. In particular, these are independent of the spin weight of 
the spherical harmonics.
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(A.27)

⟨sYk,n��a�sYj,m⟩ =ℏP�
SP

sYk,n

�
(ðpa)(ð�sYj,m) − (ð�pa)(ðsYj,m) + s

pa

P2 s
Yj,m

�
dSP =

=ℏP�
SP

�
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+ sYk,npa
�ð�ðsYj,m − ðð�sYj,m� + s

pa

P2 s
Yk,n sYj,m

�
dSP =

=
ℏ

2P
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−
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�
.

(A.28)
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2
ℏP2

�√
(j + m)(j − m + 1)�n,m−1+

+
√
(j − m)(j + m + 1)�n,m+1

�
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(A.29)
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ℏP2

�√
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−
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�
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