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Abstract

The spin geometry theorem of Penrose is extended from SU(2) to E(3) (Euclidean)
invariant elementary quantum mechanical systems. Using the natural decomposition
of the total angular momentum into its spin and orbital parts, the distance between
the centre-of-mass lines of the elementary subsystems of a classical composite sys-
tem can be recovered from their relative orbital angular momenta by E(3)-invariant
classical observables. Motivated by this observation, an expression for the ‘empiri-
cal distance’ between the elementary subsystems of a composite quantum mechani-
cal system, given in terms of E(3)-invariant quantum observables, is suggested. It is
shown that, in the classical limit, this expression reproduces the a priori Euclidean
distance between the subsystems, though at the quantum level it has a discrete char-
acter. ‘Empirical’ angles and 3-volume elements are also considered.

Keywords Spin networks - Spin-Geometry Theorem - Quantum geometry -
Empirical distance

1 Introduction

In 1966, Penrose suggested the so-called SU(2) spin network as a simple model for
a quantum spacetime (which was published much later only in [1], see also [2, 3,
4]). In this model, angles between elementary quantum mechanical subsystems of
the Universe were expressed in terms of SU(2) Casimir invariants, and, using com-
binatorial/graphical techniques, he showed that, in the classical limit, these angles
tend to angles between directions in the Euclidean 3-space. The significance of this
result is that the (conformal structure of the) ‘physical 3-space’ that we use as an
a priori given ‘arena’ in which the physical objects are thought to be arranged and
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the interactions between them occur is determined by the quantum physical systems
themselves in the classical limit. Later, this result was derived in [5] (and recently
in [6]) in the usual framework of quantum mechanics; and, following [5], it became
known as the Spin Geometry Theorem.

In [5], Moussouris investigated the structure of networks with other symmetry
groups, in particular with the Poincaré group, and derived relations between various
observables of such systems. However, as far as we know, recovering the distance,
i.e. the metric (rather than only the conformal structure of the Euclidean 3-space/
Minkowski vector space) from these models is still lacking.

According to the traditional view, the distance in a metric space is associated
with a pair of points. Thus, the points are usually considered to be the primary
concept. Nevertheless, from a positivistic, or rather a Machian view, the position
in physical 3-space/spacetime in itself is meaningless, and it seems reasonable to
speak only about relative positions of different elementary subsystems of the Uni-
verse. This view might suggest to consider the distance, or, in general the relations
between points, to be more fundamental than the points; and that the points them-
selves should be defined by these relations.

In classical general relativity the spacetime geometry, and, in particular, the dis-
tance between the spacetime points, is determined by standard clocks, light rays and
mirrors. However, at the fundamental level no such instruments exist and, also, the
light rays are formed by infinitely many photons in special configurations. Thus,
the instrumentalist approach of defining the spacetime and its properties, using e.g.
some form of ‘quantum clocks’ (see e.g. [7]) at the fundamental level, does not seem
to work.

The philosophy of the present investigations is the positivistic, Machian one of
[1, 2, 3, 4] (that we also adopted in [6]), even from two points of view: first, no a
priori notion of ‘physical 3-space’ or ‘spacetime’ is used. These notions should be
defined in an operational way using only existing (material) quantum subsystems of
the Universe. Second, we speak about angle and distance only between two (elemen-
tary) subsystems of the Universe, without introducing ‘directions’ and ‘points’ at all,
e.g. in the form of some ‘position operator’. (For a well readable summary of the
approaches based on the position operators, see [8].)

A potentially viable mathematical realization of such a program could be based
on the use of the algebra of (basic) quantum observables in the algebraic formula-
tion of quantum theory. We consider the quantum system to be specified completely
if its algebra of (basic) quantum observables (and, if needed, its representation, too)
is given. We think that the notion of space(time) and all of its properties should be
defined in terms of the observables of elementary systems. Roughly speaking, an
elementary quantum system is a system whose observables are the self-adjoint ele-
ments of the universal enveloping algebra of some ‘small’ Lie algebra, mostly of the
symmetry group acting on the system, and the states of the system belong to the car-
rier space of some of its unitary, irreducible representations. From our point of view,
su(2) and the Lie algebras e(3) and e(1, 3) of the Euclidean and the Poincaré group,
E(3) and E(1, 3), respectively, are particularly interesting. (This general idea of the
‘G-invariant elementary quantum mechanical systems’ is motivated by that of the
Poincaré invariant systems of Newton and Wigner [9].) The observables belonging
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to this ‘small’ Lie algebra will be called the basic observables. All the structures
on the algebra of observables may be used in the construction, but additional extra
structures may not. In particular, in the present investigations we use only the gen-
eral kinematical framework of quantum mechanics, but e.g. no evolution equation
for the quantum states.

The above strategy yields apparently paradoxical results: we have well defined
distance between ‘points’ (or rather straight lines, as we will see) that are not defined
at all in the quantum theory, just like the angles between ‘directions’ that are not
defined either. The ‘true’ geometry of the physical 3-space/spacetime should ulti-
mately be synthesized from the ‘empirical’ distances, angles, etc. introduced via the
quantum observables.

As a first step in this strategy, in [6] we gave a simple proof of (a version of) the
Spin Geometry Theorem by showing how the conformal structure of the Euclid-
ean 3-space can be recovered in this algebraic framework from the basic quan-
tum observables of SU(2)-invariant systems. The present paper provides one more
step: we extend the Spin Geometry Theorem to recover the metric of the Euclidean
3-space by extending the symmetry group from SU(2) to the quantum mechanical
Euclidean group E(3). Here, by quantum mechanical Euclidean group we mean the
semi-direct product of SU(2) and the group of translations in the Euclidean 3-space,
rather than the classical E(3), which is the semi-direct product of SO(3) and the
group of translations.

Technically, the key idea is that the spin part of the total angular momentum of
a composite system is built from the spin of the constituent subsystems and their
relative orbital angular momentum; and the latter, in the traditional formulation,
contains information on the distance between the subsystems. (In fact, already in
the last but one sentence of [1], Penrose raised this possibility in Poincaré-invariant
systems.) This idea can in fact be used to define the distance between the elementary
Poincaré-invariant quantum mechanical systems as well. However, since the latter
is technically different and considerably more complicated, results of those inves-
tigations will be published separately. This distance, expressed by E(3)-invariant
classical observables of the composite system, is our key notion, and is called the
empirical distance. The analogous notion in the quantum theory, defined exclusively
in terms of the E(3)-invariant basic quantum observables, is motivated by this clas-
sical expression.

The main result of the present paper is that although in quantum theory this
empirical distance has some discrete and highly non-Euclidean character, but in the
classical limit it reproduces the a priori Euclidean distance between the classical
centre-of-mass lines of point particles, i.e. of the straight lines in R3. This can be
considered to be an extension of Penrose’s Spin Geometry Theorem from SU(2) to
E(3)-invariant systems. Therefore, the metric structure of the Euclidean 3-space can
be recovered from the quantum theory in the classical limit. Note, however, that in
the present approach it is the straight lines rather than the points that emerged as the
elementary objects in R3. This feature of the present approach is analogous to that
of twistor theory [10, 11, 12], where, classically, the elementary objects are the (in
general twisting) null lines in Minkowski spacetime with given vorticity or ‘twist’.
The quantity here that is analogous to twist is the spin of the elementary systems.

@ Springer



102 Page4of 34 Foundations of Physics (2022) 52:102

Also, at the quantum level, E(3)-invariant ‘empirical angles’ and ‘empirical 3-vol-
ume elements’ are suggested, and it is shown that they reproduce the angles and
3-volume elements in R? in the classical limit.

In the next section we show how the distance of the centre-of-mass lines of E(3)-
invariant elementary classical mechanical systems can be expressed by their E(3)-
invariant classical observables. This expression will provide the basis of our empiri-
cal distance in the quantum theory. In Sect. 3, we define E(3)-invariant elementary
quantum mechanical systems and summarize their key properties. In particular, we
determine their centre-of-mass states, which are the closest analogs of those of the
classical systems, which turn out to be given just by the spin weighted spherical
harmonics. Section 4 is devoted to the calculation of the empirical distance, angles
and 3-volume elements. We clarify their classical limit there. Some final remarks are
given in Sect. 5. The paper is concluded with appendices, in which certain technical
details that we used in the main part of the paper are presented.

In deriving the results we use complex techniques developed in general relativity.
The related ideas, notations and conventions are mostly those of [10, 13], except that
the signature of the spatial 3-metric is positive, rather than negative definite. We do
not use abstract indices.

2 E(3)-Invariant Classical Systems
2.1 The Definition of the Elementary Systems

A physical system will be called an E(3)-invariant elementary classical mechanical
system if its states can be characterized completely by its linear momentum p“ and
angular momentum J® a,b,..=1,2,3; under the action of SO(3), they transform
as a vector and anti-symmetric tensor, respectively, and, under the translation by
ia c R3, as (pa’Jab) — (ﬁa’jab) ‘= (pa’Jab + éa b _ ibpa). Then

1
P2 = 6,00, W= S0 e Q.1)

are invariant with respect to these transformations. Here €, is the Levi-Civita alter-
nating symbol, and ¢, is the Kronecker delta. The space of the linear and angular
momenta, endowed with the Lie products

p.p"r =0, {pJ"} =6"p = 5p”, (2.2)

{]ab’ch} — 5b€]dd _ 5bdjac + 5ad]bc _ 5aCde (23)

form the Lie algebra e(3) of E(3). Then P> and W have vanishing Lie bracket both
with p®and J, i.e. they are Casimir invariants. Lowering and raising the Latin indi-
ces will be defined by 6,, and its inverse, respectively.!

! Strictly speaking, the abstract Lie algebra e(3) is the semi-direct sum of a 3-dimensional commuta-
tive ideal and so(3) = su(2); and the linear and angular momenta belong to the dual space of these sub-
Lie algebras. Hence, the natural positive definite metric 6,, on the commutative ideal (coming from the

@ Springer



Foundations of Physics (2022) 52:102 Page50f34 102

If p =0, then P = 0 and W = 0. In this degenerate case the subsequent strategy
to recover the metric structure of R in terms of the basic observables does not seem
to work. Thus, in the present paper, we consider only the p* # O case.

Next we form M4 = J“bpb, for which it follows that M _p“ = 0, and the identity

P = e p W+ Mp” — M"p* (2.4)

holds. Since the first term on the right of (2.4) is translation invariant while
M — M* = M* + (P252’ — ppy)EP, this identity is usually interpreted as the
decomposition of the angular momentum to its spin (or rather helicity) and orbital
parts, and M® as (P2-times) the centre-of-mass vector of the system. Note that
5, — PPy /P? is the projection to the 2-plane orthogonal to p®. Thus one can always
find a 1-parameter family of translations, viz. &* = —M“/P? + up®, u € R, which
yields vanishing centre-of-mass vector, M* = 0. The resulting total angular momen-
tum is J% = g%“p W/P?, which is just the piece of the angular momentum that
the Casimir invariant W represents. Thus the straight line ¢*(u) := M“/P? + up® is
interpreted as the trajectory of the centre-of-mass point of the system, and will be
called the system’s centre-of-mass line. For the sake of brevity, we call an elemen-
tary system with given P and W a single particle.

Since M, p® = 0, the set of the pairs (p®, M,) is the cotangent bundle 7*S; of the
2-sphere S, := {p® € R3| P? := p“p?5,, = const} of radius P in the momentum
space. Clearly, those and only those pairs (p*, M) can be transformed to one another
by an Euclidean transformation whose Casimir invariants P and W are the same. In
particular, (p®, M,) can always be transformed into (p¢, 0) by an appropriate transla-
tion. This single particle state space, T*Sp, is homeomorphic to the manifold of the
directed straight lines in R3: a line L is fixed if its direction and any of its points are
specified. Now, the direction of L is fixed by the unit vector p*/P, while for a point
of L we choose the point where L intersects the 2-plane containing the origin of
R3 and orthogonal to p®/P. This latter is given by M¢/P?. The scale on these lines
is fixed by P. W is an additional structure on L: it fixes the component of the total
angular momentum vector %5‘”’0] b in the direction p®/P.

2.2 The Empirical Distance of Two Particles

The aim of the present subsection is to express the distance between any two straight
lines of the Euclidean 3-space, considered to be the centre-of-mass lines of elemen-
tary classical systems, by E(3)-invariant classical observables.

Footnote 1 (continued)

Killing—Cartan metric on so(3) via the SU(2) group action on it) yields the metric 6,, on the classical
momentum space and the whole tensor algebra over this space. Also, the natural volume 3-form €, on
the momentum 3-space comes from the natural volume 3-form on the ideal. The transformation proper-
ties of the linear and angular momenta follow from the E(3) multiplication laws. Although, formally,
the dual e(3)* of e(3) is not Lie algebra, but it has a natural (linear) Poisson manifold structure with the
bracket operation (2.2)—(2.3). With this structure e(3)* is isomorphic with the Lie algebra e(3). Thus, all
these algebraic/geometric structures are manifestations of those on the abstract Lie algebra e(3).
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Let (pf,Ji"”), i= 1,2, characterize two elementary classical mechanical sys-
tems, and let us form their formal union with the linear and angular momenta
p* i=pt+pland J? :=J% + J5, respectively. Then P? and W for the composite
system are defined in terms of p® and J% according to the general rules (2.1).
Since the Lie algebra of the basic observables of the composite system is the
direct sum of the Lie algebras of those of the constituent subsystems, it is easy to
check that p® and J satisfy the commutation relations (2.2)—(2.3), i.e. generate
the Lie algebra e(3); and that P2, P%, P and also W, W,, W, are all commuting with
p* and J. Hence, P}, := 5abp‘fp§ (P2 —P)and Wy, :=W—-W, - W,
are also commuting with p® and J*°. It 1s s P, and W, (and their quantum mechan-
ical version) that play fundamental role in the subsequent analysis.

Since PP, # 0, by (2.1) and (2.4) we obtain

2 2 a a

1 1 P, Py, My M :

Wi, = szb%bcpé + Efé’b%bcpl Wi— = Wzﬁ + (ﬁ - E)%bcplfpé
1 2 1 2

2.5)

Since our aim is to express Mf/P% - Mg/P% from (2.5), for a moment we
assume that the linear momenta of the constituent systems are linearly independ-
ent. This requirement is equivalent to the condition P2P2 > P4 In this case, the
last term on the right in (2.5) is not zero, and then thlS equatlon can be solved for
Mf/P% - Mg/P%. This solution is

2 2
M(ll M;——l (W WP12 WPlz)e pp +u p§ + uyph
2 52 T o2 4 127 "1/ T "2 bel 1F2 1 2
P Py PP -P Py Pz

(2.6)
for arbitrary u,, u, € R. Although its components in the 2-plane spanned by p{ and
p5 are ambiguous, its component in the direction orthogonal to both p{ and pS,

-Wi— P2 - WZP_g

P2 - P 2p2 _ 2p2 _ ph
\/P P2 \/Ple - P

) (M” M3 abcP'fPZ B 1 < P, sz)
12

@7
is well defined. Similarly, although under a translation M{ /P2 M /P2 changes as
(M¢/P? — M&/P%) — (M®/P* — M3 /P2) — (pip?/P? — pzpz/Pz)éb, its component
in the direction orthogonal both to p{ and p is invariant. Therefore, the vector df,
defined by the right hand side of (2.6) with u; = u, = 0 is uniquely determined, it
is orthogonal both to p{ and pj and points from a uniquely determined point v,
of the straight line ¢5(u) := g5 + upj, u € R, to a uniquely determined point v;, of
the straight line g{(u) := g{ + up{, u € R. Its physical dimension is length, and it is
invariant with respect to the P, — aP,, P, = pP, rescalings for any a, § > 0. Thus
di, is the relative position vector of the first subsystem with respect to the second;
and d,, is the (signed) distance between the centre-of-mass lines of the two constitu-
ent, elementary subsystems. In particular, d;, = 0 holds precisely when the two cen-
tre-of-mass lines intersect each other. This can always be achieved by an appropriate
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translation of one of the two subsystems, and hence df, can always be characterized
by such a translation.

If p{ and pf are parallel, then, as we are going to show, the distance of the two corre-
sponding centre-of-mass lines that do not coincide can be recovered as the limit of the
distances between centre-of-mass lines with non-parallel tangents, i.e. as a limit of clas-
sical observables above. Since both the numerator and the denominator in (2.7) are van-
ishing if p and p7 are parallel, we should check that these tend to zero in the same order
and that their quotient is finite and well defined. Since the two centre-of-mass lines are
parallel but do not coincide, they lay in a 2-plane, and the vector M{/ Pf -M5/ Pg is
non-zero, tangent to this 2-plane and is orthogonal to p{ (and hence to pj, t0o). Thus,
there is a unit vector w* which is orthogonal both to p¢ and M{/P% — M§/P5. Then
let us consider the 1-parameter family of momenta pf(a) := P,(cos a v* + sina w*),
where v¢ 1= p{ /P, = p}/P,. Inthe a — 0limit, pf(a) — pj. A straightforward calcu-
latilon gives that P2P2(a) — P4, (a) = P2P%sin’ a, &9, p"pS(a) = P P,e, vPwe sina
an

P2 P2
W@ - w222 ) uia) -
1 P2

1

_ ab c ab c ab C oo :
= E(Jl EqpeW Py — J5 €, WP COS @ + J57€ ), D) s1na> sina.

Hence, the @ — 0 limit of d{,(a) for the centre-of-mass lines with the tangents p{
and pg(a) is, indeed, the well defined finite value

de de d d
1 —Jl P2 Ple w e, VPue = Ai - Aﬁ €, vW €9, vPwe
2 P1P2 def be P% P; def bc
Hence, the distance d,, is also well defined and finite. In this case, however, the
points analogous to v,, and v,; above are undetermined.
To summarize: we found an alternative expression |d;;| for the Euclidean distance,

Dy = inf{ /5,6 ) - g @ @) - ) Ly R}, (2.8)

between the centre-of-mass straight lines of any two elementary classical systems in
terms of E(3)-invariant basic observables of the composite system. Since the latter
is given by the observables of the composite system, we call d;; the ‘empirical dis-
tance’ between the two subsystems. However, if we know the distance between any
two straight lines in R3, then we can determine the Euclidean distance function, too.
Hence, our empirical distance determines the metric structure of R3. We will see
that the analogous empirical distance in quantum theory deviates from the a priori

Euclidean distance D;;, but in the classical limit the former reproduces the latter.
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2.3 Empirical Angles and Volume Elements

In [6], we considered SO(3)-invariant elementary classical systems in which the
only basic observable was the angular momentum vector J%; and we introduced an
empirical angle between the angular momenta of two subsystems in a well defined
and SO(3)-invariant way. However, in the present case the symmetry group is the
Euclidean group E(3), and although the analogously defined empirical angles would
still be SO(3)-invariant, but they would not be invariant under translations. Thus,
in E(3)-invariant classical systems, the empirical angles between the subsystems
should be defined in terms of quantities that are invariant under translations and
covariant under rotations.

The primary candidate for such quantities is the linear momentum. Thus we
define the ‘empirical angle’ @, between p{ and pj according to

SuliPh
coswy, 1= “;’; 2 2.9)
142

with range @, € [0, z]. This angle is clearly E(3)-invariant, and if e.g. p{/P, can be
obtained from pf/P, by a rotation with angle f,, in the 2-plane spanned by p{ and
PS5, then w,, = f,. Thus w;, reproduces the angles of the a priori Euclidean geom-
etry of R3 (see also [6]). However, as we will see, they split in the quantum theory,
and they coincide only in the classical limit.

The natural volume 3-form €, on the space of the translation generators in e(3)
makes it possible to introduce the ‘empirical 3-volume element’ by the 3-volume of
the tetrahedron spanned by three linear momenta, p‘l‘, pg and pg‘, of a three-particle
system by

I 212425

= =g, —. 2.10
V123 3!5abL P,P,P, ( )

Just in the case of empirical angles, in quantum theory the corresponding empirical
3-volume element and the 3-volume element of the a priori Euclidean geometry of
R3 do not coincide. They do only in the classical limit (see also [6]). In Sect. 5 we
raise the possibility of another notion of empirical angles and 3-volume elements,
based on the relative position vectors di“j of three-particle systems, rather than the

linear momenta.

3 E(3)-Invariant Elementary Quantum Mechanical Systems
3.1 The Definition and the Basic Properties of the Elementary systems
Adapting the idea of Poincaré-invariant elementary quantum mechanical systems

of Newton and Wigner [9] to the present case, a Euclidean-invariant elementary
quantum mechanical system will be defined to be a system whose states belong
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to the carrier space of some unitary, irreducible representation of the (quantum
mechanical) Euclidean group E(3); and, in this representation, the momentum and
angular momentum tensor operators, p* and J*, are the self-adjoint generators of
the translations and rotations, respectively. These representations are labelled by
a fixed value P> > 0 and w, respectively, of the two Casimir operators

1
P? = 6,0, W= e, 7P 3.0

Thus, the quantum mechanical operators will be denoted by boldface letters.
Clearly, in the states belonging to such representations, the energy E? = P? + m?
or E = P?/2m of the relativistic or non-relativistic systems of rest mass m, respec-
tively, has a definite value. The commutators of p* and J°¢ are

[pa’pb] =0, [pa’ch] — —ifl(&acpd _ (Sadpc), (32)

[Jab,JCd] — _ih<5bCJad _ 6deaC + 5(1de€ _ 5(10de); (3.3)

which are just the Lie brackets (2.2)-(2.3) with the p¢ — p¢ and J?  (i/R)J?
substitution.
Nevertheless,

Ma = Jahpb
is not self-adjoint, because
M =p’J, =M, +[p’J,] = M, + 2inp,.

Thus we form C, := %(Ma + MZ) =M, + ihp,, which is, by definition, the self-
adjoint part of M, and we consider this to be the centre-of-mass operator. The com-
mutators of these operators can be derived from those for p® and J* above:

[p,,C,]1 = —in(5,P* —p,p,). [C,, C,]=—inP?J,,. 34
As a consequence of the definitions,
PzJab = Capb - Cbpa + 6abcpcw’ (3.5)

i.e. the analog of (2.4) holds for the operators, too.

The unitary, irreducible representations of the quantum mechanical Euclidean
group has been determined in various different forms (see e.g. [14—17]). The form
that we use in the present paper is given in the appendices of [18, 19], and is based
on the use of the complex line bundles O(—2s) over the 2-sphere S, of radius P in
the classical momentum 3-space, where 2s € Z. Here O(—2s) is the bundle of spin
weighted scalars on S, with spin weight s (see e.g. [10]). The wave functions of the
quantum system are square integrable cross sections ¢ of O(—2s), and the Hilbert
space of these cross sections will be denoted by Hp , or simply by H. Thus, Sp is
analogous to the mass shell of the Poincaré invariant systems (see e.g. [20]). The
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radius P is fixed by the Casimir operator P?. The spin weight s of ¢ is linked to the
value of the other Casimir operator, W, in the irreducible representation: w = APs.
The SU(2) part of E(3) acts on Sp as p® = R%,p’, where R, is the rotation

matrix determined by U, € SU(2) via R%, := —04,, U, U* 655 Here 624 are

the three non-trivial SL(2, C) Pauli matrices (including the factobr 1/ \/E), accord-
ing to the conventions of [13]. Raising/lowering of the unprimed and primed
spinor name indices, A, B and A’, B', are defined by the spinor metric €, and its
complex conjugate, respectively. Then the action of SU(2) on the spin weighted
function ¢ is ¢(p¢) — exp(—2isA)P((R~1)¢ p¢); while that of the translation by & is
simply? ¢(p®) — exp(—ip,&?/h)p(p®). Here, exp(id) is just the phase that appears
in the action, 74 ~ exp(id)z*, of SU(2) on the spinor constituent z* of p® (see [18,
19]). This representation of E(3) is analogous to that of the (quantum mechanical)
Poincaré group on the L,-space of spinor fields on the mass shell [20].

The spin weighted spherical harmonics Y, with spin weight s and indices
j=Isl.Is|+1,..., m=—j,—j+1,...,j are known to form an orthonormal basis in
the space of the square integrable cross sections of O(—2s) on the unit 2-sphere (see
[13, 21]). Hence, the space that the functions Y}, on S span is precisely the carrier
space of the unitary, irreducible representation of E(3) labelled by the Casimir invar-
iants P > 0 and w = APs, in which /P form an orthonormal basis with respect
to the natural L, scalar product.

In this representation, the action of p,and J, := %euch"C on ¢ is

s ij

p.% =p,P, (3.6)

1= Ph(maa/qﬁ - n‘1a6¢> + sh’%qb, 3.7)

where m” and m“ are the complex null tangents of Sp and normalized by m, m* = 1,
and 3 and & are the edth operators of Newman and Penrose [21]. The explicit form
of the vectors p“, m® and m” as well as the operators d and &’ in the complex ste-
reographic coordinates (£, ) on Sp is given in Appendix A.l. The first two terms
together on the right of (3.7) give the orbital part of the angular momentum opera-
tor, denoted by L, while the third its spin part. Since the spin weighted harmonics
form a basis in Hp ;, the basic observables p, and J, can also be given by their action
on these harmonics, too. Their matrix elements are calculated in Appendix A.2.

p? and J¢ are known to be SO(3) vector operators. Thus, if the unitary operator U
represents U ; € SU(2) on Hp, then

U'p*U =R%p", U JU=R"J. (3.8)

If ¢ = exp(—ip,&?/h) z, then by (3.6) and (3.7)

Pl = eXP(—%peée)p“;(, Jp= eXP(—%Pefe) (J“;{ + e”,,cé”p”;(). (3.9)

2 In [19] we defined the translation by multiplication by the phase factor exp(ip,&?/h). Here, to be com-
patible with the standard sign convention, we changed the sign in the exponent to its opposite.
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Hence, for ¢ = exp(—ip,&*/n)Uy,

(BIp*1d) = R, (wIp"lw),  (BlJld) = R, (w|Illw) + €, E°R ((w p?|w).
(3.10)

These are just the transformation laws of the classical basic observables under the
action of the classical E(3).

Finally, it is straightforward to derive the explicit form of the centre-of-mass
operator:

Cip = ih(sz“(’i’q’) + P2 — p“(}b). (.11

This is also an SO(3) vector operator. A detailed discussion of the line bundle
O(-2s) and the derivation of these equations are also given in the appendices of [18,
19].

3.2 The Centre-of-Mass States

In this subsection we show that the spin weighted spherical harmonics form a distin-
guished basis among the orthonormal bases in Hp  in the sense that they are adapted
in a natural way to the basis in the abstract Lie algebra e(3) of the basic quantum
observables (but not to a Cartesian frame in the ‘physical 3-space’). In particular, they
are just the eigenfunctions of the square of the centre-of-mass vector operator, C,C¢,
they are the critical points of the functional ¢ — (¢|C,C?|¢), and the expectation
value of the centre-of-mass vector operator in these states is zero. We will calculate
the expectation value of our empirical distance and angle in the states that are obtained
from these special ones by some E(3) transformation.

Using (3.11) and dp® = m“ (see Appendix A.1), by integration by parts it is straight-
forward to form the centre-of-mass-square operator C,C“. It is

C,C'¢ = WP (=P>(00 +3/0) b+ ¢ ). (3.12)

Since the operators C, are self-adjoint, C,C” is a positive self-adjoint operator.
Similar calculations yield the square of the total and the orbital angular momentum
operators:

1,4 = 12(=P*(00 +90)¢ +5¢),  LL'¢ = —P*h* (3 +30).

Thus C,C¢, J,J* and L L deviate from one another only by a constant times the
identity operator, and hence, in particular, their spectral properties are the same.
Note also that (88’ + 0'9) is just the metric Laplace operator on Sp.

First we show that the critical points of the functional ¢ = (¢p|C,C?|¢) on H  are
just the combinations of the form ¢ = " " Y, of spin weighted spherical harmonics
s¥;m with given j. Using (¢|¢) = 1, by integration by parts (3.12) gives
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(@lc,Cle) = n2pP?(P? / (0F)D'$) + (@ F)O$))dS, +1).

S

The critical points of this functional with respect to the variations ¢ constrained
by (¢|¢) = 1 are just the critical points of the functional (¢|C,C*|¢) + Ah*P*{p|¢p)
with respect to unconstrained variations, where A is some real Lagrange multiplier.
The vanishing of the variation of the latter functional yields

(00" +0'0)¢p = Adp. (3.13)

Thus A must be an eigenvalue of the Laplace operator 33" + &'3 acting on spin weight
s functions on Sp, and then the critical configurations are given by the corresponding
eigenfunctions. These can be determined by expanding ¢ as ¢ = ijm cijij with
complex constants ¢, where j = |s|,|s| + 1,|s] +2,...and m = —j,—j + 1, ...,j; and
using the general formulae (A.7) how the operators d and &’ act on (¥;,. Substitut-
ing all these into (3.13), we find that A = —P~2(j> +j — s). Hence, 4 is linked to j,
and the corresponding eigenfunctions have the form ¢ = 3, ¢ Y. These eigen-
functions are the critical points of the functional (¢|C,C*|¢), and the corresponding

critical values are
(PIC,Cp)y = P> (14 +j—5") 2 P (1 +s]). (3.14)

The smallest of these corresponds to j=|s|, and the corresponding eigen-
function is ¢ =Y " ¥ ,, which is holomorphic if s=—|s|, and it is anti-
holomorphic if s =|s| (see Appendix A.l). Forming the second variation of
(p|C,C\p) + AR>P*{p|¢p) at the critical points, one can see that the only minimum
does, in fact, correspond to j = |s|, and all the other critical points are only inflec-
tion. Thus the right hand side of (3.14) is the sharp strictly positive lower bound for
the expectation values of C,C“.

This analysis shows also that the spectrum of all the operators C,C¢, J,J¢ and
L, L4 is discrete (as it must be since 83’ + &' is an elliptic differential operator act-
ing on cross sections of a vector bundle over a compact manifold), their eigenvalues,
respectively, are

PR+ +j—sb, Rji+1), RG*+j-s7);

and the corresponding common eigenfunctions are of the form ) ¢”Y;,. These
imply, in particular, that the expectation value of any of these operators is not zero
for s # 0.

By integration by parts and using how the edth operators act on p,, m, and im,, we

can write

(pIC,| ) =ihP2/ $(m, ' ¢+ m,0¢ + ¢ 0m,)dS, =

Sp

=ih P2/$ (¢m,d'¢— pin,0¢)dS, = in P2/ Pa(¢3'dp — Y $)dSp.

, S
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Since ¢=3, c"Y,, for some given j, by (A7) we have that
P33 p) = —(j + 5)(j — s + 1)pp/2P2. Using this and its complex conjugate, finally
we obtain

(¢IC,l¢) = 0. (3.15)

Thus, the 2j + 1 dimensional subspaces in Hp; spanned by the harmonics (Y, with
given j are specified e.g. by C,C“ (or, equivalently by J J* or by L L) in a natural
way, while the basis in these subspaces, the index m is referring to, is linked to our
choice for the basis in the sub-Lie algebra su(2) C e(3).

To summarize, {,Y},,/P} is not only one of the many L,-orthonormal bases in
Hp but it is adapted in a natural way to the centre-of-mass operator, too. Although
the expectation value of C, is zero in any eigenstate of C,C, the expectation value
of C,C? can never be zero, even if s = 0. Its smallest expectation value, which is its
smallest eigenvalue, cannot be made zero e.g. by any translation (in contrast to the
classical case). It corresponds to j=|s|, and the corresponding eigenfunctions,
b=, " Y s> are holomorphic it s = —|s|, and anti-holomorphic if s = |s|. We call
these states the centre-of-mass states. These form a 2|s| + 1 dimensional subspace in
Hp,;» and these are the states of the E(3)-invariant elementary quantum mechanical sys-
tems that are the closest analogs of the states of the classical systems with vanishing
centre-of-mass vector.

4 The Two-Particle System
4.1 The Quantum Observables of Two-Particle Systems

Let us consider two E(3)-invariant elementary quantum mechanical systems, whose
basic quantum observables are pf and J;’b, i=1,2. These observables are self-
adjoint operators on H;. The corresponding Casimir operators are denoted by Pi2
and W;. The Hilbert space of the joint system is H; ® H,, and we can form the
operators O; ® L, I, ® O, : H, ® H, » H, ® H, for any O; : H; — H;, where
are the identity operators on the respective Hilbert spaces H;. Clearly, O; ® I, and
I, ® O, are commuting. In particular, P2 @ I,, W, @ L, I, ® P} and I, @ W, are
Casimir operators of the composite system.
Analogously to (3.1), we form

P2 =6, ®L+1,®p;) () ®L +1, ®p)) =

4.1
=PI ®L+1, ®P; +25,p] ® P, o
1 a a c c
W = Egabc(Jlb L+ ®J)(Pi®L+1, ®p;) =
4.2)

1 C a a C
=W, L+, ®W, + §~ea,}c(p1 R J¥ +J @ ps).
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Although W does not commute with any of p¢ ® I, I, @ p, J¥ @ L, and I, ® J%,
the observables of the subsystems in the algebra of observables of the composite
system, and P2 does not commute with J* @ I, and I; ® J%, but both W and P2
do commute with p? ® I, + I, ® p$ and J“” QL+ ® Jg”, i.e. with the linear and
angular momentum operators of the composite system. Therefore, though P? and
W are not Casimir operators of the composite system, they are commuting with
the generators of the symmetry group E(3), i.e. they are E(3)-invariant. Moreover,
[PZ, W] = 0 also holds. Hence,
1

Pl = > (Pz -Pi®L-L,® P%) = 5,,P ® P}, 4.3)

W, =W-W, L -1,®W, = 3 abc(pl IP+IP®p) (4.4

are also E(3)-invariant and [P 12,le] 0 holds. These operators characterize the
relationship between the two subsystems in the composite system, and hence they
will have particular significance for us.

Using the definitions above and the first of (3.4), the identity (3.5) yields

(PT@P) Wy, = £ (B) ®P3) (C] @ P —PI @ C3) + P, (PI@ W, + W, @ P)).
4.5)
Let the two subsystems be elementary, characterized by the Casimir invariants

(Py,s,) and (P,, 5,), respectively. Then by (3.6) P%Z is a multiplication operator on
'H, ® H,, and hence, for any ¢p; ® ¢, € H; ® H,, (4.5) gives

boc C G 51, S22
eabcplpz(P_% L-1;® P_§> b ® ¢, = (le - h(Fl + Fz)Pu)d)l ® ¢,.
(4.6)
This is analogous to the classical equation (2.5), and the operators on both sides are
E(3)-invariant. Nevertheless, their physical dimension is momentum times angular

momentum, rather than length. Thus, just as in the classical case (and motivated by
2.7)), we should consider the component of C¢ @ 1,/P} — 1, ® C3/P; in the direc-
tion €* bcpl DS

This is just (4.6) divided by \/ P3P3 — (5,,p°p5)?, the length of £, pipS, and we
could consider the operator

b.c
eabcp]pQ

VPP - Gl

a 1 a
Lo, - t ®Cy). “7)
2

2 Py

This is a well defined, self-adjoint and E(3)-invariant operator, which is analogous
to the classical expression (2.7). However, in contrast to the classical case, the coef-
ficient under the square root sign in the denominator is not constant. Hence it could
be difficult to use this expression e.g. in the calculation of the expectation values. To
cure this difficulty, using
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<g§ 1 )my_1§§m2k—1_i}-28-$"Qk—D-Q@__J_@b!
b /222

2 T 2k 2.4 (2k) 2% k)
for the Taylor expansion of 1/4/P2P% — (8,,p%p2)? we obtain

1 1

— " PP
VPP = Gupip? T

RRCDIp ﬁﬁyk
22 (k)2 ﬂbp1 P, 4.8)

Mg

k=0

Using this and recalling that sz is a multiplication operator, the above candidate
for the ‘distance operator’ becomes an expression of the positive powers of W,
and P%Z. Nevertheless, now the infinite series makes the application of the resulting
expression difficult in practice. Thus, although in principle this might yield a well
defined operator for the distance of the two subsystems, and certainly it would be
worth studying this, in the present paper we choose a different strategy and look for
only the ‘empirical distance’. This is the one that we followed in [6] in defining the
angle between the angular momentum vectors of SU(2)-invariant elementary quan-
tum mechanical systems.

4.2 The Empirical Distance

Based on equation (4.6) and the discussion above, we define the empirical distance
of the two E(3)-invariant elementary quantum mechanical systems (characterized by
their Casimir invariants (P, s;) and (P,, 5,)) in their states ¢, and ¢,, respectively, by

(61 ® by|Wyy — (s, /Py +5,/P,) P, 1) ® )

djp 1=
VPP~ (9, ® 1P 10, ® )

4.9)

d;; can, in fact, be defined in any state of the composite system consisting of any
number of elementary systems, i,j =1,---,N, represented by a general density
operator p : Hp Q@ -+ @ Hp . — Hp ; Q-+ @ Hp ., not only in pure tensor
product states of a bipartite system. However, if the density operator represents a
pure vector state which is an entangled state of the constituent systems, or if it is a
genuine mixed state of the composite system, then the state of the constituent sys-
tems would necessarily be mixed; moreover the empirical distance d;; would depend
on the state of the subsystems other than the i’s and the j’s. Hence, in these cases
the interpretation of d;; would not be obvious. Therefore, in the present paper, we
assume that the states of the composite system are tensor products of pure vector
states of the constituent systems; and hence, without loss of generality, the compos-
ite system could be assumed to consist only of two subsystems.

In this subsection, we calculate d,, using (4.9) and discuss its properties at the
genuine quantum level. The classical limit will be considered in subsection 4.4.

Let us write ¢ = exp(=ip;,&{/M)U,y;, where U, is the unitary operator on
HPI 5 representing an SU(2) matrix U? p and &7 is a translation. Or, in other words,
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¢, is considered to be obtained from the state y, by some E(3) transformation.
The state ¢, is assumed to have the analogous form. Then by (4.4), (3.8) and
(3.10) the first term in the numerator in (4.9) is

(D1 @ D2 lWialdh ® dy) = (&) — &) € (R)) o {w 1D w1 YR, (w2 |DS lwy )+

+ Ry R, (w019 Y 1T212) + (o WL sl 1w )-
(4.10)

In a similar way, the relevant factor in the second term of the numerator and the non-
trivial term in the denominator, respectively, are

(¢ ® ¢2|P%2|¢1 ® ¢,) = (Rl_le)ab<ll/1|P?|‘I’1><W2|pg|ll/2>§ “4.11)

(B ® D |PL1d; ® dy) = (R Ry) 1 (RY Ryt |P4PS lwry ) (w [ PSS W)
4.12)

Thus, it is only &} — &7, i.e. only the relative ‘position’ of the two systems, that mat-
ters in the empirical distance. We will see that, in a similar way, it is only the rela-
tive ‘orientation’ of the two subsystems that matters. Next we specify the states y,
and y,.

Ify = /P, then by (A.19), (A.22), (A.25) and (A.28)-(A.30)

s/m

(wp“lw) = o5P (w|Jw) = 65hm.

(1 T 1) : (4.13)
Thus, roughly speaking, in the state ¥, /P both the linear and angular momenta
point in the ‘z-direction’ (with respect to the basis in the momentum space). Using
(A.18)—(A.26), a direct calculation gives that

1 _ P4 22,2
<s jm p |stm> <s jm S jm> _j(]-+ 1)(2]_ 1)(2]+3)< 3s"m +

+JG+ (2 +m?) +jG+ D(P+) - 1)),
(4.14)

65°m”—

JG+ D@ = D2j+3) (4.15)
= 2j+ D( +m2) +jG+ D2 +2/=1) );

P4
(YinlP*P’1,Y,0) = ( 22

and that all the other Components of (Y Y, |p* p°l, Y;,) are vanishing. (4.14) and
(4.15) imply that 5,,(,Y,|p* p°l, Yi) = P*, as it should be. These expectation values
may appear to be singular when j = 0 or 1/2, but these are not. In fact, in these cases
s=0and|s| =1/2, and hence j=nand j=1/2+4+n, n=0,1,2,..., respectively.
Writing these into (4.14) and (4.15) and then substituting #n = 0, we obtain that these
are P*/3 in both cases.

Choosing both y, and y, in the above way, and substituting (4.13) into (4.10)
and (4.11), we find, respectively, that

@ Springer



Foundations of Physics (2022) 52:102 Page 17 0f34 102

S18pmy My
J1U1 + i +

(B ® Do lWisl) ® ) = (& — &) €4 (R)3(Ry) 3P\ Py

Ps P,s
+(R1‘1R2)33hm1m2< - = )

AU+ G+ 1)
() ® ,IP2|p; ® ¢,) = (RT'Ry)33P, P,

S1Spmymy
A6+ DhG,+ 1)

Hence, the numerator of (4.9) is
s s
(61 ® aIWia = h( 5+ -)PLld ® ) =
1 2

= Ple{ (& = &) eanc (R 3 (R 3+
b+ D=5 +J'1(i1+1)—5%>} 515, My
2P 51Py 711G+ DG + 1)

(4.16)

If 5,5,m;m, = 0, then this is zero. In this case at least one of the expectation values

(¢11p{l¢;) and (¢, |pS|¢,) is vanishing (see the first of (4.13)). This case is analo-

gous to the classical situation when p{ = 0 or p5 = 0, and that we excluded from our

investigations (see the second paragraph in subsection 2.1). It might be worth noting

that (4.16) is just (P, P, times) the expectation value of the distance operator (4.7) in

the zeroth approximation according to the expansion (4.8).

Using (,Y;,|p'p'[,Y;,) = (,Y;,|p*P*|,Y;,,), we obtain that, in the states above,
(4.12) takes the form

+ (R Ry)ssh

(61 ® h2lPL 191 ® dr) = (((RT'Ro)1) + (R Rp)1a) + (R} Ry )+
+ (R7'Ry))” ) (w010} v Y [PpA )+
((R7'R1)" + (R7'Ryx)” ) w01}l (wa D303 lwa)+

+ (R R3)" + (BT Rz)” ) w01} 1w (walpAp Iy +

+ ((Rl_ R2)33> 7 |P?P?|W1><W2|P;P;|W2>-

+

4.17)

If the SU(2) matrix U4, is parameterized by the familiar Euler angles (a, f,7)
according to

_— exp(;(a +7)) cos(f/2) iexp(—%(a — 7)) sin(8/2) @)
B iexp(%(a - 7)) sin(8/2) exp(—%((x +7)) cos(8/2)

then the corresponding rotation matrix is
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cosacosy —sinacos fsiny —sinacosy —cosacosfisiny sinfsiny
R =] cosasiny +sinacos fcosy —sinasiny +cosacosfcosy —sinfcosy |.
sin & sin cos a sin cos

4.19)
This yields, in particular, that

cos fy, 1= (R1_1R2)33 = cos f§; cos ff, + cos(y; — ¥,) sin f; sin f,; (4.20)

and that f,, is just the angle between the unit vectors (R,)?; and (R,)";, too:
cos B, = 8,,(R))*3(R,)"5. Also, the combinations of the matrix elements (R;'R),;)*
in (4.17) are all expressions of cos? ,, alone:

(¢ ® ¢2|P?2|¢1 ® ¢,) = (1 + cos? ﬁ12)<lI/1 |p%P} |W1><W2|Pépé|llfz>+

+ (1 — cos’ ﬁ12)<lll1 |P}Pi [y ><W2|P;P;|II/2>+

+ (1 — cos’ ﬂ12)<lll1 |P?P?|W1><W2|P§P£|W2>+

+ cos” By (v IP}R} v Y wa P3PS 1w )

(4.21)

Since the length of the vector s‘lbc(R])b\g(Rz)"3 in (4.16) is sin f,, (4.21) shows that
d,, depends only on the f,,, i.e. on the relative ‘orientation’ of the two constituent
systems, rather than the individual Euler angles («, f,, y,) and (@5, f,, ¥5)

Denoting the denominator in (4.9) by P, P,D and substituting (4.14) and (4.15) into
(4.21), a lengthy but straightforward calculation gives that

1
2 _ 1 .. ..
D=1 - TR T3 i+ G+ D+

+ (55 = DjrGh + D+ (55 — D), Gy + 1) = 35753 + 3)

BT i U b G O S s A
2y — D@ 32— D2 + 3 GiGr + D o+ D jaGr + DiaGa + D
(1 + D) =357) (1 Gy + D = 3m) (722 + 1) = 353) (120> + D) = 3m3)

- — - - — - - cos? f,,.
J1Gy + D@jy = D@y + 3)jpGn + DEZjy — D(2j, +3)
4.22)

If j, and j, take their smallest value, viz. j, = |s;|and j, = |s,|, i.e. when y, and y,
are centre-of-mass states (see subsection 3.2), then this expression reduces to

(3m3 =j1Gy + D) (3m3 = jo( + 1))
3G, + DZj; + 3G + D2, +3)

(1=3cos’f,). (4.23)

2
D*=Z+
3

If at least one of j, = |s,| and j, = |s,| is O or 1/2, then D*> =2/3, and hence, in
particular, it is not zero and it does not depend on f,,. For small spins the depend-
ence of D? on 3, is weak. The higher the spins s, and s,, the closer the D? to zero for
|m;| = j,, |m,| = j, and cos? f;, = 1. Nevertheless, we show that D? is strictly posi-
tive for any finite |m;| < j, = |s;|and |m,| < j, = |s,| and any angle §,,.

Suppose, on the contrary, that D? =0, i.e. that for some my, m, and f,
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20, + 1) + D@y +3)@ +3) = (3m} =iy + D) (3m3 = )G, + 1)) B cos® fi, = 1)
(4.24)
holds. Since the left hand side is positive, 3cos® B, # 1, 3m; #j,(j; + 1),
3m§ #j,(Go+1) and j, #0#j, must hold. First, let us suppose that
—1 <3cos? fj, — 1 < 0. Then by (4.24) 3m% >j,G; +1) and 3m§ <Jj,(p, +1) or
3m? < j,(j, + 1) and 3m3 > j,(j, + 1) follow. Let us consider the first case. Then,
also by (4.24),

2, + Dy + D(4,1j, + 6Gy +72) +9) < —(3m? —ji iy + D) (3m2 = jrGi, + )
< 3’"%1.2(1.2 +1) - 37”%(3”1% -0+ 1)) =G+ DG+ 1D < 3m%j2(1.2 +1)
< 3j1j,Ga + D.

This implies 8/%j, < 2(j; + )(4j,j, + 6j; + 6j, +9) < 3j2j,, which is a contradic-
tion. The proof is similar if 3m? < j;(j, + 1) and 3m3 > j,(j, + 1). Next suppose that
0 < 3cos? f;, — 1 < 2. Then (4.24) implies that

Gy + DGa + D (4, + 6, + 65 +9) < (3m] —ji Gy + D) (3m3 — jp(o + 1)),

and that either 3m% >j,(; +1) and 3m§ > j,(j, +1) or Sm? <jiGy+1) and
3m§ < j,(j, + 1). In the first case this yields

Gy + DG+ D(3uf + 6y +6j +9) < 9mim; = 3mijo(p + 1) = 3m3, Gy + 1)
< 9m%m§ - Sm%jg - 3m§j% < Sm%mg - Sm%(]g — mg) - 3m§(jf - m?)
2 2 20
< 3mim; < 3jij5,

which is a contradiction. In the second case,

G1 + DGy + D(3ify + 6j1 + 6, +9) < 9mim3 — 3mij, Gy + 1) — 3m3j Gy + 1)
2.2 2,2 2.2 _ 2,2
< 9m1m2 - 9m1m2 - 9m1m2 = —9m1m2,
which is also a contradiction. We expect that the denominator D, given by (4.22), is
not zero even in the general case when j, > |s,|and j, > |s,].

The other extreme case is when both j; and j, tend to infinity. Now there are
three sub-cases: when m, and m, remain bounded, and when one of them, say m,,
or both tend to infinity with j, and j,. As equations (4.13) show, in all these cases
the expectation value of the linear momenta tends to zero, but in the first case the
expectation value of the angular momenta remain finite; in the second the expec-
tation value of J{ diverges but that of JJ remains finite; while in the third the
expectation value of J{ and J7 diverges. By (4.22) these limits of D? are

11 1 2 5,1 5 31 5

oS , =+ —cos ,— — —COS , 4.2

6 16 P2 ) Pra 2712 Pra (4.25)
respectively. These are independent of the spins, and none of them is zero.

Therefore, the empirical distance d,, between the elementary systems is well
defined, finite or zero, at least in the states obtained from centre-of-mass states
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by E(3) transformations, and also in the j;,j, — oo limit, and depends only on the
relative ‘position’ and ‘orientation’ of the subsystems. Next we discuss the result-
ing expression of d}, in these two extreme cases.

In the first case, i.e. when j, = |s;|and j, = |s,],

S18, mym,
Is155] (Isy |+ DUso] + 1)

(4.26)
where now D is given by (4.23), and the components of the unit vectors (R,)%; and
(R,)%5 can be read off from (4.19). The first term in the brackets can be zero when
these unit vectors are parallel, (R|)?; = +(R,)";, i.e. when f;, =0 or x, or when
&l — & is zero or at least it lays in the 2-plane spanned by (R,)?; and (R,)";. This
term can be arbitrarily large, depending on &7 — &7. This does not contain Planck’s
constant and the Casimir invariants P, and P,, and gives the ‘classical part’ of the
distance, being analogous to the last term on the right of equation (2.5).

The second term in the brackets, being proportional to 7, is a genuine quantum
correction to the classical part. d;, depends on P, and P, only through this term.
This can be zero only if f,, = z/2; and, for ,, # x /2, only in the very exceptional
case when P; = P, and sign(s,) = —sign(s,), i.e. if one of y and y, is holomorphic
and the other is anti-holomorphic.

Even if & — &7, (R))%; and (R,)"; are given, d|, is not fixed: it depends on the
discrete ‘quantum numbers’ m; and m, of the actual states in an essential way. In
particular, for s, = s, = 1/2 (4.26) gives

diy = (€ — DR SR + (L +

s
2 eos )
[s;1P [5,1P,

P
dyy = iL(('f? — &) apc(R)"3(Ry) 3 + h———2 cos ‘B'2>'

3\/6 PP,

Its ‘classical part’ is less than one-sixth of the distance between the two classical
point particles with the same ((R)“,, &) and ((R,)"), &)

If cos f;, = +1, then the first term between the brackets in (4.26) vanishes, and
d,, becomes an expression of the Casimir invariants (P, s,), (P,,s,) of the elemen-
tary systems and the discrete quantum numbers m,; and m, alone. So the distance in
this case is ‘universal’, it is of purely quantum mechanical origin, and, apart from
the very exceptional case above, non-zero. Thus, at the quantum level, the expres-
sion for d;, is well defined, in contrast to the classical case when, by the discussion
of subsection 2.2, the distance between two centre-of-mass lines with parallel linear
momenta could be recovered only as a limit.

As we concluded above, d,, is well defined also in the other extreme case when s,
and s, are fixed but j,,j, = co. Now we determine the distance in this case explic-
itly. As (4.16) shows, in the first two cases considered in (4.25) the empirical dis-
tance d;, tends to zero, while in the third (i.e. when |m,| = j,, [m,| =j, — o0) it
tends to

+P
1

S 8 cos f,

P, P1>\/3—coszﬂl2.
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In particular, this limit is independent of £} — &7, and d,;, reduces to the quantum
correction. Nevertheless, this extreme case corresponds to a rather exotic situation,
since by (4.13) the expectation value of the angular momenta tend to infinity while
that of the linear momenta to zero.

As we noted, in the states with the choice for y, y, above all the expectation
values are vanishing for s; =0, 5, = 0. To get non-zero results in this case, more
general states with y = Zj,m amy, "m should be considered, because the matrix ele-
ments (Y, ,[p’|,Y;,,) are not all zero even for s = 0 (see Appendix A.2). However,
the exp11c1t form of the resulting expectation values are much more complicated.

4.3 The Empirical Angles and Volume Elements

Dictated by the classical formula (2.9), we define the ‘empirical angle’ between the
linear momenta of two elementary subsystems (characterized by (P, s,) and (P,, s,),
respectively) in their pure tensor product state ¢ = ¢; ® ¢, by

. <¢|5abp‘f ®pﬁl¢) <¢1|P‘f|¢1>5ub<¢2|132|¢2>
COSw, = = PP (4.27)
V/(IP219)1/(HIPI) "

with range w,, € [0, z]. Also, motivated by the classical expression (2.10), we
define the ‘empirical 3-volume element’ for three elementary systems in the pure
tensor product state ¢ = ¢; @ P, ® ¢; by

1 (¢Ip¢ ® pl ® pslo)

V123 = 7y €abe

NN L)

(4.28)

Since these quantities are built only from the momentum operators, and the momen-
tum operators are invariant with respect to translations, it is enough to evaluate these
expressions only in the states of the form ¢p = Uy.

Thus, if ¢, = U,y and ¢, = U, y,, then

COswyp = <W1|U1P]U lw >5ab<W2|U2p2U2|V/2>
(4.29)
ZW(R "Ry (vt IR 1w Y D3 [w).-
In particular, ify, = Y, ,, /Piandy, =Y, ., /P,, then
m,my
coswy, = slszjl(il TG D €os fj,. (4.30)

The angle w,, has the same qualitative properties that the empirical angle 6, has in
the SU(2)-invariant systems [6]. In particular, for given s, and s, and angle f,,, the
empirical angle @, is still not fixed, that may take different discrete values. Moreo-
ver, @y, is never zero even if f, = 0, and is never x even if §,, = #. With given s,
and s, the empirical angle w,, takes its minimal value in the special centre-of-mass
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states when m; =j, = |s;| and m, =j, =s,|, and fj, =0. In particular, for
Isy| = |s,] = 1/2 this angle is )" ~ 83.62°? while for |s;| = |s,| = 1itis = 75.52°.
The maximal value of @y, is @|5" = 7 — }". This minimal/maximal value tends to
zero/zr only in the |s,|, |s,| = oo limit. For a classical model of the ‘geometry of the
quantum directions’, see Section 4 of [6].

The evaluation of the empirical 3-volume element in the analogous states is simi-
lar. By the first of (4.13) we obtain

S182831M1 My M3
1% = T - -
751Gy + DiyGa + DjsGs + D

The second factor in (4.31) is just the Euclidean 3-volume of the tetrahedron
spanned by the unit vectors (R,)%;, (R,)“; and (R3)“;. Hence, even for given (R,)%s,
(R,)"; and (R3)%;, the empirical 3-volume element takes different discrete values,
depending on the ‘quantum numbers’ of the states of the constituent subsystems. By
(4.31) v,3 is always smaller than the Euclidean 3-volume element, even if all the j’s
take their minimal, and all the m’s take their maximal value, viz. m = j = |s|.

1
a‘c’abc(Rl)GS(RZ)bS(RS)C& 4.31)

4.4 The Classical Limit of the Empirical Geometrical Quantities

Traditionally, the classical limit of an SU(2)-invariant system is defined to be the
limit in which m =j — oo (see e.g. [22]). However, by |m| <j and (4.13), in the
present E(3)-invariant case, the expectation value of the linear momentum tends to
zero unless the spin s also tends to infinity; and this expectation value can tend to a
large macroscopic value if P is also growing appropriately. Thus, formally, the clas-
sical limit of the E(3)-invariant systems should be defined to be the limit in which
|s| =m =j — o0 and P — o0. Moreover, if we expect that the expectation value of
the linear and angular momenta tend to the corresponding large classical value in the
same order, then by (4.13) we should require that asymptotically P = pj + O(1/j)
holds for some positive p. We use this latter condition in the calculation of the clas-
sical limit of the uncertainty of the empirical distance. Note that by j = |s| the states
in such a sequence are obtained from centre-of-mass states by some E(3) transfor-
mations. In the present subsection, we determine this limit of the empirical distances
and their uncertainty, and also that of the angles and 3-volume elements. We find
that these are just those in the Euclidean 3-space.

The s, = m; =j,, +s, = m, = j, — oo limit of the numerator in the expression
(4.26) of the empirical distance is

P, P
P1P2

HE = EDEae (R 3 (Ry) s & h—p=—= cos By

while, by (4.23), the same limit of its denominator is sin f,,. But the latter is just the
magnitude of €%, (R,)’;(R,)"5, and hence, apart from the quantum correction, for
b1, # 0, 7 this gives just the classical (signed) distance between the centre-of-mass
lines of the two classical point particles characterized by ((R;)"), &) and ((R,)“), £7),
respectively. If, in addition, P;, P, — oo, then the quantum correction goes away,
and the whole expression reduces to the classical empirical distance.
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Since d, is not the expectation value of some quantum observable, its standard
deviation/variance cannot be defined in the standard manner. Nevertheless, its uncer-
tainty can be introduced by importing the idea from experimental physics how the error
of a quantity, built from experimental data, is defined. Namely, if 0 = O(¢', ...,¢")is a
differentiable function of its variables and, in a series of measurements, we obtain the
mean values g* and errors 6q* of the quantities g%, @ = 1, ..., n, then the mean value and
error of Q are definedtobe O := Q(3', ..., ") and

Y

=a a = n
50 := 122 @)15q + - + 122 @)l5",
dq aq"

respectively. Hence, since the empirical distance has the structure

(PlA ;] ¢)
V{(¢IB,|p)

Wlth A12 = le - h(sl/Pl + S2/P2)P$2 and B12 = P%P% - Péllz,
to define the uncertainty of d|, in the state ¢ = ¢; ® ¢, to be

d, =

it seems natural

AgA, 1 AyBp,
5 d = 1 d . '
e <|<¢|A12I¢>I " 2(¢|B12|¢>)| 12l (4.32)
Here
(ByAR)Y = (Bl(AR) D) — (PlALI9)
and

(A,B 1)) = (p|(B ) |d) — (BIB,] )7,

the two familiar variances. We are going to show that, in the classical limit defined
above, both terms between the brackets tend to zero. Since |d,,| in this limit is
bounded, this means that the uncertainty 6,d,, also tends to zero.

Since the subsequent calculations are quite lengthy but elementary, we do
not provide all the details. We indicate only the key steps. First, let us consider

(Pl(A)* 1) = (¢|(W%2 = 2n(, /P, ijz/Pz)P?ZWu + 1%, /P, ijz/P2)2P?2)|¢> .
The expectation values in

(01 ® ¢2|sz|¢1 ® ¢,) =(¢, |P{fplf|¢1 >5M5/7(1<¢2|J§J§|¢2) + (¢, IPTJ’II¢1)5(,(-5hd(¢z|J§P§I¢z)
(D 1D 118,850 (D2 D5 D) + (b1 1T1T2 118,083 D5 PS o)

can be calculated by using (3.9). These are
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(¢Ip“P’ 1) =R*.R” ((wIp°D |y,
(@ID“T1d) =R* R (w [P [y) + Re” &R o(w1pp? [y,
(PIIV1h) =R R (w1 IV ) + R € &R y(w pdde|y)+
+e &R R (WY |w) + € &R € 4 SR (w1 ),
where some of the expectation values with y = _;¥;;/P have already been given

by (4.14) and (4.15), while the others can be calculated by (A.18)-(A.26) and
(A.28)—(A.30). These are

(wIp"Vly) =+ 2(} 5 (5“5b + 3385 +2j855% +1(8755 - 6357) ).
(w39 |y) =§h (8167 + 3365 + 2j636% + (6955 - 8365) ).
Using (4.20) and that, for large j, asymptotically P = pj + O(1/j), we obtain

2
(1 ® B2l W1y @ ) =( (&7 = &8)ewne(R)5 (R ) +

P2P2
+2h(_ * _) (&) = &) eape(R)) 3 (Ry) 5 cos By +
P P2
+12(L 1+ L) cos? gy + O(L) + O(L).
Pr P2 J1 J2

(4.33)

The calculation of the expectation value of the other terms is similar, and for them
we obtain

J J
S (61 ® byl —2n (- = é)PﬁWé

P2P2 1
(2 j%)zp‘}zm] ® ¢b,) =
1
j Jj (4.34)
- 2h(13l > ) (5‘1 gg)eabc(Rl)b3(R2)c3 CoS ﬂ]z
1

2 J1 JZ 2 1 1
h (P] Pz) cos” fj, + 0(j1 )+ O(j2 ).

Comparing this with (4.33) and recalling that the first term on the right of (4.33) is
just the classical limit of the square of (¢, ® ¢,|W,, — 4G\ /P, +j2/P)P2,|¢; ® ¢y)/P\ P,
we find that the first term in the brackets in (4.32) is of order O(1/j,) + O(1/j,).

Using (4.21), (4.14) and (4.15), we immediately obtain the asymptotic form of the
expectation value of the first two terms in B2 /P{P} =1 2P} /P?P2 + P8 /PiP;.
Itis
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1 1
P4 P —— (¢, ® ¢,|P|P; —2P1PIP}, |, ® ¢,) = 1 —2cos” By, + O(j_l) + 0(,-‘2)-

Thus, we should calculate only the asymptotic form of

(61 ® 9, [P%, 1, ® hy) = (b, IPIPIDS DY 1)6,016 56 an b IDSPLPED] |,) =
= (w1 IPPEPSPY W1 YRT Ry ) 1o (R Ry (RT Ry) o (R Ry) g (s DS PSR 1)

with y; = /P and y, = /P, when j,,j, — oo. Since by (A.18)—(A.26)

J1 JlJl ES2) ]7J2

J
<+_] Jle |+j ]]) = +P3] 1 +0( )

and all the other matrix elements of the form (,;Y;|p®|.;Y,,) fall off as 1/ \/} for
large j, we have that

a . b_c..d _ pb achbcecd
<injj|pppp|injj>_P(] 1)45555 +0(E)

Thus, by (4.20)

L4, ® $,IP5, 16 ® ¢3) = cos® i, + O(—=) + O(—).

P4P4 \/J_l \/]_2

Hence

—(P, ®¢2|B l® ®¢2)—sm B+ O(— )+0(—)—

7O

=1 (@1 @ ta1Brlt @ 6) )+ 0(7) + 0(\/_

which yields that the second term in the brackets in (4.32) is also vanishing in the
J1:J» — oo limit.

Therefore, as a summary of the results of the above calculations, we have proven
the following statement:

P4 P4
1
PP

Theorem Let L, -+, Ly be straight lines in R? such that no two of them are parallel.
Then there are E(3)-invariant elementary quantum mechanical systems Sy, ..., Sy
and a sequence of their pure quantum states ¢y,....on;. kK € N, indexed by pairs
1> P1j)se--(Sng> Pag) of their Casimir invariants, respectively, such that, in the
(Isy 1, Pp)s-eos (Isyl, Py) — oo limit, the magnitude |d;;| of the empirical distances tend
with asymptotically vanishing uncertainty to the Euclidean distances D;; between the
straight lines L; and L;, given by (2.8), for anyi,j =1, ..., N.

Thus, the metric structure of the Euclidean 3-space could be recovered in the

classical limit from appropriate quantum observables of Euclidean invariant elemen-
tary quantum mechanical systems.
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Following the same strategy, the calculation of the classical limit of the empiri-
cal angles and 3-volume elements is quite straightforward: the m; =j, = s,
m, = j, = s, — oo limit of the empirical angles w,,, given by (4.30), is f,,; and the
analogous limit of the 3-volume element given by (4.31) is just the Euclidean 3-vol-
ume element. These results, together with the Theorem above, provide an exten-
sion of the Spin Geometry Theorem of Penrose [1-4] from SU(2) to E(3)-invariant
systems.

5 Final Remarks

The relative position vectors dfi, i,j = 1,2, 3, of a three-particle system also make it

possible to define a notion of angle that is different from that we considered in sub-
sections 2.3 and 4.3:

_ Budiydyy  SuEar Py PyPL - PP
ldial syl e, p2P5 | 1€%,P55] 2p2 2p2 _ pt
R \/Ple_Pﬁz\/P2P3_P23

COS Wy, 3 !

with range @, 3, € [0, z] defines the angle between the relative position vectors
pointing from the second subsystem’s centre-of-mass line to that of the first and the
third subsystems, respectively. The angles w,; |; and @, 5, are defined analogously.
Although at the classical level this angle coincides with the Euclidean one, the anal-
ogous empirical angle in the quantum theory deviates from w;;. Another concept of
the empirical 3-volume element could also be introduced, as the volume of the tetra-
hedron spanned by the three vectors e”bcpfpjf . Thus, at the fundamental, quantum
level there might not exist unique, a priori obvious analog of the classical geometri-
cal notions, like angle, distance or 3-volume element. In addition to the requirement
of their correct behaviour in the classical limit (and their ‘naturalness’ and ‘useful-
ness’), can we have some selection rule to choose one from the various
possibilities?

The states of the composite system by means of which the correct classical limit
of the various empirical geometrical quantities could be derived are pure tensor
product states, built from the pure vector states of the elementary subsystems. Thus,
in deriving these, we did not need to use entangled states of the composite system.
But then, if the subsystems are independent, how can one obtain the distance, angle,
etc. between them? The answer is that the entanglement of the subsystems can be
considered to be already built into the structure of the observables of the compos-
ite system. In fact, the operators by means of which the empirical distances, angles
and 3-volume elements are defined have the structure W, = %5ab(pi‘Jg +J§’p3),
P}, = 6,,p¢p} and €, pip5p;, respectively. These observables of the composite sys-
tem are ‘entanglements’ of the observables of the subsystems. The states of the sub-
systems do not need to be entangled.

As we already noted in subsection 4.2, if the state of the composite system is
mixed or entangled, then the interpretation of the empirical distance (and of the
angles and 3-volume elements, too) is not obvious, and e.g. the distance between
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two subsystems may depend on the state of other subsystems. In this case, the result-
ing distances cannot be expected to be compatible with the structure of any met-
ric space. Thus, by assuming that the state of the composite system is a pure ten-
sor product state we implicitly assumed that the subsystems are independent, and
hence interact with one another weakly. If, however, the subsystems are inextricably
entangled (e.g. since they are very strongly interacting with one another), then the
‘quantum geometry’ defined by such systems may not be expected even to resemble
to the Euclidean geometry at all. The Euclidean structure of the classical ‘physical
3-space’ that we see appears to be defined only by the independent, very weakly
interacting subsystems of the Universe.

A. Appendix
A.1 Complex Coordinates and the Line Bundles O(—2s) over S,

In the complex stereographic coordinates (¢, &) on Sp, defined by ¢ : = exp(ip) cot(6/2)
in terms of the familiar spherical polar coordinates (0, @), the Cartesian components of
the ‘position vector’ p® in the classical momentum space and the complex null tangent
m?, respectively, are

po=p(ErE I By L1 e %y
¢ 1+¢¢ 1+CC 1+¢¢ ‘ \/E 1+¢{¢ 1+¢C 1+¢¢
(A.1)
These imply that p“e . = —iP(m,m,. — m,m_), where m, is the complex conjugate
of m,. Also in these coordinates, the line element of the metric and the correspond-
ing area element on Sp, respectively, are

= 2 _gear, as, = ——2P e pat.
Grar e =Tt A2

These are just the metric and area element inherited from the metric and volume
element of momentum 3-space, respectively. The complex null vectors m® and m®
are unique up to a phase as they are (1, 0) and (0, 1) type vectors, respectively, in the
natural complex structure of Sp ~ S? (see e.g. [10]). As a differential operator, m is
given by

m”(af)a) \/—P( +¢0) (=5 ) (A3)

The contraction of the complex null vectors, m® and m“, as well as of the ‘posi-
tion vector’ p® in the momentum space with the Pauli matrices can also be
expressed by the vectors {o?,/4} of the (normalized) Newman—Penrose spinor
basis: mic = —oAP, mct = —A0" and pioct = PP — A54')/1/2. The
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components of the vectors of the Newman—Penrose basis in the spinor basis {04, '}
associated with the Cartesian vector basis are

) sl
o=\ ) =l _ )
14+¢¢ 1+¢¢
Note that this basis is well defined only on S, minus its ‘north pole’, which is the
domain of the coordinate system (¢, £), as well as of the complex null vectors m® and
me.

A scalar ¢ is said to have spin weight s = —(p ¢) if under the rescaling
(o, ) = {A0*, A714), A € C — {0}, the scalar qS transforms as ¢ — A?19¢ (see
[10, 13]). The bundle of such scalars is denoted by O(—2s). The complex line
bundle O(-2s) is globally trivializable precisely when s = 0; otherwise it has a
twist. The domain of the coordinate system (¢, {) is a local trivialization domain
for O(—2s) for any s. For a detailed discussion of the line bundles O(-2s), see e.g.
[10, 13].

The edth and edth-prime operators of Newman and Penrose [21] acting on spin
weighted functions, e.g. on the cross section ¢ of O(—2s), can be defined by

o = \/_P(( 1+8) 5L +sta). 9= \[P(( +00) 5% - sl
(A4)

and hence for their commutator we obtain that (30’ — &'3)¢ = —(1/P?)s¢. It is not
difficult to check that dp® = m¢, dm“ = 0 and &'m* = —p*/P>.

A purely algebraic introduction of the spin weighted spherical harmonics,
given in [13], is based on the comparison of the appropriate symmetrized prod-
ucts of the vectors of the Cartesian spinor basis {O,,1,} and those of the New-
man—Penrose spinor basis {o,, 1, } adapted to the unit sphere (and given explicitly
by equation (4.15.98) of [13]):

=N. O(Al 0 IA . IAz/)OA] OA/+:IAj+s+1 IAZj’ (A.5)

Yim s.m A Ajm

where the coefficient N, is

2+ 1 Qj)!
N, m = (_)]+m 5 .
! A\ JG=mG+m)(G -9+ 9)! (A.6)

and 2s € Z, j=|s|,|s| + 1,|s| +2,... and m = —j,—j + 1, ...,j. This choice of the
normalization factor yields that the spherical harmonics Y}, coincide with the
standard expressions for the ordinary spherical harmonics Y, The action of the edth

operators on the harmonics Y, is

1 1
8, Y, =——VGi+s+ D=9 1Y Y=—V(i—s+D0{+5),_ ;Y-
J \/EP J J \/EP J

(A7)
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The harmonics (Y, form an orthonormal basis in the space of the spin weighted
functions with spin weight s with respect to the L, scalar product on the unit
2-sphere (see e.g. [13]).

A spin weighted scalar ¢ is called holomorphic if & ¢ = 0, and anti-holomorphic
if 3¢ = 0. It is known (see e.g. [10, 13]) that dimkerd = dimkerd =0 for s < 0
and s > 0, respectively; and dimkerd = dimkerd = 2|s| + 1 for s > 0 and s <0,
respectively. By (A.7) these kernels are spanned by the special spherical harmon-
ics [ Y|,,- Hence the spin weight of the holomorphic cross sections is non-positive,
s = —|s|, while that of the anti-holomorphic ones is non-negative, s = |s|. They form
2|s| + 1 dimensional subspaces in Hp .

A.2The Evaluation of (Y, |p,| ;Yjm)and Yy, I, sYjm)

(A.5) implies that in the product of two spherical harmonics, | Y, ,, ¥, . the
difference of the total number of the /, and of the O, spinors is 2(m,; + m,), and

the difference of the total number of the o* and of the i* spinors is 2(s; + s,).

Hence, the spin weight of | Y; , Y, , is s, +s,, and in its expansion in terms of
spin weighted spherical harmonics only the harmonics of the form | | Yy, 4,

appear. Thus, there are constants C(s|, j,, 1,385, j,, M, |j) such that

5 leml 5y szm2 = Z C(Sl’jl’ my ;S2’j2’ my I]) S1+58, Yj(m]+mz)’ (AS)
J

where, as one can show, max{|j, — j,|, |s; + s,|} <j <j; +/j,. These constants are
analogous to the (inverse) of the usual Clebsch—Gordan coefficients, and hence these
may also be called the (inverse) C-G coefficients.

By (A.1) and the explicit expression of the ordinary spherical harmonics in the coor-
dinates (¢, £), the components of the linear momentum are

2z .
Pa = P\/ ?<0Y1—1 = oY1, Y11 +o¥11)s \/EOYIO)' (A9)

Hence, to determine the matrix elements (Y}, |p,[;Y;,), we need to calculate the
expansion (A.8) only for Y, .Y

Jjm:
This calculation is based on (A.5), in which, following [13], we introduce the nota-
tions Z(j, m)Al...Az,- 1= 0y, 0y "'IAzf) and Z(j,m) := (N Y. Then

-1
L sim) sy

for any M, and any totally symmetric spinor Z, 4, the complete algebraically irreduc-

j—m j—m+1

ible decomposition of their product is

1 B
Zp,agMa = Za aMay + 5= € aM gy, g+

B
2j+1 2%+ 16A2jAM ZA, Ay B

Applying this formula to /, and Z(j,m), . Ay W€ obtain

@ Springer



102 Page 30 of 34 Foundations of Physics (2022) 52:102

. .1 1
Z(], m)Al...Az/-IA =Z(] + E,m + E)AAI"'A2/+
1

+ ﬁ@mllgo(BOA2 Oy Iyl ot
+ ﬁe A al%0u, 0y Oply vy )=
=Z(+ %’ m+ %)AAI...AZ,“‘
+ m{(] —m)ey 40, OA,v_mIA,_,M IA2_,~) + et

+ (] — m)eAszO(A] OAj_m_|IA,'_m ”.IAzj—l)} =

Jj—m |

| 1 1
=2+ S m+ E)AAI.,,Azl. - WEA(AIZU —5m+ E)AZ...AZJ»)'
(A.10)

In a similar way

jtm .1 1

R R
(A.11)

These two are the key formulae on which the present calculation of the (inverse)

C-G coefficients is based. In particular, using the technique of complete algebraic

irreducible decomposition of the various spinors, the repeated application of these
formulae yields

. .1 1
Z(], m)AlmAz/_OA = Z(] + E,m - E)AAI“'AL' +

ZGsmy, aydalp = ZG+ Lm+ Dapy 4, =

_ % <5A(AIZ(1', m+ Dy, a8 + €pa, 20, m + I)AZ'"AZf‘)A>_ (A.12)
- Zz(z]]:-nll)_ 1)EA(AIZ(/- = Lm+ 1)A2~-A2j—1£Alf’)B’
ZGsm)a, a4, daOp = Z( + 1.m)apy s, = %'SABZU’ "t
+ ﬁ <6A(Alz(j’ m)AZ...Azj)B + €pa, 20, m)Az---Azf‘)A >+ (A.13)
%EA(AIZO -1, m)Az‘,.Azj,lgAzj)B’
Z(.m)a,..4,000p = ZG + 1,m = Dy g, +
+ % <€A(A,Z(i, m =1, a,pp+ €pa,Z0,m— I)AZ'"AZJ‘)A>_ (A.14)

_G+mGtm=1)
2jQj+ 1)

£A(AIZ(j -lLm- 1)A2...A2j,15A2j)3‘
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Since Z(3, 304 =l ZGo=3)a = O Z(, )5 = Iy, Z(1,0),5 = 1,05, and
Z(1,-1),5= 0,05, equations (A.10)—-(A.14), together with (A.5) and (A.6), already
give

/3 —s+1)(j+s+1)(j+m+1)(j+m+2)Y _
0 lls Jm 87l'j+1 (2j+ 1)(21+3) st j+1,m+1
V 877."](]+ 1) (]+m+ 1)(] m s jm+l (AIS)

31 [G=9G+9G-m=DG-m)
87 2= Dj+1) v

¥ /3 G+H1+9)G+1=-5(G+1+mG+1—m) Y. +
0 lOr jl11 47[,]+1 (2,]+1)(2,]+3) st j+lm
"Vax i ST (A10)
[3 1 [(=5)G+90+m)(G—m) :
+ o . . SY'—lm’
4z j 2j-DRj+1) S

3 1 G+1+9(+1=5)G—m+1D([—m+2)
oVi—1s¥im =\ =7 - - sYieima1t
’ /- 8rj+1 @i+ DR2j+3) I

G+mG—m+1),Y,, -

871' (1+ 1)
/31 (j+s)(j—s)(j+m)(/'+m—l)Y )
Vszj Qji-D@j+1) shmtmet

where recall that, on the right hand sides, the spherical harmonics ,Y; , are vanishing
if j < |s| or j < |m|. (In these formulae, to avoid confusion, we inserted a comma
between the indices j and m of (¥;,.)

Then, using (A.9) and (A.15)—(A.17), we find that the only non-zero matrix ele-

ments of p, are

(A.17)

pP3 G+s+DG—s+1)
<Y J+1, n|pl|st,m> = \/

2+ 1) 2j+D2j+3)
X (\/(j—m+ DG —m+2)8,,_1 — V(i+m+ l)(/'+m+2)6n’m+1>,
(A.18)
_ P3s
<st,n|p1|st,m> - 2](]+ 1)
X (VGFmG=m 18,y + VG= G 1+ D )

(A.19)
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D)
(FjalPil Vi) = 5 G D@+ D

X(\/(j_m)(i_m_ nm+l \/(]+m)(]+m nln—l);
(A.20)

(YioralPal ) = T
st j+ln P2l Jm 20-{— 1) (2.]+ 1)(2-]+3)

X (\/(]+ m+ 1)(]+ m+ 2)5n,m+1 + \/(/ —-—m+ 1)(] —m+ 2)5n,m—l>’
(A21)

. P3s
Y. Y. Yy =i———
<s j,nlpzlx /,m> 12](]+1)

X (VGG =M+ 18,0 = VG= MG+ 1+ D01 ).

(A.22)
P G+9(—9)
(s Yi a2l /m> _12_]' m

X (\/(j+ MG+ m— D8,y + VG = m)G = m = 16, a1 )

(A.23)
(Yor Ipsl.Y )_ G+s+DG—s+DG+m+ DG — m+1)(S

stj+ln Psls J.m (2J+ 1)(2.]+3) n,m>

(A.24)
_ Pms
(YinlPslsYim) = mén,m, (A.25)
G+ )0 =) +m)(j —m)

GYimialpslYim = \/ QDo+ 1) Spm- (A.26)

Thus, the subspaces spanned by ,Y;,, with given s and j are not invariant under
the action of the momentum operators; and while p; does not change the index m,
p, * ip, increases/decreases the value of m.

Next, we calculate the matrix elements of the angular momentum operator using
m® = dp?, m* = d'p? equations (A.7) and the expression (3.7) for the angular
momentum vector operator. By integration by parts we obtain

@ Springer



Foundations of Physics (2022) 52:102 Page330f34 102

<9Ykn|J |s ]m> =hP/ Ykn((apa)(als ]m)_(6, a)(as ]m)+sl;;s jm)dSP_

=hP /S (~@Tepu® V) + @Y Ipu@,Y,,0+

~N pa
+SY/€JI])(,4(6/6Y —66,‘ ]m) PQ\Ykns Jjm

st jm

>dS

Vs + DE= VG54 DG = 5t Ve Pal i V)=
— V= s+ D&+ VG =5+ DG+ )1 YenlPalsoy i)+
+ 4s<sYk,n|pa|st,m> }

(A.27)
Hence, the matrix elements of the angular momentum vector operator are simple
expressions of those of the linear momentum. Using (A.18)—(A.26) and (A.27), we
find that the only non-zero matrix elements of J, are

I —
(Yol J 1Y) = 5mt>2<\/(;+m)(;—m+ 16,1+

(A.28)
+AG=mGHmE DB, 01 ),
<s jn|J2|s jm> = %hp2<\/(j+m)(j_m+ 1)‘Sn,m—l_
(A.29)
= VG=mG+m Db, )
<3 ]n|J3|st,m> = hpzmﬁn,m‘ (A30)

These are precisely the well known matrix elements of the angular momentum oper-
ator in quantum mechanics. In particular, these are independent of the spin weight of
the spherical harmonics.
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