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Abstract
Bell’s theorem is often said to imply that quantum mechanics violates local causal-
ity, and that local causality cannot be restored with a hidden-variables theory. This 
however is only correct if the hidden-variables theory fulfils an assumption called 
Statistical Independence. Violations of Statistical Independence are commonly 
interpreted as correlations between the measurement settings and the hidden vari-
ables (which determine the measurement outcomes). Such correlations have been 
discarded as “fine-tuning” or a “conspiracy”. We here point out that the common 
interpretation is at best physically ambiguous and at worst incorrect. The prob-
lem with the common interpretation is that Statistical Independence might be vio-
lated because of a non-trivial measure in state space, a possibility we propose to 
call “supermeasured”. We use Invariant Set Theory as an example of a supermeas-
ured theory that violates the Statistical Independence assumption in Bell’s theorem 
without requiring correlations between hidden variables and measurement settings 
(physical statistical independence).
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1  Introduction

Bell’s theorem [1] has been a milestone in our understanding of quantum 
mechanics by detailing just what correlations are necessary to reproduce obser-
vations. Unfortunately, many physicists have jumped to incorrect conclusions 
from it. A 2016 survey among professional physicists [2] found that 34% believe 
Bell’s theorem shows that “Hidden variables are impossible,” that is, they think 
Bell’s theorem rules out theories in which measurement outcomes are deter-
mined by variables that are not accounted for in standard quantum mechanics. 
Similarly, in a survey conducted among professional quantum physicists at a 
conference in 2012 [3], 64% claimed that Bell’s theorem rules out hidden var-
iable theories (and said local realism is untenable). This is of course not so. 
Bell’s theorem merely shows that a hidden variables theory which fulfils all the 
assumptions of the theorem is ruled out by observation.

Bell’s theorem however contains one questionable assumption: (Bell-)Statisti-
cal Independence, sometimes called the “Free Will” or “Free Choice” assump-
tion (here capitalised and labelled Bell to distinguish it from the intuitive ideas 
of physical statistical independence, free will and free choice). Indeed, one can 
interpret all experiments that have found violations of Bell’s inequality as simply 
demonstrating that if quantum mechanics is underpinned by a local, causal, and 
deterministic theory, then that underlying theory must violate Bell-Statistical 
Independence. Clearly the conclusion to draw from this is that we should look 
for a hidden-variables theory that violates Bell-Statistical Independence, not 
least to develop a quantum formalism that is compatible with General Relativ-
ity. Of course this is not historically what has happened. Instead, physicists have 
collectively discarded the possibility that Bell-Statistical Independence might be 
violated because they misunderstood what it means. For example, referring to 
Bell-Statistical Independence as “free will” or “free choice” seems to have cre-
ated a strong cognitive bias for accepting the assumption unthinkingly.

That this “free will” nomenclature is highly misleading has already been 
clarified elsewhere [4, 5] and we don’t want to repeat this entire discussion 
here (though we will briefly comment on the relation between statistical inde-
pendence and free will in Sect.  4.3). Our aim here is to investigate the physi-
cal interpretation of Bell-Statistical Independence and explain why it is widely 
misunderstood.

This misunderstanding is well-illustrated by a quote from a recent paper by 
Sen [6]:

“The [Statistical Independence] assumption states that the hidden variables 
that determine the measurement outcomes are uncorrelated with the meas-
urement settings.”

Similar interpretations can be found in [7, 8]. This indeed is the standard way of 
interpreting the mathematical statement of Bell-Statistical Independence. How-
ever, we will show below that physically this interpretation is at best ambiguous 
and at worst wrong. In Sect. 2, we give a general argument for this. In Sect. 3, 
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we will look at the CHSH inequality in particular. In Sect. 4, we will discuss in 
more detail invariant set theory (IST) [9], which is to our knowledge the only 
example of a theory that ‘violates Bell-Statistical Independence without violat-
ing physical statistical independence’. Misconceptions regarding free will, fine 
tuning and conspiracy are discussed in Sect. 4.3.

2 � Understanding Statistical Independence

In Bell’s theorem, Statistical Independence is often said to be the assumption that

where � is a set of hidden variables, X are the detector settings, and � is a probability 
distribution of the hidden variables. In Bell’s theorem one normally uses two sepa-
rate detectors and their settings. We will comment on that specifically in Sect. 3, but 
let us first look at the general interpretation. It is possible in principle that � depends 
on further variables, but this won’t matter in the following.

That �(�,X) is a probability distribution means it is normalised over a space, 
which we will denote Smath for the mathematical state space: it comprises all math-
ematically possible states of the hidden-variables theory. By “mathematically pos-
sible” we literally just mean that we can write them down mathematically. We might 
however later discard some of the mathematically possible states as not physically 
possible or meaningful. This isn’t so uncommon. For example, some mathematically 
possible solutions to the Schrödinger equation are not normalisable and hence not 
physically possible.

The key point we want to make in this section is that any space we integrate over 
must have a measure, �(�,X) , and generically this measure is non-trivial, i.e. it isn’t 
just identical to some normalisation constant. A measure roughly speaking quanti-
fies the volume of the space. The probability distribution � can only be normalised 
by help of the appropriate measure:

Measure theory [10] is not usually discussed in physics textbooks. However, a vari-
ety of measures make their appearance in physics nevertheless. The most widely 
used one is the Lebesgue measure on ℝn and (pseudo-)Riemannian manifolds. On 
fractals it can be generalised to the Hausdorff measure. In the context of Hamilto-
nian dynamical systems, a non-trivial measure on state space arises in the theory 
of symplectic manifolds (leading, for example, to the Gromov non-squeezing theo-
rem). In Sect. 4.1, we discuss non-trivial invariant measures associated with chaotic 
attractors.

The measure of Smath appears in the calculation of any expectation value and 
therefore should enter the derivation of Bell’s theorem together with the probability 
distribution � . Since these two functions always appear together, it is tempting to 
simply combine them into one �Bell(�,X) ∶= �(�,X)�(�,X) , where we use the index 

(1)�(�|X) = �(�) ,

(2)∫
Smath

d�dX �(�,X)�(�,X) = 1 .
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“Bell” to emphasise that this is the quantity that really enters Bell’s theorem. The 
assumption of Statistical Independence in Bell’s theorem is therefore actually the 
assumption that

We call this Bell-Statistical Independence (with the prefix Bell- and capital letters), 
and distinguish it from Eq. (1) which we now call physical statistical independence 
in lower-case letters. (Note, in the most general formulation of the assumptions of 
Bell’s theorem one considers a dependence of �Bell on both the measurement settings 
as well as the preparation procedure. However, the dependence on the preparation 
procedure is irrelevant to our point, and we have therefore for simplicity omitted it. 
The reader may consider the preparation details to be part of the hidden variables.)

To avoid confusion with the standard interpretation of superdeterminism, we pro-
pose to call a theory which violates Eq. (3) but does not violate Eq. (1) a “supermeas-
ured” theory, with � being the supermeasure (note, despite the similarity in terminol-
ogy, this has nothing to do with measurement).

Since Eq. (3) is mathematically indistinguishable from Eq. (1) given a suitable 
redefinition of the probability density, one may wonder why even make the effort of 
introducing the two distributions � and �Bell ? It is important to distinguish them because 
physically they mean something different. � is the distribution of states on Smath . It can 
be affected by factors under the control of the experimenter, such as the preparation of 
the state. �Bell , by contrast, is the distribution weighted by the measure �(�,X) . This 
measure is not under the control of the experimenter—it’s just a property of the laws 
of physics. As such �Bell contains information both about the intrinsic properties of the 
space and the distribution over the space.

The problem with the common interpretation of Bell-Statistical Independence is that 
typically the measure � is not explicitly defined in the assumptions for Bell’s theorem. 
This means that one implicitly assumes that the measure � is identical to the uniform 
measure �0 on Smath . The consequence is that interpretations of Bell’s theorem run 
afoul of physics whenever one is dealing with a theory in which �(�,X) ≠ �0.

To see why this distinction matters, let us look at a simple idealised example for 
illustration. The following example is not meant to describe a realistic physical theory. 
We merely present it to elucidate that it is always possible to replace a correlation on 
one space with a non-correlated distribution on a subset of the first space—without 
changing any of the probabilities. This shows that the common definition of statistical 
independence is ambiguous for what the physical interpretation is concerned, and so 
claims of “fine-tuning” based on this definition are also ambiguous. We will come to a 
more physically relevant example later.

Let Smath be a compact continuous space with uniform measure � ≡ �0 = constant, 
and � a probability distribution over it. This probability distribution may violate Eq. 
(1). Our task here will be to show that we can remove this correlation entirely without 
changing any probabilities.

To see this, we use � to randomly choose a set SN = {(�1,X1), (�2,X2)...(�N ,XN)} 
of N points in Smath . For illustration, see Fig.  1. From this we define the discrete 
measure

(3)�Bell(�|X) = �Bell(�) .
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Note that the probability that two points are equal to another is zero. We then define 
a uniform probability distribution 𝜌̃(𝜆,X) ≡ 1∕N on Smath which is normalized with 
respect to 𝜇̃ and from that 𝜌̃Bell(𝜆,X) ∶= 𝜌̃(𝜆,X)𝜇̃(𝜆,X).

Let us now take a subset A of Smath with non-zero volume (according to � ), 
A ⊂ Smath . In the limit N → ∞ , we then have for the probability P(A) of finding the 
system in that subset

for any A. This means that all probabilities calculated from � on Smath with uniform 
measure � ≡ �0 are by construction identical to those of the uniform distribution 𝜌̃ 
with measure 𝜇̃.

Finally, we define the new, physical state-space Sphys ∶= limN→∞ SN . Since 
𝜇̃ ≡ 0 on Smath ⧵Sphys , we discard the complement, only keep Sphys , and restrict 
the probability 𝜌̃ to Sphys.

Once we have done that, the entire information that was previously in � has moved 
into the definition of the physical state-space Sphys . �Bell = �� and 𝜌̃Bell = 𝜌̃𝜇̃ give 
exactly the same probabilities. Since we never experimentally measure probability 
densities but only probabilities, these two theories are physically indistinguishable. 
Both violate Bell-Statistical Independence as defined in Eq. (3). But 𝜌̃(𝜆|X) = 𝜌̃(𝜆) , 

(4)𝜇̃(𝜆,X) ∶=

N∑

i=1

𝛿(𝜆 − 𝜆i)𝛿(X − Xi) .

(5)P(A) = ∫A

d𝜆dX 𝜌̃Bell(𝜆,X) = ∫A

d𝜆dX 𝜌Bell(𝜆,X) ,

Fig. 1   Illustration of sampling procedure. Left: The square represents the space Smath over hidden vari-
ables and measurement settings, and the shading is the probability distribution � over it. The brighter the 
shading, the higher the probability. Right: We randomly distribute a set of N points using � . In the limit 
N → ∞ a uniform distribution 𝜌̃ on the points will reproduce the probabilities defined by � on Smath 
with a uniform measure. The set of points defines the new space Sphys , also over hidden variables and 
measurement settings. It has a non-trivial measure 𝜇̃ in Smath . Any correlations that were present in � are 
thereby moved into the structure of Sphys
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that is, the hidden variables are by construction uncorrelated on the new space. On 
Sphys , the theory would violate Eq. (3), but not Eq. (1).

We have here used a uniform distribution on the physically possible states. This 
corresponds to what is commonly called the principle of indifference [11]. We just 
use this as the simplest example of a distribution on state space. Regardless of what 
the distribution is, however, one cannot be indifferent about the state-space itself 
because this state space is a property of the laws of physics. It is whatever it is. This 
can induce violations of Bell-Statistical Independence even if the distribution over 
the space is uniform.

It is in this sense that the common interpretation of Bell-Statistical Independence 
is wrong: On a state space with non-trivial measure, the hidden variables may not 
be correlated with the detector settings and yet the Bell-Statistical Independence 
assumption will be violated. The common interpretation neglects the possibility that 
the theory is supermeasured rather than superdeterministic.

Moving the correlation into the definition of the physical state space is a simple 
way to avoid fine-tuning (the claim that the experimentally confirmed correlations 
are sensitive to small changes in the distribution (raised e.g. in [8, 12])). If the cor-
relations are created by the intrinsic properties of the space itself, rather than the 
distribution over the space, then small changes just can’t happen. This is the idea of 
IST [9] which we will discuss in more detail in Sect. 4. Other reasons why the fine-
tuning argument can fail were previously discussed in [5, 13, 14].

Another example of a theory which uses a non-trivial measure is Spekkens toy 
model [15]. This model relies on an “epistemic restriction” that requires certain 
combinations of phase-space distributions to have measure zero. The Spekkens 
model is not supermeasured, however, because this measure does not depend on the 
measurement setting. For this reason the Spekkens model cannot reproduce Bell-
inequality violations, whereas ist can.

We also note that one could apply the principle of indifference to say the measure 
should be uniform (or trivial). This occurs in fields such as statistical mechanics 
(e.g. with the Gibbs measure [16]). However, empirical evidence/observed phys-
ics gives us reason to believe the measure is (or at least to consider theories where 
the measure is) non-trivial, and so the principle of indifference does not apply here. 
Specifically, we can take clues from the non-commutativity of certain variables in 
quantum mechanics that we might have gotten the measure of the space wrong, and 
hence try a different measure to see if it allows us to explain more.

We want to stress, however, that just because a measure can remove fine-tuning 
does not mean it necessarily does. The measure itself may be fine-tuned, in the sense 
that it requires a large number of details to be specified. Whether that is so must be 
evaluated for each model on a case by case basis. But since we know already that 
the measurement settings are sufficient to obtain the correct predictions of quantum 
mechanics as average values (because that is what we do in quantum mechanics), it 
is reasonable to think that the measure need not be fine-tuned. We will now show 
this with a simple example.
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3 � Statistical Independence in the CHSH Inequality

Before turning to IST as a natural example for a non-trivial measure, we will go through 
a simple example, the CHSH inequality [17]. The CHSH setting describes a measure-
ment of two entangled particles with two different detectors, commonly assigned to 
two observers, Alice (A) and Bob (B). The inequality states that any locally causal hid-
den variable theory which respects Bell-Statistical Independence fulfils

where X0∕1 are detector settings on Alice’s side and Y0∕1 are the detector settings on 
Bob’s side. The quantum correlations E(X0∕1, Y0∕1) are the expectation values of the 
results, A(X0∕1) and B(Y0∕1) , where A(X0∕1) is Alice’s result given Alice’s setting 
X0∕1 , and B(Y0∕1) is Bob’s result given Bob’s setting Y0∕1 . We will consider the usual 
case in which there are only two possible measurement outcomes relative to those 
settings, A(⋅),B(⋅) ∈ {−1,+1}.

In experimental tests of the CHSH inequality, the correlations for four different 
combinations of settings are estimated from four separate sub-ensembles of particles. 
physical statistical independence is then the assumption that

that is, the distribution of hidden variables does not depend on the (combination 
of) detector settings. We will assume that our hidden variables theory fulfils this 
assumption.

We will now explain how the CHSH inequality can be violated in a hidden variables 
model by violating Bell-Statistical Independence but not physical statistical independ-
ence. For this, we first assume that the entangled state is represented by a hidden vari-
able, � , which has the probability distribution 𝜌̃(𝜆,XY) . And next, that the measurement 
outcome is determined by the hidden variable and the settings: A(�,X),B(�,Y).

We will denote the space of all the hidden variables with Λ and divide it up into 
subsets for each possible combination of detector settings and outcomes ΛAB

XY
 . That is, 

the subset Λ++
00

 contains all � s for setting X0Y0 that will give the result A = +1,B = +1 , 
the subset Λ+−

00
 contains all � s for setting X0Y0 that will give the result A = +1,B = −1 , 

and so on.
However, we will next assume that the hidden variable cannot occur for two differ-

ent combinations of measurement settings. If the variable � described the case with set-
ting X0Y0 , then the combination (�,X0Y1) is in Smath but not in Sphys . This means that

but that these spaces are mutually disjoint

This does not contradict Eq. (7) because physical statistical independence is a state-
ment about the probability distribution. The probability distributions for the four 

(6)||E(X0, Y0) − E(X1, Y0) + E(X0, Y1) + E(X1, Y1)
|| ≤ 2 ,

(7)𝜌̃(𝜆|X0Y0) = 𝜌̃(𝜆|X0Y1) = 𝜌̃(𝜆|X1Y0) = 𝜌̃(𝜆|X1Y1) = 𝜌̃(𝜆) ,

(8)Λ =
⋃

i,j,k,l

Λ
ij

kl
for i, j ∈ {+,−} ∧ k, l ∈ {0, 1} ,

(9)Λ
ij

kl
∩ Λab

cd
= � for ijkl ≠ abcd .
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different combinations of settings can be made similar to arbitrary precision, even 
though no value of � appears twice.

Imagine for example that � is a real number from the interval [0, 1] ∈ ℚ . We ran-
domly sample N points from this interval using a uniform distribution and assign 
each to one of combinations of settings and outcomes, i.e. one of the Λij

kl
 . The so-

generated probability distributions will be statistically indistinguishable for N → ∞ 
even though the probability that � appears for two different settings is zero. Note that 
this is the case regardless of how many of the � ’s we assign to each detector pro-
vided the cardinality of all subsets is the same. In the limit N → ∞ the distribution 
for � conditioned on one of the detectors will just be uniform on each subspace Λij

kl
.

However, and here comes the important point, the measures of the subspaces Λij

kl
 

don’t have to be the same. All we need to do now is choose 𝜌̃ to be constant, and the 
measure of the space Λij

kl
 to be proportional to the quantum mechanical probability 

P
(
A(Xk)B(Yl)|XiYj

)
 (the constant of proportionality will cancel with the normalisa-

tion of 𝜌̃ ) for each possible combination of outcomes. Note that, since � together 
with the detector setting determines the outcome, the outcome isn’t an independent 
variable. As a result, if we want to calculate the expectation value for a certain com-
bination of measurement settings in the hidden variables model, we have

which reproduces the correlations of quantum mechanics.
Again it might seem rather trivial: We have just pushed the quantum mechanical 

correlation into the definition of the physical state space and then uniformly sampled 
the hidden variables over this space. This way, physical statistical independence is 
respected because the correlation comes from the definition of the space rather than 
from the distribution over it.

The above example can be generalised straight-forwardly to any quantum 
mechanical measurement, regardless of what variables are measured in what order 
or how many detectors there are. The above construction will always give the exact 
same result as quantum mechanics. In particular it will obey the same bounds and 
violate all other inequalities just the same as quantum mechanics.

Of course this example is somewhat pointless because we didn’t specify the 
model sufficiently to even know whether it’s locally causal. However, any deter-
ministic hidden variables theory that violates local causality can be made locally 
causal on the expense of violating Bell-Statistical Independence. We have now fur-
ther shown that—contrary to what is often stated—violating Bell-Statistical Inde-
pendence does not necessarily require correlations between the hidden variables and 
measurement settings.

This isn’t the only way to reproduce quantum mechanics with a locally causal and 
deterministic model without fine-tuning [14] but it is a nice example to see just why the 
distribution of the hidden variables is not fine-tuned. It is uniform on the sample-space, 

(10)
E(Xk, Yl) =

∑

AB
∫ΛAB

kl

d𝜆 A(𝜆,Xk)B(𝜆,Yl)𝜌̃(𝜆)𝜇̃(𝜆|XkYl)

=
∑

AB

A(Xk)B(Yl)P
(
A(Xk)B(Yl)|XkYl

)
,
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and the sample-space just describes what happens in reality. If the detector setting is 
one thing, it is not also another thing. The correlations come from the sample-space 
itself. And the information that goes into the construction of the sample-space is just 
the same as in quantum mechanics. Hence, this model is exactly as fine-tuned or not 
fine-tuned as quantum mechanics. That is to say, a rational reader who has no quarrels 
with quantum mechanics should have no quarrels with this model either.

4 � Invariant Set Theory

4.1 � The Mathematical Basis of IST

We next consider supermeasures in the context of IST. We do in the following not 
directly need the fractal structure of an invariant set. That invariant sets are generically 
fractals merely serves as a motivation to consider a finite discretisation of Hilbert space 
in which certain combinations of states do not exist. As we explain below, this discreti-
sation naturally acts as a supermeasure.

Invariant set theory [9, 18, 19] is a putative theory of quantum physics based on the 
assumption that the universe is a causal deterministic dynamical system whose state-
space is a fractal set, IU . This fractal set corresponds to Sphys of the previous section. It 
is invariant under the action of dynamical equations: if a point lies on IU , its time evo-
lution always lies on IU ; if a point does not lie on IU its time evolution never will and 
never has. The nontrivial measure 𝜇̃ is the measure of this invariant set. It is sometimes 
called the invariant measure. Each trajectory of IU actually comprises a Cantor Set’s 
worth of trajectories. As such 𝜇̃ is a Hausdorff measure [20]—a generalisation of Leb-
esgue measure for spaces with non-integer dimension.

Notably, if the state space is a fractal, it has gaps. (Indeed one could say it is mostly 
gaps since the set has measure zero in the continuum embedding space.) In IST, the 
states in the gaps are not ontic, they are counterfactual states that are mathematically 
possible (and hence lie in Smath ), but are inconsistent with the assumed laws of phys-
ics (and hence do not lie in Sphys ). With respect to a Euclidean metric on Smath , the 
non-ontic states are arbitrarily close to the ontic states. That is, perturbations (which 
are tiny with respect to the Euclidean metric) will generically take an ontic state to 
one that is inconsistent with the assumed laws of physics. This does not make the the-
ory fine-tuned as perturbations which take ontic states off the invariant set are neces-
sarily p-large with respect to a p-adic norm. Such a norm, and associated metric, is 
the natural one to use on a fractal geometry. And if IST is not fine tuned, it cannot be 
conspiratorial.

The fractal structure that underpins IU is further assumed to be isomorphic to the 
p-adic integers, for some very large p. The theory of dynamical systems defined on 
p-adic numbers is an established part of arithmetic dynamics (see e.g. [21] and refer-
ences therein). Indeed the famous Lorenz model based on three simple ordinary dif-
ferential equations
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provides a motivational example of what we have in mind. No matter where in state 
space these equations are initialised, the solutions of the Lorenz equations define 
trajectories which, after an infinite length of time, fall onto the fractal Lorenz attrac-
tor. What we are proposing is to base the laws of physics, not on differential equa-
tions like Eq. (11), but on geometric equations which describe the attractor. With 
such laws, a point in state space which does not lie on the attractor is not physically 
consistent with such laws. Such a point is assigned a prior probability of zero. On 
the other hand, it is impossible to know a priori whether a point lies on the attractor: 
the geometric properties of fractal structures like the Lorenz attractor are formally 
non-computable [22, 23].

IST in its current form does not have a dynamical law. However, this is common-
place in the quantum foundational literature as in many cases one only cares about 
transition amplitudes between initial and final times. Those amplitudes are in addi-
tion often between spin states, so that one does not need to consider a space-time 
evolution. A typical example of this is Spekkens’ Toy Model [15], which does not 
have a dynamical evolution equation but despite that has proved to be useful. Like in 
Spekkens’ Toy Model, we study here what insights we can extract directly from the 
structure of state space.

As a consequence of this fractal structure, an ensemble-based probabilistic state 
of the system in IST can be expanded in the basis of detector eigenstates �Aj⟩ in the 
form:

where the coefficients as usual square to 1, ie 
∑

j aja
∗
j
= 1 and the star denotes com-

plex conjugation. The crucial difference to standard quantum theory is that in IST 
the complex amplitudes aj belong to a subset of the complex numbers 
aj ∈ ℂp,ℂp ⊂ ℂ . The elements of ℂp obey rationality restrictions on the coefficients 
(and so do not form a field). Specifically, if we write aj in polar form aj = Rje

i�j then 
the fractal structure of IU demands

where mj, nj, p ∈ ℕ0 , mj, nj < p.
This discretisation is effectively a nontrivial measure, allowing the violation of 

Bell-Statistical Independence—it gives measure zero to any states whose coeffi-
cients in Eq. (12) do not obey the conditions in Eq. (13). This means distributions 
over the set of allowed states will violate the assumption of Bell-Statistical Inde-
pendence, even if the distributions themselves contain no information about the 
detector setting.

(11)

dX

dt
= �(Y − X)

dY

dt
= X(� − Z) − Y

dZ

dt
= XY − �Z

(12)��⟩ = a1�A1⟩ + a2�A2⟩…+ aJ�AJ⟩ ,

(13)R2

j
= mj∕p; �j = 2�nj∕p ,
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In the limit p → ∞ , the set of such “rational” Hilbert states is dense in the projection 
of the quantum mechanical Hilbert-space. From this point of view, for large enough 
p, IST can be made as experimentally indistinguishable from quantum theory as one 
likes. This makes it difficult to devise experimental tests for this idea. Such tests must 
ultimately be based on the fact that, at the end of the day, p is some finite number [24].

However, no matter how large is p, the state-space of this theory will continue to 
have gaps. That is to say, the limit p → ∞ is singular: quantum mechanics does not 
correspond to IST in the large p limit. Importantly, no matter how large is p, ensembles 
of trajectories described by Hilbert States where the complex amplitudes do not belong 
to ℂp , do not lie on IU . As such, these trajectories have the measure 𝜇̃ = 0 in the con-
tinuous embedding space.

With this IST explains why it is impossible to simultaneously measure conjugated 
variables in quantum mechanics with certainty. In quantum theory, this is a conse-
quence of having non-commuting operators acting on a Hilbert-space, but is otherwise 
unexplained. In IST this arises in a deterministic framework because of the geometric 
structure of the invariant set and associated fractal measure. The incomplete algebraic 
structure of ℂp reflects the “gappy” geometric structure of IU . For example, superposi-
tions of two states which are in ℂp are generically not also in ℂp.

Of course, thinking about rational numbers and constraints among which states 
can mutually exist does not explain all results of quantum mechanics—that would 
require, amongst other things, a dynamical law. It does however provide a math-
ematical basis for the impossibility of measuring certain combinations of variables 
at the same time.

4.2 � The CHSH Inequality in IST

It was previously demonstrated in [9], that IST correctly reproduces the observed 
violations of Bell’s inequality and the results of sequential Stern-Gerlach experi-
ments. We will here use the CHSH inequality to explain how the measure of state 
space is relevant to obtain the correct probabilities.

In IST, if we keep the setting of the first detector fixed (say, at X0 ), then the set-
tings Y0 and Y1 of the second detector cannot both be on the set if Y0 ≠ Y1 . If Y0 was 
on the set together with X0 , then Y1 won’t be on it, or the other way round. One of 
them is not physically possible. This property is a consequence of the rationality 
requirement on the amplitudes and phases and a number-theoretic result known as 
Niven’s theorem [25, 26]:

Niven’s Theorem Let �∕2� ∈ ℚ . Then cos� ∉ ℚ except when cos� = 0,±
1

2
,±1.

If the first combination of settings, ( X0Y0 ) for given � , fulfils the rationality con-
dition, then the second one, (X0Y1) for the same � , can’t fulfil it; it is associated with 
a state in Smath where 𝜇̃ = 0.

This means that

(14)𝜌̃Bell(𝜆|X0Y0) ≠ 0 ⟹ 𝜌̃Bell(𝜆|X0Y1) = 𝜌̃Bell(𝜆|X1Y0) = 0

(15)𝜌̃Bell(𝜆|X1Y0) ≠ 0 ⟹ 𝜌̃Bell(𝜆|X0Y0) = 𝜌̃Bell(𝜆|X1Y1) = 0
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etc. However, this does not imply

etc.
Now because the statistics of trajectories in IST can be represented by complex 

Hilbert vectors over ℂp for large p, the measures of the spaces Λij

kl
 introduced in 

Sect. 3 are proportional to the quantum mechanical probabilities P
(
A(Xk)B(Yl)|XkYl

)
 . 

Hence IST reproduces the correlations of quantum mechanics.

4.3 � Free Will

As mentioned at the beginning, Bell-Statistical Independence is sometimes called 
the Free Will and/or Free Choice assumption. This refers to the notion that if, for 
example, Alice actually chose X0 and Bob Y0 , then, keeping � and Alice’s choice 
fixed, Bob could have chosen Y1 instead – he had the freedom to have done other-
wise. But as we have also discussed, such a counterfactual state is incompatible with 
IST: If Bob actually chose Y0 , then the state corresponding to the triple (�,X0, Y1) is 
not in the physical state-space; it corresponds to a point in Smath where 𝜇̃ = 0.

But does this constraint actually have anything to do with free choice? In a deter-
ministic framework, like IST, free will can at best be interpreted as the absence 
of constraints that could prevent an agent from doing as they please. But there is 
nothing in IST that would prevent an agent from doing as he or she pleases any 
more than this is always the case in any deterministic theory—the laws of nature 
always constrain what we can do. And just as it is possible to violate Bell-Statisti-
cal Independence without violating physical statistical independence, it is possible 
to violate Free Choice (the assumption in Bell’s Theorem) without violating free 
choice—remember that after all Free Choice is just a fancy name for Bell-Statistical 
Independence. That is, in IST Bob can freely choose among the physically possible 
options in the sense that there is no constraint on them.

While the difference between the correlations being on state space or in the prob-
ability distributions makes little difference to our observable world, it has relevance 
to the difference between Free Will as an assumption in Bell’s Theorem, and “free 
will” as debated in metaphysics. Were the “free will” debate based on what we 
observe or experience, we would be tempted to say that moving correlations to a 
supermeasure makes no difference; however, most of the free will debate is meta-
physical—it has nothing to do with what we observe or experience. It concerns the 
question of what we even mean by being “free” from something. And for that part of 
the debate, it matters whether an event or process is even physically possible (in the 
physical state space) or merely mathematically possible.

For instance, no one seems to ever be worried that we are not free to move around 
with complex-valued velocities (or momenta). Mathematically, this is totally pos-
sible. It just does not happen in reality—observables are Hermitian operators. How-
ever, no one has ever argued that this restricts our “free will”. Why not? Because 

(16)𝜌̃(𝜆|X0Y0) ≠ 0 ⟹ 𝜌̃(𝜆|X0Y1) = 𝜌̃(𝜆|X1Y0) = 0

(17)𝜌̃(𝜆|X1Y0) ≠ 0 ⟹ 𝜌̃(𝜆|X0Y0) = 𝜌̃(𝜆|X1Y1) = 0
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that velocities are real-valued is just a property of how the universe is. Obtaining a 
complex-valued velocity is not a physically possible change, so we do not think it 
restricts our “free will”. (It is probably something most people do not think about 
in the first place.) It is for this reason that the distinction between mathematical and 
physical possibilities matters, even though this does not affect what actually happens 
experimentally.

In some parts of the literature, authors have tried to distinguish two types of theo-
ries which violate Bell-SI. Those which are superdetermined, and those which are 
retrocausal. The most naive form of this (e.g. [6]) seems to ignore the prior existence 
of the measurement settings, and confuses a correlation with a causation. More gen-
erally, we are not aware of an unambiguous definition of the term “retrocausal” and 
therefore do not want to use it.

In the supermeasured models that we consider, the distribution of hidden varia-
bles is correlated with the detector settings at the time of measurement. The settings 
do not cause the distribution. We prefer to use find Adlam’s terms—that superdeter-
ministic/supermeasured theories apply an “atemporal” or “all-at-once” constraint—
more apt and more useful [27].

5 � Conclusion

While Bell’s theorem is often said to imply that local causality (which is violated by 
standard quantum mechanics) cannot be restored with a deterministic hidden vari-
ables theory, this is only correct if the hidden-variables theory respects Bell-Statis-
tical Independence. Violations of Bell-Statistical Independence are commonly inter-
preted as implying a correlation between the measurement settings and the hidden 
variables which determine the measurement outcomes. However, as we have shown 
here, one can violate the (Bell-)Statistical Independence assumption in Bell’s theo-
rem without any correlations between the measurement outcomes and the hidden 
variables. The violations of Bell-Statistical Independence can instead come about by 
the geometry of the underlying state space. We have argued that this is a simple way 
to see that violating Bell-Statistical Independence does not require fine tuning.
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