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Abstract
I argue that Bohmian mechanics (or any similar pilot-wave theory) cannot reason-
ably be claimed to be a deterministic theory. If one assumes the “quantum equi-
librium distribution” provided by the wave function of the universe, Bohmian 
mechanics requires an external random oracle in order to describe the (Kolmogorov–
Levin–Chaitin) algorithmic randomness properties of typical outcome sequences of 
long runs of repeated identical experiments (which provably follow from the Born 
rule). This oracle lies beyond the scope of Bohmian mechanics (or any deterministic 
extension thereof), including the impossibility of explaining the randomness prop-
erty in question from “random” initial conditions. Thus the advantages of Bohmian 
mechanics over other interpretations of quantum mechanics, if any, must lie at an 
ontological level, and in its potential to derive the quantum equilibrium distribution 
and hence the Born rule.
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1 Introduction

Bohmian mechanics is widely seen as a deterministic interpretation of quantum 
mechanics. This point was already made by Bohm himself, and has been repeated 
by his followers:1

My interpretation of the quantum theory describes all processes as basically 
causal and continuous.2 [10, p. 175]

But in 1952 I saw the impossible done. It was in papers by David Bohm. Bohm 
showed explicitly how parameters could indeed be introduced, into nonrelativ-
istic wave mechanics, with the help of which the indeterministic description 
could be transformed into a deterministic one. [11, p. 990]

Bohmian mechanics happens to be deterministic. A substantial success of 
Bohmian mechanics is the explanation of quantum randomness or Born’s sta-
tistical law, on the basis of Boltzmann’s principles of statistical mechanics, i.e. 
Born’s law is not an axiom but a theorem in Bohmian mechanics. [12, p. 6]

My aim is to show that the alleged determinism of Bohmian mechanics is parasitical 
on some external random sampling mechanism (“oracle”) the theory has to invoke in 
order to state the specific value of the hidden variable (i.e. position) in each experi-
ment. Short of the above oracle, Bohmian mechanics by itself is not only unable 
to predict the outcome of individual experiments, but cannot even reproduce their 
provable (algorithmic) randomness properties (which follow from the Born rule). 
Furthermore, Bohmian mechanics cannot be extended by any deterministic theory 
so as to replace the random oracle, even if it is deemed acceptable that a determin-
istic theory fails to specify its initial conditions. Thus the performance of Bohmian 
mechanics and especially its level of determinism are similar to that of minimal ver-
sions of the Copenhagen interpretation, which also leaves the outcomes of experi-
ments to a black box (arguably a more obscure one).

Partly to set the stage and partly to briefly discuss other aspects of determinism 
I will not go into here any further, let me summarize the formalism of Bohmian 
mechanics.3 For simplicity, consider a system of N non-relativistic spinless parti-
cles with masses m1,… ,mN , moving in ℝ3 , so that the classical configuration space 
is ℝ3N . Suppose the classical Hamiltonian, defined on the associated phase space 
T∗(ℝ3N) ≅ ℝ

6N , is given by

2 Here ‘causal’ is synonymous to ‘deterministic’. This is clear from a contrast Bohm draws on the same 
page: ‘Thus, we are able in my interpretation to understand by means of a causal and continuous model 
just those properties of matter and light which seem most convincingly to require the assumption of dis-
continuity and incomplete determinism.’ Similarly, Holland’s well-known book The Quantum Theory of 
Motion is subtitled: An Account of the de Broglie–Bohm Causal Interpretation of Quantum Mechanics.
3 For details see e.g. Holland [13], Dürr and Teufel [12], Bricmont [14], and Goldstein [15].

1 See Kaiser [4], Norsen [5], Greenstein [6], Bricmont [7], Bub [8], and Ryckman [9] for some history of 
Bohmian mechanics and the closely related de Broglie–Bohm pilot wave theory.
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The associated quantum theory starts from the Hilbert space H = L2(ℝ3N) , on which 
one tries to define a Hamiltonian ĥ = −

∑
k Δ̂k∕(2mk) + V̂  as a self-adjoint operator, 

where Δ̂k is the Laplacian for the kth coordinate xk = (x1
k
, x2

k
, x3

k
) in x = (x1,… , xN) , 

and V̂  is the potential seen as a multiplication operator. If this is done successfully,4 
by Stone’s theorem any Ψ ∈ H evolves unitarily for all t ∈ ℝ as a solution of the 
Schrödinger equation

where Ψ0 = Ψ . This solution, in turn, gives a probability measure Pt on ℝ3N via

where d3Nx ∶= d3x1 ⋯ d3xN with d3xk = dx1
k
dx2

k
dx3

k
 . Since Born [18], the role of 

Pt has been to provide probabilities for outcomes of measurements; e.g. if position 
is measured, then the probability of finding the collective N-particle position q in 
A ⊂ ℝ

3N at time t equals

In textbook (Copenhagen) quantum mechanics these probabilities do not have an 
ignorance interpretation (and hence are “irreducible”), because the particle posi-
tions are not just unknown before they are measured; they do not even exist prior to 
measurement.

Bohmian mechanics may be seen as a modification of either classical or quantum 
mechanics. In the former view it adds a (“pilot”) wave function Ψt(q) to the particle 
trajectories t ↦ q(t) , whereas in the latter view it adds particle trajectories to the 
wave function. The wave function is supposed to satisfy the Schrödinger equation of 
quantum mechanics, seen however as a classical pde (as opposed to an ode in Hilbert 
space).5 But the wave function only acts as a servant to the particles, in two com-
pletely different ways: 

1. Once Ψt(q) is known by solving (1.2), the trajectories t ↦ q(t) are found by solv-
ing 

(1.1)h(p, q) =

N∑

k=1

p2
k

2mk

+ V(q); p = (p1,… , pN), q = (q1,… , qN).

(1.2)ĥΨt = i�
𝜕Ψt

𝜕t
,

(1.3)dP
t
(x) = �

t
(x)d3Nx; �

t
(x) ∶= |Ψ

t
(x)|2,

(1.4)Pr t(q ∈ A) = Pt(A).

4 In practice, ĥ is first defined on some safe domain like D = C∞
c
(ℝ3N ) and subsequently extended to 

a self-adjoint operator, but this procedure may be unique, non-unique, or even impossible, depending 
on the potential V (and, using configuration spaces Q different from ℝ3N , on Q). In the non-unique case 
(where ĥ has several self-adjoint extensions) one faces some kind of indeterminism Earman [16]; inter-
esting examples of this phenomenon come from spacetime singularities [17]. Such “indeterminism” will 
be inherited by Bohmian mechanics. But I will ignore this on the understanding that situations where this 
happens can typically be resolved by providing classical boundary conditions.
5 As pointed out by Arageorgis and Earman [19], in Bohmian mechanics the wave function Ψ is taken 
“on the nose”, whereas in quantum mechanics it is its equivalence class in L2 that defines the state.
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 where jk = �vk is the usual kth particle probability current of quantum 
mechanics, 

 Here ∇k = (�∕�x1
k
, �∕�x2

k
, �∕�x3

k
) . Provided Ψt satisfies Schrödinger equation 

(1.2), the current jk is related to the probability density (1.3) by the conservation 
law 

 Though (1.5) is just a flow equation for a time-dependent vector field v, (1.2)–
(1.5) form a coupled pde-ode system of a novel kind that has no counterpart in 
either classical or quantum mechanics. Although Stone’s theorem still applies to 
(1.2), the ensuing vector field v may be incomplete, in which case the trajecto-
ries q(t) do not exist for all time and all initial conditions. This adds a potential 
source of indeterminism to Bohmian mechanics that has no analogue in quan-
tum mechanics but is unrelated to the “random-ish” kind of indeterminism dis-
cussed in this paper.6

2. Though considered real, the particle locations q(t) are mysteriously hidden in 
principle and can only be revealed by measurement. All we can know is their 
probability distribution, which at time t is given by the “quantum equilibrium 
measure” (1.3)–(1.4), just like in quantum mechanics. This move turns Bohmian 
mechanics into a special case of classical statistical mechanics, albeit with the 
unusual features that: 

(a) The probabilities are defined on configuration space (rather than phase 
space).

(b) A consistent interpretation of these probabilities is elusive. On the one 
hand, the assumed reality of the particle positions and trajectories forces 
an ignorance interpretation: since at any time t all particles are supposed 
to actually have positions, �t (which never describes these actual values) 
cannot be objective. But on the other hand, since these values cannot even 
be known in principle (until they are measured), the probabilities defy an 
ignorance interpretation and seem to be ontic or objective. See also Myr-
vold [22, Sect. 9.4]. This dilemma haunts Bohmian mechanics and may 
explain some of its ultimate indeterminism.

In sum, although its role as a “pilot” in 1. gives the wave function Ψt some ontic 
status, its associated probability distribution �t uncomfortably floats between 

(1.5)
dqk(t)

dt
= vk(q(t), t); vk(q(t), t) ∶=

ℏ

mk

Im

(
∇kΨt(q(t))

Ψt(q(t))

)
=

jk(t, q(t))

�t(q(t))
,

(1.6)jk(t, x) =
iℏ

2mk

(Ψt(x) ∇kΨt(x) − Ψt(x)∇kΨt(x)).

(1.7)�t�t(x) + Σk∇k ⋅ jk(t, x) = 0.

6 For details see Berndl et al. [20], Teufel and Tumulka [21], and Arageorgis and Earman [19].
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subjectivity and objectivity. According to Dürr et al. [23], �t determines which parti-
cle configurations are deemed “typical” in the sense of “overwhelmingly probable”, 
but this shifts the burden of interpretation to the question what that is supposed to 
mean! See Sect. 4.

2  What Makes a Hidden Variable Theory Deterministic?

Since my analysis does not only apply to Bohmian mechanics and may perhaps even 
be clearer in a more general context, I momentarily take a broader perspective. A 
general hidden variable theory T underneath quantum mechanics, say in the specific 
context of some given well-understood and repeatable experimental setting, should 
provide at least:7

• A space Λ of hidden variables � ; in Bohmian N-particle mechanics this is posi-
tion space Λ = ℝ

3N , so that � = q = (q1,… , qN) with qk = (q1
k
, q2

k
, q3

k
) , as above.

• An assignment Ψ ↦ PΨ , where Ψ is a quantum-mechanical state (not necessarily 
a wave function) describing the system, and PΨ is a probability measure on Λ . In 
Bohmian mechanics PΨ is the Born/“equilibrium” measure (1.3) at time t.

• Conditional probabilities P�(e ∣ a) stating the probability of outcome e of the 
experiment on setting a, given the value � of the hidden variable; in Bohmian 
mechanics this of course depends on the details of the experiment, which I need 
not go into.

The compatibility requirement between quantum mechanics and the given theory, 
then, is

where �Ψ(e|a) is the quantum-mechanical Born probability for outcome e given a 
and Ψ . In this formalism, a hidden variable theory T is called deterministic (just 
terminology!) if

That is, the value of � determines the outcome of the experiment.8 On this basis, 
exploring the bipartite (“Alice and Bob”) setting introduced by Einstein et al. [26], 
Bell [27] proved that the conjunction of the following properties is inconsistent: 

1. Determinism in the (narrow) sense of (2.2) and preceding definitions;

(2.1)�Ψ(e ∣ a) = ∫Λ

dPΨ(�)P�(e ∣ a),

(2.2)P�(e ∣ a) ∈ {0, 1} for any value of �, e, a.

7 See Leifer [24] for a more detailed analysis of a setting like this. See also Bub [8] for history.
8 In Bohmian mechanics his is true if one knows the hidden positions exactly at the time of measure-
ment. At earlier times, the pilot wave = quantum state Ψ is needed to make predictions, since Ψ deter-
mines the trajectories. See e.g. Barrett [25,  Chap. 5], for a discussion of measurement in Bohmian 
mechanics.
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2. Quantum mechanics, i.e. the compatibility rule (2.1);
3. Locality in a sense made precise in Bell [27];
4. Free choice, i.e. (statistical) independence of Alice’s and Bob’s settings a and b 

from each other and from the hidden variable � (given the probability measure 
PΨ).

There are four (minimal) ways out of this contradiction: just reject one of the 
assumptions! 

1. The Copenhagen interpretation rejects determinism (I take this interpretation to 
be a “family resemblance” but all versions should agree on this point).

2. In arguing that the Born distribution (1.3) should be the end result of an equi-
libration process and hence did not always hold in the past, Valentini [28, 29] 
effectively departs from the Born rule and hence quantum mechanics. See also 
Sect. 4.

3. Bohmian mechanics is non-local [12, Chap. 10], [15, Goldstein, Sect. 13]. The 
question if this non-locality was really necessary motivated Bell [27].

4. Finally, ’t Hooft [30] rejects free choice in his deterministic cellular automaton 
interpretation of quantum mechanics.9 See also Hossenfelder and Palmer [31].

Restoring determinism in the quantum world is not the only goal, perhaps not even 
the most important goal of hidden variable theories. This applies to Einstein, and 
Bell (after whom I will quote similar words from Bricmont) continues the quotation 
in Sect. 1 with:

More importantly, in my opinion, the subjectivity of the orthodox version, the 
necessary reference to the “observer”, could be eliminated. [11, p. 990].

While deterministic, the de Broglie–Bohm theory also accounts naturally for 
the apparent indeterminism of quantum phenomena. Finally, it explains the 
“active role” of measuring devices (...), so strongly emphasized by the Copen-
hagen school, but making it a consequence of the theory and not of some a 
priori philosophical doctrine. It also explains the nonlocal interactions inher-
ent in quantum phenomena. What more could we ask for? [14, p. 19].

Having said this, much as one may read Bell [27] both as a proof that quantum 
mechanics is non-local in a suitable sense and as a proof that deterministic hidden 
variable theories (in the first sense defined below) are necessarily non-local (in a 
slightly different sense),10 one may also look at Bohmian mechanics as an attempt 
to provide a realist ontology for quantum mechanics, and as an attempt to restore 
determinism.11 These goals are closely related, since they are most easily achieved 

10 It is a miracle to me why the Bohmians so vehemently oppose the second reading Bricmont [7].
11 Instead of as a hidden variable theory, Bohmian mechanics may also be seen as an observer-free no-
collapse interpretation of quantum mechanics, see Bub [32]. Here the wave function Ψ is not so much 

9 Bohmians do not explain the origin of the settings of the experiment, which are simply left out of the 
theory. In my view this weakens their case for determinism even further, but this is not my main point.
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simultaneously by rewriting quantum mechanics as a classical theory, which is what 
Bohmian mechanics essentially tries to do.

However, the definition of determinism used above, which is typical for the hid-
den variable literature including Bohmian mechanics, strikes me as too weak, since 
nothing is said about individual experiments. Recall that for Born [18], collision 
theory marked a fundamental difference between classical and quantum mechanics 
in that: the initial conditions being known in both cases, the former could predict the 
outcome with certainty whereas the latter could not. Classical physics may be said 
to be “indeterministic” on account of its typical inability to provide or explain initial 
conditions (say for the solar system), but this is not the kind of indeterminism that 
concerned Born, or me. I will argue that in Bohmian mechanics, even if the initial 
conditions (of either the universe or some relevant part thereof), i.e. the exact par-
ticle positions, were known, no deterministic account of the very specific and prov-
able random structure of typical outcome sequences of quantum-mechanical experi-
ments can be given. To this end I will show that in order to actually acquire the 
mathematical information necessary to predict such outcome sequences the theory 
requires an external oracle whose functioning cannot even in principle be described 
by any deterministic theory, including of course Bohmian mechanics itself.

In particular, the randomness of these quantum-mechanical outcome sequences 
cannot be a consequences of whatever randomness in the initial condiitons, as sug-
gested by Dürr et al. [23]; see Sect. 4. Let me now try to make this argument more 
precise.

3  Is Bohmian Mechanics Deterministic?

First, as explained in Landsman [2, 3], in the narrow context of deterministic hidden 
variable theories, refined mathematical methods are available (namely from the the-
ory of algorithmic randomness) that make an appeal to a bipartite setting unneces-
sary: since my argument does not rely on entanglement, we may simply work with a 
quantum coin toss (realized for example as a spin-z measurement on a spin-1

2
 particle 

in the state (1, 1)∕
√
2 , or optically using suitable polarizers). The settings, possible 

contexts, and quantum state of the experiments are then fixed to be the same for each 
experiment in a long run, so that only the hidden state � (i.e. in Bohmian mechanics 
the particle positions q) may change. Idealizing to an infinite run, one then simply 
has an outcome sequence

such that en = s(n) is the outcome of experiment no. n (with the given settings etc.).
Although standard (Copenhagen) quantum mechanics refuses to say any-

thing about the origin of each outcome s(n), it does make very specific statistical 

s ∶ ℕ → {0, 1},

seen as a “real” physical field (with mathematically of course is complex!) comparable with the electro-
magnetic field, but as a mathematical device that controls the modal properties of the theory.

Footnote 11 (continued)



 Foundations of Physics (2022) 52: 73

1 3

73 Page 8 of 17

predictions. These do not just concern the single-case probabilities for individual 
outcomes, which are given by the Born rule (and are 50–50 in the case at hand), 
but include far more refined claims about the sequence s as a whole, which go well 
beyond saying that the probability of each outcome is 1/2. The basis of these more 
detailed predictions is the following theorem:12

Theorem 1 With respect to the standard “fair” Bernoulli probability measure on the 
space 2ℕ of all binary sequences,13 almost every outcome sequence s of an infinitely 
often repeated fair quantum coin toss is Kolmogorov–Levin–Chaitin random (i.e. 
1-random).14

This notion of randomness (in this case of binary sequences) arose in the 1960s 
when ideas from probability theory were combined with the theory of algorithms 
and computation (à la Turing). I already motivated its use in quantum theory (and 
elsewhere) in Landsman [3], and will return to this motivation in Sect. 4 below in 
connection with the notion of typicality used by the Bohmians. But here I use this 
specific concept of randomness because Theorem 1 is simply a theorem, whose rel-
evance will become clear shortly.

I will show that Theorem 1 leads to insurmountable tension with determinism. 
First, note that in “deterministic” hidden variable theories the outcomes s factor 
through Λ , i.e.,

there are functions h ∶ ℕ → Λ and g ∶ Λ → {0, 1} such that

• The existence of g expresses the idea that the value of � determines the outcome 
of the experiment, cf. (2.2), which is one important sense in which hidden vari-
able theories could try to be deterministic. The function g incorporates all details 
of the experiment that may affect its outcome, like the setting a, a possible con-
text C, and the quantum state Ψ , except the hidden variable �,which gassumes as 

(3.1)s = g◦h.

12 This is Corollary 3.4.2 in Landsman [3], which is Corollary 4.2 of the version arXiv: abs/ 2003. 03554.
13 This measure is the extension of the 50–50 probability for single bits to sequences [33, Sect. 8.2].
14 See Calude [34] or Downey and Hirschfeldt [35] for complete treatments, and Appendix B of Lands-
man [3] for a quick summary. Dasgupta [36] is intermediate between these extremes. This concept was 
first defined by Kolmogorov for binary strings (which are finite by convention) and was subsequently 
extended to (infinite) binary sequences by Levin and independently by Chaitin; whence the name ‘Kol-
mogorov–Levin–Chaitin’ randomness. The ‘1’ in the more technical name ‘1-randomness’ refers to a 
family of similar notions [35] whose use in physics should also be explored. Very briefly, and roughly: 
the Kolmogorov complexity K(�) of a binary string � is the length of “the” shortest computer program 
P that prints � (and then halts). Then � is Kolmogorov random if K(�) = |�| + O(log |�|) , which means 
that the shortest computable description of � is � itself. One may think of this as K(�) ≈ |�| . A binary 
sequence x is Kolmogorov–Levin–Chaitin random if there exists c ∈ ℕ such that K(x|N ) ≥ N − c for each 
N ∈ ℕ , where x|N is the truncation of x to its first N bits. This definition justifies using infinite sequences 
as idealizations of long finite strings (where “long” means: N ≫ c for given x), in so far as randomness 
properties are concerned. I will freely do so in what follows.

http://arxiv.org/abs/abs/2003.03554
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its argument.15 In this light, it would be more precise to write g(�) = g(a,C,Ψ)(�) , 
but since we agreed that (a,C,Ψ) and whatever else is relevant for the outcome 
sequence is fixed throughout the entire run, for simplicity I just write g(�) . 
In Bohmian mechanics the contextuality of g(q) via its hidden dependence 
on a and C is well known (e.g. Dürr and Teufel [12,  Sect.  12.2.3]; Goldstein 
[15, Sect. 12]). Answering a F.A.Q., the existence of g therefore does not contra-
dict the Kochen–Specker theorem.

• The function h gives the value of � in experiment number n in a long run, for 
each n. Conceptually, h samples the probability measure PΨ relevant to the quan-
tum-mechanical state in which the experiment is prepared (see Sect. 4 for further 
discussion). For example, in Bohmian mechanics h ∶ ℕ → ℝ

3N in principle picks 
an element 

 i.e., an N-particle configuration in ℝ3 (seen as the total space of the universe, 
assumed to contain N particles), for each n ∈ ℕ . This is vast, but as I will review 
in Sect. 4, under suitable independence and preparation assumptions the results 
of Dürr et al. [23] enable one to replace h ∶ ℕ → ℝ

3N by h� ∶ ℕ → ℝ
3.

Theorem  2 The sampling function h cannot be provided by Bohmian mechanics, 
or by some hitherto unknown extension of it that may reasonably be claimed to be 
deterministic.

Proof Arguing by reductio ad absurdum, if h is provided by some deterministic the-
ory T, right because T is supposed to be deterministic, h explicitly gives the values 
xn = h(n) for each n ∈ ℕ (i.e. experiment no. n). Since g is also given, this means 
that the sequence s = g◦h is described explicitly by some formula. By Chaitin’s 
second incompleteness theorem,16 the outcome sequence cannot then be 1-random, 
against Theorem 1.   ◻

Thus the question arises what else provides h. In order to recover the predic-
tions of quantum mechanics as meant in Theorem  1, i.e. not just the single-case 
Born probabilities but the (Kolmogorov–Levin–Chaitin) randomness properties of 
entire outcome sequences, the function h must sample either the Born measure PΨ 
on Λ = ℝ

3N , seen as the “quantum equilibrium distribution” of the universe, or the 
one-particle Born measure on ℝ3 provided by some effective wave function � (see 
above). Since g is supposed to be given by Bohmian mechanics, this implies that 
the randomness properties of s must entirely originate in h. This origin cannot be 

(3.2)h(n) ≡ q(n) = (q1(n),… , qN(n)) ∈ ℝ
3N ,

16 This is Theorem B.4 in Landsman [3], both in the printed and the arXiv version. Briefly, this theo-
rem states that even comprehensive mathematical theories (such as set theory) can compute only finitely 
many digits of a 1-random sequence x. See e.g. Calude [34], Theorem 8.7, which is stated for Chaitin’s 
famous random number Ω but whose proof holds for any 1-random sequence. In view of Theorem B.1 
(loc. cit.), also due to Chaitin, this argument applies equally well to long strings (cf. footnote 14).

15 In more general measurements g takes values in the spectrum of the operator that is measured.
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deterministic, since in that case we are back to the contradictory scenario above. 
Hence h must come from, or indeed may be identified with, some unknown exter-
nal random process in nature that Bohmian mechanics needs to invoke as a kind 
of random oracle–it cannot be overemphasized how strong the requirement of ran-
dom sampling of the configuration space ℝ3N with respect to the probability meas-
ure PΨ is; as shown above, this requirement excludes determinism (and, if different, 
computability).

4  Discussion

Theorem 2 allows a sharp comparison with Copenhagen quantum mechanics:

• In Bohmian mechanics the outcome sequence s = g◦h factors though its hidden 
variable space ℝ3(N) and the corresponding sampling function h ∶ ℕ → ℝ

3(N) 
is its source of randomness, lying outside the theory as a black box or external 
“oracle”.

• In Copenhagen quantum mechanics there is no such factorization of s; here, the 
unanalyzed black box and source of randomness is the measurement process 
itself.

So although in Bohmian mechanics the source of indeterminism has been shifted 
compared to its place in Copenhagen quantum mechanics, this source certainly has 
not been removed.

As especially stressed by Dürr et  al. [23], Dürr and Teufel [12], and Goldstein 
[15], Bohmian mechanics tries (or: Bohmians try) to answer all such worries by 
an appeal to typicality. To this end, their main weapon is what they call the quan-
tum equilibrium hypothesis, which I will now try to summarize.17 In the analysis 
reviewed in Sect.  1 we take Ψ to be the wave function of the universe, seen as a 
system of N particles moving in ℝ3 , where N is very large (like N = 1080 ). We 
now take M large enough to describe the number of measurements in a long run, 
but small compared to N (think of M = 1010 ), and accordingly split x = (y, z) with 
y = (x1,… xM) and (z = xM+1,… , xN) . Similarly, we write q = (r, s) for the actual 
particle positions.18 The conditional wave function

(4.1)Ψs(y) =
Ψ(y, s)

‖Ψ(⋅, s)‖L2(ℝ3M)

; ‖Ψ(⋅, s)‖L2(ℝ3M) =

�

∫ d3My �Ψ(y, s)�2

17 I try to follow Dürr and Teufel [12, Chap. 11], who however omit the phase factor in (4.6). See also 
Norsen [37, Sect. 5], whose derivation should be adjusted in the same way, and Myrvold [22, Sect. 9.4].
18 Seen as random variables on the probability space ℝ3N , q consists of the coordinate functions 
qi
k
(x) = xi

k
 for k = 1,… ,N and i = 1, 2, 3 , and similarly ri

k
(y, z) = yi

k
 for k = 1,… ,M and i = 1, 2, 3 , etc.
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of the M-particle system then trivially gives the conditional Born probabilities for r, 
i.e.19

Now take some fixed wave function �M ∈ L2(ℝ3M) , i.e. � is a function of y ∈ ℝ
3M , 

where

and assume that the “environmental” particle positions s ∈ ℝ
3(N−M) decouple in that

for some Φ ∈ L2(ℝ3(N−M)) , whilst the r variables have autonomous Bohmian dynam-
ics: �M should satisfy a Schrödinger equation with a potential V(y) not containing z, 
and the flow equations (1.5) for r do not contain s. The factorization (4.4) then lasts 
as long as we use �M (i.e. during the repeated measurements to be described below), 
and we have

Thus exp(i�(s)) is a phase factor.20 Hence for any y ∈ ℝ
3M , (y, s) ∈ ℝ

3N lies in the 
set

We may finally “trace out” (i.e. marginalize) over all such s to arrive a the formula

If we finally assume that �M(y) = �(y1)⋯�(yM) for some normalized � ∈ L2(ℝ3) , 
then

for any (measurable) A ⊂ ℝ
3M , where �k(yk) = �(yk) for the given single-parti-

cle wave function � . This means that under the stated independence assumptions 
(which one should be able to satisfy in setting up a repeated single-particle measure-
ment whose quantum-mechanical description involves identical initial conditions for 
each experiment but whose Bohmian description allows for differences in the par-
ticle locations r in each case), the probability distributions of the given M-particle 
system induced by the quantum equilibrium distribution for the wave function of 

(4.2)dPΨ(r ∣ s) = dPΨs(r).

(4.3)‖�M‖L2(ℝ3M) = 1,

(4.4)Ψ(y, s) = �M(y)Φ(s),

(4.5)Ψs(y) = ei�(s)�M(y); e
i�(s) =

Φ(s)

|Φ(s)|
.

(4.6)
{Ψ ≅ �M} = {(y, z) ∈ ℝ

3N ∣ Ψz(y) = ei�(z)�M(y) for some � ∶ ℝ
3(N−M)

→ ℝ}.

(4.7)dPΨ(r ∣ Ψ ≅ �M) = dP�M
(r).

(4.8)PΨ(r ∈ A ∣ Ψ ≅ ΠM
k=1

�k) = ∫A

d3My |�(y1)|2 ⋯ |�(yM)|2,

19 This is really a shorthand for PΨ(r ∈ A ∣ s) = PΨs (A) = ∫
A
d3My |Ψs(y)|2 , where A ⊂ ℝ

3M.
20 Like in quantum mechanics, also in Bohmian mechanics wave functions differing by a phase should 
be identified, since both the velocity field (1.5) and the probability distribution (1.3) are the same.
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the universe Ψ equals the Born distribution. Eq. (4.8) is what Dürr et al. [23] call 
the quantum equilibrium hypothesis, which, then, is actually a theorem (albeit under 
restrictive independence assumptions):21

We prove that for every initial Ψ , this agreement with the predictions of the 
quantum formalism is obtained for typical—i.e., for the overwhelming major-
ity of—choices of initial q. And the sense of typicality here is with respect 
to the only mathematically natural—because equivariant—candidate at hand, 
namely, quantum equilibrium. Thus, on the universal level, the physical sig-
nificance of quantum equilibrium is as a measure of typicality, and the ulti-
mate justification of the quantum equilibrium hypothesis is, as we shall show, 
in terms of the statistical behavior arising from a typical initial configuration 
[23, p. 858].

While (4.8) does support the Bohmian mechanics formalism and relates it to experi-
ment, it does not materially affect my discussion in Sect.  3. In that context, all 
the quantum equilibrium hypothesis shows is that in the Bohmian description of 
repeated experiments based on identical single-particle states with wave function � , 
instead of sampling from the probability distribution of all particles in the universe 
given by |Ψ|2 one may sample from the single-particle probability distribution |�|2 . 
But this leads to exactly the same problems.

Restricting ourselves to quantum coin tosses, as before, and assuming with the 
Bohmians that every measurement can ultimately be reduced to position measure-
ments, Eq. (4.8) is simply replaced by the 50-50 Born probabilities used in Sect. 3. 
The quantum equilibrium hypothesis/theorem then states that, provided the initial 
particle configuration of the universe is typical, so is the outcome sequence of an 
endlessly repeated quantum coin toss. This matches the “almost every” in the state-
ment of Theorem 1, and in this experiment we may therefore identify the “typical-
ity” of an outcome sequence with its 1-randomness.

The idea that, at least in the context of Theorem 1 (and, I believe, also in the con-
text of classical statistical physics),22 1-randomness (= Kolomogorov–Levin–Chai-
tin randomness) is the correct notion of typicality for binary sequences has been 
argued by Landsman [3], (2022), and should be uncontroversial. It is much more 
precise than the notion of “overwhelmingly probable” used e.g. in Dürr et al. [23], 
Dürr and Teufel [12], and elsewhere, and is much stronger than (Borel) normality,23 
which is also sometimes used in the literature on Bohmian mechanics e.g. Callender 
[41] . However, Borel normal sequences may be computable,24 and hence despite 

21 It would appear to be more natural to me to use the name “quantum equilibrium hypothesis” to the 
postulate that the N particles comprising the material content of the universe ℝ3 were, and hence are, dis-
tributed according to the Born probabilities |Ψ|2 , where Ψ is the wave function of the universe.
22 For a start, see Grünwald and Vitányi [38]. What is lacking so far is, among others, the connection 
between algorithmic randomness and large deviation theory [39, 40].
23 A sequence s is Borel normal if each possible finite string � in s has (asymptotic) frequency 10−|�| (so 
that each digit 0,… , 9 occurs 10% of the time, each block 00 to 99 occurs 1% of the time, etc.).
24 In base 10 the simplest example is Champernowne’s number 
01234567891011121314151617181920… , which can be shown to be Borel normal. The decimal expan-
sion of � is conjectured to be Borel normal.
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their abundance and attractive statistical properties they are useless in the context of 
quantum mechanics, whose randomness properties are much stronger than normal-
ity, as Theorem 1 shows.25

The identification of “typicality” with “overwhelming probability” is always 
predicated on a background measure, which needs to be justified. For a repeated 
quantum (or even classical) coin flip this background measure declares that each 
binary string (of some given length) or sequence is equally likely to occur. In par-
ticular, a sequence like 10110000101111 is as probable as 00000000000000. The 
intuition that the former is typical in a probabilistic sense while the latter is not, 
applies to the coarse-graining obtained by counting zeros and ones; indeed, (6, 8) 
(i.e. a sequence with 6 zeros and 8 ones) is typical whereas (14, 0) is not. The notion 
of 1-randomness captures this difference already at the level of the sequences them-
selves, without any need for coarse-graining; though it occurs with probability one 
on the space of binary sequences, the concept of 1-randomness is not itself defined 
probabilistically (but algorithmically). What seems lacking in Bohmian mechanics 
is a similar concept of typicality of N-particle configurations that is defined intrinsi-
cally, and subsequently can be shown to occur with probability one relative to the 
background measure provided by the equilibrium distribution |Ψ|2 defined by the 
wave function of the universe Ψ . Defining typicality by this background measure 
would, in the absence of coarse graining, be similar to saying that all binary strings 
or sequences are typical—for they all have the same probability relative to the perti-
nent background measure, as just pointed out. This makes it hard to understand what 
could be meant by ‘typical choices of q’ (in the above quotation); note once again 
that appealing to an ‘overwhelming majority’ only makes sense after coarse grain-
ing. In this light, consider the Bohmian ideology that:

For a universe governed by Bohmian mechanics (...), given the initial wave 
function and the initial positions of all particles, everything is completely 
determined and nothing whatsoever is actually random. (...) The origin of the 
randomness in the results of quantum measurements lies in random initial con-
ditions, in our ignorance of the complete description of the system of inter-
est—including the apparatus—of which we know only the wave function. Dürr 
et al. [23, pp. 846, 844]

In my view, this ideology rests on an equivocation in which the initial conditions of 
the universe (simplified as some N-particle configuration in ℝ3N ) are simultaneously 
treated as uniquely given and hence singular (though inaccessible in principle) and 
yet subject to some probability distribution with respect to which they are supposed 
to be typical.26

Random initial conditions are drawn from a sample space. The (unique) result of 
this draw induces a binary outcome string or sequence h for a repeated quantum coin 
toss for which some specific M-particle subsystem has been used. Choosing a differ-
ent M-particle subsystem would probably give a different outcome sequence h′ , but 

25 Any 1-random sequence is Borel normal [34, Corollary 6.32.]
26 To make things worse, this distribution is also unknown in practice, since its source Ψ is unknown.
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in Bohmian mechanics both are ultimately determined by the initial N-particle con-
figuration. Yet according to quantum mechanics, as mimicked by Bohmian mechan-
ics via (4.8) (and more generally by its aim to preserve all statistical results of quan-
tum mechanics), each of these sequences is 1-random by itself, cf. Theorem 1. By 
Theorem 2 this randomness cannot be a consequence of the randomness of the initial 
conditions, since in Bohmian mechanics these are fixed and everything afterwards is 
supposed to be deterministic. In other words, the above claim that ‘The origin of the 
randomness in the results of quantum measurements lies in random initial condi-
tions’ cannot be upheld, since there is no way for the “randomness” in initial condi-
tions to influence measurement results h and hence “cause” their randomness.27

In comparison, take classical coin tossing. Here, the initial conditions are (to a 
good approximation) the vertical velocity v and rate of spin � of the coin at the 
time it is launched; see Diaconis et al. [42] or Diaconis and Skyrms [43]. This time, 
the (apparent) randomness in an outcome sequence is genuinely “caused” by ran-
domness in the initial conditions, which are sampled by varying wrist and thumb 
movements, and hence ultimately by some sort of brain process. Due to the extreme 
sensitivity of the outcome to the initial conditions, almost any non-sharply peaked 
probability distribution on the space of initial conditions leads to a 50-50 distribu-
tion on the binary outcome space.28

Nonetheless, as in the case of quantum mechanics (see Theorems 1 and 2) the 
outcome sequence would only be 1-random if the ultimate sampling process in the 
brain were indeterministic (in which case it might be quantum mechanical). Indeed, 
by the same reasoning as in the proof of Theorem 2, any kind of determinism blocks 
1-randomness. In particular, sequences produced by coin tossing machines are not 
1-random and I would not be surprised if those produced by humans aren’t either. 
But this is no problem, since few scientist would maintain that the probabilities in 
coin tossing are fundamental; in contrast, the Born probabilities are regarded as 
exact and fundamental, also by the Bohmians.

This discussion suggests a way out, however. Theorems 1 and 2 assume the exact 
validity of the Born rule. But in my view no probability measure used in mathemati-
cal physics is ever exact, because the physical origin of the measure lies in the way 
it is sampled.29 Thus I expect the origin of the Born measure to lie in some underly-
ing theory from which quantum mechanics is emergent à la Butterfield [47]. This 
theory may well be deterministic—provided the Born rule is an approximation. The 
program of Bohm and Vigier [48] and Valentini [28, 29], who try to derive quantum 
equilibrium from equilibration, is in this spirit see also Norsen  [37] and Myrvold 
[22], especially because it accepts departures from the Born rule (also cf. Sect. 2). 
The only disagreements I would have with Valentini [29] is that I would not describe 

27 I am grateful to Joanna Luc for questions in this direction at the Cambridge–LSE PoP Bootcamp.
28 In fact, there is a slight 1% bias for the coin to land the way it started (see references in main text). A 
Galton board provides a similar example with a richer outcome space [12, Sect. 4.1.1].
29 Boltzmann’s program of justifying the microcanonical ensemble by ergodic theory [44, 45] is paradig-
matic; “typical” behaviour would be dynamically generated via time averages. The Bohmians disagree 
with this goal Lazarovici and Reichert [46], but this is not the disagreement in the main text.
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the Bohmian arguments based on typicality as ‘circular’ but as inconclusive (see 
above), and that I would prefer the underlying theory not to be the de Broglie-Bohm 
pilot-wave theory but something really new. Whatever this new theory may be, its 
sampling process should be washed out, as in the “method of arbitrary functions” in 
probability theory [22, 49]. Indeed, this is also what happens in examples like coin 
tossing (even if it is deterministic).
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