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Abstract
A general argument is presented against relativistic, unitary, single-outcome quan-
tum mechanics. This is achieved by combining the Wigner’s Friend thought experi-
ment with measurements on a Greenberger–Horne–Zeilinger (GHZ) state, and 
describing the evolution of the quantum state in various inertial frames. Assuming 
unitary quantum mechanics and single outcomes, the result is that the Born rule 
must be violated in some inertial frame: in that frame, outcomes are obtained for 
which no corresponding term exists in the pre-measurement wavefunction.

Keywords Interpretations of quantum mechanics · No-go theorem · Wigner’s 
Friend · GHZ state · Many-Worlds

1 Introduction

A central ingredient of quantum mechanics is the unitary evolution of closed sys-
tems. The theory also tells us that, after a measurement has been performed upon a 
system, we can assign a specific pure state to that system: an eigenstate of the meas-
ured observable corresponding to the outcome that is obtained, for example �↑⟩ . Now 
suppose such a measurement, say on a particle, takes place inside a laboratory that 
is a closed system. Describing the measurement process unitarily, the post-measure-
ment state of the laboratory is generally one where the particle ends up being entan-
gled with other parts of the laboratory, like the measurement apparatus, the experi-
menter, a notebook wherein the results are written down, etc. Quantum mechanics 
tells us that if there is such entanglement, the particle is not in a pure state; at most 
we can use a density operator to represent its state. How can this be reconciled with 
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the pure eigenstate �↑⟩ assigned to the particle by the experimenter? Must the unitary 
evolution of a closed system break down when a measurement takes place inside 
that system?

This question lies at the heart of the measurement problem of quantum mechan-
ics. Interpretations of quantum mechanics1 aim to answer this question by giving a 
specific account of what happens during a measurement. In some interpretations, the 
unitary evolution of closed systems is upheld. Such interpretations are examples of 
what we will call ‘unitary interpretations’ or ‘unitary quantum mechanics’. Some-
how, such interpretations must account for the fact that in the situation given above, 
the experimenter can assign the pure eigenstate �↑⟩ to the particle. Indeed, unitary 
interpretations like Bohmian Mechanics and Many-Worlds provide such an account. 
However, these two specific interpretations do so at a cost. Bohmian Mechanics 
introduces a preferred reference frame, which creates tension with relativity theory. 
The Many-Worlds interpretation introduces an infinity of parallel worlds, prompt-
ing various philosophical problems, like how to deal with the probability of meas-
urement outcomes when all possible outcomes actually occur. Of course, for some 
people, namely Bohmians and Everettians, these costs are not too high. Yet, others 
would like to see whether a version of unitary quantum mechanics can be found that 
does not cost so much. This paper investigates the general possibility of such an 
interpretation. The answer, of course with some caveats, turns out to be ‘no’: uni-
tary quantum mechanics can only be upheld if either it is denied that measurements 
have single outcomes, or that the Born rule is violated in some inertial frame.2 This 
result is obtained by considering a thought experiment that combines the ‘Wigner’s 
Friend’ thought experiment with the Greenberger–Horne–Zeilinger (GHZ) state. Put 
differently, if one wants to maintain that measurements have single outcomes and 
the Born rule is valid in every inertial frame, it follows that in some cases the uni-
tarity of quantum mechanics breaks down. Various proposals of ‘dynamical collapse 
models’ have been put forward that specify how unitarity may be violated. Such a 
violation of unitarity is in principle detectable. Also, the result of the present paper 
puts constraints on any (future) unitary interpretation of quantum mechanics. Exam-
ples of recent attempts are modal interpretations [1], the ‘Flea on Schrödinger’s Cat’ 
of Landsman and Reuvers, L&R [2], and Kent’s attempted solution to the ‘reality 
problem’ (a term he uses for his generalisation of the measurement problem) [3].

In the following two sections, we rehearse the Wigner’s Friend thought experi-
ment and the GHZ no-go result. Then, we combine the two to reach our main result, 
presented in Sect. 4. After that, we discuss.

1 As is common in the literature, with ‘interpretation of quantum mechanics’ we refer not only to inter-
pretations in the literal meaning of the word, but also to alternative theories, like dynamical collapse 
theories.
2 Throughout we assume that our background spacetime is Minkowskian.
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2  Wigner’s Friend

In 1961, Eugene Wigner proposed a thought experiment that focuses on the tension 
between unitary evolution and wavefunction collapse mentioned in the introduction 
above [4]. The experiment, called ‘Wigner’s Friend’, is a variation on Schrödinger’s 
Cat. Instead of a cat inside a box, the experiment features a friend, whom we call 
Alice, inside a sealed laboratory. Alice performs a measurement, while Eugene is 
standing outside.3 After Alice has performed her experiment, Eugene opens the door 
of the laboratory and asks Alice what the result of her measurement was. The ques-
tion is now: If Eugene wants to assign a quantum state to the laboratory (includ-
ing Alice) before he opens the door, what state should this then be? If the state of 
the laboratory is assumed to have evolved unitarily before opening the door, then, 
Wigner argued, it will be a macroscopic superposition of states corresponding to 
different outcomes. This he found unacceptable, because he thought this to imply 
that his friend is temporarily in a state of ‘suspended animation’, whereas his friend 
will testify never have been in such a bizarre state. Therefore, Wigner concluded that 
the correct state for Eugene to assign to the laboratory is a collapsed state, violating 
unitary evolution. Wigner thought that the presence of human consciousness is the 
decisive factor in wavefunction collapse, his view is therefore sometimes referred to 
as ‘consciousness causes collapse’.

In Wigner’s original thought experiment, the measurement of the friend consists 
of seeing a flash or not. We consider a variation, where Alice measures the z-spin of 
an electron prepared in the x-up state. The measurement takes place between times t0 
and t1 , and we assume the laboratory to be a closed system during the measurement. 
Describing the measurement as an ideal Von Neumann measurement, we have the 
pre-measurement state

Here, A is the electron (of which we only consider its spin degree of freedom), while 
L refers to the rest of the laboratory, including Alice herself. The state �ready⟩L is 
a state of the laboratory wherein Alice is just about to perform her measurement, 
while �+1i⟩ ( �−1i⟩ ) is a spin-up (spin-down) state of the electron in the i direction. 
Note that �±1z⟩ = 1∕

√
2(�+1x⟩ ± �−1x⟩) . Assuming unitary quantum mechanics for 

now, the measurement interaction brings about entanglement between the electron 
and the laboratory:

or, expressing the state as a density operator:

(1)�Ψ(t0)⟩ = �ready⟩L ⊗ �+1x⟩A = �ready⟩L ⊗
�

1

2

�
�+1z⟩A + �−1z⟩A

�
.

(2)�Ψuni(t1)⟩ =
�

1

2

�
�Alice +1z⟩L ⊗ �+1z⟩A + �Alice −1z⟩L ⊗ �−1z⟩A

�
,

3 To distinguish between Wigner as the author of the 1961 paper and Wigner as the person standing out-
side the laboratory in the thought experiment, we refer to the latter using his first name Eugene. So, the 
friend inside may be called ‘Eugene’s Friend’.
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The state �Alice +1z(−1z)⟩L is the state of a laboratory wherein the measurement 
apparatus has registered ‘spin up (down)’, and Alice having seen this outcome, etc. 
Now, if we follow Wigner’s line of thought, only one of the terms in (2) survives; 
namely the term that corresponds to the outcome Alice has registered. So, according 
to Wigner, at t1 we have either

Since Eugene doesn’t know which outcome Alice has obtained, he can use a density 
operator to represent a mixed state of the laboratory and the electron4:

However, we might go against Wigner and assume that for an outside observer as 
Eugene, the correct state to assign is the unitarily evolved state �uni(t1) . This is what 
we call

Unitary Quantum Mechanics: As long as a quantum system is closed, i.e. it 
does not interact with other quantum systems, it evolves unitarily.

Is there a way for Eugene to establish empirically which of the states �uni(t1) and 
�col(t1) is the correct one?

If Eugene opens the door of the laboratory and asks his friend Alice what out-
come she obtained, this can be considered as a measurement of the laboratory in the 
basis5

For both of the states �uni(t1) and �col(t1) , the probability of each outcome of this 
measurement is 50% . Therefore, this measurement cannot distinguish between these 
states.

There are however, in principle, measurements that can distinguish between the 
states. Define states

(3)�uni(t1) = �Ψuni(t1)⟩⟨Ψuni(t1)�.

(4)
�Ψcol(t1)⟩ = �Alice +1z⟩L ⊗ �+1z⟩A, or
�Ψcol(t1)⟩ = �Alice −1z⟩L ⊗ �−1z⟩A.

(5)
𝜌col(t1) =

1

2

�
�Alice +1z⟩L⟨Alice +1z�L ⊗ �+1z⟩A⟨+1z�A

+�Alice −1z⟩L⟨Alice −1z�L ⊗ �−1z⟩A⟨−1z�A
�
.

(6){�Alice +1z⟩L, �Alice −1z⟩L}.

5 A ‘measurement in the basis {�i⟩}i ’ is a measurement of an observable that has {�i⟩}i as eigenstates, 
each with a different eigenvalue.

4 In the terminology of d’Espagnat [5], this would be an example of a ‘proper mixture’, because the state 
being a mixture reflects the uncertainty of Eugene about which (pure) state the laboratory and the elec-
tron are in.
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Then, we can rewrite the unitarily evolved state as follows:

while the collapsed state can be rewritten as

Now consider a measurement of the observable

For this measurement, both outcomes have probability 50% if the state equals 
�col(t1), while the outcome will with 100% probability be +1 if the state equals 
�uni(t1) . Therefore, using such a measurement Eugene could in principle determine 
which is the correct quantum state to assign to the laboratory. Barrett [6], in discuss-
ing Wigner’s thought experiment, calls such a measurement an ‘A-measurement’, 
because he labels his observable (similar to our Ĵ ) as Â . Analogously, we will refer 
to it as a ‘J-measurement’.

While such a measurement is very hard to perform in reality, as Wigner already 
noted, quantum mechanics does not forbid such measurements, unless we exploit 
the fact that some Hermitian operators might not correspond to measurable physical 
quantities. However, forbidding the J-measurement in this way would seem to be an 
ad hoc way of avoiding the contradiction presented in this paper.

3  The Greenberger–Horne–Zeilinger No‑Go Result

The GHZ state was introduced in [7] in order to prove the incompatibility of quan-
tum mechanics and local hidden variable theories ‘without inequalities’. While, in 
Bell’s original theorem, probabilities of (combinations of) measurement outcomes 
are compared using inequalities, using the GHZ state one only needs to consider 
which (combinations of) outcomes are possible (having non-zero probability) and 
which are not (having zero probability).

We give in this section a brief rehearsal of the original GHZ no-go theorem 
against local hidden variables. This will be helpful, because the contradiction 

(7)

�±1Z⟩AL ∶= �Alice ±1z⟩L ⊗ �±1z⟩A;

�±1X⟩AL ∶=

�
1

2
(�+1Z⟩ ± �−1Z⟩).

(8)�Ψuni(t1)⟩ =
�

1

2

�
�+1Z⟩AL + �−1Z⟩AL

�

(9)= �+1X⟩AL, or

(10)�uni(t1) = �+1X⟩⟨+1X�AL

(11)�col(t1) =
1

2

�
�+1Z⟩⟨+1Z�AL + �−1Z⟩⟨−1Z�AL

�
.

(12)Ĵ ∶= +1 ⋅ �+1X⟩⟨+1X�AL − 1 ⋅ �−1X⟩⟨−1X�AL.
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derived in the present paper is similar. Consider three electrons A, B and C, prepared 
in the GHZ state6

Suppose the spin of each electron is measured in the x-direction. To see the possible 
measurement outcomes, we express the GHZ state in the x-basis7:

with for all coefficients |euvw|2 = 1∕4 . Neither the phase nor the exact value of the 
coefficients concern us, only that they are non-zero so that the terms correspond to 
possible triples of measurement outcomes. Thus, it turns out that there are four pos-
sible triples of outcomes, each with product −1.

Similarly, suppose one electron is measured in the x-direction, and two electrons 
are measured in the z-direction. The state, expressed in the appropriate bases, equals

with, for all coefficients, |fubc|2 = |gavc|2 = |habw|2 = 1∕4 . It turns out that in these 
cases, the product of the outcomes always equals +1.

We now consider the case where the three electrons are spatially separated and 
measured simultaneously in the x- or z-direction. Also, we assume what is usually 
called local determinism.8 This means that each electron has determinate values for 
spin in both the x- and the z-direction, and a measurement in one of these direc-
tions will reveal the corresponding value as the outcome (determinism). Also, these 
values are independent of whether the x- or the z-spin of the other two electrons is 
measured (locality). Because quantum mechanics itself does not provide for such 
determinate values corresponding to quantities that cannot be measured simultane-
ously, we introduce a set of hidden variables. Let u, v, w equal the determinate val-
ues for the x-direction and a, b, c equal the values for the z-direction for electrons A, 
B, C, respectively; a notation which coincides with the summation variables above. 
Now, demanding that these values obey the correlations predicted by quantum 
mechanics above, we get the following constraints: 

(13)�GHZ⟩ ∶=
�

1

2

�
�+1y⟩A�+1y⟩B�+1y⟩C − i�−1y⟩A�−1y⟩B�−1y⟩C

�
.

(14)�GHZ⟩ =
�

u⋅v⋅w=−1

euvw�ux⟩A�vx⟩B�wx⟩C,

(15)

�GHZ⟩ =
�

u⋅b⋅c=+1

fubc�ux⟩A�bz⟩B�cz⟩C =
�

a⋅v⋅c=+1

gavc�az⟩A�vx⟩B�cz⟩C

=
�

a⋅b⋅w=+1

habw�az⟩A�bz⟩B�wx⟩C

8 This is just to reproduce the original GHZ result. Local determinism is not assumed to arrive at the 
main result in Sect. 4.

6 This GHZ state differs slightly from the original one, having two terms in the x-basis instead 
of the z-basis and having an extra factor i  in the second term. This state works just as well for 
deriving a contradiction and suits us better when combining it with Wigner’s Friend. Note that 
�±1y⟩ = 1∕2(1 ± i)�+1x⟩ + 1∕2(1 ∓ i)�−1x⟩.
7 From this point on, values of summation variables are restricted to ±1 . We use variables u, v, w for the 
x-basis and a, b, c for the z-basis. This will prove useful later on.
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 By multiplying (16b)–(16d) and noticing that a2 = b2 = c2 = +1 we get 
u ⋅ v ⋅ w = +1 , in contradiction with (16a).

We therefore arrive at the conclusion that there is no local deterministic hidden 
variable theory compatible with the quantum mechanical predictions for measure-
ments on GHZ states.

4  Wigner’s Friend Meets GHZ

In this section, we will combine the Wigner’s Friend thought experiment with the 
GHZ state. First, we will explicate the assumptions made to arrive at a contradic-
tion. Apart from unitary quantum mechanics, we also assume single outcomes and 
relativistic quantum mechanics:

Single Outcomes: Any measurement has only one single outcome. This 
outcome is independent of the perspective or frame in which the outcome is 
described.

We want to emphasise that we acknowledge the strong tension between this assump-
tion and the assumption of unitary quantum mechanics. If the quantum state of a 
closed system always evolves unitarily, then for any measurement, by considering 
a system large enough, the wavefunction generally contains terms corresponding to 
multiple outcomes, not a single outcome. A typical example is the unitarily evolved 
state (2), which contains a term corresponding to Alice having found the outcome 
‘up’ and another term corresponding to her having found the outcome ‘down’. If 
the wave function is interpreted realistically, this state seems hard to reconcile with 
the statement that the measurement only has one of these outcomes. Indeed, it is 
this difficulty which led Wigner to reject the state (2), and his statement that such 
a state means that the friend would be in a state of ‘suspended animation’ suggests 
that Wigner thought that this state is incompatible with the friend having found a 
single outcome. Yet, as mentioned in the introduction, there are interpretations, such 
as Bohmian Mechanics and modal interpretations, which aim to reconcile unitary 
evolution with single outcomes. Moreover, even without picking an existing inter-
pretation of quantum mechanics, many would consider both assumptions desir-
able features of quantum mechanics. Because the aim of this paper is to derive a 
no-go result, we do not have to go into the details of a mechanism that explains 
the reconciliation of unitary evolution and single outcomes, nor need we explain 

(16a)u ⋅ v ⋅ w = −1;

(16b)u ⋅ b ⋅ c = +1;

(16c)a ⋅ v ⋅ c = +1;

(16d)a ⋅ b ⋅ w = +1.
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in detail what the necessary and sufficient conditions are for the occurrence of a 
‘measurement’.

Finally, we have

Relativistic Quantum Mechanics: Any inertial frame can be used to describe 
the evolution of the wavefunction, and the Born rule holds in every such frame.

Here, one must be careful when systems are spatially separated, because of the rela-
tivity of simultaneity. When considering a composite system consisting of two or 
more pointlike systems that are spatially separated, in different frames the hyper-
planes of simultaneity intersect the worldlines of the pointlike systems at different 
spacetime points. This will become clearer once we discuss the thought experiment 
later in this section. In effect, here we are using the Tomonoga–Schwinger formal-
ism [8, 9], in a similar way as it is used by Myrvold [10]. Note furthermore that in 
our case, we do not need to assume that the full Born rule holds. We only need the 
following weaker assumption: a certain combination of outcomes is possible if and 
only if, when expressing the pre-measurement wavefunction in the eigenbasis of the 
measurement, the corresponding term has a non-zero coefficient.

Now, to combine the GHZ state with Wigner’s Friend, consider a total of three 
sealed laboratories, located at the vertices of an equilateral triangle. In addition to 
laboratory L introduced in the previous section, with Eugene outside and his friend 
Alice inside, we have one (M) with Johnny outside and his friend Bob inside, and 
one (N) with Daniel outside and his friend Charlie inside. Alice, Bob and Charlie 
again perform a measurement, each on a single electron. But instead of the three 
electrons being prepared in the x-up state as in Sect. 2, they are prepared in the GHZ 
state defined in (13). Alice, Bob and Charlie perform their measurements in the 
z-direction between times t0 and t1 . Expressed in the z-basis, the GHZ state reads

with for all coefficients |dabc|2 = 1∕8 . So, all triples of outcomes are possible. Now, 
assume that the measurements are ideal von Neumann measurements and define 
�±1Z⟩BM and �±1Z⟩CN for Bob’s and Charlie’s laboratories, and their electrons, in the 
same way as we have defined �±1Z⟩AL in (7):

The pre-measurement state is now

where as in (1), �ready⟩L∕M∕N are the pre-measurement states of the laboratories of 
Alice, Bob and Charlie respectively. Just as Alice’s measurement in Sect. 2 took the 
state from (1) ( �Ψ(t0)⟩ ) to (2) ( �Ψuni(t1)⟩ ), the state of the laboratories and electrons 
after the measurements is now

(17)�GHZ⟩ =
�

a,b,c=±1

dabc�az⟩A�bz⟩B�cz⟩C,

(18)�±1Z⟩BM ∶= �Bob ±1z⟩M ⊗ �±1z⟩B;

(19)�±1Z⟩CN ∶= �Charlie ±1z⟩N ⊗ �±1z⟩C.

(20)�Φ(t0)⟩ = �ready⟩L�ready⟩M�ready⟩N ⊗ �GHZ⟩ABC,
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This state has the same form as the initial GHZ state (17), but with the states �az⟩A , 
�bz⟩B , �cz⟩C being replaced with �aZ⟩AL , �bZ⟩BM , �cZ⟩CN . Now, analogously to (7), 
defining the states

for the systems BM and CN, and noting that �±1X⟩ and �±1Z⟩ are related in the same 
way as �±1x⟩ and �±1z⟩ , then, using (14), we can write the total state at t1 as

with again the coefficients satisfying |euvw|2 = 1∕4 . Then, between t1 and t2 , Eugene 
performs a J-measurement, that is, he performs a measurement of the observable Ĵ , 
defined in (12). Simultaneously, Johnny and Daniel perform measurements of the 
similarly defined observables

Just as with measurements in the x-direction on the original GHZ state, we see that 
the product of the outcomes equals −1.

Now suppose the two measurements at each laboratory take place at spacelike sep-
aration from the four measurements at the other laboratories (see Fig. 1 for details). 
Then we can choose another frame Σ� , such that first Alice performs her measurement, 
then Eugene, Bob and Charlie perform their measurements simultaneously, and then 
Johnny and Daniel perform their measurements. For simplicity, we assume that, before 
t0 , the states of the electrons and the laboratories have been constant for a while. Then, 
before Alice’s measurement, the state of her laboratory and the electrons is

The primed states in frame Σ� are, following Wigner’s Theorem [11], related to the 
unprimed states in Σ by a unitary operator. Then, between t′

0
 and t′

1
 , Alice performs 

her measurement. The only nontrivial evolution that takes place in this period is that 
of Alice’s laboratory and her electron. This results in the state

Note that also this state has the same form as the original GHZ state (15), but with 
�u′

x
⟩A replaced by �uX′⟩AL . Now, between t′

1
 and t′

2
 , Eugene performs a J-measure-

ment, while Bob and Charlie perform a simple experiment of the z-spin of electrons 

(21)�Φ(t1)⟩ =
�

a,b,c=±1

dabc�aZ⟩AL�bZ⟩BM�cZ⟩CN .

(22)�±1X⟩ ∶=
�

1

2

�
�+1Z⟩ ± �−1Z⟩

�
,

(23)�Φ(t1)⟩ =
�

u⋅v⋅w=−1

euvw�uX⟩AL�vX⟩BM�wX⟩CN ,

(24)
K̂ ∶= +1 ⋅ �+1X⟩⟨+1X�BM − 1 ⋅ �−1X⟩⟨−1X�BM;
M̂ ∶= +1 ⋅ �+1X⟩⟨+1X�CN − 1 ⋅ �−1X⟩⟨−1X�CN .

(25)�Φ�(t�
0
)⟩ ∶=

�

u⋅b⋅c=+1

fubc�ready�⟩L�u�x⟩A�b
�
z
⟩B�c�z⟩C.

(26)�Φ�(t�
1
)⟩ =

�

u⋅b⋅c=+1

fubc�uX�⟩AL�b�z⟩B�c
�
z
⟩C.
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B and C. The state (26) is here expressed in the corresponding measurement bases, 
so we can directly infer that the product of the outcomes always equals +1.

Likewise, there is a frame Σ�� wherein Johnny measures simultaneously with Alice 
and Charlie, and a frame Σ��� wherein Daniel measures simultaneously with Alice and 
Bob. In these frames, the states just before the measurements, expressed in the meas-
urement bases, are

(27)�Φ��(t��
1
)⟩ =

�

a⋅v⋅c=+1

gavc�a��z ⟩A�vX
��⟩BM�c��z ⟩C;

(28)�Φ���(t���
1
)⟩ =

�

a⋅b⋅w=+1

habw�a���z ⟩A�b���z ⟩B�wX���⟩CN .

x

y

t

xA
xB xC

t 0

t0

t 1

t1

t 2

t2

Alice

Bob

Eugene

Johnny
Daniel

Charlie

Fig. 1  In the reference frame Σ (unprimed coordinates), ABC is prepared in the GHZ state at t
0
 . The 

measurements of Alice, Bob and Charlie take place simultaneously and at locations �A , �B and �C (which 
form an equilateral triangle), between t

0
 and t

1
 . The measurements of Eugene, Johnny and Daniel take 

place, also at �A , �B and �C and simultaneously in Σ , between t
1
 and t

2
 , where t

2
− t

1
= t

1
− t

0
 . Also, the 

spacetime point (t
1
, �A) is spacelike separated from (t

0
, �B) , i.e., c ⋅ (t

1
− t

0
) < ||�A − �B|| (this ensures, 

together with the above conditions, spacelike separation between any two measurements at different 
laboratories). The frame where (t

1
, �A) is simultaneous with (t

0
, �B) and (t

0
, �C) is defined as Σ� (primed 

coordinates); the hyperplane of simultaneity containing these points has t′
1
 as its time coordinate. The 

frames Σ�� and Σ��� (not displayed here) are defined similarly, by cyclicly permuting the triplet ⟨A,B,C⟩ : 
In Σ�� , Johnny’s measurement is simultaneous with Alice’s and Charlie’s, while in Σ��� , Daniel’s measure-
ment is simultaneous with Alice’s and Bob’s. The laboratories are, for simplicity, assumed to be point-
like. This may look like a bold simplification, but note that the distance between the laboratories can be 
made arbitrarily large. For the same reason, the relative velocity between the frames can be made arbi-
trarily small by choosing ||�A − �B|| ≫ c ⋅ (t

1
− t

0
)
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Labelling the outcomes of Alice, Bob, Charlie, Wigner, Johnny and Daniel as 
a, b, c, u, v, w respectively, we get from (23)–(28) the four GHZ constraints: 

 These are exactly the constraints (16a)–(16d), which were shown to be contradic-
tory. We therefore arrive at the conclusion that, assuming single outcomes, not all 
outcomes can be as predicted by unitary quantum mechanics, in every reference 
frame. In some frame, there must be a combination of outcomes for which there is 
no corresponding term in the pre-measurement state.

5  Discussion

5.1  Non‑ideal Measurements

In the sections above we have assumed that the measurements are ideal Von Neu-
mann measurements. This ensures that the post-measurement states have a simple 
form, and that the measurements of Eugene, Johnny and Daniel are exactly like the 
A-measurements as discussed by Barrett. However, this assumption can be dropped, 
as long as the measurements can be represented by some unitary transformation on 
the laboratories and the electrons, which is the case if unitary quantum mechanics 
is assumed. In particular, if these transformations are represented by operators UAL , 
UBM and UCN , then �+1Z⟩AL and �−1Z⟩AL , defined in (7), can be redefined as

and similar redefinitions for �±1Z⟩BM and �±1Z⟩CN . The fact that unitary transforma-
tions take orthogonal states to orthogonal states ensures that the states defined above 
are still orthogonal. The derivation can then be repeated using these redefinitions, 
and the contradiction follows as before. Note that the redefinition works through in 
other definitions. For example, the observable Ĵ is defined in terms of �±1X⟩ , which 
in turn are defined in terms of the redefined �±1Z⟩.

Using these redefinitions, the steps in Sect. 4 can be applied to derive a contra-
diction also for interpretations that try to avoid the measurement problem by reject-
ing the standard Von Neumann measurement scheme to avoid macroscopic entan-
glement while still retaining unitary quantum mechanics. An example of this is 
the ‘Flea on Schrödinger’s Cat’ interpretation of L&R [2]. In that interpretation, a 
perturbation of the Hamiltonian allegedly makes sure that no macroscopic super-
position results from a measurement. Such an interpretation should however deal 

(29a)u ⋅ v ⋅ w = −1;

(29b)u ⋅ b ⋅ c = +1;

(29c)a ⋅ v ⋅ c = +1;

(29d)a ⋅ b ⋅ w = +1.

(30)�±1Z⟩AL ∶= UAL(�ready⟩L ⊗ �±1z⟩A),



 Foundations of Physics (2022) 52: 68

1 3

68 Page 12 of 17

with the case presented in this article. While rejecting the standard Von Neumann 
measurement account; a measurement still corresponds to some unitary evolution 
in L&R’s ‘Flea’ approach. Defining UAL , UBM and UCN to represent these evolutions, 
the contradiction can also be derived for L&R’s approach. While it might be very 
hard in practice for Eugene and Johnny to perform the measurements of Ĵ and K̂ in 
bases involving these unitary transformations, which include the ‘flea’ perturbations, 
there is no apparent reason why such measurements would be impossible in princi-
ple. And in that case, we seem again to have a case where the Born rule is violated 
in some inertial frame.

5.2  Interpretations of Quantum Mechanics that Avoid the Contradiction

The main result of this paper is a negative one: it tells us what kind of interpreta-
tion of quantum mechanics is not possible. However, this might lead the way to a 
positive result: what kind of interpretation of quantum mechanics is possible? Possi-
ble answers, each not accepting at least one premise of the argument, include intro-
ducing a preferred reference frame (see Sect. 5.2.1), many-worlds (Sect. 5.2.2), and 
rejecting J-measurements (Sect. 5.3).

5.2.1  Preferred Reference Frame

One route to go is to assume a preferred reference frame in which the Born rule is 
valid while it may be violated in other reference frames. For example, if Σ is the pre-
ferred reference frame, then the outcomes of both the joint measurements of Alice, 
Bob and Charlie and that of Eugene, Johnny and Daniel obey the GHZ correlations, 
but the constraints (29b)–(29d) cannot be derived anymore, since in the frame Σ the 
quantum state never has the form (26)–(28).

More generally, if three measurements take place simultaneously in the preferred 
reference frame, then the corresponding constraint from (29a)–(29d) is satisfied. 
This implies that at least one of the other three constraints is violated, and such a 
violation therefore implies that the measurements corresponding to the outcomes 
appearing in the violated constraint did not take place simultaneously in the pre-
ferred frame. Does this mean we can empirically establish what is (not) the pre-
ferred reference frame, by comparing the outcomes of the measurements and seeing 
which of the GHZ constraints is violated?

Unfortunately, this does not seem to be possible. Suppose Eugene wants to collect 
all six measurement outcomes. Of course, he will have no problem knowing the out-
come of his own measurement. Neither will he have issues with asking Johnny and 
Daniel for their outcomes. But he will have a harder time retrieving the outcomes of 
Alice, Bob and Charlie. Take Alice’s outcome. Depending on Eugene’s outcome, he 
may assign one of the eigenstates of the J-measurement ( �±1X⟩ ) to Alice’s and labo-
ratory and her particle. By the relations given in (7), each of these eigenstates is a 
superposition of two states: one state representing Alice having found ‘up’, and one 
state representing Alice having found ‘down’. So, if Alice is asked what outcome 
she obtained, there is equal probability of her saying up as saying down, and there 
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is no guarantee that what she says corresponds to the outcome she actually obtained 
during her own measurement. Eugene’s measurement effectively ‘erases’ Alice’s 
outcome. This will become even clearer in the example discussed in Sect. 5.3.

Bohmian Mechanics is the foremost example of an interpretation that includes 
a preferred reference frame. In that frame, the distribution of particle positions is 
given by the squared modulus of the wavefunction over configuration space. In any 
other reference frame than the preferred frame, the particle positions may not be 
distributed according to the wavefunction in that (non-preferred) frame. In fact, in 
general it is not possible for the particle positions to be distributed according to 
the wavefunction in every frame [12]. In this sense, the preferred reference frame 
manifests itself at the level of particle positions. The preferred reference frame can, 
however, not be detected because the particle positions are not directly accessible. 
What is surprising about the result of the present paper is that the preferred refer-
ence frame manifests itself also at the level of measurement outcomes. However, 
as mentioned before, also in this case the frame cannot be detected, since not all six 
outcomes can be brought together and compared.

5.2.2  Many Worlds

Another possible way out would be to deny that there are single outcomes. Assum-
ing single outcomes allowed us to assign single values to the variables a, b, c, u, v, w 
and consider the fixed correlations between these variables. For all of the measure-
ments discussed above, there are two possible outcomes: +1 and −1 , each with a 50% 
probability. This means that if we look at the branching structure of the unitarily 
evolving wavefunction, for every individual measurement outcome, there is a branch 
containing that outcome. This seems to forbid us to assigning single values to the 
variables a, b, c, u, v, w.

It would be interesting to investigate how exactly the thought experiment in this 
paper would play out in specific versions of many-worlds quantum mechanics. For 
example, in the ‘divergence’ view of many-worlds [13], worlds do not split, and 
there is a fixed number of them. If that is the case, it seems that in every one of those 
worlds, there are six single outcomes for the measurements, and therefore in any one 
of those worlds the contradiction can again be derived. However, working out the 
details of this, as well as considering other versions of many-worlds, falls outside 
the scope of this paper.

5.2.3  Kent’s Proposal

There might be other ways to evade the contradiction. Kent [3] has recently proposed 
an interpretation that seems to fall in the category of interpretations of quantum 
mechanics targeted in this article: relativistic, single-outcome and unitary. In Kent’s 
interpretation, additional to the unitarily evolving wavefunction there is a bound-
ary condition consisting of determinate values of mass-energy along some future 
hypersurface. Using this boundary condition one can calculate the stress–energy at 
every point in spacetime, and this ensures that there are single outcomes. However, 
this only works for measurement outcomes for which there exist a record on this 
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future hypersurface, i.e. different measurement outcomes must correspond to differ-
ent mass–energy configurations on the final hypersurface. In the argument presented 
in this article, the measurements by Alice, Bob and Charlie are contained within an 
isolated laboratory, and, as explicated in the subsection below, the records of their 
outcomes are erased by the measurements of Eugene, Johnny and Daniel. Therefore, 
in Kent’s interpretation, the first measurements have no single outcomes, and in this 
way the contradiction is evaded. Whether Kent’s interpretation can lead to a full-
fledged, satisfactory account of quantum mechanics needs more investigation.

5.3  The Feasibility of J‑Measurements

We have deliberately presented a thought experiment in which ordinary quantum 
experiments, combined with the familiar J-measurements, are enough to arrive at 
a contradiction. However, while the eigenstates of the J-measurements are easy to 
write down, these measurements are hard, if not impossible, to perform in prac-
tice. We have already mentioned that such measurements in effect erase the previ-
ous measurements result; they must get rid of all traces from which one can infer 
the outcome of the first measurement. To see how peculiar these measurements are, 
consider what happens when such a measurement is performed on a laboratory start-
ing in a definite state �+1Z⟩AL of containing Alice, who has found z-spin up (starting 
with a electron prepared in the z-up state instead of x-up). Considering the eigen-
states of the J-measurement �±1X⟩ = 1∕

√
2(�+1Z⟩ ± �−1Z⟩) , we see each outcome 

has probability 1/2. However, both outcomes leave the system in an eigenstate that 
also contains a term corresponding to a laboratory where Alice has found z-spin 
down. So, if subsequently Eugene performs the simple measurement of ‘opening the 
door’ [with eigenstates (6)], then there is a probability 1/2 of Alice telling that she 
had outcome down, and also finding evidence of this in the laboratory (there might 
be a computer which has the outcome in its memory, the result may be printed on 
paper, etc.). So, the J-measurement can effectively change a laboratory from a defi-
nite state of containing an experimenter who found ‘up’ to a state of containing an 
experimenter who found ‘down’, illustrating the complexity of such measurements.

The attractiveness of unitary quantum mechanics is that a measurement interac-
tion is treated as any other interaction. If we are going to forbid operations that undo 
these interactions, then we seem to have gone back to granting a special status to 
measurements, because they will have become fundamentally irreversible processes 
(see also Brukner [14]). One might wonder what the point of considering unitary 
quantum mechanics is when measurements that distinguish it from collapse quan-
tum mechanics are fundamentally forbidden.

5.4  Myrvold’s No‑Go Result for Relativistic Modal Interpretations

The result of this paper is similar to that of Myrvold [15], where a no-go theorem 
is presented for modal interpretations exhibiting ‘serious’ Lorentz invariance. This 
no-go theorem applies to modal interpretations where local definite properties cor-
responding to some fixed observable R are assigned to systems. These properties are 
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represented by eigenvalues of the fixed observable. The demand of ‘serious’ Lor-
entz invariance then requires that the ‘Relativistic Born Rule’ is satisfied. A neces-
sary condition for the satisfaction of Myrvold’s Relativistic Born Rule is that along 
all spacelike hyperplanes, the projection of the quantum state along that hyperplane 
onto the subspaces corresponding to the possessed properties is nonzero. Then by 
using a Hardy state [16], an example of the evolution of two systems is provided 
where the Relativistic Born Rule cannot be satisfied.

There are some important differences between the present result and that of Myr-
vold. First, the present result aims to be more general. It is not only aimed at modal 
interpretations with properties for a fixed observable, but also at other single-world, 
unitary interpretations of quantum mechanics such as Kent’s proposal and L&R’s 
‘Flea’, and possible future proposals. While Myrvold’s Relativistic Born Rule con-
cerns (possibly unobserved) possessed definite properties, we only consider actually 
observed measurement outcomes. The current result can therefor be seen as being 
similar to that of Myrvold, but with the possessed definite properties ‘elevated’ to 
measurement outcomes. Denying the existence of (single) measurement outcomes 
seems much harder than denying the existence of possessed definite properties, 
making the current result more general.

Regarding the content of the result, a difference is that Myrvold uses a Hardy 
state while in the present paper a GHZ state is used. Actually, the result in the pre-
sent paper could also have been achieved using a Hardy state, or a Bell state. The 
advantage of considering a Hardy or GHZ state instead of a Bell state is that no 
probabilities have to be considered, only which combinations of outcomes are and 
aren’t possible. The advantage of using a Hardy state compared to using a GHZ 
state is that only two parties have to be considered, instead of three as in the cur-
rent paper. However, using the GHZ state also has an advantage: the contradiction 
becomes apparent in every run of the thought experiment, while for the Hardy state, 
the contradiction only becomes apparent for some runs of the thought experiment. 
In more detail: when the Hardy state would have been used in the current article, 
there would be only four instead of six outcomes. Now, quantum mechanics pre-
dicts, with nonzero (but not unity) probability, values for some of these outcomes 
that are incompatible with any possible values for the rest of the outcomes, resulting 
in a contradiction. Whether one prefers the Hardy state, which has less parties to 
deal with, or the GHZ state, which results in a contradiction on every single run, is 
largely a matter of taste.

5.5  Frauchiger & Renner’s No‑Go Result for Consistent Single‑World Quantum 
Mechanics

Another result to which the current paper is similar is the recent no-go theorem by 
Frauchiger & Renner, F&R [17]. F&R claim to arrive at a contradiction for single-
world quantum mechanics even without considering relativity theory; their result is 
derived using only a single reference frame. F&R arrive at a contradiction starting 
from three assumptions called Single-World, Quantum Mechanics and Consistency. 
Like Myrvold, F&R use a Hardy state to arrive at their conclusion, but it seems they 
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could equivalently have used a Bell state or a GHZ state. It would take too far to 
examine the exact differences between the two results. However, we can say that in 
our opinion a crucial difference lies in the fact that F&R do not seem to assume uni-
tary quantum mechanics in the way we do. While we assume, that when predicting 
measurement outcomes, the system is supposed to have evolved unitarily before the 
measurement (even when a measurement takes place inside the system), F&R seem 
to mix unitary quantum mechanics with collapse in a peculiar way. See also [18] and 
[19] for critical views on F&R’s result.
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