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Abstract
This paper is concerned with the causally symmetric version of the familiar de Bro-
glie–Bohm interpretation, this version allowing the spacelike nonlocality and the 
configuration space ontology of the original model to be avoided via the addition of 
retrocausality. Two different features of this alternative formulation are considered 
here. With regard to probabilities, it is shown that the model provides a derivation of 
the Born rule identical to that in Bohm’s original formulation. This derivation holds 
just as well for a many-particle, entangled state as for a single particle. With regard 
to “certainties”, the description of a particle’s spin is examined within the model 
and it is seen that a statistical description is no longer necessary once final boundary 
conditions are specified in addition to the usual initial state, with the particle then 
possessing a definite (but hidden) value for every spin component at intermediate 
times. These values are consistent with being the components of a single, underlying 
spin vector. The case of a two-particle entangled spin state is also examined and it 
is found that, due to the retrocausal aspect, each particle possesses its own definite 
spin during the entanglement, independent of the other particle. In formulating this 
picture, it is demonstrated how such a realistic model can preserve Lorentz invari-
ance in the face of Bell’s theorem and avoid the need for a preferred reference frame.

Keywords Retrocausality · Bohm model · Born rule · Bell’s theorem · Quantum 
foundations

1 Introduction

The de Broglie-Bohm model [1–3] is notable in providing a simple physical pic-
ture that could underlie the mathematics of quantum mechanics. Unfortunately, it 
is also notable that this otherwise appealing ontology requires a preferred refer-
ence frame in order to accommodate the nonlocality implied by Bell’s theorem 
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[4], thereby conflicting with relativity. In response to this fact, the present author 
put forward a retrocausal generalisation of the de Broglie-Bohm model some time 
ago [5, 6] in order to show that this violation of Lorentz invariance at the hid-
den level is not essential and can be avoided by relaxing a common presump-
tion about causality. This alternative essentially involves assuming that a final 
boundary condition needs to be specified in addition to the usual initial one in 
order to determine all intervening values fully. In formulating this possible refine-
ment, however, the main focus has previously been on describing the details of 
the underlying reality it implies, not on providing a corresponding derivation for 
the known probabilities of quantum mechanics.

A pleasing feature of the standard de Broglie-Bohm model is Bohm’s theory 
of measurement [2] in which the Born probability rule for a measurement of any 
observable (i.e., not just position) can be derived once the initial distribution for par-
ticle positions is assumed to have the familiar |�|2 form. By contrast, the retrocausal 
version, which was dubbed the “causally symmetric” model, merely introduced the 
Born rule as a separate postulate, without any attempt at a derivation. This left the 
model open to the criticism that it was less effective because it could not explain the 
observed probabilities to the same extent that the original model could.

The first aim of the present paper is to point out that this criticism is unwarranted 
and that the measurement theory of the original model can actually be carried across 
unchanged to the causally symmetric version. (The present author originally over-
looked this point when formulating the alternative model.) This resource is possi-
ble because, although the two versions predict different particle trajectories, both 
employ the same probability distribution for particle positions in the circumstance 
where only the usual, initial wavefunction is given. This feature is all that is required 
for the derivation to remain valid, as will be discussed here in more detail.

The second aim of the present paper is to examine the different ontology and 
the hidden values which become apparent once a final boundary condition is intro-
duced. The discussion will focus on spin as a convenient observable for illustrating 
the differences. In addition to accommodating Lorentz invariance, avoiding space-
like influences and generally providing a more time-symmetric picture, the caus-
ally symmetric description has the agreeable characteristic of allowing the ontol-
ogy for n entangled particles to remain in spacetime rather than being banished to 
3n-dimensional configuration space. The usual correlated probabilities are still cor-
rectly predicted because the original theory of measurement is maintained.

2  Comparison of the Two Models

In this section only the single-particle case will be considered since this is suf-
ficient to illustrate the essential ideas. The entangled, many-particle case will be 
addressed in later sections.
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Both the standard and causally symmetric versions of the de Broglie-Bohm 
model start by assuming that a particle has a definite trajectory. The standard version 
then proceeds via the Schrodinger current density1:

and takes the hidden velocity of the particle to be in the same direction as this cur-
rent density. Here the wavefunction � is the result of prior preparation, e.g., the out-
come of a previous measurement, and can be viewed as the initial boundary condi-
tion imposed. This state, together with the hidden initial position of the particle, 
then provides a deterministic description of the particle’s future motion. In contrast, 
the basic idea of the causally symmetric model is that the initial state is not suf-
ficient and that a final boundary condition is also required in order to determine the 
trajectory of the particle at intermediate times. By symmetry, this final condition 
is taken to be represented by a separate and independent � . It can most simply be 
viewed as the result of the next measurement performed. From here on, the initial 
and final wavefunctions will be distinguished by writing them as �i and �f  , respec-
tively. In this notation, the current density expression used for the causally symmet-
ric version is2:

where a is a normalisation constant consisting of the inner product of �i and �f  . This 
expression differs from the usual one in Eq. (1) in that both initial and final bound-
ary conditions are included and that the real part has been taken for the ontology to 
be consistent with real spacetime. As in the standard de Broglie-Bohm model, the 
hidden velocity of the particle is taken to be in the same direction as the current 
density. Both current density expressions satisfy equations of continuity derivable 
from the Schrodinger equation. This ensures local conservation of probability and 
compatibility with continuous trajectories. Since a final boundary condition, such as 
the result of the next measurement, cannot be known in advance, standard quantum 
mechanics arises from this model from the need to take a weighted average over the 
unknown final possibilities. It is readily shown that Eq. (2) reduces back to Eq. (1) 
under these circumstances (see Appendix).

(1)� =
�

2im
𝜓∗ �⃖⃗�𝜓

(2)� = Re
�

2ima
𝜓∗
f
�⃖⃗�𝜓i

1 Here m is the particle’s mass, ħ is Planck’s constant, i =
√
−1 , �(�;t) is the particle’s wavefunction, 

the operator �⃖⃗� is an abbreviation for ��⃗�− �⃖�� and the grad operators ��⃗� and �⃖�� act to the right and left, 
respectively.
2 Note that the letter i is serving double duty here, representing both “initial” and 

√
−1.
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3  Retrocausality defined

A short digression will now be made to explain further what is meant by retrocausal-
ity.3 The uncertainty principle of quantum mechanics highlights two important facts, 
namely (i) that there are always some quantities whose future values are left open and 
cannot be predicted based on previous measurement results, and (ii) that measurements 
not only provide information on a particle’s state but also exert an influence which can 
change that state as well. As a result of the first point, the situation differs from classi-
cal mechanics in that there is room for the experimenter’s choice for the next observ-
able to be measured to have an effect on earlier values that were left unknown by the 
previous measurement. This would be a backwards-in-time, or “retrocausal”, effect. 
This possibility is reinforced by the second point that measurements can exert an influ-
ence as well as providing information. Hence the concept being introduced here is that 
the choice of measurement interaction not only affects the subsequent situation but 
also affects the prior situation. This is described mathematically by the inclusion of 
the future measurement outcome �f  in Eq. (2) governing the particle’s present trajec-
tory.4 Stated more precisely, the experimenter’s role is to choose the set of allowable 
eigenstates which could arise from a measurement, thereby influencing and restricting 
the possibilities available for the particle’s hidden state at an earlier time. The two-way 
influence being proposed here explains the choice of wording “causally symmetric”.

4  Theory of Measurement

Returning to Eqs. (1) and (2) for the different current densities in the two models, 
the idea is that the latter provides the current density when both the initial bound-
ary condition �i and the final boundary condition �f  are given, whereas the for-
mer is just the average current density in the more usual situation where only �i 
is known. The causally symmetric version also has two different expressions for 
probability density, depending on whether both the initial and final conditions are 
specified or whether only the former is given. In formulating a theory of measure-
ment for each model, however, it is only the probability expression given the ini-
tial state �i alone which is relevant5 and this expression turns out to be the same 
in both models. Hence the argument employed in Bohm’s theory of measurement 
carries through in the same way for either case. Furthermore, this continues to be 
true in going to many-particle states. An example of this measurement theory in 
action will now be outlined by way of illustration.

4 Note that it is not possible to interpret �
f
 as just a second initial wavefunction to be evolved forwards 

in time. This is because it must always be an eigenstate of the particular observable yet to be chosen in 
the future via the experimenter’s intervention and this would not be explicable from a forwards-in-time 
viewpoint. If the experimenter’s choice is between two non-commuting observables, there is no single 
�
f
 which would be compatible with both choices. Also note that �

f
 is not simply accessible as a second 

initial boundary condition because it will spread in the backwards time direction away from the future 
measurement event, gradually becoming increasingly entangled in that reverse direction, and any attempt 
to control it would only change its form in our past, not our future.
5 Discussion of the other expression is therefore postponed to Sect. 8.

3 There is a large literature concerning retrocausality in quantum mechanics, a sample being [5–14].
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Consider the well-studied situation of a pair of particles in an entangled spin 
state. This state will be denoted by the spinor wavefunction �i(�1, �2;t) , where �1 
and �2 refer to the positions of the particles at time t. Spin measurements are to 
be performed on the 1st and 2nd particle in the directions f and f ′ , respectively. 
Keeping the analysis fairly general, the possible final outcomes will be described 
by the spinor eigenfunctions fmn(�1, �2;t) which represent the joint outcome of 
the mth eigenvalue for the 1st particle and the nth eigenvalue for the 2nd particle 
(m, n = 1, 2, 3, ...) . For example, in the simplest case there might be just two pos-
sible outcomes for each particle, namely +1∕2ℏ and −1∕2ℏ , and the entangled state 
might be just the singlet state.

In general the initial two-particle state can be expressed as a superposition of 
the eigenfunctions fmn as follows:

where the cmn are complex coefficients. The aim is to show that the joint probability 
of obtaining the outcomes m and n is given by ||cmn||

2 . It is assumed here that the 
eigenfunctions are normalized:

where f † is the Hermitian conjugate of f. Now, Bohm’s theory of measurement for 
this situation is based on two assumptions, namely (i) that particles have definite 
trajectories and (ii) that the positions of the particles are distributed at an initial time 
t = 0 in accordance with the following joint probability density:

The relevant wave equation (e.g., the Pauli equation) then ensures that the form of 
this distribution continues to hold at later times t:

As already emphasized, expression (6) is common to both models.
Now the measurement process on each particle must allow us to distinguish 

between the different possible outcomes. For spin measurements this is achieved 
via magnetic fields which spatially separate the possible results. This separation 
stage occurs continuously and smoothly. Focussing on the 1st particle as it trav-
els along a definite trajectory, its final alternatives are non-overlapping beams in 
space and so the particle must flow into just one of these beams. Likewise, the 
2nd particle must end up in just one of its spatially separated beams. The meas-
urements are completed by establishing in which beam each particle is located.

Before either of these measurements is carried out, the two particles are 
most conveniently discussed in terms of a single trajectory in six-dimensional 

(3)�i(�1, �2;t) =
∑

m,n
cmn fmn(�1, �2;t)

(4)∫
+∞

−∞

f †
mn
(�1, �2;t) fmn(�1, �2;t) d

3x1 d
3x2 = 1

(5)P(�1, �2;0) = �†

i
(�1, �2;0)�i(�1, �2;0)

(6)P(�1, �2;t) = �†

i
(�1, �2;t)�i(�1, �2;t)
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configuration space. Note that it is appropriate to discuss the mathematics of 
correlated probabilities within this space as long as the physical reality being 
described remains in three-dimensional space. This point will be pursued further 
in Sect. 7. Now, in the standard de Broglie-Bohm model, the configuration space 
trajectory is uniquely determined once the trajectory’s initial position is speci-
fied, in conjunction with the initial wavefunction. This is no longer the case in the 
causally symmetric model, where the configuration space trajectory is partially 
dependent on the experimenter’s future choices and hence is different from that 
in the standard version. The essential point here, however, is that this difference 
is not relevant in formulating the theory of measurement successfully. It is only 
necessary that the probability density in Eq. (6) flows with time in the same way 
for both models.

Turning to the expression for �i(�1, �2;t) in Eq.  (3), the terms in this series 
become separate packets occupying non-overlapping regions in configuration 
space. Only one of these terms is consistent with both of the actual outcomes m 
and n. The joint probability for this pair of outcomes can therefore be obtained sim-
ply by calculating the total probability for each particle’s position to be in the rel-
evant packet. This, in turn, is achieved by integrating the joint probability density 
P(�1, �2;t) over the appropriate territory. Now, the wavefunction �i(�1, �2;t) reduces 
to cmnfmn(�1, �2;t) in the relevant region. Hence, from Eq. (6), the joint distribution 
reduces to [cmnfmn(�1, �2;t)]†cmnfmn(�1, �2;t) in that region. Performing the required 
integration, the joint probability for m and n is then:

which, using Eq. (4), reduces to:

This is in agreement with the Born rule of quantum mechanics, as required, and 
hence the correct joint probability distribution for these spin observables has been 
derived.

This argument can be readily extended to observables other than spin in quan-
tum mechanics and to any number of particles. Hence the Born rule for an arbitrary 
observable can be derived once the initial joint distribution for the positions of the 
particles is assumed. Whether or not there might also be final boundary conditions 
influencing each particle’s trajectory is not relevant in the above argument and so 
the derivation is equally applicable within both the standard and causally symmetric 
versions of the de Broglie-Bohm model. A final, important point to stress is that 

(7)

P(m, n) = ∫mn region

�†

i
(�1, �2;t)�i(�1, �2;t) d

3x1 d
3x2

= ∫
+∞

−∞

[cmnfmn(�1, �2;t)]
† cmnfmn(�1, �2;t) d

3x1 d
3x2

= ||cmn||
2

∫
+∞

−∞

f †
mn
(�1, �2;t) fmn(�1, �2;t) d

3x1 d
3x2

(8)P(m, n) = ||cmn||
2
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both models are on the same footing in terms of needing to assume that the initial 
joint distribution for position is consistent with the Born rule.

5  Some Similarities and Differences

In comparing the two models, there are certain desirable characteristics they both 
share. For example, both provide a continuous and smooth description of the meas-
urement process, as opposed to the discontinuous wavefunction collapse of stand-
ard quantum theory. Also, both have the advantage of providing a resolution of the 
familiar measurement problem of quantum mechanics. Standard quantum mechanics 
is well known to predict that a particle which is not in a definite eigenstate of the 
measurement to be performed will simply cause the state of the apparatus to become 
indefinite as well, instead of a successful measurement result being obtained. In both 
of the models discussed here, however, a definite outcome is obviously achieved from 
the fact that each particle must finish up inside just one of the spatially separated 
regions. Wavefunction collapse is then simply the decision to ignore the terms cor-
responding to other regions in so far as they will have no further physical relevance.

A difference between the two models concerns their versions of determinism. 
Looking at the single-particle case for convenience, the original model is determin-
istic once the initial state (including the particle’s initial position) is specified. In 
contrast, the causally symmetric model requires both the initial and final states to be 
specified (including the particle’s position at one instant). It is then deterministic for 
all intermediate times.

Further differences between the two models will be discussed in the following 
sections.

6  Spin: Single‑Particle Case

This section focusses on spin measurements and discusses the corresponding onto-
logical picture which the causally symmetric model implies. After consideration of 
the single-particle case here, Sect. 7 will examine the entangled two-particle case 
where the model’s consistency with special relativity will be highlighted.

For situations where two successive spin measurements are performed on a parti-
cle and the results of both measurements are known, the model will be seen to pro-
vide a detailed description of what exists at times between the two measurements. In 
particular it will give definite values for all of the particle’s spin components (most 
of these remaining hidden, however, because they are not observed). The version of 
the de Broglie-Bohm model to be presented here adheres to the minimalist view-
point of Bell and others6 that the only property possessed by the particle itself is its 
position as a function of time. Spin is still present, but here it is located in the sur-
rounding regions where both �i and �f  are non-zero. It will be seen to exist in the 

6 e.g., Sect. 4 in [15] and Sect. 6 in [16]; see also Sect. 9.7 in [17].
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form of a density spread through space in an analogous way to the angular momen-
tum located in a classical electromagnetic field.

Consider a particle which has undergone an initial measurement of spin compo-
nent i and on which a measurement of the f component is to be performed. Keeping 
the analysis fairly general, the spin observable corresponding to the f direction will 
be assumed to have possible eigenvalues fn , with n = 1, 2, 3, .. For example, in the 
case of a spin 1∕2 particle these eigenvalues would be restricted to the two values 
+1∕2ℏ and −1∕2ℏ . Since the model provides a value for any spin component at inter-
mediate times between the two measurements, it will be convenient to choose an 
arbitrary further component h and focus on its value. All components other than 
i and f remain unmeasured. These “unobserved observables” constitute the hidden 
variables of the model, which explains the choice of the letter h for the extra spin 
component to be considered.

The model’s value for h can be obtained by analogy with Eq. (2) earlier for the 
current density. The corresponding expression for the spin case would be:

where ĥ is the spin operator for the chosen direction and �i and �f  are now spinors. 
At this point it needs to be noted that �i and �f  here are both functions of position � 
and so Eq. (9) actually describes a spin density at each point in space, just as Eq. (2) 
describes a current density. Hence Eq. (9) indicates that the spin angular momentum 
is spread around the particle in a field-like manner.7 Now what is actually needed 
here is the total value for the h component of spin. This value can be obtained by 
integrating Eq. (9) over all space:

From here on it will be convenient to work in Dirac notation, with the two spinor 
wavefunctions re-expressed as �i(�;t) ≡ ⟨�;t�i⟩ and �f (�;t) ≡ ⟨�;t�f ⟩ . Inserting this 
notation into Eq. (10), the value of any spin component h, given both an initial state 
�i⟩ and a subsequent measurement outcome ��fn⟩ , is therefore:

(9)Re
1

a
𝜓†

f
ĥ𝜓i

(10)h = Re∫
+∞

−∞

1

a
𝜓†

f
ĥ𝜓i d

3x

(11)

h = Re∫
+∞

−∞

1

a
⟨fn��;t ⟩ĥ⟨�;t�i⟩d3x

= Re∫
+∞

−∞

1

⟨fn�i⟩
⟨fn��;t ⟩⟨�;t�i⟩⟨�;t�ĥ�i⟩d3x

= Re
⟨fn��ĥ�i⟩
⟨fn�i⟩

7 For a related interpretation of quantum mechanics having an ontology consisting of densities, see [11] 
(particularly Sect.3).
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This h value applies during the intermediate time interval between the i and f meas-
urements. Note that this value has a continuous range and need not be any of the 
eigenvalues of the h observable. Also note that the integrals in Eqs. (10) and (11) 
should not be construed as an averaging process. Despite some resemblance to the 
mean value expressions of quantum mechanics, these equations are defined here to 
be non-statistical and to yield definite values (i.e., certainties) not averages.8 The 
integrations are there simply to convert densities to total values. Finally note that all 
of this is consistent with the statistical predictions of quantum mechanics because 
the Bohm theory of measurement discussed in Sect. 4 looks after that aspect.

Mathematical formalism the same as or similar to Eq.  (11) has been suggested 
previously in pursuing the physical reality underlying quantum mechanics, the earli-
est case known to the present author being Roberts [8] in 1978. It has subsequently 
been independently discovered and used (with varying physical interpretations) by 
others, e.g., [11, 12]. In addition, it has been used to predict the mean value of exper-
imental results for weak measurements [18]. The weak value theory also retains the 
imaginary part of expression (11), treating both parts as experimentally measurable. 
The stance adopted here goes beyond just describing values generated by measure-
ments to asserting that the equations are also describing the underlying reality exist-
ing between measurements. It then seems more appropriate to choose just the real 
part in Eq. (11), as prompted by the current density expressions in Sect. 2, because 
it is not clear what meaning could be given to complex angular momentum in real 
spacetime.

A curious feature of de Broglie-Bohm models in general is the lack of action/
reaction. Although each particle is influenced by its wavefunction, the reverse is not 
true and the wavefunction is the same regardless of which of the available trajecto-
ries the particle is following. Here this feature actually provides a benefit in that the 
spin value is the same independent of the choice of trajectory and so spin can be 
discussed without consideration of trajectory details.

The present author has explored the overall spin structure implied by Eq. (11) in 
the case of a spin 1∕2 particle and confirmed that the resulting spin components in 
every direction are related to each other via the classical trigonometric rules, in con-
trast to the peculiar impression conveyed by quantum mechanics that all values are 
either +1∕2ℏ or −1∕2ℏ . In particular, the following is found for times between two suc-
cessive measurements performed in different directions on a spin 1∕2 particle when 
both results are taken to be +1∕2ℏ:

 i. The value calculated for an arbitrary 3rd spin component h reaches a maximum 
when its direction is chosen to be in the same plane as the two measurement 
directions and midway between them.

8 In the more usual situation, however, where the future result fn is not yet known, taking a weighted 
average over the possible fn values will then yield the familiar mean value expressions of quantum 
mechanics.
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 ii. This maximum value is given by 
1∕2ℏ

cos 1∕2�
 , where � is the angle between the 

two measured components.
 iii. The value for any other direction at an angle � to the maximum direction is 

equal to cos � times the maximum value.

All of this is consistent with the particle having a single, well-defined spin vec-
tor, with components in all other directions being related to this vector via cos � , 
as would be expected physically. When the above prescription for an arbitrary spin 
component is applied to either of the two directions actually measured, the magni-
tude reduces to 1∕2ℏ as required for consistency.

Finally, note that this picture entails the existence of a retrocausal effect in that 
the direction of the hidden spin vector would be different if a different direction 
were chosen by the experimenter for the 2nd measurement.

7  Spin: Entangled Two‑Particle Case

In considering entangled states, the main concern is to demonstrate that the under-
lying physical reality remains consistent with Lorentz invariance despite the con-
straint arising from Bell’s theorem. As a preliminary step, the description provided 
by standard quantum mechanics will now be summarised in Dirac notation in order 
to provide the formalism needed for describing the causally symmetric version.

Consider a pair of particles in an entangled spin state. This initial state will be 
denoted here by an upper case I. Spin measurements are to be performed on the 1st 
and 2nd particle in directions e and f, respectively, with the possible eigenvalues 
being em and fn (m, n = 1, 2, 3, ...) . Again, these might just be +1∕2ℏ and −1∕2ℏ . The 
reason for choosing the letters e and f will become clearer at Eq.  (20) below. The 
joint probability of getting outcomes em and fn , given the initial state I, is given by 
the Born rule:

The two-particle entangled state �I⟩ can in general be expressed as a superposition 
of single-particle states as follows:

where the cmn are complex coefficients. It is understood here that the e kets refer to 
the 1st particle and the f kets refer to the 2nd. Similarly, the two-particle state ⟨em, fn�� 
on the right hand side of Eq. (12) can be written in terms of single-particle states:

Pursuing the description of standard quantum mechanics further, suppose for con-
venience that the measurement on the 1st particle is taken to occur at an earlier time 

(12)P
�
em, fn�I

�
= ��⟨em, fn�I ⟩��

2

(13)�I⟩ =
�

m,n
cmn

��em⟩��fn⟩

(14)⟨em, fn�� = ⟨em��⟨fn��
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than the measurement on the 2nd particle. In this situation the overall description 
will be updated at the time of the 1st particle’s measurement and the 2nd particle 
will be assigned a state vector of its own from that time onwards. If the outcome of 
the 1st particle’s measurement is taken to be em , the updated state for the 2nd parti-
cle can be obtained from Eq. (13) by keeping the terms containing em and discarding 
the rest. Since the resulting state is not normalised, a normalisation constant N must 
also be included. This procedure yields the following single-particle state:

This is the updated state which quantum mechanics assigns to the 2nd particle once 
the 1st particle’s measurement has occurred, but before the 2nd particle’s measure-
ment has been performed. The probability that the 2nd particle’s result is subsequently 
fn , given both the initial entangled state I and the 1st particle’s result em , is then:

Now this standard formulation raises obvious concerns. If the two measurements 
are spacelike separated, the description is not Lorentz invariant because the time 
order of the measurements will differ in different reference frames. Also, the timing 
of the nonlocal change in the 2nd particle’s description from an entangled state to 
a separate, single-particle state is not Lorentz invariant either, requiring a preferred 
frame. In contrast, the causally symmetric description avoids these concerns due to 
its built-in feature, as shown below, that the state �i⟩ can be applied in calculating the 
properties of the 2nd particle from the moment the initial entangled state is created, 
not just from the 1st particle’s measurement time onwards. Since the form of �i⟩ is 
dependent on the experimenter’s later choice of direction for the 1st particle’s meas-
urement, this necessarily entails a retrocausal effect.9 By this means, the resulting 
picture for the underlying physical reality avoids the need for spacelike influences.

The mathematical details of this Lorentz invariant description will now be pre-
sented. As in the single-particle case discussed in the previous section, it will again 
be convenient to consider an arbitrary further spin component h, this time its value for 
the 2nd particle in particular. By extending Eq. (11) to the two-particle case and using 
the notation of standard quantum mechanics as set out above, the causally symmetric 
model asserts the following. The 2nd particle’s value for an arbitrary spin component 
h, given the initial state I and the subsequent outcomes em and fn , is as follows:

(15)�i⟩ ≡ 1

N

�
n
cmn

��fn⟩

(16)P
�
fn�i

�
= ��⟨fn�i⟩��

2

(17)h = Re
⟨em, fn�� ĥ �I⟩
⟨em, fn�I ⟩

9 As discussed in Sect. 3 of [6], the 2nd particle’s state �i⟩ can be thought of as arising at the outset from 
an inner product of the initial entangled state �I⟩ and the 1st particle’s final state ��em⟩, where the latter 
extends backwards in time retrocausally from the 1st particle’s measurement event to the event where the 
particles separate.
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where ĥ is the corresponding operator for the h spin component of the 2nd particle. 
Using Eqs. (13) and (14), this expression can be written equivalently as:

Making use of the fact that the operator ĥ only acts on the 2nd particle’s state, 
Eq. (18) can then be rearranged and simplified to:

Finally, applying Eq. (15) yields the following value of h for the 2nd particle:

This expression, however, is seen to be identical to Eq. (11) for the single-particle 
case! In particular, it is the same as would apply from the outset for an isolated, unen-
tangled particle having initial state �i⟩ and subsequent measurement result ��fn⟩ . It cer-
tainly does not describe any change in the 2nd particle’s state at the time of the 1st 
particle’s measurement. Also, the single-particle nature of Eq.  (20) indicates that the 
ontology of the model is able to avoid the usual six-dimensional configuration space 
picture for a two-particle entangled system and can provide a picture of independent 
particles and spin values in three-dimensional physical space. As long as measurements 
are eventually performed on each entangled particle, it is always possible to derive a 
separate initial wavefunction for each particle. Furthermore, this reduction to single-
particle states can be readily generalised to quantities other than spin and to any number 
of entangled particles.10 Although the concept of an entangled state in configuration 
space is a necessary mathematical tool for correctly calculating the correlated probabil-
ities, all of the physical real ontology for this model resides within spacetime.

(18)h = Re
⟨em��⟨fn�� ĥ

∑
r,s crs

��er⟩��fs⟩
⟨em��⟨fn��

∑
r�,s� cr�s�

��er�⟩��fs�⟩

(19)

h = Re
⟨fn��ĥ

∑
r,s crs

�
em
��er

���fs⟩
⟨fn��

∑
r�,s� cr�s�

�
em
��er�

���fs�⟩

= Re
⟨fn��ĥ

∑
r,s crs𝛿m,r

��fs⟩
⟨fn��

∑
r�,s� cr�s�𝛿m,r�

��fs�⟩

= Re
⟨fn��ĥ

∑
s cms

��fs⟩
⟨fn��

∑
s� cms�

��fs�⟩

(20)
h = Re

⟨fn��ĥN�i⟩
⟨fn��N�i⟩

= Re
⟨fn��ĥ�i⟩
⟨fn�i⟩

10 See Sect. 11 in [5] and Sect. 9 in [6].
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8  Trajectories

A more contentious difference between the two versions of the de Broglie-Bohm 
model concerns the way in which their particle trajectories differ. In discussing this 
point, a clearer perspective is obtained by adopting a relativistic viewpoint using 
4-velocity rather than the usual 3-velocity. In the relativistic case, the current densi-
ties in Eqs. (1) and (2) both generalise to 4-component expressions, which will here 
be denoted by j� (� = 0, 1, 2, 3) . Such relativistic expressions for probability flow 
can in general be expressed in the form:

where �0 is the probability density in the local rest frame of the flow and u� is the 
flow’s 4-velocity. In both models the 4-velocity of the particle is taken to be in the 
same direction as j� in spacetime and so, since velocity 4-vectors are defined in gen-
eral to have unit length (assuming units with c = 1 ), the particle’s 4-velocity can be 
equated with the flow 4-velocity and must be equal to j� divided by its magnitude:

Comparing (21) and (22) then yields:

in keeping with the fact that the rest density �0 must be positive.
Now, the 4-current density of the causally symmetric model for the single-parti-

cle case is given by the general expression [6]:

where the form of the operator ĵ𝛼 depends on the wave equation under consideration. 
For example, in the Schrodinger case ĵ𝛼 has the form:

At this point the basic assumptions of the causally symmetric model can be stated 
for the single-particle case. They are that, for an ensemble of independent particles, 
(i) the initial probability distribution for the positions of the particles, given an ini-
tial state �i(�) , has the form �†

i
(�)�i(�) , and (ii) the world lines of the particles are 

distributed in accordance with the 4-current density j� given by Eq. (24), with each 
particle’s velocity 4-vector lying along the direction indicated by j� . (The generali-
sation to the entangled, many-particle case is presented in [6].)

From Eq.  (24), a notable difference between the two models is now apparent, 
namely that the time component j0 of the 4-current density is not always positive for the 

(21)j� = �0u
�

(22)u� =
j�

|j|

(23)�0 = |j|

(24)j𝛼 = Re
𝜓†

f
ĵ𝛼𝜓i

⟨f �i⟩

(25)ĵ0 = 1 , ĵk =
�

2im

�⃖⃗𝜕

𝜕xk
(k = 1, 2, 3)
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causally symmetric case and so this 4-vector is not always pointing forwards in time. 
This is a characteristic it shares with the Klein-Gordon 4-current density of standard 
quantum mechanics. At first sight this may seem a significant difficulty for the model. 
In the presence of retrocausality, however, this feature can easily be accommodated. In 
particular, it is straightforward to prove11 that any such “doubling back” of a world line 
can only occur at times between measurements and so can never be observed. Further-
more, the retrocausal influence automatically ensures that such unconventional behav-
iour between two successive measurements is gradually smoothed out and eliminated 
as the time of the second measurement approaches, due to the final wavefunction �f  
gradually dominating. The world line is then lying within the forwards light cone again, 
as required. Indeed, by invoking retrocausality one can provide a satisfactory particle 
interpretation for the standard Klein-Gordon 4-current density as well [19].

The time component j0 of the current density 4-vector is normally interpreted 
as the probability density for the particle’s position. As discussed above, however, 
Eq. (24) allows the possibility of world line segments curving smoothly through the 
light cone and temporarily turning backwards in time so that the component j0 is not 
always positive with respect to our own reference frame. Nevertheless, this is not 
important because at times between measurements there is no need for this com-
ponent to provide probability predictions for experiments, its role instead being to 
describe the direction of the current density 4-vector and the particle’s 4-velocity in 
spacetime. In any case, j0 is always positive in the local rest frame12 and hence can 
be interpreted locally as a probability density in that frame.

Although the freedom of a world line to stray outside the forwards light cone is 
restricted to times between measurements and so is undetectable, its presence in the 
model may not be to everyone’s taste. Nevertheless, it is a necessary trade-off in 
order to obtain such advantages as avoiding a preferred reference frame and avoid-
ing nonlocal connections in spacetime. Consequently it becomes a matter of per-
sonal judgement as to which picture is considered more acceptable.

9  Discussion and Conclusions

In this paper it has been shown that the Born probability rule for any observable in 
quantum mechanics can be derived within the causally symmetric version of the de 
Broglie-Bohm model via an argument analogous to that employed in the original 
model. Having placed the alternative version on a more equal footing concerning 
this rule, some of the possible advantages that the model provides have been indi-
cated, such as its ability to avoid a configuration space ontology in the context of 

11 Appendix 2 of [6]; see also Sect. 6 in [6]. Consistency with special relativity is facilitated and made 
more transparent by the fact that, although 4-velocity goes to infinity as light speed is approached, the 
particle’s effective 4-momentum remains finite here, thereby providing a continuous description of a 
smoothly curving world line in spacetime. This is discussed in more detail in Appendix 3 of [6].
12 It is straightforward to extend the concept of a reference frame to superluminal velocities [20]. Also, 
the continued applicability of Eqs. (21) to (23) in the superluminal case is discussed in Appendix 4 of 
[6].
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entangled states and to maintain consistency with special relativity in the face of 
Bell’s theorem. In particular, it is able to describe entangled particles as being inde-
pendent, in the sense of no spacelike influences, once retrocausality is included and 
final boundary conditions are specified.

In discussing these issues, the paper has also highlighted various similarities 
and differences between the original de Broglie-Bohm model and the present ver-
sion with regard to basic concepts such as continuity, determinism, time symmetry, 
underlying trajectories and hidden variables. In terms of ontology, the physically real 
entities are the particle trajectories plus such familiar quantities as energy, momen-
tum, spin, etc. Wavefunctions are not considered part of the ontology here. Instead 
they are considered as useful mathematical functions (like, e.g., the six-dimensional 
Lagrangian in classical mechanics for a pair of mutually interacting particles) from 
which, once both the initial and final conditions are specified, all of the ontological 
quantities at intermediate times can be derived.

The present model also demonstrates a possible closer connection between the de 
Broglie-Bohm picture and the weak value formalism. It essentially merges those two 
models in a way that incorporates the better features of each. In particular, it com-
bines the de Broglie-Bohm model’s ability to resolve the measurement problem and 
derive the Born rule with the weak value formalism’s ability to describe a number of 
different quantities via the same generic framework and thereby to provide a simple 
mathematical scheme for incorporating retrocausality.

Taking a wider perspective, the general intention here has been to present a via-
ble and fully operational example of a retrocausal model in action, in particular one 
which can encompass all of the quantum mechanical observables. It is hoped that 
this will facilitate a careful consideration of such models and allow a clear compari-
son with more common viewpoints.13

Appendix

The purpose of this Appendix is to demonstrate that the current density expression of 
the causally symmetric model as given in Eq. (2) reduces back to the standard current 
density of the Schrodinger equation, i.e., to Eq. (1), when the final state is not known. 
These two expressions will be written here as �(�;t|i, f ) and �(�;t|i ) , respectively, in 

13 An anonymous referee has pointed out a recent paper by Sen [21] which also contains a Bohmian 
retrocausal approach. Sen’s model introduces an ontic � determined by future measurement settings in 
addition to the usual epistemic � determined by the initial preparation, with each particle’s trajectory 
determined only by the first of these. By this means, a description is successfully obtained which is local 
as regards ontology and interactions between particles. It is, however, less time-symmetric than the pre-
sent model, which treats the initial and final boundary conditions symmetrically and takes them to be on 
an equal footing causally. Sen’s model is able to reproduce the quantum mechanical predictions exactly 
but, as its author points out, the model as currently presented is restricted to Bell correlations and the ret-
rocausality is assumed in an ad hoc manner rather than defined in physical terms. Sen’s paper also refers 
back to the original presentation of the causally symmetric model in [5] and suggests the criticism that its 
probability density for position is not always non-negative. However, the updated formulation given here 
makes it clear that the probabilities predicted for experimental situations are always positive, in accord-
ance with the Born rule.
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order to indicate explicitly whether one or both of the boundary conditions i and f are 
specified. The aim is to show that the latter expression arises from the former via a 
weighted average involving the probability P(f |i ) of f given i, as follows14:

Inserting Eq. (2) for �(�;t|i, f ) , Eq. (26) becomes:

Switching to Dirac notation for convenience, the two wavefunctions can be re-
expressed as �i(�;t) ≡ ⟨�;t�i⟩ and �f (�;t) ≡ ⟨�;t�f ⟩ and the inner product “a” can be 
written in the form ⟨f �i⟩ , so that Eq. (27) becomes:

Now one of the basic assumptions of the causally symmetric model is that, given 
the initial state �i(�) , the initial probability distribution for position is ||�i(�)

||
2 . This 

assumption allows the Born rule to be derived for any other observable, as shown in 
Sect. 4, and therefore allows this rule to be applied for the f observable here. It can 
be written in the form:

so that Eq. (28) simplifies as follows:

Returning to wavefunction notation and noting that expression (30) is already real 
without needing to take the real part, this result can finally be expressed as:

which is the Schrodinger current density in Eq. (1), as required.

(26)�(�;t|i ) =
∑

f

�(�;t|i, f ) P(f |i )

(27)�(�;t|i ) =
∑

f

Re
�

2ima
𝜓∗
f
(�;t ) �⃖⃗�𝜓i(�;t) P(f |i )

(28)�(�;t�i ) = Re
�

f

�

2im

⟨f ��;t ⟩ �⃖⃗�⟨�;t�i⟩
⟨f �i⟩ P(f �i )

(29)P(f �i ) = �⟨f �i⟩�2

(30)

�(�;t�i ) = Re
�

f

�

2im

⟨f ��;t ⟩ �⃖⃗�⟨�;t�i⟩
⟨f �i⟩ �⟨f �i⟩�2

= Re
�

f

�

2im
⟨i�f ⟩⟨f ��;t ⟩ �⃖⃗�⟨�;t�i⟩

= Re
�

2im
⟨i��;t ⟩ �⃖⃗�⟨�;t�i⟩

(31)�(�;t|i ) = �

2im
𝜓∗
i
(�;t ) �⃖⃗�𝜓i(�;t)

14 A discrete spectrum for f is assumed here for simplicity. An analogous proof holds for the continuous 
case.
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