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Abstract
The well known Bell experiment with two actors Alice and Bob is considered. 
First the simple deduction leading to the CHSH inequality under local realism is 
reviewed, and some arguments from the literature are recapitulated. Then I take up 
certain background themes before I enter a discussion of Alice’s analysis of the situ-
ation. An important point is that her mind is limited by the fact that her Hilbert 
space in this context is two-dimensional. General statements about a mind’s limi-
tation during a decision process are derived from recent results on the reconstruc-
tion of quantum theory from conceptual variables. These results apply to any deci-
sion situation. Let all the data from the Bell experiment be handed over to a new 
actor Charlie, who performs a data analysis. But his mind is also limited: He has a 
four-dimensional Hilbert space in the context determined by the experiment. I show 
that this implies that neither Alice nor Charlie can have the argument leading to the 
CHSH inequality as a background for making decisions related to the experiment. 
Charlie may be any data analyst, and he may communicate with any person. It is 
argued that no rational person can be convinced by the CHSH argument when mak-
ing empirical decisions on the Bell situation.

Keywords Bell’s theorem · CHSH inequality · Conceptual variables · Limitation · 
Quantum foundation

1 Introduction

Quantum mechanics is held by almost all physicists to be the most successfull the-
ory ever deviced (although this assertion has been challenged [1]). Nevertheless 
there has been and still are serious discussions about the interpretation of the theory. 
The relevant Wikipedia entry lists more than 16 different interpretations of quantum 
mechanics. Although some of these are related, this is obviously not a satisfying 
situation.
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Much of the present discussion has centered around the Bell theorem [2]: Quan-
tum theory is inconsistent with local realism. In more concrete terms, the Bell ine-
qualities, in particular the CHSH inequality [3], which is derived by a simple argu-
ment assuming local realism, can be violated by quantum mechanics.

This has raised the question: Can the CHSH inequality also be violated by 
Nature, regardless of whether or not quantum mechanics is seen as an all-embracing 
true theory? Numerous experiments have been done to test this question, the first by 
Aspect et al. [4]. These experiments have been criticized, and a list of possible loop-
holes have been identified [5]. Finally, in 2015 several loophole-free experiments 
were performed [6, 7], and the conclusion seems to be clear: There exist conditions 
under which the CHSH inequality is violated in practice.

This has lead to new discussions: Should we abandon the hypothesis of local-
ity, which seems to contradict relativity theory? (Using seemingly reasonable argu-
ments, this is for instance claimed in [8]). Or should we in some sense or other ques-
tion realism as a universal assumption?

In the present article, I will argue for a version of non-realism: From a general 
theorem on Hilbert space reconstruction it is proved that the mind of any actor will 
be limited in a given context. In concrete terms he is not able to have in his mind 
more than two relevant maximally accessible conceptual variables when making a 
decision, if these are essentially different and both related to his main thought. These 
terms are precisely defined. Applied to the Bell experiment, this is shown to imply 
that no actor is able to have all the assumptions behind the CHSH inequality in his 
mind in a context where he is to make decisions related to the experiment.

My arguments will rely on a general epistemic interpretation of quantum theory, 
advocated in the book [9]. More details will be given below.

2  The Bell Experiment and the CHSH Inequality

Two observers Alice and Bob are spacelikely separated at the moment when they 
observe. Midways between them is a source of entangled spin 1/2 particles, one par-
ticle in a pair is sent towards Alice, the other towards Bob. In concrete terms, the 
joint state of the two particles is given by

Here and in the following the spin component in any direction is normalized to 
± 1 . In (1) �1u⟩ means that the spin component of particle 1 in some fixed (z) direc-
tion is u, while �2v⟩ means that the spin component of particle 2 in the z-direction is 
v. This state expresses that the total spin of the two particles is 0. One can imagine 
that these particles previously have been together in some bound state with spin 0.

Alice is given the choice between measuring the spin component of her particle 
in one of two directions a or a′ . If she measures in the a-direction, her response ( ± 1 ) 
is called A, and if she measures in the a′ direction, her response is called A′ . Simi-
larly, Bob can measure in one of two directions b (giving a response B) or b′ (giving 

(1)��0⟩ = 1√
2

�
�1+⟩�2−⟩ − �1−⟩�2+⟩

�
.
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a response B′ ). The whole procedure is repeated n times with different entangled 
particle pairs and with different directions/ settings chosen by Alice and Bob.

We now temporarily take the point of departure that all these response variables 
exist in some sense. This can be seen as an assumption on realism. At the very least, 
we will assume that this point of departure is meaningful for some observer or for a 
group of communicating observers.

Since all responses then are ± 1 , we then have the inequality

The argument for this is simply: B and B′ are either equal to one another 
or unequal. In the first case, B − B� = 0 and B + B� = ± 2 ; in the last case 
B − B� = ± 2 and B + B� = 0 . Therefore, AB + A�B + AB� − A�B� is equal to 
either A or A′ , both of these being ± 1 , multiplied by ± 2 . All possibilities lead to 
AB + A�B + AB� − A�B� = ± 2.

From this, a statistician will argue: Assume that we can consider A,A′,B and B′ 
as random variables, defined on the same probability space (�,F,P) . Then by tak-
ing expectations over the terms in (2), we find

A physicist will have a related argument: Assume that there is a hidden variable � 
such that A = A(�),A� = A�(�),B = B(�) and B� = B�(�) . The assumption that such 
a hidden variable exists, is called local realism in the physical literature. By integrat-
ing over the probability distribution � of � , this gives

etc.. Thus by integrating term for term in (2), we again find (3).
Of course the above two arguments are equivalent; it is just a question of using 

either the notation (�,P) or (�, �) . There are different traditions here. These argu-
ments are reviewed and discussed in detail by Gill [10].

The inequality (3) is called the CHSH inequality after the authors of [3], and 
has been the source of much controversy. First, it is known that if we use quantum 
mechanics to model the above experiment, one can find settings such that the CHSH 
inequality is violated. Secondly, recent loophole-free experiments [6, 7] have shown 
that the CHSH inequality may be violated in practice.

Thus the simple assumptions sketched above for (3) cannot hold.

3  Briefly on the Literature

There is a large physical literature around these questions. First, various authors have 
used rather advanced arguments claiming that Bell’s theorem is wrong, and these argu-
ments have each time been countered by Gill et al. (see for instance [11]). Much of 
the literature has recently been reviewed by Kupczynski [12], and Kupczynski has also 

(2)AB + A�B + AB� − A�B� = A(B + B�) + A�(B − B�) ≤ 2.

(3)E(AB) + E(A�B) + E(AB�) − E(A�B�) ≤ 2.

(4)E(AB) = ∫ A(�)B(�)�(�)d�,
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arrived at his own conclusions there. I agree with him that a joint probability distribu-
tion of (A,A�,B,B�) does not exist, hence that a joint probability distribution of the 4 
variables (AB,AB�,A�B,A�B�) does not exist. In a physical setting, Lambare [13] has 
argued that this should imply that 4 different hidden variables �i should be chosen in 
the equations corresponding to (4).

Another interesting argument has been put forward by Schmelzer [8]. He argues that 
the key formula

follows from the logic of plausible reasoning (the objective Bayesian interpretation 
of probability theory) taken alone, and therefore that the violation of the CHSH ine-
quality has as a consequence that Einstein causality (in essence the assumption of 
nonlocality) has been violated.

To counter this last argument, we must go somewhat into the logic of plausible rea-
soning. Applied statistics is based upon a large number of propositions about param-
eters, and we may assume that the set of all these propositions form a Boolean algebra. 
The tradition in statistics is to associate such Boolean algebras with set theory, and in 
fact this association can be made precise. Mathematically, a Stone space is a compact 
totally disconnected Hausdorff space; these details are not too important. But Stone’s 
representation theorem [14] says that every Boolean algebra B is connected to a Stone 
space S(B) in the following sense: The topology on S(B) is generated by a (closed) basis 
consisting of all sets of the form {x ∈ S(B)|b ∈ x} . Then every Boolean algebra B is 
isomorphic to the algebra of subsets of its Stone space S(B) that are both closed and 
open.

The problem is to which extent one can associate probabilities to all such proposi-
tions about parameters. Here the answer depends on which school in statistical infer-
ence you belong to. An extreme Bayesian will be willing to assign probabilities to all 
propostions. Most statisticians find themselves in an in-between position, for some 
statements they can associate probabilities, epistemic probabilities, for some statements 
they can not. Sometimes, like when the problem in question has some symmetry and 
we can associate a prior to the right invariant measure of a transitive group G, one can 
act as a Bayesian, but often this attitude is not possible. In this article I will also support 
the frequentist tradition in statistics, where prior probabilities of propositions are not 
necessarily assumed to be available. Taking such an attitude, statements like (5) are not 
automatically true. In fact, we will argue below that all expectations and every statisti-
cal analysis should be taken from the point of view of an observer/actor or from the 
point of view of a group of communicating actors. This point of departure is central for 
all the different arguments in the book [9], and it will be crucial for the discussion that 
I will make below.

(5)E(AB|a, b) = ∫ A(a, b, �)B(a, b, �)�(�)d�,
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4  An Epistemic Approach Towards Quantum Theory

In the literature, many different interpretations of quantum theory are given. 
Some of these emphasize the epistemological aspect of the quantum state, which 
I will also do here. Among these, one could mention QBism [15], founded by 
Christopher Fuchs, and Carlo Rovelli’s Relational Quantum Mechanics [16]. The 
latter relies upon 2 hypotheses: (1) All systems for describing systems relative to 
an observer are equivalent. (2) Quantum mechanics provides a complete scheme 
for description of the physical world. A general physical theory is a theory about 
the state that physical systems have, relative to each other. In particular, an 
observer may be such a system.

In [9] a general epistemic view upon quantum theory is advocated. The basis 
is a set of conceptual variables connected to some agent/observer or shared by a 
group of communicating observers. Some of these variables may be given numer-
ical values through some experiment; these are called accessible variables or 
epistemic conceptual variables (e-variables). An example may be the spin com-
ponent �a of a particle in some given direction a. (In the Bell experiment set-
ting above, I have used the notation A = �a etc.) Other variables are inaccessible, 
can not be given values. An example may be the full spin vector � of a particle. 
Variables such as �a which can not be extended without loosing their accessabil-
ity property, are called maximally accessible. Based upon this view, ontological 
aspects of the quantum state may also be considered [17].

One must distinguish sharply between conceptual variables attached to a single 
actor and conceptual variables attached to a group of actors. According to Zwirn 
[18], see below, only the first variables have a primary role to play in our descrip-
tion of the world. But when making decisions, and when arriving at joint descrip-
tions after having communicated, both kinds of variables will be important.

In the views developed in [9], quantum theory may be based upon concentrat-
ing on such conceptual variables. In agreement with Mermin [19] the only ‘real 
things’ in physics are events. In the discrete case an event is given in some con-
text by ‘ � = u ’, where � is a conceptual variable, and u is one of its values. It is 
argued in [9] that these variables either should be connected to the mind of a sin-
gle actor or the joint minds of a group of communicating actors. And they should 
always be associated with some context and with a concrete physical situation.

It is important that my conceptual variables are connected to a concrete con-
text. By the well-known Kochen–Specker theorem it is impossible to assign 
simultaneously, noncontextual definite values to all (of a finite set of) quantum 
mechanical observables in a consistent manner.

The following result is developed in [9] and improved in [20]: For every maxi-
mally accessible discrete e-variable � , varying on some space �� , on which a 
transitive group G can be defined, there corresponds under weak condition a 
unique operator A� defined on some common Hilbert space H , and to every ques-
tion ‘What is the value of � if measured?’ together with a sharp answer ‘ � = u ’ 
there is a vector, an eigenvector of A� with eigenvalue u.

More precisely, in [20] (cp. also [9]) the following is proved:
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Theorem 1 Consider a situation where there are two maximally accessible concep-
tual variables � and � in the mind of an actor or in the minds of a communicating 
group of actors. Make the following assumptions: 

 (i) On one of these variables, � , there can be defined group actions from a transi-
tive group G with a trivial isotropy group and with a left-invariant measure � 
on the space ��.

 (ii) There exists a unitary irreducible representation U(⋅) of the group G defined 
on � such that the coherent states U(g)��0⟩ are in one-to-one correspondence 
with the values of g ∈ G , and hence with the values of �.

 (iii) The two maximally accessible variables � and � can both be seen as functions 
of an underlying inaccessible variable � ∈ �� . There is a transformation k 
acting on �� such that �(�) = �(k�).

Then there exists a Hilbert space H connected to the situation, and to every acces-
sible conceptual variable there can be associated a unique symmetric operator on 
H.

A simple assumption implying the technical condition (ii) is given in [20], and 
this technical condition can be shown to hold in the spin 1/2 case.

Condition (iii) is of particular interest. Two conceptual variables satisfying this 
condition are said to be related. When it is impossible to find an underlying vari-
able � such that this condition holds, we say that � and � are essentially different.

In particular, these conditions hold for pairs of components �a and �a′ of a spin 
1/2 particle, where � is the inaccessible spin vector, and k is a particular rotation 
of � . (We can take k as a 180◦ rotation around the midline between the direc-
tions a and a′ ). Then the corresponding Hilbert space H is two-dimensional, and 
every question ‘What is the value of �a ?’ together with an answer ‘ �a = u ’, where 
u = ± 1 , corresponds to a unique unit vector in H . In fact, here, every unit vector 
in H has an interpretation in the form of a question-and-answer pair. This has 
recently been generalized to the case of several such questions by Höhn [21] and 
Höhn and Wever [22].

The assumption that there can be defined a transitive group acting upon � is 
crucial. It can easily be satisfied when the range of � is finite or is the whole line 
ℝ

1 , but may be more difficult when � is a vector.
Thus Theorem  1 can be used in a new foundation of parts of quantum theory, 

but this foundation may then in practice first be limited to finite-valued or scalar 
variables, and where these are maximally accessible. After this, operators for other 
accessible conceptual variables can be found by looking at them as functions of a 
maximal variable, and then making use of the spectral theorem for the operator cor-
responding to this variable. Note also that in a situation where we have several inde-
pendent (scalar) accessible conceptual variables, an operator corresponding to the 
vector composed of all these may be defined by taking tensor products.

Experiments to measure an accessible conceptual variable � are mostly seen 
as perfect in the quantummechanical literature, measurement apparata are seen 
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as completely accurate. In practice, the apparata give inaccurate data x which are 
connected to � , and this inaccuracy may be modeled by a statistical model p(x|�) . 
The observer/ experimentalist may then give an estimate �̂  from the data x. From 
the point of view of Convivial Solipsism [18], this estimate may be seen as the 
result of measurement perceived by the consciousness of the observer, taken with 
respect to later decisions as the true resulting value of � if the current experiment 
is accurate enough.

When the result of the experiment is discrete, as in the Bell experiment case, 
it is often not problematic to regard the estimate from the data as the ‘true’ value 
in some sense (but, and this is important, again connected to an actor or to a 
group of communicating actors). This will be assumed in the following. In one 
run, �a = A may be seen as a fixed value, but seen from the point of view of 
many repeated runs, they are random variables. But they are random variables in 
an epistemic sense, their probablity distributions are epistemic probabilities. (For 
a discussion of this concept in a statistical setting, see [9]). And, I repeat: The 
epistemic conceptual variables are connected to an actor, for instance Alice in 
the Bell experiment, or to a group of communicating actors. Later I will let Alice 
communicate with a more knowledgeable actor Charlie.

5  The Conditionality Principle

The theory of statistical inference relies on certain principles, one of these is the 
conditionality principle. The principle was first proposed by Cox [23] in 1958, 
based on a very simple example: Suppose that I, as a chemist has made measure-
ments on some material, and I want my measurements to be analysed by a labora-
tory before I make a simple statistical treatment of the results. I have the choice 
between two laboratories, one in New York and one in San Fransisco. I decide to 
toss an unbiased coin to make a decision between the labs.

In principle one might imagine that my final statistical analysis should be 
based on the whole epistemic process, including the coin tossing. But David Cox 
made the very reasonable assumption that one should condition the statistical 
analysis on the result of this coin toss.

He then made a very bold generalization of this example: Let a data variable 
z have a distribution that is independent of the parameters of the experiment that 
we want to analyze. Then z is called ancillary. The general conditionality princi-
ple then says: One should condition the statistical analysis on the value of any 
ancillary data variable.

One can discuss the principle in this generality; in fact, I have done so [24] 
several years ago. But my point is now: The conditionality principle should be 
used on the settings chosen by Alice and Bob in the Bell experiment in their own 
statistical analysis of their data. The z is then, for each of them, the settings cho-
sen (which in some discussions are thought about as the results of some coin 
tosses.)
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6  Convivial Solipsism

A new philosophy, convivial solipsism, which may help to understand the basis of 
quantum mechanics, a philosophy which also may be linked to my own ideas, was 
recently proposed by Zwirn [18].

In general, solipsism is a philosophy with many variants. It is based on the view 
that everything that we can know for sure by our mind is connected to this mind. 
My mind is an autonomous separate world. The convivial variant also recognizes 
that other people have their minds, and thus have sure statements connected to their 
minds. And communication between different people is possible. People that have 
communicated and agreed on certain questions may be seen as a new unit, a new 
world, with respect to these questions. In a macroscopic context this may be linked 
to a theory of making decisions.

7  Born’s Formula

In [9] the Born rule is formulated as follows: Assume in general two maximally 
accessible conceptual variables �a and �b . Let, for some observer or group of observ-
ers the event �a = u correspond to the ket vector �a and the event �b = v correspond 
to the ket vector �b in some common Hilbert space H . Then

In the Bell experiment, if A = �a is Alice’s response and B = �b is Bob’s response, 
and assuming an actor for which both A and B are meaningful, can be related to the 
same Hilbert space, we find from this

and assuming in addition that P(A = −1) = P(A = +1) = 1∕2 , this gives 
E(AB) = −cos(a, b) . From this again follows that according to quantum mechanics, 
the CHSH inequality may be violated, for instance a ∼ 0◦ , a� ∼ 90◦ , b ∼ 225◦ and 
b� ∼ 135◦ gives

In [9] the Born rule was derived by making three assumptions which qualitatively 
may be formulated as: (1) The variable �a (here A) is maximally accessible. (2) The 
so-called likelihood principle from statistics holds. (3) The observer is either him-
self perfectly rational, or has ideals which can be thought of in terms of an artificial, 
perfectly rational actor, where rationality is given by the Dutch book principle. Of 
course an additional assumption behind (6) is that each of the conceptual variables 
AB, AB′ , A′B and A′B′ , taken separately, make sense to the actor(s) in question.

P

�
�b = v��a = u

�
=
����
⟨�b��a⟩

����

2

.

P(B = ±1|A = +1) =

(
1 ± cos(a, b)

)
∕2,

(6)E(AB) + E(AB�) + E(A�B) − E(A�B�) = 2
√
2.
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8  A Mathematical Theory of Human Decisions

Let the person A be in a decision process. He has the choice between the pros-
pects �1, ...,�r . Introduce a decision variable � taking r values: � = k if and only if 
�k is to be realized ( k = 1, ..., r ). This is a variable in the mind of A.

In general, A is in some context at the time t when he is to take his decision. In 
this context and at this time he can have several variables in his mind: �, �, �, ... . 
I will call these conceptual variables. If a variable � can be given some value at a 
future time, I will say that � is accessible.

Say that a conceptual variable � is ‘less than or equal to’ the conceptual vari-
able � if � = f (�) for some function f. This defines a partial ordering both among 
all conceptual variables and also among the accessible conceptual variables.

I will assume that if � is accessible, and � = f (�) , then � is also accessible.
Now to a main assumption of my model: I will assume that all of the con-

ceptual variables in the mind of A, or some of them, can be seen as functions of 
an underlying inaccessible � , belonging to the subconsciousness of A. As such, 
� can never be known by A, nor by any other person. Some intelligent person, 
knowing A, having observed him over some period, and knowing some practical 
psychology, may perhaps find a rough estimate of �.

In the case where the accessible conceptual variables are spin components of a 
particle, we can let � be the inaccessible spin vector.

In general from this and from Zorn’s lemma, maximally accessible conceptual 
variables (according to this partial ordering) always exist, since � can be seen as 
an upper bound for a set of accessible conceptual variables. Trivially, the spin 
components of a particle are maximally accessible.

9  The Data Analysis Made by Alice

Assume that a Bell experiment has been done. Before she has any contact with 
Bob, Alice has a list of n data from herself, settings a or a′ and corresponding 
responses A or A′.

Now by the conditionality principle, her analysis should be conditional, given 
her setting, either a or a′ . Assume that she first concentrates on the runs with set-
ting a and a corresponding response A. For example one may concentrate on the 
runs where A = +1 , an event which corresponds to a unique ket vector �a in her 
two-dimensional Hilbert space H . In fact the argument below will hold for any 
state of knowledge about the responce A. We will be particularly interested in the 
mixed state determined by P(A = −1) = P(A = +1) = 1∕2.

By Theorem 1, the Hilbert space describing Alice’s mind in the situation can 
be constructed from two maximally accessible conceptual variables.

With this as a background, one can imagine two scenarios. First, she may also 
have in mind the possible response A′ from her other setting a′ . Then from a gen-
eral theory of a mind’s limitation, discussed in the next section, she is not able 
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to think of any more conceptual variables. In particular, the possible responses 
made by Bob can not be addressed by her in this state, and to her then, the argu-
ment leading to (2) and (3) does not make any sense. Thus she has no opinion 
about the validity or not of the CHSH inequality.

The other scenario is that she does not think of A′ at all, but concentrates her 
mind on the possible responses made by Bob. Let us assume that she knows some 
quantum mechanics, in particular the Born rule. Then she may use this rule to calcu-
late E(B|A = +1) and E(B�|A = +1) from the known settings b and b′ , and assuming 
P(A = −1) = P(A = +1) = 1∕2 she can calculate E(AB) and E(AB�) , that is, the first 
and the third term in (3). But there is no way in which she can get any information 
on the second and fourth term. Thus Alice is not able to give any meaning to the left 
hand side of the CHSH inequality, and this inequality might well be violated if we 
only are allowed to take into account the information posessed by Alice. Again she 
can have no opinion on the CHSH inequality.

This conclusion is of course the same if the setting chosen by Alice is a′ . And a 
completely similar discussion can be made seen from Bob’s point of view. The con-
clusion is that the simple reasoning leading to the CHSH inequality can not be made 
meaningful to either of these observers at a stage where they only know their own 
responses.

For practical experiments, not assuming quantum theory, one might perhaps 
imagine some other probability model doing the job that Born’s formula did above, 
but the problem with missing information about two terms on the lefthand side of 
the CHSH inequality is the same.

Note that in spite of all this, Alice may well be very intelligent. Her Hilbert space 
relevant also to some specific other context may be of the form H⊗K , where H 
is her two-dimensional Hilbert space connected to the Bell experiment, and K is a 
fairly big Hilbert space connected to the other context.

10  A General Theory of a Mind’s Limitation

Take as a point of departure any experimental situation or decision situation and an 
observer/actor O in this situation. O will have in his mind several conceptual vari-
ables connected to the situation. Assume that two of these are maximally accessible. 
I will assume that the conditions of Theorem 1 hold.

According to Theorem 1 the situation can then be described by a Hilbert space 
H . In [9] the corresponding theorem was proved with an extra condition connected 
to an epistemic process, but it was shown in [20] that this extra condition is in fact 
unnecessary. This is an important observation. It implies that the conclusion of the 
theorem applies to any decision situation, and that the conceptual variables involved 
may be decision variables or underlying variables that somehow influence decisions.

Another qualification is the condition (iii) in Theorem 1. If � and � together sat-
isfy this condition, I will say that they are related. It � and � can not be related in this 
way, we say that they are essentially different.

In this section I will assume that the technical conditions behind Theorem 1 
are satisfied. For simplicity assume first also that the Hilbert space has a finite 
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dimension d. Look at one of O’s maximally accessible variables � , say taking the 
values u1, ..., ud . This has a unique operator A� connected to it. First, it follows 
from Theorem 4.5 in [9] that the eigenspaces of A� are one-dimensional, and it 
follows from Theorem 4.4 in [9] that the eigenvalues of A� are just u1, ..., ud . And 
each event � = ui corresponds to a unique unit vector �� i⟩ in H , the eigenvector of 
A� giving the eigenvalue ui.

It is relevant to look at a theory of decisions as described by Yukalov and Sor-
nette [25]. This reference is only one of a series of papers written on Quantum 
Decision Theory by the same authors. Similar conclusions may be made by tak-
ing as points of departure cognitive models, as developed in [26, 27].

In agreement with [9, 25] let us assume for simplicity that the current state 
of mind of O is given by a ket vector ��⟩ in H . He is going to make a decision, 
and his possible prospects �j are each represented by ket vectors ��j⟩ in H . Then, 
according to the Born rule, his probability of making decision �j is given by

More generally, if his current state is given by a density matrix � , the probability of 
making decision �j is given by p(�j) = ⟨�j���j⟩.

The concept of permissibility is defined in the “Appendix”.

Theorem 2 Assume that the individual O has two related maximally accesible vari-
ables � and � in his mind. Then �(�) = �(k�) for an inaccessible variable � and a 
transformation k of �� . Assume that a group K of transformations of �� can be 
found such that k ∈ K and �(⋅) is permissible with respect to K.

In this situation O can not simultaneously have in mind any other maximally 
accessible variable which is related to � , but essentially different from �.

Proof According to Theorem  1, two different related maximally accessible varia-
bles, say � and � in the mind of O will determine his Hilbert space H in the given 
context. And from this, all other conceptual variables in his mind will be associ-
ated with selfadjoint operators. Assume that one of these, say �′ , essentially different 
from � , is maximally accessible. Then a different alternative theory could have been 
developed from � and �′ , giving a Hilbert space H′ . We will show that this leads to a 
contradiction.

Since � and �′ are related, there is a transformation k′ such that ��(�) = �(k��) . 
Extend if necessary K to a group K′ such that k� ∈ K� . We need the following.   ◻

Lemma 1 In this situation �(⋅) is permissible with respect to the group K′.

Proof of Lemma 1 We have that �(�1) = �(�2) implies �(k��1) = �(k��2) , and fur-
ther �(h�1) = �(h�2) for all h ∈ K . It follows from this that �(hk��1) = �(hk��2) and 
�(k�h�1) = �(k�h�2) for all h ∈ K . A similar property holds for all group elements 

(7)p(�j) =
����
⟨���j⟩

����

2

.
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that can be written as a finite product of k′ and elements in K. But these products 
generate K′ .   ◻

Proof of Theorem  2, continued From Theorem  A1 in the “Appendix” it fol-
lows that A� = V(k)A�V(k)† and A� = V(k�)A��V(k�)† . But this implies that 
A� = V(k−1k�)A��V(k−1k�)† , and using THeorem A1 again, we conclude that � and �′ 
are related, which leads to a contradiction with the assumptions made.   ◻

Theorem 2 also holds for continuous variables if one can assume that the techni-
cal condition (ii) of Theorem 1 holds.

Go back to the previous section, the situation of the actor Alice. Her Hilbert space 
is two-dimensional, and her current state ��⟩ can be imagined to be determined by 
the event of the type A = +1 . Her Hilbert space may be reconstructed by consider-
ing in addition one other binary variable � . As discussed there, this variable may be 
either her other response A′ , or one of Bob’s responses B or B′ . There are also other 
possibilities. But she is not able to, when making decisions, have other, essentially 
different variables in her mind. To prove this from Theorem 2, we concentrate on the 
case A = �a and B = �b , where we need the following:

Lemma 2 Let K be the group of rotations of the spin vector in the plane spanned by 
a and b. Then both the components �a and �b are permissible with respect to K, and 
�a and �b are related.

Proof Permissibility follows essentially as in Proposition 2 in [20]. �a can obviously 
be transfered into �b by a suitable rotation in this plane.   ◻

11  The Data Analysis Made by Charlie

Assume that Alice and Bob meet after the experiment and share their information 
on all the runs with a new observer Charlie. In particular, all the settings, a or a′ , 
respectively b or b′ are known, and according to the conditionality principle, all 
expectations should be calculated conditionally, given these settings. In concrete 
terms, Charlie has the following data: Settings for Alice in each run, xi = a or a� , 
Settings for Bob, yi = b or b� , responses Xi for Alice (A or A′ ) and Yi for Bob (B or 
B′ ), i = 1, ..., n . Charlie wants to do a statistical analysis, and by the conditionality 
principle he will condition this analysis on all the xi ’s and yi’s. His analysis should 
be concentrated on the following parameters, corresponding to the 4 parts of the 
data sets that he has received:

(8)l1 = E(XY|x = a, y = b) = E(AB),

(9)l2 = E(XY|x = a�, y = b) = E(A�B),



1 3

Foundations of Physics (2022) 52:55 Page 13 of 22 55

Let us assume a knowledgeable observer Charlie, knowing both statistics and some 
quantum theory. As any observer, his mind at a given moment can be described by 
some unit vector in a Hilbert space, which must be taken as big enough to be able 
to absorb the setting a∕a� and b∕b� , and the corresponding observations X and Y, 
made by Alice and Bob. This can be accomplished by a four-dimensional Hilbert 
space, concentrating on the four possible conditional joint distributions of X and Y. 
He should also believe in no-signalling: E(Z|a, b) = E(Z|a) for any variable Z solely 
connected to Alice.

Put in another way, in order that Charlie should be able to describe any pair 
(A = �a,B = �b) etc., his Hilbert space H′ must be four-dimensional. We will claim 
that his state when analysing the data should be seen as an eigenstate of the operator 
in H′ corresponding to his conceptual variable � = �x�x + �y�y + �z�z the dot prod-
uct of the two inaccessible spin vectors, one belonging to Alice and one to Bob. 
Even though these spin vectors are inaccessible, � is accessible to Charlie.

This can be seen as follows. As analysed in detail in [28], the operator corre-
sponding to � in H′ has two eigenvalues − 3 and − 1, the single eigenvector corre-
sponding to � = − 3 is given by (1), while the eigenspace corresponding to � = − 1 
is three-dimensional. Looking at the definition of � , and the fact that �x and �x etc. 
all take values ±1 , the value � = − 3 is only possible if �x�x = �y�y = �z�z = − 1 , 
that is �x = − �x and so on, which implies �a = − �a for all fixed directions a. This 
is just a manification of the fact that Charlie knows that the spin vectors associated 
with Alice and Bob are equal, but opposite.

Let us assume that before doing any data analysis, Charlie tries to make a prob-
ability model for the relevant variables. From the discussion of the previous section, 
there is a limitation to how much Charlie is able to think of at some given time 
when making this model. His maximally accessible variables are the different pairs 
� = (�, �) , where � is connected to Alice and � is connected to Bob, and both � and 
� are binary.

In particular, consider the four pairs C = (A,B) , D = (A,B�) , E = (A�,B) and 
F = (A�,B�) . Every pair corresponds to one of the 4 parts of the data sets that he 
is going to analyse. If he thinks hard, he can for instance put up a joint probabil-
ity model for C and D, but this is the maximum of what he is able to do. These 
two variables are related, so from these two maximally accessible variables he is, 
according to Theorem 1, able to reconstruct a Hilbert space. Similarly, he is able to 
construct a Hilbert space from C and E; these are related. But the pairs D and E have 
no relationship to each other; they are essentially different. So we are in the situation 
of Theorem 2: Charlie is not able to have in his mind all three pairs C, D and E when 
making decisions about the experiment.

We have to verify that the conditions of Theorem 2 hold. Let � = C = (A,B) and 
� = D = (A,B�) . Both are functions of (�,�) , where � is the inaccessible spin vector 
for Alice’s particle, and � is the inaccessible spin vector for Bob’s particle. As was 

(10)l3 = E(XY|x = a, y = b�) = E(AB�),

(11)l4 = E(XY|x = a�, y = b�) = E(A�B�).
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discussed above, in Charlie’s context, each component of � is opposite to the corre-
sponding component of � . This can be written � = −� , and thus both C and D can 
be seen as functions of � . It follows then from Lemma 2 that the vector C = (A,B) 
is permissible with respect to one group, and the vector D = (A,B�) is permissible 
with respect to another group, both seen as functions of � . The argument needed for 
finding a group with respect to which both are permissible, goes essentially like the 
proof of Lemma 1.

From this, the conditions of Theorem 2 hold for � = C and � = D . This implies 
that Charlie is not simultaneously able to hold in his mind the variable E, which is 
related to C, but essentially different from D.

Charlie is thus in particular not able to put up a joint probability model for these 
3 pairs. As a consequence, he is not able to put up a joint probability model for the 4 
binary variables AB,AB′,A′B′ and A′B′.

Assume now, tentatively, that Charlie is able to put up a joint probability model 
for his four variables A,A′,B and B′ . Then he would be able to deduce from this 
model also a joint probability model for the variables AB,AB′,A′B and A′B′ . Thus, 
from what has just been said, this thesis is impossible. Charlie is not in any way able 
to think of a joint probability model for his four basic variables. In fact, he is not 
able to have in his mind all these four variables when making decisions related to 
the experiment.

This has an important consequence: From this point of view, Charlie is simply 
not able to follow the arguments leading to (2) and then to (3) when making his 
decisions. Thus he can not then follow the arguments leading to the CHSH inequal-
ity, and must see the validity of this inequality either as an empirical question or a 
question that can be resolved by his knowledge about quantum mechanics.

From his data, Charlie can compute natural estimates: l̂1 = AB , l̂2 = A�B , l̂3 = AB� 
and l̂4 = A�B� . Let us further assume that the settings are such that, by the Born for-
mula, which gives E(AB) = −cos(a, b) , the CHSH inequality is violated. (Again, one 
choice, in some sense the optimal one, is a ∼ 0◦ , a� ∼ 90◦ , b ∼ 225◦ and b� ∼ 135◦ .) 
Then, if the number n of runs is large enough, Charlie will find by using Born’s for-
mula before looking at his data, that with high probability from this:

This may convince him that the CHSH inequality is not valid, and he will be sur-
prised if his estimates do not satisfy (12). He will also predict that for a future series 
of runs, if the number of runs is large enough and the settings are as before, then 
(12) will hold with large probability.

Parts of this discussion does not depend on Charlie’s possible knowledge about 
quantum theory, but it is all the time assumed that he is in a decision situation 
which, as described in [26] can be connected to a finite number of prospects.

In his modelling effort Charlie might be able to find separate numbers in separate 
models for l1 = E(AB) , l2 = E(A�B) , l3 = E(AB�) and l4 = E(A�B�) . These numbers 
may be compared either to the prediction made by quantum theory, or to the esti-
mates he found from the data from Alice and Bob. In either case, given suitable set-
tings a, a′, b and b′ , he may be convinced that the CHSH inequality may be violated.

(12)AB + A�B + AB� − A�B� > 2.
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Thus, by Bell’s theorem he believes that the assumption of local realism must be 
violated. He may be convinced about the validity of Einstein’s relativity theory, and 
from this he may deduce that the locality assumption should hold. Hence his only 
option is to reject the universal assumption of realism. Charlie may be convinced of 
the statement advocated in [19]: The only ‘real things’ in physics are events, and any 
theory, any set of questions to be answered, should be connected to the perception 
of events made by an actor or by a group of communicating actors. As argued here, 
Charlie as an actor is limited.

12  Charlie, Alice and Others

Assume that Alice and Bob plan to make a new Bell experiment with n runs 
together. Assume also that Alice and Charlie meet and talk together after Charlie has 
done a data analysis, but before any new series of runs. The issue of their talk is the 
predicton (12) for the new experiment. Charlie may be convinced about this predic-
tion, but Alice is still unsure.

Another situation might be that Charlie chooses to market his prediction to all 
people that he knows, telling them about his arguments behind this prediction. This 
must be seen as a form of information processing. In a recent paper [29] a model 
for joint decisions made by a group of people is based on an extensive exchange 
of information. Such an analysis may then consider possible future joint decisions 
made either by Charlie and Alice together or by Charlie and his friends together.

I will not go into details here, but concentrate on the following: The dis-
cussion between Alice and Charlie focuses on the single binary variable 
� = sign(AB + A�B + AB� − A�B� − 2) for the new experiment. According to [18], 
Alice’s question to Charlie on this variable may be seen as a measurement. If she 
should accept Charlie’s answer, she will enter a new state partly given by � = + 1 
for the relevant set of settings a, a′, b and b′ in the future Bell experiment. She will 
believe that an empirical version of the CHSH inequality will be violated in the new 
experiment if n is large enough. And she may be convinced by Charlie’s arguments 
around local realism.

The discussion with other people may be more complicated. But if Charlie’s 
arguments are strong enough, both theoretical arguments from quantum mechanics 
and empirical results, most of his friends will probably enter a state partly given by 
� = + 1 : Thus they will with some part of their mind believe that the CHSH inequal-
ity may be violated under suitable conditions. Hence in the light of Bell’s theorem 
they will not be convinced that local realism, made precise in some way, will always 
hold.

The setting for this last discussion must be such that the friends can communicate 
with Charlie. This may be argued to imply that all the friends have some relation to a 
four-dimensional Hilbertspace in connection to one run of the Bell experiment, and 
that their initial state then is given by (1), that is, corresponding to � = − 3 . Then, by 
the above arguments, neither of them will then have the possibility to, at the same 
time, have all the variables A,A′,B and B′ in their mind, and thus they will not be 
convinced of the argument leading to (2).
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13  Discussion

We are all limited. Like Alice and Charlie neither of us can always answer all 
questions, even simple ones that require a yes/no answer. This is of course obvi-
ous, but one aspect of this may not be clear to everybody: Our mind is limited by 
how many conceptual variables we can think of at the same time when making a 
decision. Like Alice, we can sometimes seek answers from people having more 
insight.

Decisions may be made by single a actor or by groups of communicating 
actors. In some situations these decisions may be related to measurements that 
we are about to make, and these measurements can be formulated by focused 
questions to nature involving accessible conceptual variables. This is the point of 
departure for the approach to quantum mechanics given in [9].

Going back to Sect. 11, look at Charlie’s efforts to make a probability model 
over his variables. In the language of statisticians [9], these probabilities may be 
called epistemic probabilities. He is able to make joint probability models over 
pairs of variables, but not over all 4 variables. This must mean that these epis-
temic models in general are different than ordinary probability models. The fact 
that quantum probabilities behave differently than ordinary probabilities is well 
known [30].

14  Conclusions

The discussions around Bell’s theorem and the assumptions of local realism may 
perhaps continue. In my view the paradoxes around this issue may be resolved by 
considering an actor like Charlie discussed above. After analysing his Bell exper-
iment data, he is convinced that the assumption of local realism cannot hold in 
general. He has two arguments for this: Empirical results and a belief on the gen-
eral validity of quantum mechanics. At the same time he is not able to follow the 
simple arguments leading to the CHSH inequality. As I see it, this may be said to 
be so because of his limitation: He is simply not able to keep enough variables at 
the same time in his mind when making his decisions.

My arguments in this paper has partly rested on the epistemic process approach 
towards quantum theory [9]. However, the arguments concentrated on the actor 
Charlie also seem to have some universal validity. It must be concluded that local 
realism is not longer a universally convincing position, given these arguments. 
And this can be highlighted by focusing on the world as seen by any specific actor 
or by a group of different, communicating, actors, all being limited in the specific 
sense discussed in Sects. 12 and 13 above.

The process of making decisions may be a difficult one. In this paper I have 
argued that individual decisions are dependent on conceptual variables in the 
mind of the person who makes the decicions. In practice many decisions are made 
jointly by groups of people that communicate. Also in the latter case a common 
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philosophy and through this, common conceptual variables play a role. Decisions 
may be initiated by persons that the group look up to. In this world, really cruel 
and disastrous decisions have also been made in this way. In a civilizest society 
such decisions should be countered. In an idealized world, all decisions should be 
made in a way that is rational and at the same time has a high ethical standard. 
Also, in this ideal world, science in all its variants should lead the way here.

Parts of my own philosophical background for writing this paper can be found in 
[31].

Appendix: Operators and Their Properties

In [20] I took as a point of departure Chapter 2 in Perelomov [32], which discusses 
coherent states for arbitrary Lie groups. Let G be a transitive group acting on the 
space �� associated with some conceptual variable � and U(g) its unitary irreduc-
ible representation acting on the Hilbert space H . I will assume that G has a trivial 
isotropy group, so that the elements g of G are in one-to-one correspondence with 
the values of �.

As in [20] (and in [9]) take a fixed vector ��0⟩ in H , and consider the set {��⟩} , 
where ��⟩ = U(g)��0⟩ with g corresponding to the value � . It is not difficult to see 
that two vectors ��1⟩ and ��2⟩ correspond to the same state, i.e., differ by a phase fac-
tor ( ��1⟩ = exp(i�)��2⟩ , |exp(i�)| = 1 ), only if U(g2,−1g1)��0⟩ = exp(i�)��0⟩ , where g1 
corresponds to �1 and g2 corresponds to �2 . Suppose E = {e} is a subgroup of the 
group G, such that its elements have the property

When the subgroup E is maximal, it will be called the isotropy subgroup for the 
state ��0⟩ . More precisely, it is the isotropy subgroup of the group U(G) correspond-
ing to this state.

The construction shows that the vectors ��⟩ corresponding to a value � and thus 
to an element g ∈ G , for all the group elements g belonging to a left coset class of 
G with respect to the subgroup E, differ only in a phase factor and so determine the 
same state. Choosing a representative g(x) in any equivalence class x, one gets a set 
of states {��g(x)⟩} , where x ∈ X = G∕E . Again, using the correspondence between g 
and � , I will write these states as {��(x)⟩} , or in a more concise form {�x⟩} , �x⟩ ∈ H.

Definition A1 The system of states {��⟩ = U(g)��0⟩} , where g corresponds to � 
as above, is called the coherent-state system {U, ��0⟩} . Let E be the isotropy sub-
group for the state ��0⟩ . Then the coherent state ��(g)⟩ is determined by a point 
x = x(g) in the coset space G/E corresponding to g and to ��(g)⟩ is defined by 
��(g)⟩ = exp(i�)�x⟩ , ��0⟩ = �0⟩.

Remark The states corresponding to the vector �x⟩ may also be considered as a one-
dimensional subspace in H , or as a projector �x = �x⟩⟨x� , dim�x = 1 , in H . Thus 

(13)U(e)��0⟩ = exp[i�(e)]��0⟩.
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the system of coherent states, as defined above, determines a set of one-dimensional 
subspaces in H , parametrized by points of the homogeneous space X = G∕E.

In [20] this theory is generalized to the case with two maximally accessible con-
ceptual variables � and � connected through an underlying inaccessible variable � by 
a transformation k of the underlying space �� by �(�) = �(k�) . For this case define 
� = (�, �) . It is shown in [20] that a group N can be defined on � given by the group 
G above and its isomorphic ‘copy’ H acting on � . Let M be the isotropy subgroup 
of N corresponding to E above, and define the coset Z = N∕M . Then it is shown in 
[20] that there is an irreducible representation W(⋅) acting on N, formed by the repre-
sentation U(⋅) of G and the corresponding representation V(⋅) of H. These are acting 
on the same Hilbert space H , and this implied states ��(�)⟩ = W(n)��0⟩ constructed 
as above, defined on the same Hilbert space, and that they satisfy a resolution of the 
identity

for a left-invariant measure � on � = {�}.
Furthermore, it is shown that z = (x, y) , where x is an element of X and y is an 

element of the corresponding coset Y = H∕F . Here F is the subgroup of H corre-
sponding to the subgroup E of G.

In fact, the situation here is completely symmetric between (�,G,E,X) on the 
one side and (�,H,F, Y) on the other side. Furthermore, the transformations N on 
� = (�, �) are constructed from independent transformations in G on � and transfor-
mations in H on � . Then it is reasonable to assume that the measure � in (14) can be 
written as �(d�) = �(dx)�(dy) for some marginal measure �.

From this, the operators corresponding to � and � can be defined by

and

Similarly:

and

(14)∫ ��⟩⟨���(d�) = I,

(15)P(x) = ∫Y

��⟩⟨���(dy),

(16)A� = ∫X

�(x)P(x)�(dx).

(17)Q(y) = ∫X

��⟩⟨���(dx),

(18)A� = ∫Y

�(y)Q(y)�(dy).
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Here, to recall, y is defined as an element of the homogeneous space Y = H∕F , 
where H is a transitive group, isomorphic to G, acting on the space �� on which � 
varies, and F is the subgroup of H corresponding to E of G.

For conceptual variables � that are not maximally accessible, we can always write 
� = f (�) for some maximal � , and an operator for � can be found by using the spec-
tral theorem on the operator A� (cp. Eq. (4.30) in [9]).

To illustrate the theory, I will prove an important result, a correction/ precision of 
Theorem 4.2 in [9]. Then first I have to define the notion of permissibility.

Definition A2 The function �(⋅) on a space �� upon which a group of transforma-
tions K is defined, is said to be permissible if the following holds: �(�1) = �(�2) 
implies �(k�1) = �(k�2) for all k ∈ K.

This notion is studied thoroughly in [33]. The main conclusion is that if �(⋅) is 
permissible, then there is a group G acting on the image space �� such that g(�(�)) 
is defined as �(k�) ; k ∈ K . The mapping from K to G is an homomorphism. If K is 
transitive on �� , then G is transitive on �� . (Lemma 4.3 in [9].) It is easy to show 
that G has a trivial isotropy group if K has a trivial isotropy group.

Theorem A1 Assume that the function �(⋅) is permissible with respect to a group K 
acting on �� . Assume that K is transitive and has a trivial isotropy group. Let V(⋅) 
be a unitary representation of K such that the coherent states V(k)��0⟩ are in one-
to-one correspondence with k. For any transformation t ∈ K and any such unitary 
representation V of K, the operator V(t)†A�V(t) is the operator corresponding to �′ 
defined by ��(�) = �(t�).

Proof By (16) we have

where

To show this, we need to prove that V(t−1)��(�)⟩ = ��(t−1�)⟩.
Note that t−1� , permissibility and � = �(�) , � = �(�) induces from t a new trans-

formation s acting on � = (�, �) . Consider s−1(�, �) = s−1(g, h) from the one-to-one 
correspondence between � and g and between � and h. Let U(s−1) = V(t−1) under 
this correspondence. Then V(t−1)��(�)⟩ = U(s−1)��⟩ , where ��⟩ = V(k)��0⟩ is the 
vector i H which is in one-to-one correspondence with the group element k which 
generates g = g(k) and hence � by permissibility. Now the group H, which corre-
sponds to a copy of G, can also be seen as generated by K, so h = h(k) . This implies 
that (g, h) is a function of k, and by permissibility also � = (�, �) is a function of k. 
Since the two maximally accessible variables � and � determine the Hilbert space, 
this function must be one-to-one.

(19)V(t−1)A�V(t) = ∫X

�(x)Pt(x)�(dx),

(20)Pt(x) = ∫Y

��(t−1�)⟩⟨�(t−1�)��(dy).
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Write the group elements s−1(g, h) as (g�, h�) , new members of groups G and H 
acting on � and � , respectively. Let again E be the subgroup of G constructed as in 
(13), and let F be the corrsponding subgroup of H. Write X = G∕E and Y = H∕F . 
The new elements of these cosets may be defined as x� = t−1x and y� = t−1y , respec-
tively. This gives an element z� = (x�, y�) , and the corresponding state in H as �z′⟩ , 
which as in Definition 3 of [20] also can be written as ��(g�, h�)⟩ = ��(t−1�)⟩.

Hence (19) and (20) can be written as

where

Now make a change of variables from (x, y) to (x�, y�) = (tx, ty) in these integrals. 
Since �(d�) = �(dx)�(dy) is left invariant, the corresponding � may be taken to be 
left invariant. Therefore the last integral may be written

and we can write Pt(x) = P(t−1x) . This is inserted into (21), and using left-invar-
iance of the measure again, this gives that the operator V(t−1)A�V(t) is associated 
with the conceptual variable �(tx) , which also may be written as �(t�) .   ◻

By using this result in the same way as Theorem  4.2 is used in [9], a rich 
theory follows. I will limit me here to the case where � is a discrete conceptual 
variable. Then one can show: 

(1) The eigenvalues of A� coincide with the values of �.
(2) The variable � is maximally accessible if and only if the eigenvalues of A� are 

non-degenerate.
(3) For the maximal case the following holds in a given context: (a) For a fixed � 

each question ‘What is the value of � ?’ together with a sharp answer ‘ � = u ’ can 
be associated with a normalized eigenvector of the corresponding A� . (b) If there 
in the context are a set {�a;a ∈ A} of maximally accessible conceptual variables 
(these must by the results of Sect. 8 be related to each other) one can consider 
all ket vectors that are normalized eigenvectors of some operator A�a . Then each 
of these may be associated with a unique question-and-answer as above.
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(21)V(t−1)A�V(t) = ∫X

�(x)Pt(x)�(dt
−1x),

(22)Pt(x) = ∫Y

��(t−1�)⟩⟨�(t−1�)��(dt−1y).

(23)Pt(x) = ∫Y

��(�(t−1�), �(��)⟩⟨�(�(t−1�), �(��)��(dy�),
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