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Abstract
Recent advances in differential topology single out four-dimensions as being spe-
cial, allowing for vast varieties of exotic smoothness (differential) structures, distin-
guished by their handlebody decompositions, even as the coarser algebraic topology 
is fixed. Should the spacetime we reside in takes up one of the more exotic choices, 
and there is no obvious reason why it shouldn’t, apparent pathologies would inevita-
bly plague calculus-based physical theories assuming the standard vanilla structure, 
due to the non-existence of a diffeomorphism and the consequent lack of a suita-
ble portal through which to transfer the complete information regarding the exotic 
physical dynamics into the vanilla theories. An obvious plausible consequence of 
this deficiency would be the uncertainty permeating our attempted description of the 
microscopic world. We tentatively argue here, that a re-inspection of the key ingre-
dients of the phenomenological particle models, from the perspective of exotica, 
could possibly yield interesting insights. Our short and rudimentary discussion is 
qualitative and speculative, because the necessary mathematical tools have only just 
began to be developed.

Keywords  Differential geometry · Particles

1  Introduction

A long lineage of geometrodynamical investigations has evolved over time (see e.g., 
[1–5]). Ever since the early days of modern particle physics [6], there had always 
been the temptation to connect the observed discreteness and conservations of par-
ticle physics with nonlocal features of various geometric patterns formed out of the 
fabric of spacetime itself, due in part to the aesthetics of the emulsion of particle 
physics with General Relativity. Also, this way, the particles would automatically 

 *	 Fan Zhang 
	 fnzhang@bnu.edu.cn

1	 Gravitational Wave and Cosmology Laboratory, Department of Astronomy, Beijing Normal 
University, Beijing 100875, China

2	 Advanced Institute of Natural Sciences, Beijing Normal University, Zhuhai 519087, China

http://orcid.org/0000-0002-8438-7155
http://crossmark.crossref.org/dialog/?doi=10.1007/s10701-022-00566-w&domain=pdf


	 Foundations of Physics (2022) 52:46

1 3

46  Page 2 of 22

be welded onto our universe and can never move off of it. There is no need then to 
either compactify any extra dimensions into tiny sizes to make them invisible at low 
energies, and suffer the associated landscape problem [7], or to conjure up some sort 
of confining potential to assemble a thick brane [8].

In order to carry out the geometrodynamics program, one could enlist tools, in 
ascending order of finesse, that describe a 4-dimensional shape: 

1.	 Its algebraic topological (sometimes abbreviated to just “topology” below) char-
acteristics. Equivalence between two manifolds at this level of detail is established 
by homeomorphisms.

2.	 Its smoothness structure, the classification of which is established with diffeo-
morphisms.

3.	 Its complex structure, classified by biholomorphisms.
4.	 Its (pseudo-)Riemannian geometry, distinguished by isometries.

Historically, efforts have concentrated on the top and bottom lines, letting geometry 
handle continuum features such as energetics, and leaning on algebraic topological 
features (e.g., various characteristic classes) to generate discrete properties. In this 
note, we advocate evoking the more fine-grained second entry in the list to assist 
with the latter task, in order to procure additional flexibility for nuances, from exotic 
smoothness.1

The “fine-grain” qualification comes from the fact that the smoothness considera-
tion can be seen as a further tightening of topology that tames its wilder beasts and 
refines its rather broad-stroked equivalences. The definition of topological equiva-
lence, that there exists homeomorphisms (continuous reshuffling of points), was 
meant to convey the directive that we can morph one shape into another, in a fash-
ion similar to stretching and squeezing playdough, but without tearing or pinching 
it. However, more recent developments on objects like fractals2 alert us to the fact 
that the mathematical definition of continuity is perhaps rather more lenient than we 
initially intended3 (cf., the Cantor function), allowing homeomorphisms to shuffle 

1  In principle, we could also have different complex structures on top of a fixed smoothness structure, 
so evoking nontriviality in complex structures might also buy us something. However, since assuming 
the wrong complexity will mostly just break holomorphy and cause complex conjugations to appear, we 
would only really be missing vital information if our particle theory is presently constricted to consist 
solely of holomorphic expressions, which is not the case. In other words, correcting for nontriviality 
in complex structures will at most grant us more convenience and mathematical elegance, but not core 
modeling competence. This task is less urgent and so we will not execute it here. Also, we do not exclude 
incidental nontrivialities in algebraic topology, but they are no longer the main genesises of particle fea-
tures.
2  The fractal example is only a particular(ly popularized, thus accessible) case of a more subtle and rich 
issue.
3  It is possible for a collection of singletons (cf., the Cantor set) to avoid being isolated—i.e., to always 
have friends arbitrarily nearby—making it suitable to serve as the codomain of a continuous function 
(e.g., a homeomorphism). Yet it still remains disconnected—each singleton is always separated from any 
friend by some “lava” in-between—thus we need to hop over the lava when tracking the image of that 
function, potentially exploding formal derivatives.
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points in a haphazard fashion that one would not have expected based on the play-
dough intuition. Namely, it is permitted to rough an originally smooth manifold up 
into becoming rather pathological (e.g., contains regions that are nowhere differen-
tiable). And even if we demand that the overall resulting manifold be smooth, the 
originally smooth submanifolds could still suffer the battering and become wildly 
embedded slices.4 To close this loophole and get back to more familiar grounds, 
one could specialize to the more restrictive smooth category (or the piecewise-linear 
category if some mild kinks can be tolerated, which is in any case equivalent to 
the smooth category for four dimensions), wherein equivalence is established by the 
gentler diffeomorphisms, or everywhere (usually infinitely, but see Theorem 1.1.6 in 
[10] and reference therein) differentiable one to one mappings.

Many authors (see e.g., references in [11]) had perceptively already began explor-
ing this exciting new territory, and we follow in their footsteps. Since four dimen-
sions is uniquely susceptible to hosting vast multitudes of exotic smoothness struc-
tures,5 this type of proposals thus effectively explain why we live in the spacetime 
dimension that we do, via an anthropic argument. The technical details of our pro-
posal differ from previous literature though, and follow instead the codimension-
one6,7 braneworld scenario of [20]. In particular, we take the view that the specific 
shape of our spacetime is a solution of some isoperimetric problem.8, which prefers 
smoothness since kinkiness can increase (in the extreme case of wildness, explode 
to infinity), e.g., the surface area of a bubble, without changing the enclosed vol-
ume. This braneworld scenario thus underpins the implicit assumption that our 
spacetime carries a smoothness structure in the first place ( beyond motivating dif-
ferentiability however, we must emphasize that this embedding is not a necessary 
condition for exotica, but is an extraneously imposed additional physical assumption 
that helps further narrow down the choices of exotic structures.), and also piques 
our interest in closed manifolds, in contrast to the previous focus on open exotic 

4  As an aside, we mention that the wild embedding into spacetime can be seen as a generalized knotting 
since wildness is reflected in the homotopy and/or homology of the embedding complement [9].
5  See e.g., [12] for a summary of why 4-D is exceptional. Explicitly, there are worked out examples of 
exotic ℝ4 [13] that is unique for 4-D [14], as well as exotic S3 ×ℝ

1 , D2 ×ℝ
2 , S2 × S2 [15] and the Mazur 

manifold [16, 17], and we also have the possibility for exotic S4 (cf., the still open smooth 4-D Poincaré 
conjecture, see in particular [18]). However, we lack algorithms for systematically enumerating exotic 
structures of any arbitrary topology, or laying down actual exotic coordinate charts. Such gaps in knowl-
edge seriously hamstring attempted quantitative investigations on the implications of exoticity for phys-
ics.
6  Equiaffine metric being a second fundamental form takes value in ℝ1 , implying that the conormals 
form a line bundle and there is only one real codimension. Also, there isn’t a Ricci-Kühne equation han-
dling the normal fundamental form.
7  Some properties like non-compactness or non-orientability tend to require higher embedding dimen-
sions, but exoticity doesn’t appear to. E.g., some exotic ℝ4 s can be embedded into standard ℝ4 while the 
rest (“large”) can be embedded into ℝ5 . See further e.g., [19] for the insensitivity (and caveats) of embed-
ding calculus to exotic differential structures.
8  Cf., [20] if one envisions our spacetime to be a membrane residing within a higher dimensional ambi-
ent, perhaps as the domain wall separating two different bulk phases, then the internal tension within the 
membrane would prefer a minimized area. In this sense, we live in a world akin to that studied by surface 
condensed matter theory, but with an even more interesting surface dimension.
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ℝ
4 s, whose exoticity arise for different reasons and behave quite distinctly. More 

specifically, with non-compact spaces, exotic structures can arise in a non-local 
manner distributed over their asymptotic regions. Such cases had been investigated 
by other authors (on the other hand, see also in particular [21], which enlist small 
exotic structures more similar to ours to explain the cosmological constant, as well 
as [22] and [23] for other implications of exotica; we highly recommend readers 
to also consult these papers, for they contain more substantiated discussions that 
also serve as an excellent introduction to the topic of exoticness in physics), and we 
focus on alternatives that had not been evoked previously to model particles, namely 
more localized (thus easier to reproduce the behaviour of particles living a spatially-
confined existence in the interior of spacetime) exotic structures based on the cork 
construction. Other points of departure from previous literature include, e.g., we do 
not envisage the exotic core region corresponding to particle worldlines to satisfy 
vacuum Einstein equations like in [24, 25] (i.e., the cubic form of [20] does not van-
ish). Also, one particle only corresponds to a single exotic smoothness structure/, 
instead of a legion of them each being one quantum state as in [26, 27].

Beyond furnishing more versatility into our modeling toolbox, exotica also ren-
ders plausible apologias for some of the shortcomings in our current effort. Because 
model builders had tried to describe the physical world using differential equations, 
the smoothness structure of the spacetime, and not just its topology, is particularly 
relevant for physics. While it could be considered (notwithstanding our isoperi-
metric argument) a matter of debate as to whether the assumption of smoothness 
is appropriate, or if spacetime is fundamentally granular, the differential equations 
strategy seems to have done a reasonable job so far, encountering only a few difficul-
ties, e.g., when it comes to interpreting quantum mechanics. The mild symptoms 
then appear to suggest that the disease is not that spacetime is not differentiable at 
all, but possibly a less fatal one, that we are using a wrong smoothness structure 
near some spatially compact regions surrounding the microscopic particles. In the 
differential topology lingo, the spacetime is exotic, but not fake (we also use the 
term “wild”), and the ills infesting and plaguing our theories arise out of our igno-
rance of the exoticity.9 Specifically, missing exoticity will cause the factually smooth 
(under the physical exotic structure) quantities to appear erratic and non-differentia-
ble (under the vanilla structure we build models on), thus incapacitating the deriva-
tives in our theories. To mitigate the problem, we consciously or unwittingly resort 
to imitating stochastic calculus, which is designed to manipulate similarly (but not 
similar enough, thus all the residual perplexity, we will elaborate in Sect. 2.5 below) 
non-differentiable entities. But we pay a heavy price, not least in predictability, the 
sacrifice of which renders our theories quite less effective, since arguably the whole 
purpose of physical theories is to be able to foretell future evolutions given initial 
data.

9  That we’d assume a wrong differential structure is easy to understand. Our intuitions are based off of 
our daily experiences in three spatial dimensions, where there is no exoticity (cf., Moise’s theorem [28]). 
In fact, the discovery of the very first exotic manifold (in 1956, well after the foundations of particle 
theories had already been established), was a surprise to mathematicians.
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To properly mourn our losses, we begin by recalling that one of the consequences 
of exoticity is that naïve topologically trivial spatial slices like ℝ3 or �3 , that we 
usually adopt in physics, must actually be fake,10,11 or else their and the temporal 
direction’s (unique and standard) smoothness structures would direct-multiply into 
the standard plain vanilla differential structure of the whole spacetime. Equivalently, 
one could note that the mapping between a vanilla and an exotic spacetime would be 
a homeomorphism that is not a diffeomorphism, meaning that, as alluded to in the 
last paragraph, some vanilla-ly smooth submanifolds (i.e., the spatial slices) would 
be ruffled into wild images. Yet another way to intuit the situation is by noting that 
manifolds sharing the same topology, but carrying different smoothness structures 
must actually be quite different shapes from a smooth embedding point of view 
(imagine fleshing out the exotically smooth Kirby diagrams in [30] into embedded 
handlebodies), because it is this difference that subsequently become internalized 
into the distinction in smoothness’, which the two manifold both inherit from the 
same ambient differential structure. Consequently, we shouldn’t expect to be able to 
smoothly foliate them in the same way.

The spatial slices being fake would prevent them from serving as legitimate 
Cauchy surfaces, thus even if we had recognized the possibility and implications of 
exoticity, and managed to write down correct differential equations of motions for 
the particles (i.e., the detailed geometric equations for the spacetime, such as the 
structure equations for moving frames, see e.g., [31, 32]), we still wouldn’t be able 
to solve the initial value problem and have a predictive physical theory. Worse still, 
we didn’t anticipate the wildness of the spatial slices precisely because we didn’t 
expect exoticity, and thus stand no chance of getting the differential topology of 
the core regions of the particles right, let alone the equations describing the more 
detailed geometry there. We have to at best rely on a coarse-grained description that 
evolves a redacted equation of motion, which must be further randomized to handle 
the wildness. The redaction is epistemological in nature, while the wildness is more 
ontological, yet both contribute to the degradation of predictability, so they become 
difficult to disentangle in quantum theories, which inevitably become philosophi-
cally quite convoluted and confusing.

Having these observations in mind, we believe that the acknowledgment of exo-
ticity offers an enticing prospect for explaining away the more unusual features of 
quantum and particle physics. In particular, this approach folds the microscopic 
world back into our comfort zone of super-deterministic12 objectivity (and thus 

10  The fakeness of the spatial slices are stabilized by multiplying with time since the entire spacetime 
is still smooth, albeit exotic—the spatial slices are thus inhibited in their wildness and must be manifold 
factors [29].
11  The naïve slices also miss out on some topological features relating to fermions, cf., the lair dis-
cussions in Sect. 2.1.1. However, they can be seen as providing a legitimate topological (although not 
smooth) foliation of the macroscopic universe after we pinch out the lairs (see Sect. 2.2) to arrive at a 
coarse-grained portrayal of the particles.
12  The negative feelings against super-determinacy relies largely on the implausibility of collusion 
between the experimental apparatus (sometimes constructed to take inputs from distant quasars) and test 
particles. We note though that in the absence of an actual collapse of a physical wave function (not pre-
sent in the popular Everett interpretation; and itself suffering from issues such as the observer depend-



	 Foundations of Physics (2022) 52:46

1 3

46  Page 6 of 22

evades Bell’s inequality, since all the conditional probabilities involved in its deriva-
tion trivializes), more aligned with the macroscopic theories exemplified by General 
Relativity. Furthermore, despite the use of the word “exotic”, we are really trying to 
banish the more unruly wild beasts of mathematics from physical reality, so we see 
our proposal as being a conservative one.

2 � Dictionary

The go-to tools for investigating exoticity are the handlebodies (see e.g., [10, 30]), 
which to smoothness are similar to how CW-complexes are to homotopy.13 Intui-
tively, handles are an attempt at breaking down the problem of studying a manifold 
into smaller puzzles by examining its standardized constituent pieces, and is thus 
similar to local charts in this respect, and the detailed arrangement governing how 
handles connect up into the whole manifold14 is akin to how charts join up to form 
an atlas (inequivalent ways result in different smoothness structures), but is more 
accessible since it does not need detailed coordinates to be laid down, which are 
vital if we are dealing with differential geometry but mere spurious appendages if 
only differential topology is being probed.

If we wish to identify particles with concentrations of exoticity, then an obvious 
correspondence presents itself: a composite particle or a collection of particles par-
ticipating in a scattering experiment can be seen as a complicated handlebody, and 
our attempt at describing them in terms of more rudimentary elementary particles 
is in essence a handlebody (partial) decomposition exercise. In particular, our entire 
universe with its many particles is just one extraordinarily complicated handlebody, 
and the fact there are typically infinitely many (countably so for closed manifolds, 
and uncountably so for open ones) different exotic differential structures for four 
dimensional manifolds is conducive to accommodating the large particle population.

However, one must be cognizant of the fact that handles are four dimensional, 
while particle decomposition is only carried out over three dimensional spatial 
slices, so two particles well-separated at some time but comes into interaction later 
on won’t represent handlebody subunits that are disjoint. In particular, just like an 

Footnote 12 (continued)
ence of time simultaneity), there is no non-statistical intrinsic arrow of time (even temporal reflection 
asymmetry won’t necessarily provide us with one, if evolution can proceed either way without having to 
change the equations), so intuitions gleaned from observing systems evolving backwards in time are just 
as valid, and from this vantage point the strong collusion seems inevitable given that the post-measure-
ment histories of the apparatus and test particles must by definition be tangled up (see also discussions in 
[33]).
13  A handle decomposition determines a relative cell complex with the same homotopy type, thus can be 
seen as a fleshed out version of the latter that sees finer details like smoothness structures. On the other 
hand, a handle attaching map is always smoothable in 4-D, so handles cannot deal with fake manifolds—
they are quite dedicated to differential structures.
14  That is, the homotopy and isotopy of the attaching spheres—the latter measures knottedness thus only 
active for 2-handles and above that have attaching spheres with sufficient dimensions to be knotted, the 
knotting and linking of 2-handles’ attaching spheres is a major source of exoticity for 4-manifolds.
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ever-lasting stable particle is a reductive conceptual tool that likely won’t exist in 
the actual universe, its corresponding handlebody is likely not a constituent of the 
actual universe. As well, it is important to be aware that handlebody decomposition 
is not unique, although once detailed geometric considerations are also included, 
providing us with a spatial metric, distance-based discriminant setting apart alterna-
tive groupings of handles should become attainable.

2.1 � Particles

2.1.1 � Topological Identity

We take cues from spin statistics. The indispensable employment of the double 
cover SL(2,ℂ) of the Lorentz group SO+(1, 3) , and spinors, forming a projective 
representation of the latter (although it is called a representation, it is an illegitimate 
one, since given an element from SO+(1, 3) , the reaction of spinors is not unique), 
signifies that, within our geometrodynamic context, there are likely complicated hid-
den crevices of spacetime, the responses of which to the isometries in the visible 
macroscopic sector outside are not currently being properly understood. Intuitively, 
one may call up the Balinese cup trick (or the Dirac’s string trick), for which the 
central point is that, under the candle dance routine (no feet manoeuvre), the dancer, 
also being a part of the overall “spinning system”, doesn’t return to the original ori-
entation if just the cup spins one cycle. The “hidden crevice” we seek is this dancer 
that the audiences (macroscopic observers), fixated on the cup, perfunctorily notice 
(via the physical consequences of half integer spins), but fail to fully account for. 
The role of the differential structure in this analogy is then to provide the necessary 
rigidity (as compared to just topology) to restrict how the dancer’s joints are allowed 
to twist.

In other words, the spacetime geometry needs to be augmented with further non-
triviality, e.g., by adding extra features via connect-summing. Note, since such fea-
tures are clearly not being mapped out in detail by our present theories, meaning that 
coordinates and metrics inside them, unlike those outside, never explicitly appear 
in the quantum field expressions (i.e., they are “hidden” crevices; we peep inside 
by sampling a bare minimum of interior information before grafting it onto points 
in the connecting region exposed to the outside world, see discussions below), thus 
there is no recipients to subject isometries onto. In other words, we do not need 
SL(2,ℂ) to be an actual isometry inside said features in order to retain compatibility 
with existing theories. It simply being a continuation of the SO+(1, 3) transforma-
tions in the macroscopic outside world would suffice.

Given that the fermions serve as the fundamental building blocks of the physical 
material world, their dictionary entry in the book of exotica should similarly be the 
“atoms” of topology for 4-manifolds. We propose that at the root level (additional 
further structures will be attached to further fashion the moderately diverse fermion 
botany), these are the complex projective plane ℂℙ2 and its orientation reversed 
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mirror image15 −ℂℙ2 , which are quite appropriately rudimentary ingredients16 in the 
sense that one can build any orientable closed17 smooth (including the exotic ones) 
4-manifold by applying a four dimensional generalization of the Dehn surgery along 
a T2-link on a raw initial dough,18 which in turn is a connected sum of several cop-
ies of S1 × S3 s and ±ℂℙ2 s (see the appendix in [34]). Furthermore, these topologi-
cal bricks also double up as elementary handlebodies. Specifically, attaching −ℂℙ2 s 
represents the blowing up of the spacetime,19 which is equivalent to attaching a 
2-handle with −1 framing20 (see example 4.4.2 of [10]). Therefore, in what follows, 
we shall term the ±ℂℙ2 regions “lairs”, and propose that they host anti-fermions and 
fermions. Note, we used the term “host” to emphasize that after the T2-surgery that 
brings in exoticity, the web of lairs becomes intricately decorated with additional 2- 
and 1-handles21,22 that either attach to the boundaries of individual lairs23 to further 

15  It is more commonly denoted ℂℙ
2

 in literature, but that notation may lead to confusions with complex 
conjugation, which preserves the orientation since there are two complex dimensions.
16  These are somewhat similar in functionality to the ℝℙ2 s in the classification of 2-manifolds. In other 
words, they are base units of nontrivial topology, and their total population (i.e., the overall number of 
fermions and antifermions) is the rank of the intersection form, which is a topologically important index.
17  Physically, if the universe has a boundary, explaining the boundary conditions there would present 
new challenges, so we do not assume so. This is also mathematically convenient as a handlebody for a 
non-compact manifold can become much more complicated. Moreover, we demand orientability for our 
universe, in order to have a spin structure.
18  “Surgery” largely refers to disfigurements that involve the pinching, cutting or suturing type of opera-
tions that are forbidden in homeomorphisms or diffeomorphisms (whatever equivalence category is 
being studied), and are thus utilized to create new and different (inequivalent) entities. We only concen-
trate on those that change the smoothness structure, so the algebraic topology and its “atom” population 
size should be largely preserved.
19  It is worth noting that the complex orientation of the ambient S1 × S3 (see Sect. 3.4 of [10]) is consist-
ent with −ℂℙ2 since connected sum involves an orientation reversal, so blow-ups normally use −ℂℙ2 
and not ℂℙ2 . Indeed, blow-up is a procedure originating from complex analysis, which thus provides 
an opening for complex numbers to infiltrate particle models. However, these models are not complex 
analytic, so while we utilize complex structures, we don’t really need to perfectly comply with it, thus 
blowing-ups with ℂℙ2 are allowed, and anti-particles can exist. The discussions in this note applies to the 
anti-particles in much the same way as they do the particles, even when we neglect to explicitly state so 
in the interest of succinctness.
20  These framing numbers ( −1 for a ℂℙ2 and +1 for ℂℙ2 ) are also the second Betti number being added 
to spacetime due to the presence of a lair.
21  As per standard convention, we will not explicitly track the 3- and 4-handles, since they just fill in the 
gaps between the 1- and 2-handles, and are thus uniquely determined by them in closed manifolds.
22  In the Kirby diagram, the 1-handles are represented as a pair of spheres, where the attaching circles of 
2-handles enter into one and exit through the other as if it had traversed a wormhole. Geometrically, the 
tunneling is because a 2-handle’s attaching region can ride onto the 1-handle’s remaining region, so some 
segment of its attaching circle sits on the boundary of the 1-handle, not the remaining region of the base 
0-handle that forms the canvas for the Kirby diagram. Mathematically, the 1-handles are quite powerful 
at changing the characteristics of differential structures, e.g., the minimum number of 1-handles (among 
all possible alternative handlebody decompositions of the same manifold) is an invariant of differential 
structures [35]. Physically then, we should expect that adding 1-handles would engender new curiosity, 
e.g., the 1-handle wormholes may plausibly connect up the interiors of different fermions, allowing their 
guts to become intertwined, thus bind them together and possibly help explain phenomenons like quark 
confinement.
23  In the Kirby diagram, these would be slid off onto the S3 boundary of the base 0- or 4-handle, so their 
attaching spheres can be drawn in the same 3-D diagram.



1 3

Foundations of Physics (2022) 52:46	 Page 9 of 22  46

refine the exoticity and plausibly birth different species of elementary fermions, or 
link them up to engender bosonic interactions. Therefore, strictly speaking, no actual 
clean punctured (happened during the connected summing) ℂℙ2

o
≡ ℂℙ

2 − D
4 need 

to be present in our universe, and “lairs” must be used in a more inclusive sense to 
represent ±1 framed 2-handles that may not be isolated. We won’t be fastidious in 
the ensuing discussions though, since no confusion would likely arise.

On the other hand, we propose that the bosons are sprinkled (by the T2-surgery) 
mostly over the remaining S1 × S3 components, but can clasp onto the fermionic 
liars and bridge them (cf., the boson lines in Feynman diagrams). Since bosons don’t 
repel each other and can happily overlap, we should not need a separate S1 × S3 to 
host each boson, but instead, all the bosons could cohabitate in the same overall 
macroscopic S1 × S3 universe.24 Besides, the requirement for multiple copies of 
S1 × S3 s in the generic construction of arbitrary manifolds is due to the need for 
manufacturing nontrivial fundamental groups, where each copy corresponds to a 
generator of the group, thus having more of them just leads to more complicated 
multi-connectedness, that could physically manifest as a plethora of Aharonov-
Bohm type of effects, which our universe does not appear to observationally exhibit. 
In any case, in our proposal, we aim to model particle physics as nontrivialities in 
smoothness, not homotopy, so a multitude of S1 × S3 s is not really economical in 
terms of satisfying the needs of theoretical model-building either.25

2.1.2 � Differential Identity

The exoticity-generating surgeries are concocted by cutting out a submanifold, and 
re-glue it back after applying an involution on its boundary.26 When the boundary 

24  Strictly speaking, the decomposition of a spacetime into a minimal (not the blow-up of any other 
manifold) base and collection of lairs is not unique, meaning that the minimal manifold obtained from 
a sequence of blowing-down operations (shrinking −1 framed 2-handles to single points, dragging along 
other handles that were initially linked with it to become linked with each other; strictly speaking, only 
the particles get blown-down, we abuse terminology and let blow-down here to also refer to the removal 
of the anti-particle lairs) depends on the order in which the lairs are eliminated. However, geometry, spe-
cifically the existence of metrics and thus length scales, that allows for a distinction between the macro-
scopic and the microscopic, offers a preferred choice for a macroscopic background base universe, which 
is what we are discussing here.
25  In fact, the study on exoticity tends to concentrate on simply-connected manifolds. So the inclusion 
of many S1 × S3 factors will compress the available pool of results that we can draw on. Our proposed 
macroscopic universe, even with just one factor, is already slightly more complicated than usual, since 
�1(S

1 × S3) = ℤ , so some extra technicalities (such as 2-torsion in the second cohomology group) need 
to be considered. In any case, since we cannot or don’t expect the physical theories to sail through the 
big bang (a S3 slice) without glitch, it is acceptable if quantities become ill-defined at places, so we really 
only need to deal with a contractable region (the observable universe), with the benefit of e.g., having a 
uniquely defined spin structure.
26  Or glue back something different but share the same boundary thus also slots into the open socket.
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involution27 after being extended into the interior of the removed piece, preserves its 
topology but not the smoothness, it is called a cork,28 and if both are changed, it is 
called a plug [35]. These special cases have garnered much attention, because they 
have been witnessed in various example cases, and any simply-connected (situation 
with other connected cases is unproven yet) closed 4-manifold can be depicted using 
corks (in fact, a single, perhaps complicated cork) alone [38–40]. In other words, 
while one can cook up all sorts of innovative surgeries to create exotic smoothness, 
the same destination can always be arrived at by taking the corks route. In fact, it is 
further conjectured that a limited collection of elementary corks and plugs is suffi-
cient for describing all exoticity [35], which would be temptingly similar to the situ-
ation we see in the hierarchy of particles.

We would then like to identify elementary particles with elementary corks and 
plugs, and it is with this additional constrain of only including the elementary types 
in our consideration, that we tighten the definition of corks and plugs in our discus-
sion. On the other hand, we may have to also loosen their definition somewhat, since 
a naked lair, being a punctured ±ℂℙ2 , is a tubular neighbourhood of a sphere of self-
intersection −1 (see proposition 2.2.11 in [10]), which is not allowed to be present in 
a Stein manifold. There is then possibly (although it is unclear what the additional 
handles sitting on top would do in this regard) an infringement of the Stein clause 
in the definition of corks and plugs in [41]. But this Stein pre-requisite is more of a 
crutch, while able to facilitate simpler proofs of exoticness,29 isn’t really a necessary 
condition (e.g., it does not distinguish between smoothness structures differing only 
in Bauer-Furuta invariants) for generating exoticity (indeed, whether Stein-ness is 
included in the definition of corks and plugs differ by author), and thus shouldn’t 
be expected to be present automatically in a physical context, so can be dropped to 
yield the so-called loose corks [38, 44] and plugs. From here on in this paper, we 
will be referring to the more general loose versions of these entities implicitly.

But then which of corks and plugs jibes with fermions, which with bosons? Plugs 
tend to appear whenever corks get destroyed or undergo mutations, so their rela-
tionship is indeed reminiscent of that between fermions and bosons, although in the 
particle case, one can see either as the catalyst for changes occurring in the other, 
so this observation does not quite fix the correspondences. One then needs to dig 
deeper into the differences between plugs and corks. In this respect, we recall that 

27  While higher order periodic diffeomorphisms are possible [36], involutions are sufficient for exoticity, 
e.g., [37] only utilizes involutions.
28  That is, it is only relatively exotic—it doesn’t lack a diffeomorphism into the standard smoothness 
structure, it just lacks one that restricts exactly into the prescribed involution on the boundary. The invo-
lution (included in the definition of the cork) determines how it glues onto the smoothness structure of 
the rest of the manifold, and “awkwardness” at the seam forces the piece to “twist its posture into a pret-
zel” to comply. This contortion is obviously more severe in differential structures than topological struc-
tures since the requirement of smoothness prevents the unwinding of the stressing via buckling, which 
tends to be accompanied by the appearance of singularities like fold lines. Consequently, it is not surpris-
ing that the extension of the involution can be a homeomorphism while failing to be a diffeomorphism.
29  It collects some conclusions of the Donaldson [42] or Seiberg-Witten [43] type of gauge theory inves-
tigations into more tractable packaging. Often, one can prove that two manifolds are non-diffeomorphic 
by showing that one is Stein and the other isn’t.
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besides whether involutions extends inwards continuously in their definitions, the 
corks are contractible (i.e., homotopic to single points) while the known plugs are 
homotopic to S2 . Such nontriviality in algebraic topology seen with the plugs30 must 
be confined inside small spatial regions and hidden from sight beyond the energy 
scale we can probe the particles with, or else we would have observed all sorts of 
(including but not restricted to gravitational) consequences of a nontrivial spacetime 
topology. In other words, the bosons, which can be rather expansive (take for exam-
ple low frequency radio waves), are not very likely to be the plugs, so we identify 
corks with bosons and plugs with fermions.31

2.1.3 � Spin Statistics

To further justify this assignment, we note that with plugs, the interior extension of 
the boundary involution � is extricated from the straightjacket of continuous invert-
ibility, thus is possibly endowed with the necessary flexibility to accommodate the 
non-integer spins of the fermions. To see how, let W be a cork or plug that attaches 
onto some outside manifold K, then prior to gluing the two pieces together, we can 
lay a vanilla coordinate system (atlas) x̃W inside W and a coordinate system xK inside 
K. The two sides then cannot be extended (into collars beyond the boundary � ) and 
glued smoothly together (i.e., they don’t admit a smooth transition function in the 
overlapping collars) once � is taken into account and the combo becomes exotic. 
There is however a different, exotic, atlas xW = 𝜏(x̃W ) (recall � is a homeomor-
phism for corks and not so for plugs) inside W that can be glued onto xK smoothly. 
Unfortunately, because our present particle theory fails to appreciate exoticity, thus 
assumes the simplest but wrong vanilla x̃W (and subsequently the holonomic spinor 
basis) when writing down expressions, we will have to figure out how coordinate 
transformations on x̃W behave as well. In particular, when we carry out a � [e.g., 
∈ SO

+(1, 3) ] transformation to the outside coordinates xK , it extends smoothly onto 
xW (for brevity, we will leave implicit the smooth transition functions, either across 
� , or between charts on the same side), but won’t do so for x̃W . What it will see 
instead, is a transformation 𝜑̃ satisfying 𝜏◦𝜑̃(x̃W ) = 𝜑(xW ) = 𝜑◦𝜏(x̃W ) , thus using 
�◦�|� = id , we obtain that 𝜑̃|𝜕 = 𝜏◦𝜑◦𝜏−1|𝜕.

This relationship is not particularly interesting if � extends into the interior of 
W as a one to one homeomorphism as in the case of corks, but with plugs, it could 

30  It is also one of the motivating factors prompting us to encase the fermions in lairs. As the fundamen-
tal building blocks for nontrivial topology in four dimensions (see footnote 16), it would be extremely 
surprising (i.e., fine tuned) if there aren’t any of these lairs in our actual physical universe. And if they 
are present, they would more likely to be concomitant with plugs.
31  Note, our assignment is the opposite to an analogy evoked in [41]. Also, the “positron” move in the 
differential topology literature, that makes the Thurston-Bennequin number more positive and thus the 
manifold closer to Stein, probably has no direct counterpart in physical particles. Furthermore, an anti-
cork (a piece of a cork obtained by carving out a disk), which being relatively fake and homotopic to S1 , 
is very different to a cork, so has nothing to do with antiparticles. The mathematical and physical nomen-
clatures diverge in general.
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become many-to-one and non-invertible.32 Then if we formally (recall that we are 
oblivious to exoticity, thus also the fact that it is not legitimate to do so) carry this 
relationship off of � and into W, the �−1 would become ambiguous and could provide 
two or more different targets for � to act on, yielding several different results (the 
further action by � won’t necessarily reverse this effect, since the multiple outputs 
of � do not need to be among the pre-images of the same output for � anymore—� 
and � are completely independent transformations, thus � is under no obligation 
to preserve the degeneracy classes of � ). In other words, there could be multiple 
𝜑̃ s corresponding to the same � , and when the multiplicity is two, we could have 
𝜑̃ ∈ SL(2,ℂ) double-covering � ∈ SO

+(1, 3).
Heuristically, the issue underpinning spin statistics is thus the difficulty in extend-

ing � continuously inwards. In particular, the source of the indecisiveness of the 
projective representation of the Lorentz transformations by spinors is rooted in the 
ambiguity of �−1 . Recall that � is a diffeomorphism on the boundary but cannot be 
propagated smoothly into the interior of W. If we try, problems necessarily develop 
when various fronts of continuation off of different sectors of the boundary end up 
meeting each other. In the case of plugs, we encounter more problematic singulari-
ties, e.g., the coordinate lines of x̃W , when seen from the perspective of the more 
appropriate xW , can develop caustics, so that the Jacobian (derivatives of � ) between 
the two coordinate systems become non-invertible, and such caustics can further 
serve as the branch points of a multi-valued � inside of W.

2.2 � Fields

The details of the corks and plugs are clearly not being recited by the presently 
available particle models, so a hefty dose of coarse-graining is involved. However, 
we are not arriving at the coarse Standard Model description in a top-down fashion, 
by integrating over more detailed dynamics as in statistical mechanics, but instead 
from below, by trying to reverse-engineer it via a bottom-up compromise, starting 
from even coarser phenomenological bookkeeping expressions. It should not then 
be surprising, that the infrastructure being cobbled together would look somewhat 
labyrinthine, once re-interpreted from the top-down perspective that our exotica pro-
posal aspires to bring forth. A central piece of this re-interpretation endeavour is the 
strategy for subsuming the lairs into the field theory language, or in other words, the 
manner in which lairs empathize with the spinor bundle. A sketch of one possibility 
of how this might work is as follows:

32  One can appreciate that the involution is a more drastic action for the plugs than for the corks, by 
noting that a typical � would be a dot (1-handle)-zero framing (2-handle) switch, or reflection against a 
symmetry axis on the Kirby diagram. In the cork case, there typically exist many invariant loops that can 
sneak back to their pre-involution initial position by isotopy, i.e., continuous shifting of the lines in the 
diagram. With plugs on the other hand, too much stuff is in the way for many such loops to exist, so their 
Kirby diagrams have been rearranged more radically.
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–	 The spinor bundle fibre (a complex 2-component vector space) over each macro-
scopic S1 × S3 spacetime location q is in fact the tangent vector space of a base 
point q̂ in a liar, being transplanted over to become exposed to the outside world 
(note since the lairs are ±ℂℙ2

o
 , we automatically have Tq̂(±ℂℙ2

o
) ≅ ℂ

2 without 
effort). We need now to locate this original base q̂.

–	 When there is indeed a fermion, the worldline (spatially pinched throat between 
the S1 × S3 and the lair) of which passes through our q of interest, the point q̂ 
would then rest on a true ambient ℝ5 geodesic33 threading through the interior 
of the lair. In other words, the tangent planes along an ambient geodesic inside 
of the lair, and in particular the moving frame bases (we will later argue that the 
Dirac spinors constitute fragments of a Darboux-esque [45] moving frame) con-
tained within, get transplanted onto the exposed worldline, which then serves as 
a surrogate or representative of that hidden ambient geodesic.

	   Such ambient geodesics are particularly informative about the lair geometry 
(see Sect. 2.5 below), just as the null rays of the macroscopic S1 × S3 (also ambi-
ent geodesics [20]) dictate the vital causal structure there. Therefore, when our 
modeling efforts are eviscerated by our ignorance into a coarse-grained descrip-
tion, where information about the four dimensional lair region’s geometry has to 
be condensed into being portable by mathematical concepts defined along a one 
dimensional worldline, the optimal strategy34 is to transcribe over the informa-
tion along these similarly one dimensional sampling curves that best probe the 
said geometry.

–	 When there isn’t a lair passing through q, the spinor fibre over q in the spinor 
bundle isn’t transplanted from anywhere, it is just a dummy fibre wherein the 
moving frame vanishes so the fields take zero value. It is merely a padding that 
facilitates formally extending quantities defined on a worldline into the entire 
spacetime, and should be used in conjunction with Dirac delta distributions, mul-
tiplied into, e.g., the amplitudes of the Dirac spinors.

	   In practice though, a further randomization procedure will be applied (see 
Sect.  2.5 below), so the Dirac delta distributions (in the sense of generalized 
functions) are often replaced by smoother (in the vanilla differential structure) 
probability distributions, and thus in some cases35 the fields become differenti-
able not just in the weak sense, allowing calculus manipulations to proceed more 
fluently. In other words, we superpose, in the fashion of Feynman path integral, 

33  As opposed to just a geodesic of the embedded spacetime, which is the shortest path if we are con-
fined to the spacetime, while ambient geodesics are the shortest even if we are allowed to lift off of the 
spacetime, and exploit the additional freedom thus afforded.
34  An alternative is to integrate over spatial slices of the lairs, but integrations usually average over, thus 
smear out the geometric details, leaving us with only global topological information, yet we want geom-
etry since we are interested in the energetics.
35  For example, the classical solutions of quantum fields. This smoothing is not always possible or per-
fect though (e.g., right after a measurement, some smearing by ignorance gets taken out and we are hit 
once again with a delta distribution in the measured observable), and quantum theories generally cannot 
do away with generalized functions. One should perhaps suffer this state of affairs with some angst, since 
multiplying generalized functions is mathematically rather tricky (cf., Colombeau algebra [46]), thus the 
depiction of quantum interactions is inevitably suspect.
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all possible lair configurations (assuming single lair in the case of quantum 
mechanics, and a mutable number of lairs in the case of quantum field theory), 
so the spinor fibre over q becomes the probability-weighted average of tangent 
planes at many q̂ of all different possible configurations.

2.3 � Mass

With fermions, the impact of mass manifests as a phase rotation of the spinors (most 
plainly demonstrated by particles at rest, in the Dirac representation), which would 
appear rather natural if the two halves of the Dirac spinor represent two complex 
moving frame bases that are being transported along a sampling ambient geodesic 
that spirals into a helix inside of the lair.36,37 As the toy model for a chiral fermion, 
take for example a circular helix, for which the important parameters are the radius 
r and pitch p̂ (we also define p ≡ p̂∕2𝜋 for convenience), the slope s = p∕r , as well 
the frequency of phase rotation 1∕p̂ , which can be compared with that of the Dirac 
spinors, 2�mc2∕h . The entries in the latter expression, apart from mass, are all 
generic and not specific to particular particles:

•	 � being the time dilation is simply a calibration factor for the longitudinal tempo-
ral coordinate used to measure the pitch of the helix against, it is included so the 
time that multiplies onto this frequency gets adjusted to the comoving time.

•	 c is, as usual, just a scaling ratio that synchronizes the temporal and spatial units 
of measurement. A relic of the pre-relativity era, we set it to unity from here on.

•	 h is a normalization factor synchronizing the mass and temporal units (with c 
slotted in where appropriate), or in other words, by dividing into a time interval, 
it translates the temporal units, like seconds, that’s more familiar from our daily 
lives, into multiples of units more typical for the temporal (and spatial, via c) 
scales associated with elementary particles. This is why it appears in places like 
the uncertainty principle, demarcating the temporal-spatial length scale at which 
we enter the microscopic world and has to enrol quantum theories. Specifically, 
let us first assume � ≈ 1 , so non-relativistic quantum mechanics and thus the ele-
mentary form of Heisenberg’s uncertainty principle applies. Then note that with 
the helix picture, the speed v of the particle is simply the projection, onto the 
timelike longitudinal direction, of the null tangent vector to the helix (recall that 
this is a true ambient geodesic like the null rays), given by v ≈ cs = p∕r (where 
we used c = 1 and p̂ ≪ r from the non-relativistic condition). It is furthermore 
reasonable to let Δx ≥ r , since we cannot hope to pin down the point-like approx-

36  In fact, ℂℙ2 , being nearly the direct product between a torus and the positive octant of a sphere, can 
have one of its toroidal “fibers” (seen as the intersect of the three pieces in a trisection of ℂℙ2 , and thus 
a “center of gravity” analog that suitably serve as part of a modulized description of the lair) being ruled 
by such ambient geodesics, that wrap around the torus (the wrapping trivializes for those singular “fib-
ers” that are squeezed into circles) into helical shapes.
37  An ℝ5 ambient physicist on the other hand, would report a dual perspective, where it is the sampling 
ambient geodesic that appears straight, while the lair region of our braneworld spacetime spirals around 
it.
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imation of a particle into a region smaller than even the helix, because we would 
already be seeing into the gut of that particle’s handlebody and the coarse-grain-
ing makes no sense anymore. It is also reasonable to assume Δv ∼ v so that the 
mistake from misidentifying the differential structure, while taking derivatives 
on position to yield an apparent speed measurement, is of natural sizes. Then our 
expression for v becomes ΔxΔv ≥ p , and subsequently ΔxΔP ≥ ℏ∕2 ( P ≡ mv ) 
once we substitute in p̂ = h∕(2m) (equating the helix frequency with spinor rota-
tion frequency), reproducing the most commonly encountered uncertainty rela-
tion.

This leaves m, that does vary from particle to particle, to correspond to the inverse 
of the pitch, that prescribes the absolute tightness of the helix’ winding. This identi-
fication has the following immediate implications:

•	 When m = 0 , the helix doesn’t spiral and instead regress into a straight line 
inside the lair, implying that the lair’s longitudinal direction, tangential to the 
particle worldline, is already aligned with an ambient geodesic. Because the 
worldline is exposed to the macroscopic world, it must then be a null ray.

•	 Fermions come in three generations, differing only in mass. Given that mass 
is geometric and not topological (either algebraic or differential) in nature, so 
should the generations, as possibly three solutions to the equiaffine isoperimet-
ric equation, i.e., equiaffine mean curvature equaling the cosmological constant, 
which can be approximately set to zero for most problems relating to high energy 
experiments. In the case of massless neutrinos, we have a degenerate three 
dimensional solution space38 that can serve as the domain of the projection oper-
ator in [47], while the lack of potential barriers separating solutions encourages 
flavor conversions even during free propagation.

Without knowing much about those particle-specific handles residing in the lairs, 
these solutions of isoperimetry cannot be derived ab initio, so the phenomenological 
mass values will have to be injected by hand, and the agent for smuggling them in 
is the Higgs field. The reason why the Higgs value is mutable is because the geo-
metric details like mass would not just depend on a fermion’s handlebody, but also 
the geometry of its immediate vicinity, in particular, whether the fermion plug is 
intersecting a boson cork, which exerts its influence by contributing to the covariant 

38  Note that, unlike SL(2,ℂ) , gauge transformations like weak isospin SUiso(2) do not change the 
spinors’ directions (in the sense of being square-roots of null vectors), and instead act on an abstract 
space with a dyad basis formed by piecing together two Weyl spinors yanked out of two different parti-
cles. The 2-component complex vectors in this space (the Higgs doublet being one example) can at least 
be formally treated much like spinors (similar to the ones termed “particle spinors” in [47]). The distin-
guishing characteristic of such a dyad is that its bases solve equations of motions, and are thus geometri-
cally meaningful entities that don’t really change when the coordinates are altered, so vectors written 
under it, like the Higgs, form singlet representations of the Lorentz transformations. In a similar fashion, 
Weyl spinors yanked out of three neutrinos of different flavors can be grouped into a special “particle 
triad” for the degenerate solution space in the main text.
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derivatives in the Higgs’ kinetic term. Moreover, beside bosons, there are also other 
factors competing to sway the Higgs values, e.g., the Yukawa coupling terms with 
fermions announce the impact of the presence of fermions on the local geometry. 
More significantly, there is also a resistance to (equivalently, energy cost associ-
ated with) deviations away from the background pre-set vacuum expectation value, 
encoded in the Higgs potential, as well as the kinetic term for the Higgs. Respec-
tively, the Higgs potential strongly penalizes geometric disturbances impacting the 
Higgs amplitude, while the kinetic term further raises the cost of any local (inhomo-
geneous) excitations even in the symmetry breaking directions of that potential.39

Therefore, the coupling between the bosons and the Higgs through the covari-
ant derivatives represents not an absolute authority of the bosons on the Higgs, but 
rather the rope in a tug-of-war against all these other factors, transmitting also their 
clout back onto the bosons. A metaphor would be when a river (boson) carries a 
fallen log (Higgs), but the log becomes pinned by a rock (other factors) on one end, 
so the water ends up having to shift its flow streams and go around the log, but 
not without pushing the log into an angle causing least possible blockage, so the 
final state of affairs is a compromise between multiple elements. In other words, 
the quadratic coupling term from the covariant derivatives, that ultimately bestows 
the mass term on the bosons, signifies a scattering of the boson propagation by the 
partially stuck Higgs. Boson masses are thus of a different geometric origin to the 
fermion masses, fittingly introduced into the Standard Model in an ostensibly dis-
tinctive manner from the latter.

2.4 � Charges

The gauge symmetries are vital for the construction of the particle theories, in that 
it tells us how to lump fields together into interaction vertices (that must be gauge 
invariant) in a Feynman diagram. In our exotica context, these interaction vertices 
resolve (cf., point-splitting regularization; there are no divergences if exotica is 
accurately reckoned with, since everything is smooth) into hub regions where differ-
ent elementary plugs and corks join, e.g., through linking up the attaching spheres 
of some of their handles, to eventually form a very complicated handlebody that is 
our universe, containing a vast number of interacting particles. The gauge invariance 
of the Lagrangian should then be corporealized by the constancy of the equiaffine 
volume element (the isoperimetry thus manifests as the extremization of the action), 
when certain handle manipulations are applied to those particles participating in the 
interaction.

When we have at hand a detailed Kirby diagram, showing all the indi-
vidual primary handles, such manipulations would be revealed as no-drama 

39  When boson corks are present to alter the local conditions however, it becomes energetically favorable 
to have some of those excitations, since it is the covariant, and not the partial derivatives that we want to 
suppress. The Goldstone modes are thus intimately affixed to the bosons, and it is appropriate, not only 
in mathematics but also in heuristics, that they be eaten and considered in conjunction with the bosons.
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smoothness-structure-preserving40 handle moves, that only alter geometry. One then 
immediately appreciate that the physical desirability of gauge invariance is simply 
to avoid fine tuning, to ensure that small perturbations to the postures of the partici-
pating particles will not instantly disqualify an interaction (due to non-compliance 
with the isoperimetric condition), thereby imbuing a level of robustness that allows 
repeated experimental verification. However, we do not know of the detailed han-
dlebody constituting a particle, so we have to rely on abstraction to sweep our igno-
rance under the rug. Namely, we assign labels to particular (not explicitly known) 
configurations of hordes of handles, by e.g., giving them names like electrons, or 
other sub-designations like the color of a quark. Then as the aforementioned gauge 
manipulations revise the apparent relationships between the primary handles, their 
grouping monikers need to acclimate accordingly, and therefore the abstract label 
spaces inevitably harbor representations of the gauge groups.

The charges of a particle (i.e., a composite handle configuration, including stip-
ulations on geometry), which index those representations, then simply unveil into 
indicators of the composite handle’s symmetries under the kindred manipulations. 
For analogy, an axisymmetric object would embody a singlet representation of 
rotations around the axis, thus appear uncharged. On the other hand, a �-symmet-
ric object (i.e., the stabilizer subgroup being ℤ2 ) would have � instead of 2� as the 
period of rotation, so it would pick up a phase increment of 2Δ� when the rotation 
only advances Δ� , or in other words, one ends up with a charge of 2 (the cardinal-
ity of the stabilizer). Accordingly, within the context of exotica, the quantization of 
the charges could simply be a consequence of the cyclic discrete symmetry groups 
being indexed by natural numbers, instead of due to their being some sort of topo-
logical indices, which had been the more popular approach with previous geometro-
dynamic literature (see e.g., [5]).

2.5 � Equations

Since the Dirac–Yang–Mills equations govern the details of the particle motion and 
energetics, they are geometric and not differential topological in nature. It is almost 
conspicuous41 that their progenitors are likely to be the structure equations, govern-
ing the evolution of moving frames. However, these equations are

40  Rather apt for the prefix “gauge”, although not rooted in coordinate freedom, but instead freedom in 
how one draws the Kirby diagram.
41  Simply compare the generic non-abelian gauge transformation for a fermion � and boson A�

with a change of moving frame basis X, together with associated changes to the connection form �

Note the differing common conventions for the suppressed matrix multiplication indices in the two disci-
plines is the reason for the slight difference in the ordering of the terms.

(1)� → U� , A� → UA�U
−1 +

i

g
(��U)U−1 ,

(2)X → aX , � → a−1�a + a−1da .
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•	 Redacted as discussed in Sect. 2.2 above, the moving frame associated with e.g., 
a solitary Dirac fermion, is attached to a single sampling curve but transplanted 
onto the worldline. Such a moving frame would be similar in functionality to the 
Darboux frame, but with an asymptote (ambient geodesic) replacing the prin-
cipal curve (of the spacetime’s embedding into ℝ5 ), as the underlying carrier. 
In any case, the carrier curve is still specially adapted to the extrinsic geome-
try of the spacetime hypersurface, and thus, like the Darboux frame, its adapted 
moving frame has been sifted to more cleanly represent the geometric details of 
the spacetime, uncontaminated by the esoteric specifics of the sampling curve 
choice. In the more formal mathematical lingo, this means the spacetime geom-
etry data being thus conveyed are well-defined, in the sense of possessing utmost 
invariance against alterations in the constructive crutches that appear in their def-
initions. Take a 2-D surface theory analogy, the geodesic and normal curvatures 
would vanish for an ambient geodesic’s adapted moving frame, leaving only the 
torsion term (commensurable to mass in our context) to depict the twisting of 
the surface around the ambient geodesic (cf., footnote 37). This jettison of irrele-
vant trivia also facilitates a more succinct formalism, whereby an abridged (e.g., 
two Weyl spinors pointed along the asymptotic directions; or even just one if 
they decouple and the other adds no useful information) version of some (prop-
erly 5-real-piece) moving frame, written from the intrinsic spacetime dweller’s, 
rather than the usual ambient observer’s dual, perspective, already suffices for 
the purpose of mapping out the salient geometric features of the lair regions of 
our spacetime. In summary, we do have a sensible choice of frame. However, a 
proper moving frame, and the structure equations governing it, should cover all 
the crevices of the handlebodies, in order to fulfill their duty as integrability con-
ditions ensuring the embeddability of the exotically smooth spacetime into the 
ℝ

5 ambient. Ignoring the internal details of the lairs reduces the equations to nec-
essary but not sufficient conditions. It also engenders a more practical problem, 
namely the derivatives in the structure equations should be taken against coor-
dinates inside the lairs, in the vicinity of the sampling curve, yet only the post-
pinching macroscopic spacetime coordinates are available to us, so a constructive 
approximate coordinate mapping had to be enlisted, in the form of gamma matri-
ces or soldering forms, that enables us to transplant (besides the moving frame 
itself) also the derivative operators from those acting on the sampling curve into 
counterparts acting on its worldline surrogate. Because the two curves are actu-
ally quite different in their geometry, this formally grafted (now Dirac) equation, 
while still retaining the basic linear cross-coupling appearance (thanks to the lin-
earity of the transcription procedure), becomes rather difficult to interpret—the 
parameters appearing in it, like mass, don’t equate directly to any curvature of 
the worldline, thus one would not immediately think of it as a structure equation. 
Only when we uncloak the original sampling curve, would the geometric import 
manifest (cf., the discussions in Sect. 2.3). With the Yang-Mills equations on the 
other hand, while it is explicitly a structure equation governing the evolution of 
connections, these connections (such as weak isospin) don’t act on the forego-
ing fundamental Darboux-esque moving frame. They act on the “particle dyad” 
instead (see footnote 38, and also the “label space” discussion in the previous 
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section), which is an abstract moving frame constructed by blending Darboux-
esque bases associated with two different geometries, and thus describes some 
convoluted hybrid (superimposed) geometry, which is a convenient bookkeeping 
tool to track the conversion between the geometries without needing to provide 
a detailed description of exactly how. In other words, the geometric (and in fact 
even the coarser handlebody) details within the lairs are heavily redacted, not 
only for freely propagating fermions, as discussed in the previous paragraph, but 
especially during interactions.

•	 Randomized: the worldlines are smooth curves under the actual exotic differential 
structure of the spacetime, and when mapped into the vanilla side, via a homeo-
morphism that by definition cannot be a diffeomorphism, such exotically smooth 
curves must appear continuous but non-differentiable, thus rather erratic when 
looked closely, and impossible to precisely predict42 using differential equations 
of motion like Dirac-Yang-Mills, drafted assuming vanilla smoothness. The for-
tunate other side of the coin is that such wilder fractal-like paths are friendly 
to statistical mechanics. For example, the ergodicity theorem requires the phase 
space trajectory of a particle to fill multi-dimensional regions, which is not 
possible if that trajectory is some smooth one dimensional curve, but becomes 
plausible if it has a higher (than the topological dimension) Hausdorff dimen-
sion, which can equal the embedding dimension (see Sect.  3.6 of [9]). There-
fore, by borrowing some prowess from statistical mechanics (most explicitly via 
the Feynman path integrals, and perhaps also via relating the Heisenberg picture 
observables in canonical quantization to distributions in the sense of generalized 
functions), quantum mechanics (Dirac-Yang-Mills equations in particular) cir-
cumvents the differentiability deficiency by not evolving single worldlines, but 
instead their probability smeared smoother distributions. However, the wild par-
ticle trajectories are not simple martingale random walks like Wiener processes, 
since the fakeness on naïve spatial slices dissipates when we are far away from 
the particle (fermionic handles forcing exoticity are lair-bound), indicating that 
the source of stochasticity and the particle motion are closely intertwined. Trying 
to mimic such behavior presents challenges to statistical mechanical treatments, 
e.g., it is an on-going battle to render the integration measure for the Feynman 
path integral mathematically rigorous. It had long been noted that the Standard 
Model of particle physics is written in the differential geometric language of fibre 
bundles, yet it isn’t clear what is the ontological entity the geometry of which 
it describes. Within the exotica proposal (and geometrodynamic constructs in 
general), this entity reduces once again to the spacetime itself, which allows for 
interpreting the Einstein’s equation as being of a purely geometric origin (e.g., as 
the equiaffine Gauss equation as proposed by [20]). However, the matter stress-
energy is randomized, but the gravitational Einstein’s tensor isn’t, so one has to 
synchronize them before establishing equality. The traditional approach is to try 
and randomize (i.e., quantize) gravity in an analogous fashion to particle theory, 

42  This predictability crisis may be further exacerbated by the redaction-induced incompleteness in ini-
tial data.
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but that route has been technically challenging, and not guaranteed to eventually 
succeed given the desultory nature of the procedure (cf., e.g., footnote 35), which 
might give rise to self-consistency issues (e.g., general covariance prohibits iden-
tifying points in different warped spacetimes, thus prevents the linear superposi-
tion of gravitational quantum states [48]). A more viable and satisfying alterna-
tive might be to try and de-randomize the particle side instead, by acknowledging 
exoticity, and summoning the actual detailed structure equations written under 
the correct differential structure.

3 � Conclusion

In this brief note, we speculated on some aspects of particle behavior that may be 
explainable by our spacetime possessing exotic differential structures. In fact, we are 
not aware of any argument why Nature would prefer the vanilla option, which con-
stitutes a null set out of all available choices, so the question is perhaps more “why 
not” rather than “why”. After all, mathematics is the language of natural philosophy, 
enabling the rigorous logical deductions that power our search for a comprehension 
of the physical world. So when it offers a vast new lexicon, it would be insanity not 
to take advantage, especially since we are currently sputtering so badly when trying 
to narrate the microscopic world. In the reverse direction, should the proposed con-
nection be confirmed, the accrued physical knowledge from particle experimenta-
tion offers a deep reservoir of reliable facts and clues to a differential topologist.

Despite the obvious appeal of exotica though, we caution that the viability of 
such a proposal is difficult to quantitatively assess at the moment, due to the techni-
cal hurdles one encounters when dealing with low dimensional differential topology. 
When even the intensely scrutinized four dimensional smooth Poincaré conjecture 
is still outstanding, we cannot possibly hope, for the moment, to clarify (in increas-
ing levels of detail) the topology, smoothness structure, complex structure, as well 
as the Euclidean and equiaffine geometries of a generic four dimensional spacetime 
manifold, that would be necessary for such a re-interpretation of the Standard Model 
of particle theory. What we can hope for here, is at its most ambitious, a synopsis of 
which caverns might have potential for spelunking fun. In particular, the more con-
structive aspects of the discussion are only meant to demonstrate possibilities, and 
we expect major overhauls once in-depth investigations become tractable.
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