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Abstract
Since the emergence of computing as a mode of investigation in the sciences, com-
putational approaches have revolutionised many fields of inquiry. Recently in philos-
ophy, the question has begun rendering bit by bit—could computation be considered 
a deeper fundamental building block to all of reality? This paper proposes a con-
tinuum computing construct, predicated on a set of core computational principles: 
computability, discretisation, stability and optimisation. The construct is applied to 
the set of most fundamental physical laws, in the form of non-relativistic conserva-
tion equations which underpin our governing physics. The discretisation approach 
divides all of space into a mesh of discrete computational cells, and evolution of 
data in those cells must obey pre-defined stability conditions from established con-
tinuum computing theory, namely, the Courant–Friedrichs–Lewy condition. Evolv-
ing cell-state data in a manner which logically optimises computational efficiency, 
combined with the defined stability condition, the construct derives a central cou-
pling of space, time, and the fastest speed of information propagation. This cou-
pling formed at the lowest level by the computing construct, naturally and inher-
ently produces aspects of special relativity and general relativity at the macroscale. 
This paper therefore proposes a new explanation of why the nature of space and time 
may be fused, and explores simple emergent congruities with relativity. The theory 
invites us to reverse the philosophical premise of the original Simulation Argument. 
This argument currently leads us to consider: how might all of the observed physics 
of our reality be reproduced computationally in a simulation of our existence? This 
work asks instead: could foundations of the physics of our universe—namely space-
time coupling—emerge inherently, and necessarily, from fundamental principles of 
computation?
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1 � Precursor on Terms and Definitions

Given the cross-disciplinary nature of the topic, the terms used in this paper 
which may derive different meanings in different fields are clarified here. The 
intended interpretation of terms in this paper are typically related to the math-
ematical definition:

Evolution—in the context of the paper, this term makes reference to the class 
of mathematical evolution equations whereby the solution develops in time from 
prescribed initial conditions. The exact nature depends on the equation itself, and 
refers foremost to differential equations [1].

Global—The term ‘global’ in this paper, refers to a property or entity consid-
ered across an entire domain or space. It is used in contrast to the term ‘local’ 
which applies to a defined neighbourhood or limited portion of a space [2].

Deterministic—in the mathematical sense, a deterministic system presumes a 
future event can be calculated exactly from a current state without the involve-
ment of randomness [3]. Similarly, in the algorithmic sense, given a particular 
input, a deterministic algorithm will always produce the same output.

Iterate—the term iterate is typically used in this paper in the computational 
sense and as a noun to mean the cumulative result of a number of iterations. For 
example, where each iteration is one loop of a calculation (or computer process), 
the iterate is the result produced at the end of each loop or repeated process.

2 � Computation as a Basis for Reality

It is a hallmark of human behaviour to use the most advanced technology of 
the era to analogise our living experience. From the industrial age when we put 
the “wheels in motion" for a mechanised vernacular of body parts, to when the 
thought “sparked" to instead consider our “genetic programming" in view of our 
biology. As we continue using our inventions as our conceptualisations, perhaps 
we reach a level of technological maturity where the analogy in fact becomes 
reality. The question of whether our reality could in fact be a high fidelity com-
puter simulation is fast becoming a subject of interest in philosophy, and more 
recently in physics and computer science. Whether or not reality is simulated per 
se, explorations of computation as an alternate basis for our fundamental physical 
laws may reveal insights about the nature of our observed reality.

The concept of a simulated reality was first posed formerly in a publication [4] 
by philosopher Nick Bostrom in 2003, putting forward: “The Simulation Argu-
ment". Bostrom’s argument uses the terminology “posthuman civilisation" to 
describe intelligent life of sufficient technological maturity where near-infinite 
computing power is accessible such that “Ancestor Simulations" can be run. Only 
in recent decades, has computation emerged as a third mode of investigation in 
the sciences, that is, after theory and experiment. Today, advances in computer 
simulation capability predominantly aim to capture the real phenomena of the 
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physical world. The Ancestor Simulation could therefore be considered the ulti-
mate goal, whereby the evolution of all existence unfolds in a deterministic nature 
from the predefined governing laws and initial conditions. Given near-infinite 
computing power, the idea is that the high fidelity simulation would be indistin-
guishable from observable reality.

Bostrom’s work does not directly argue that we inhabit a simulation (and nor 
does this work). However the argument supposes, in the case where only a frac-
tion of post-human civilisations develop ancestor simulations, and those simulated 
post-humans then develop ancestor simulations, we have a fractal structure of reality 
(Fig. 1). The number of simulated lifeforms then far exceeds the number of original 
organic lifeforms, in which case—statistically—we would very likely be living in a 
simulation.

Alternatively, a large number of simulated universes could be initialised at once, 
and evolve in parallel. Other academics and authors have expanded upon this idea. 
Busey [5] writes of the concept in which universes are constantly being created, with 
stable evolutions surviving and unstable universes collapsing. This mode of think-
ing mirrors Sante Fe Institute physicist Lawrence Krauss’s concept of cosmologi-
cal natural selection. Krauss characterises a similar concept of a parameter space 
in which certain universal variables (the speed of light, the cosmological constant, 
Planck lengths, etc.) lead to the survival of a cosmos [6]: “Namely, that we live in a 
universe in which it is possible for intelligent organisms (us) to arise who can obser-
vationally verify that we live in a universe with the right conditions for intelligent 
organisms to arise." Though Krauss refers here to the survival of real universes, the 
testing of such a parameter space would be logical for the simulation of universes in 
parallel.

These modern scientific descriptions echo an earlier philosophical proposal of 
The Anthropic Principal. First articulated by theoretical astrophysicist Brandon 
Carter in a 1973 symposium [7], the notion was put forward that any data collected 
or observed within our universe is foremost observable on the basis of compatibility 
with the conscious or sapient life which makes the observation. This philosophical 
argument bifurcated into the Weak Anthropic Principle and the Strong Anthropic 
Principle, explored by many subequent authors [8–10], which examines either the 

Fig. 1   Computer generated 
fractal tree
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capability or the necessity of various fundamental cosmological parameters to pro-
duce self-verifiable existence. The theory is often drawn to relate closely to multi-
verse theory [11]. So too are the more current writings of Busey and Krauss.

Other physicists and computer scientists have theorised more specifically on the 
construct of spacetime as arising from computation. Most notably, MIT professor 
Seth Lloyd postulates that the geometry of spacetime is a construct which can be 
derived from underlying quantum information processing [12].

Brian Whitworth has published on “the emergence of the physical world from 
information processing" [13], where he proposes a virtual reality conjecture. He puts 
forward the idea that a multidimensional grid representing space has a maximum 
refresh-rate given by the speed of light, thus dynamical quantities like mass, charge 
and energy which obey conservation laws in the physical world, can be reduced to 
a single principle of dynamic information conservation. As an example, Whitworth 
explores the relativistic time dilation present in the famous Twin Paradox. Where 
one twin stays on earth, the other explores the universe in a rocket travelling close to 
the speed of light. In this classic relativity example, Whitworth’s explanation for the 
dilation of time for the astronaut twin is due to the virtual reality’s finite bandwidth. 
The high speed travel “loads the grid" with another processing task, thus slowing the 
simultaneous processing of existence (i.e. dilating time). Whitworth goes further to 
discuss how this virtual reality model may reconcile relativity and quantum theory.

The conflict of relativity theory with quantum mechanics is widely considered to 
be the problem of modern theoretical physics [14]. Despite the quest for a so-called 
“universal theory", over a century on and we remain equipped with two fundamen-
tally incompatible descriptions of reality. While general relativity provides a reli-
able formalism of the physics of the cosmos and ordinary (macroscopic) scale, as 
one moves towards a smaller and smaller scale, such laws begin to make anomalous 
predictions, to the point where we derive an entirely different governing theory at 
the quantum scale. While general relativity describes a universe which is continu-
ous and deterministic, quantum mechanics is formalised in terms of discrete values 
(quantisation) and probabilistic events.

This paper proposes a new construction for the way in which the physics of our 
reality may inherently emerge from laws of computation. The proposed model is 
not one of a virtual reality, but rather, a model rooted in the algorithms applied to 
modern computational physics. The model goes further than providing analogies to 
classical physics in that it offers a mathematical underpinning for exploring con-
sistencies between the nature of computed properties and the nature of observable 
reality. Like Whitworth, the continuum computing theory proposed in this paper is 
predicated on a concept of information conservation, however unlike previous work, 
is not constrained by hypothetical information processing, but rather, derives a basis 
in cosmological information propagation. While the theory of this paper examines 
the same aspects of relativity, the limitations are not bandwidth or processing, but 
rather, the stability constraints which arise mathematically from numerical methods 
implemented for the solution of continuous dynamical systems, namely, the Cou-
rant–Friedrichs–Lewy condition (CFL condition) [15].

This work adopts as basis equations only the most fundamental physical laws in 
the form of the non-relativistic conservation equations. Numerical solution of the 
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form of differential equations given by the governing conservation laws, via the pro-
posed computing construct, is outlined through a simple set of premises, predicated 
on numerical stability and logical optimisation. This inherently constructs a fused 
spacetime and relativistic effects on the macroscale, qualitatively consistent with our 
observational reality.

The conceptualisation underlying this work diverges in an important way from 
previous works in simulation theory. Previously, Bostrom’s “Ancestor Simulation" 
implies the simulated universe is a replication of the full set of physics of the organic 
simulating universe, including relativity. This paper proposes instead that central 
aspects of the physics of our observed universe could plausibly arise due to govern-
ing computational laws as a basis. Importantly, while ideas about simulated realities 
are a useful contextualisation, the construct of this paper does not ultimately require 
the hypothetical existence of a simulated universe (and therefore nor a simulating 
universe by extension). The philosophical suggestion, rather, is that of a deeper role 
of computational constructs underlying fundamental physics.

This work therefore proposes an explanation for the fused nature of time and 
space on the basis of numerical stability constraints derived from computational 
continuum mechanics. By constructing a numerical method which is both computa-
tionally stable and logically optimised, it is possible to demonstrate mathematically 
qualitative congruities with relativity, as is explored in this paper. This model also 
gives rise to the concept of a continuum-quantum border at the level of the computa-
tional cell, which offers a means of conceptually reconciling the disjunctive physics 
of the classical and quantum scales.

Though the proposed model must be classed as speculative, it provides a frame-
work for reconsidering many of the puzzling paradigms of modern physics, namely 
the coupling of time and space in relativity. Ultimately, the proposed model aims to 
provide a new explanation for the observed physics of our universe, and a computing 
conceptualisation which could offer utility to other physicists and philosophers in 
the development of new theory.

3 � Continuum Computing Fundamentals

At the heart of computational science lies the problem: how does one model a con-
tinuous world-view as a discrete set of data?

If we run our finger along a line in space, and stop at any given point, there are 
very many quantities ascribed to that point. If we were to write a long list of all of 
the kinds of descriptions we can assign to that point (e.g. location, temperature, 
state of matter, etc.) and then move our finger to any other point in space, we can 
add a column, turn our list into a table and populate the cells. No matter where we 
point, we can describe the position by assigning values to the same set of quantity 
types. We can point infinitely many times between those first two finger place-
ments and assign a value; however, to what resolution are those values unique? 
As two data points become closer and closer together they may become indistin-
guishable depending on the nature of the property and our means of perception. 
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That is, given our human perceptive limits, we would reach a resolution threshold 
where the representation via discrete data is indistinguishable from the continu-
ous world.

What then if we replaced our finger pointing with a microscope? Take the 
example of pressure in a gas: generally at the macroscopic scale, pressure can be 
represented by a scalar field. Zooming into the microscopic or atomistic scale, 
where the length scale of view approaches the mean-free particle path, the ther-
modynamic description of pressure fundamentally shifts to a description of the 
motion (mass and velocity) of individual molecules. In other words, on different 
scales, the list of descriptors fundamentally shifts. However, the macroscale is 
always an emergent view of the microscale.

Consider then, all of space being divided into a finite number of cells. Like 
pixels on a screen containing a single scalar quantity (colour), except each cell 
contains a large number of properties which collectively describe a complete state 
in that region of space. This cell exists at the resolution limit where its data gives 
rise to all emergent properties at every broader scale. This is our defined compu-
tational cell.

Continuous quantities defined in space, which evolve in time, can be described 
mathematically via partial differential equations (PDEs). Firstly, taking the simpli-
fied example of the motion of a fixed object or particle (think of a perfectly rigid 
stone) its position can be determined through 6 parameters (6 degrees of freedom: 3 
translational and 3 rotational axes) at every point in time. The dynamics of this rigid 
object occur within a finite-dimensional configuration space. The configuration of a 
continuous medium however (think of a fluid) occurs within an infinite-dimensional 
configuration space. This is the key difference between a particle based description 
and a continuum based description. It renders the latter much more difficult to solve, 
and typically goes beyond the limits of pen-to-paper mathematics, requiring numeri-
cal methods (and computing power) for practical solution.

The numerical (computational) solution, can only ever achieve an approxima-
tion of the true continuous solution. However, the higher the resolution, the closer 
this approximation converges to reality.

A PDE for a single given variable � , where �(x0, x1,… , xn) is given by:

Continuous quantities which are defined in space and which evolve in time, are gov-
erned by hyperbolic PDEs. For a hyperbolic PDE which is first order in time on a 
quantity � , if initial data for �(x, y, z) is defined everywhere in the domain (with 
sufficient smoothness), there exists a solution of � for all subsequent time. That is, 
evolving deterministically from the initial condition data. The solution of a hyper-
bolic PDE is of a wavelike nature. That is, for a disturbance in a given space–time 
coordinate, the effect of the disturbance travels through the domain with a finite 
propagation speed, and along characteristics of the governing equation.

The most fundamental laws of nature, which govern how quantities evolve 
from processes and whether processes can occur, are the conservation laws. A 
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conservation law is a continuity equation, expressed mathematically via PDEs. 
These equations define the relationship between the “amount” of a quantity and 
the “transport” of a quantity:

The amount of the conserved quantity at a point or within a volume can only 
change by the amount of the quantity which flows in or out of the volume. [16]

In classical physics, these laws must minimally include the conservation of: 
mass (matter), momentum, energy, and electric charge.

A generalised conservation law is given by:

We can directly relate a conserved quantity within a finite volume, to data in our 
aforementioned computational cell.

A conservation law applied across two neighbouring computational cells, 
defined with initial data, naturally defines a Riemann problem [17]. Finite vol-
ume methods are useful solution methods for solving PDEs numerically [18], yet 
conservatively, by converting the divergence quantity to surface integrals via the 
divergence theorem.

In one dimension we define our computational cells in x − t space, as in Fig. 2. 
For a given cell i the finite volume occupies � = [xi−1∕2, xi+1∕2] × [tn, tn+1] which 
has equivalent area: Δx × Δt.

For a set of interdependent variables (i.e. which describe a state), we obtain 
a system of hyperbolic PDEs. A compact notation for dealing with systems of 
PDEs, is to express the set of variables within a vector. Where U is a state vector 
of continuous quantities, and F their associated fluxes, the 1D system of conser-
vation equations can be written:

��

�t
+ ∇ ⋅ f (�) = 0

Fig. 2   Finite volume discretisation with one spatial dimensional and one temporal axis, with positions 
in space defined as x

i
 and positions in time tn defining spatio-temporal computational cells of bounded 

volume Δx × Δt
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The subscript t denotes the partial derivative with respect to time, and x the partial 
derivative in the spatial dimension.

The integral form of equations applied over the defined finite volume can be equated 
to a surface integral via Green’s theorem:

Integrating around the boundary of the finite volume, we obtain:

For the conserved variables of � , in one dimensional space, the integral average 
quantity is defined as:

Similarly the flux vectors �i±1∕2 are defined as the integral average of the flux over 
one time step:

With these integral average definitions we arrive at the conservative numerical 
update formula:

In this way, the finite volume construction leads to this conservative numerical 
update formula, where the continuous equations have been transformed into dis-
crete state and flux variables. This serves as the basis for most continuum computing 
models [19].

It is clear from this time-explicit numerical update formula how all subsequent time 
solutions evolve from given initial data ( �0

∀i
 ). However, the solution will evolve to 

become numerically unstable unless certain criteria are met. Namely, the Courant–Frie-
drichs–Lewy (CFL) condition must hold (necessary, but not always sufficient) for the 
simulation to evolve in a stable manner.

The CFL condition places a limit on the maximum time step based on the distance 
between adjacent cells ( Δx ) and the propagation speed of the fastest wave ( Smax ). 
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The ‘waves’ of the solution are the characteristics of the equations, along which 
information propagates. As can be seen from the discrete replacement of the time 
integral defined in Eq. 5, the flux is defined at the spatial cell boundary, and as such, 
the characteristic wave speeds S are computed at the cell boundary.

If the time step is too large, and the state data of a given cell propagates beyond 
the adjacent cell within a single time step, then state information is lost. This leads 
to error and ultimately, instability. The dimensionless CFL number which ensures 
stability depends on the numerical scheme and the number of dimensions. For the 
simplest one-dimensional problems is derived as CFL ≤ 1.

Therefore the maximum time step in a computational cell, is the time at which the 
fastest characteristic wave crosses a cell boundary (Fig. 3). It follows then, the faster 
the wave, the smaller the time step, and also, the smaller the computational cell the 
smaller the time step. In the case of non-linear systems (the real world) the charac-
teristic wave speeds vary across cells. In the case of non-uniform grids, computa-
tional cell size varies across the domain. Whilst the simplest solution is to determine 
the smallest time step across the entire domain and limit all cells to this global time 
step, this is inefficient. Alternate methods commonly exist in computational con-
tinuum mechanics, including evolving independent patches containing cells of dif-
ferent sizes and enforcing time consistency conditions at patch borders. In any case, 
in order to maintain time-equivalence across the domain, computational efficiency is 
compromised for non-linear systems and for non-uniform grids.

4 � Continuum Computational Construct

The construction of the proposed continuum computational model is laid out in the 
following premises:

0.	 Governing equations and computability

Fig. 3   x − t computational cells: the 3 arrows represent some 3 characteristics of a system of conserva-
tion equations. The intersection of S

max
 with cell boundary determines the maximum stable Δt
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Firstly, it is important to note that the system being modelled is constituted only of 
the most fundamental physical laws: full set of non-relativistic conservation laws. That 
is, the relativistic phenomena (and corresponding form of the equations) is not assumed 
a priori. The stable and optimised numerical solution of the system (locally across 
cells) under the proposed computing construct leads to the resultant relativistic effects 
macroscopically, as will be presented.

Before presenting the computational construct applied to the solution of these sys-
tem equations, we first consider the computability of such equations. The mathematical 
nature of the governing equations determines the class of numerical methods required 
for solution. These different classes of numerical methods can be assessed in terms of 
their computational complexity. To define this concept clearly: computational complex-
ity, or algorithmic complexity, refers to the amount of resources required to execute 
an algorithm. Memory is the resource for the storage of data (space complexity), and 
computational time is the resource for the mutation of that data (time complexity) 
and depends upon the number of elementary operations required to compute the data 
update [20]. One can reasonably assume that: the laws of physics are not computable if 
they require infinite computational complexity. Further, the optimum algorithm aims to 
minimise complexity.

Therefore, as a 0th step to the outlayed premises, we first assess any constraints or 
requirements on the governing non-relativistic continuity equations in terms of their 
computational complexity and computability. To put it another way- could all conceiv-
able laws of physics be computed, or rather, are there computational constraints on the 
form of the governing laws of physics as we observe them? Specifically we explore the 
computational basis for the existence of a finite maximum signal velocity (the speed of 
light—c). In examining this, the heart of the question is: why should the macroscale 
form of the physical laws of our universe logically emerge as hyperbolic (finite c) rather 
than elliptic (infinite c)?

By counterpoint, let’s first consider the case where the fastest signalling wave i.e. 
maximum speed of information propagation is permitted to be infinite. Take as an 
example equation, the rearrangement of the electromagnetic wave equation in the limit 
of c → ∞ :

which becomes: ∇2u = 0 . This would result in some of the fundamental laws of 
physics becoming elliptic in nature. In terms of the computation of an elliptic gov-
erning equation: the space complexity depends on the number of nodes or cells 
which define the discretisation in space, and the time complexity depends on the 
number of elementary operations required by the algorithm to update the cell-asso-
ciated data. For the numerical solution of an elliptic partial differential equation, the 
domain of dependence is the entire computational domain (Ω) comprising N nodes 
or cells. That is to say, the update of information at any one cell depends on the 
information at every other cell in the domain. Numerical solution of elliptic equa-
tions therefore applies iterative algorithms which operate over all cells in the domain 
[21]. Therefore, the time-complexity ( T∗ ) of any algorithm applied to the solution 

(8)∇2u = lim
c→∞

1

c2
�2u

�t2
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of an elliptic system is a function of size (N) of the whole computational domain: 
T∗ = f (N) . As N approaches infinity, the computational complexity to update any 
single cell also approaches infinity.

Let’s now consider the case where the fastest signalling wave of the system 
has a finite maximum value. This defines the fundamental laws of physics of 
the universe as hyperbolic. The domain of dependence for a specified point in 
a hyperbolic system of equations, is the space–time envelope enclosed by the 
maximum and minimum speeds of information propagation, where therefore, 
the maximum stable time-step depends upon the absolute maximum wave speed. 
This is the concept enforced by the CFL condition. Limiting the time-step in this 
way therefore permits the construction of a computational stencil, which spans a 
small local collection of contiguous cells which contains the physical domain of 
dependence, and which the numerical method uses as input data for the compu-
tation of a cell-state update. The exact numerical method defines the size of the 
computational stencil (n), for example, the simplest case would be the stencil of 
a first order numerical method defined as n = 2d + 1 where d is the number of 
spatial dimensions [22]. Even for high order numerical methods applied to solve 
hyperbolic systems, the computational stencil spans a very small number of cells 
( n << N  ), upon which the time-complexity T∗ = f (n) depends. The space-com-
plexity of a hyperbolic system is the same as for an elliptic system defined over 
the equivalent surface and space discretisation. However, for hyperbolic numeri-
cal solution methods, even as N approaches infinity, the time complexity for each 
cell evolution remains to be finite, and independent of N.

Further, for a time-explicit hyperbolic system, where the applied numerical 
update scheme is of the form of Eq.  6: �n+1

i
= f (�n

i−k
,… ,�n

i
,… ,�n

i+k
) , where 

the numerical domain of dependence spans a small [ i − k : i + k ] number of spa-
tial cells from the prior time state, then computation of the new time state could 
theoretically be completely parallelised (all cells updated simultaneously). This 
degree of parallelism is generally not possible for elliptically evolving systems 
[23].

From this, let’s therefore consider a fundamentally computational universe, 
where all of space space (Ω) is fully discretised as a set of N spatial cells, and 
this spatial data is to be evolved by discrete iterates. For a mesh of cells to be 
permitted to approach infinite size (be that either through spanning infinite space 
or approaching infinite cell density through refinement), the computational com-
plexity of an elliptically-evolving system would similarly approach infinity (since 
it must operate across all cells). For the system to therefore be computable as 
N → ∞ necessitates an algorithm with time complexity independent of N, which 
implies a finite-sized computational stencil in space, resulting in a finite number 
of elementary operations associated with the numerical method for evolution of 
individual cells. This directly necessitates a fundamental computational limit on 
the rate of information propagation, which implies the existence of a finite max-
imum signal velocity within the governing continuity equations, thus implying 
hyperbolicity.

To summarise (where: < ∞ implies finiteness):
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The existence of a finite maximum wave speed is assumed in the application of the 
CFL stability criteria in premise 2, however, the criteria itself does not define or 
enforce finiteness of system characteristics. This argument defines a computability 
requirement on the finiteness of c in the governing continuity equations. Beyond this 
requirement on c, the elementary operations can plausibly be defined by any opera-
tions, which will macroscopically constitute the laws of physics. 

1.	 Underlying discretisation of space and time 

The underlying computational construct assumes all of space is a continuous 
medium which is discretised by a mesh of computational cells. In three dimensional 
space this represents a three dimensional finite volume cell. Therefore, the cell rep-
resents a finite region of space, containing a fundamental data set of discrete quanti-
ties, which collectively gives rise to all emergent properties at the continuum macro-
scale (Fig. 4).

The data associated with each computational cell is evolved through some set 
of elementary operations, which results in the mutation of that data. This data 
mutation represents a discrete evolution in time. This treatment of space and time 
as inherently different things—space as the underlying data structure, time as the 

Elliptic governing laws ∶ c = ∞, T∗ = f (N)

limΩ→∞ Ω → T∗ = limN→∞ f (N) = ∞ → ��� ����������

Hyperbolic governing laws ∶ |c| < ∞,T∗ = f (n), |n| << |N|

limΩ→∞ Ω → T∗ = limN→∞ f (n) << ∞ → ����������

Fig. 4   x − t 1D computational cell representation with fundamental state data denoted as � , � ... and 
maximum stable Δt at the cell interface based on the fastest wave speed S

max
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actual computation—is conceptually cornerstone to a simulation theory grounded 
in computational physics. The key issue in this defined systemisation is the appar-
ent de-coupled treatment, therefore, of space and time. It is through the subsequent 
premises of this work, based on principles of continuum computing, that a logical 
construct for spacetime coupling for such a discretisation is proposed.

This computational cell construct, in combination with the numerical update for-
mulas used to compute the system solution, implies a model which is fully deter-
ministic. That is, a computed state is determined completely from the preceding 
state. As per the 0th premise, the solution of hyperbolic continuity equations implies 
a finite domain of dependence (where n << N ). That is, the state of a given cell is 
computed locally from the states of all cells sharing a boundary in the preceding 
state solution (or a number of adjacent cells depending on the specific algorithm). 
For example, assuming a first order numerical method (which considers the states 
of the first-most adjoining cells), the state �n+1

i
 is computed deterministically from 

the preceding cell states: [ �n
i−1

 , �n
i
 , �n

i+1
 ] which collectively define its domain of 

dependance as the span of 3 cells. 

2.	 Necessary stability constraints

As per the introduction, the deterministic evolution of the system in time from the 
initial state data defined in space, is governed by the system of conservation equa-
tions. For the system to evolve in a computationally stable manner, the CFL condi-
tion must be satisfied. The CFL condition requires that a maximum wave speed be 
identified, and serve to limit discrete time steps.

As detailed in the 0th premise, the finiteness of a maximum signalling velocity 
for information can be assumed, based on underlying computability requirements on 
the governing system equations.

The value of the maximum wave-speed depends on the system being modelled. 
Considering the defined computational cell which contains the fundamental state 
data set, the wave speeds of information propagation depend upon the characteristics 
of the full set of conservation equations computed across the cells. The fastest wave 
speed ( Smax ) which restricts the stable time step according to the CFL stability crite-
rion is identified as the fastest possible speed of all information propagation, which 
therefore depends upon the speed of light in the conservation laws. 

3.	 Optimisation of the computational step

In a standard continuum computing model, the time step is restricted globally by 
the overall smallest stable time step computed in a given cell, in order to achieve 
numerical stability and such that time evolves in steps uniformly across the domain. 
After every evolution we have global time equivalence. Therefore, every cell which 
has a locally stable time step computed as greater than the globally restricted time 
step evolves in computationally inefficient manner.

Due to this observed time step inefficiency, mixed resolution meshes with local 
time-stepping was a concept proposed by Osher in [24] and is used commonly in 
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the numerical solution of conservation laws. However, these simulations typi-
cally involve sub-grids, where base cells are subdivided by a refinement factor into 
[refinement factor × number of dimensions] smaller cells [25, 26]. A global maxi-
mum wave speed for the conservation laws is still computed over the full domain, 
and after smaller sub-grid cells evolve by an integer multiple of their smaller sta-
ble Δt , time equivalence is reached with the larger base cell (as depicted in Fig. 5). 
While this provides efficiency improvements, cell resolution is constrained by fac-
tors of a base cell size, and where wave speeds vary across the domain, the local 
time step remains non-optimised.

It is proposed here that the system is not constrained at all by time equivalence. 
By relaxing this constraint we are able to maximally optimise computation over 
freely defined cell-sizes. By grounding the algorithm in the logical basis of (i) 
numerical stability, (ii) freely varying cell-size, and (iii) computationally optimised 
time-stepping, the construction permits information fluxes evolved by time steps of 
different sizes at cell boundaries. Though sizes of time steps may differ, the integer 
number of steps in the system evolve simultaneously. That is, we may consider the 
simulation to evolve in iterates as discrete global updates, with the stable time step 
being computed at every cell boundary.

The idea can be summarised as enforcing computational optimisation instead of 
enforcing time-equivalence:

We define clearly the concept of global time iterates and real time steps before dem-
onstrating how this construction naturally gives rise to aspects of special and general 
relativity.

globally enforced time equivalence → compromised local efficiency

optimised local efficiency → globally varying time-stepping

Fig. 5   Diagram of a typical local-time-stepping scheme. Cells are refined spatial by a refinement factor, 
and corresponding time reduction factor achieves global time equivalence with the base cell after sub-
cycled smaller time steps
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As shown in the diagram of Fig. 6, the real time step is computationally opti-
mised for each cell when the wave of fastest propagation speed intersects exactly 
at the spatial cell boundary (max. stable Δti ). The local limiting Δti is then 
applied to evolve the information flux between cells.

The derivation of the conservative numerical update formula presented earlier 
in Eqs. 1–6 assumes a constant Δx and Δt between neighbouring cells in the inte-
gral average definitions. For freely varying spatial cells and time evolution, the 
integral average flux definition of Eq.  5 and the conservative numerical update 
formula of Eq. 6 gain spatio-temporal degrees of freedom. For computed fluxes 
this becomes:

The explicit numerical update formula then becomes:

The system is not under-determined, since the spatial step Δxi is predetermined by 
the mesh, and each Δtn

i
 (of the cell interfaces) is computed directly from the funda-

mental state data of the adjacent cells at the current time step n, in accordance with 
the governing conservation laws.

The physics of every individual cell pertains to its own locally determined Δtn
i
 

step, and the global time iterate axis represents a discrete number of evolutions. 
This time-iterate axis (Fig.  7) represents the integer n number of total discrete 
updates, at which time is denoted as t⋆ and whereby the step from n to n + 1 is 
denoted Δt⋆ . Evolving the cell states by a simultaneous discrete time iterate Δt⋆ , 
with real time step Δt computed for each cell, is equivalent to the wave speeds 
undergoing a scaling transformation when represented on the time-iterate axis. 
This concept is shown in Fig. 7. The actual wave propagation speeds are locally 

(9)�i±1∕2 =
1

Δti+1∕2 ∫
tn+1
i+1∕2

tn
i+1∕2

�(�(xi±1∕2, t))dt

(10)�n+1
i

= �n
i
+

Δtn
i−1∕2

Δxi−1∕2
�i−1∕2 −

Δtn
i+1∕2

Δxi+1∕2
�i+1∕2

Fig. 6   Under a continuous time-value axis, for a non-linear system or non-uniform grid, the maximum 
stable time step varies between cells, and in a time-equivalent simulation, becomes limited by the small-
est global Δt
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conserved under S =
�x

�t
 , where S and t are the real wave speeds and real local 

time. The maximum stable real time increment and subsequent wave transforma-
tion in one dimension is simply:

Note that Δt⋆ can be any arbitrarily chosen time increment (e.g. Planck time) and 
stability is maintained. To summarise, time evolves globally by a discrete time 
iterate update, within which a local stable real time step is computed at every cell 
boundary. In this way, by optimising the computational step in accordance with the 
numerical stability constraint, we will demonstrate how this logical construct results 
in inherent time dilation effects on the macroscale.

5 � Emergent Relativistic Properties

This initial analysis presents a mathematically qualitative assessment of how the 
proposed continuum computing model naturally gives rise to aspects of observed 
reality, consistent with Einstein’s theory of relativity. This paper explores the prem-
ise of fused spacetime, aspects of special relativity, and some general relativistic 
effects as a minimal basis for further explorations.

5.1 � Coupling of Space and Time

One of the fundamental conceptual difficulties in proposed simulated reality the-
ories, is that computational simulations tend strongly to decouple the concepts of 
space and time, whereas relativity implies that space and time should not be decou-
pled. The core postulate of this paper is the proposal of a logical construction 

(11)Δti =
CFL ⋅ Δxi

Smax,i
→ Δt⋆ =

CFL ⋅ Δxi

S⋆
max,i

→ S⋆
max,i

=
Δti

Δt⋆
Smax,i

Fig. 7   Under a time-iterate axis, the characteristics can be considered scaled with respect to Δt⋆ and the 
simulation is evolved as a single global step in a discrete integer time dimension, where computed Δt

i
 

may vary across cell borders
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whereby stability constraints naturally enforce a strict coupling between space as the 
underlying data structure, and time as the computational evolution.

This coupling emerges as follows: within a reality comprised of continuum-
type computational cells, the interdependency of time and space arises necessarily 
from the stability constraints of the numerical method applied to solve conserva-
tion equations via a discrete quantity formulation. If we suppose reality behaved as 
a continuum-type computation-then time step must become a function of discrete 
space under the CFL condition. The dependency of time on space must therefore 
also be a function of the fastest speed of all information propagation. Applying this 
computing principle to the full set of conservation laws, the fastest total wave speed 
depends upon the peak matter-velocity and its fastest signalling wave: which draws 
a cosmological basis in the speed of light. Logically optimising computational effi-
ciency means time-steps vary according to this time–space–wave–speed depend-
ency, across all cells.

The coupling of space and time in forming 4-dimensional fused spacetime under-
lies the relativistic phenomena of our macroscale universe. One could consider 
this postulate in more philosophical terms and noting the key difference to other 
works in simulation theories. Rather than explicitly programming the known and 
observed physics of our reality, including relativity, this work removes the concept 
of an active programmer, and examines reality in terms of only elementary basis 
laws (in simplest non-relativistic form), and logical computing laws for their solu-
tion. The philosophical enquiry becomes: in the case where existence as we observe 
it is arises from fundamental computing laws, does spacetime coupling emerge nec-
essarily as a constraint of stable computational evolution?

The concept of a unit cell is introduced here to aid the subsequent explanations. 
This unit cell is useful as a base unit for exploring the relativistic phenomena. Step 
3 in the earlier construction explains that for any arbitrarily chosen discrete time 
increment Δt⋆ stability is maintained. Let’s then propose a unit cell where the one 
dimensional width is Δx̄ and the numerics permit CFL = 1 . Where the set of all 
known conservation equations are being solved across two unit cells of size Δx̄ , let’s 
assume, for simplicity, the limiting wave speed is given by the speed of light. Then 
Δt⋆ is defined to be simply:

where we infer from earlier Eq. 11 then: S⋆
max

= c , where c is the constant speed of 
light (in a vacuum). We explore in the subsequent sections how system velocities 
and varying cell size leads to time dilation with respect to the defined unit cell.

5.2 � Special Relativistic Effects

We consider first the flat spacetime in the absence of gravitational fields. The core 
postulates of special relativity are that the laws of physics are invariant in all iner-
tial frames of reference and that the speed of light in a vacuum is the same for all 
observers [27]. Presented here is a simple demonstration of how special relativistic 

(12)Δt⋆ =
1 ⋅ Δx̄

c
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time dilation arises inherently from the proposed continuum computing cell con-
struct. Further, the construct is shown to satisfy the aforementioned postulates.

With reference to our unit cell, we consider a flat spacetime 1D mesh comprised 
of constant sized Δx̄ cells. We consider the continuum medium contained in the cell 
to have a matter-velocity tracked via the cell state data. A cell containing a zero mat-
ter-velocity is then equivalent to the unit cell, where the computed stable real time 
step is simply Δt = Δt⋆ , such that the cell information travels a maximum distance 
of c ⋅ Δt⋆ = Δx̄ in one computational time step. The step is stable and optimised. In 
the flat spacetime, this gives a lower bound on Smax of c and a corresponding upper 
bound on real time step Δt = Δt⋆ (time progresses at a maximum rate of Δx̄∕c sec-
onds per discrete iterate in a ‘stationary’ cell).

For a cell region containing a non-zero matter-velocity (V), the total information 
propagation is related to the base velocity V and its fastest possible emitting infor-
mation rate—the speed of light. And so we have Smax = f (V , c) . The speed of light 
is constant (as per the locally applied continuity equations) within the computational 
cell and therefore propagates information (about the high velocity matter) at c = �x

�t
 

with respect to real-time t in the cell. This is consistent with known physics; that a 
fast moving object emits light at the speed of light with respect to the fast moving 
object. Real time step Δt must therefore be computed such that the information does 
not propagate more than the distance Δx̄ in the computed step. Otherwise the CFL 
condition is not met, information is lost across the time step, and instabilities mani-
fest in the computation. This concept is depicted in Fig. 8.

The general qualitative argument is as follows: where a non-zero matter velocity 
increases the total rate of information propagation, computed real time must dilate 
to maintain the numerical stability condition. The exact manner in which the matter-
velocity and the speed of light are positively constructive within a cell determines 
the quantification of time dilation.

In relation to the core postulates, it is important to note the following: in an iner-
tial reference frame where a local domain of cells contain a uniform matter velocity, 

Fig. 8   (Left) 1D computational unit-cell as defined above. (Right) 1D cell containing a non-zero matter-
velocity with reduction in stable computed Δt to maintain stability on uniform grid of fixed spatial steps 
Δx̄
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all cell data evolves uniformly in discrete steps of real Δt in that local domain, where 
Δt is computed based on c propagating as a constant with respect to the base V of 
the frame. (Note also that the defined reference frame will move across fixed spatial 
cells between time iterate updates). Similarly, we can consider the manner of flux 
computation across cells: if base velocity V is uniform in a reference frame, the flux 
differential associated with that reference velocity remains zero across cells (nothing 
within the reference frame changes due to the base velocity). Therefore the laws of 
physics within a stationary or moving reference frame remains invariant.

Where the flux associated with base matter-velocities is non-zero, is where there 
is a velocity differential across a cell border. Where information about an event 
occurring in a fast-moving reference frame crosses the cell border into a station-
ary reference frame (or vice-versa), information flux and stability depends upon 
these velocities. The processing of the information (as it passes across cell borders) 
defines a local Riemann problem between fixed computational cells. In the time 
explicit model defined by the numerical update formula of Eq. 6 (whereby all data 
evolves deterministically across time steps), the continuous property flux over the 
time step Δt from tn to tn+1 is replaced by a discrete flux approximation. The discrete 
flux approximation is a function of the fundamental cell data sets at time n. Using 
the notation for the fundamental state data as represented in Fig.  4 ( x − t dimen-
sional system), let � = {�, �...} , and the total information flux � over a time step Δt 
entering cell i is given by:

Given that the fundamental state data ultimately represents all system properties, in 
effect this renders the flux as a function of adjacent cell contained velocities as well 
as constant c:

since the wave speeds [S0...Sn] at the cell boundary are a function of the state data, 
and specifically one of those wave speeds is:

then the flux computation depends upon the full set of variables:

Therefore Smax and the information flux is influenced by adjacent cell veloci-
ties and their differential. When Smax is large, Δt is small (to maintain numerical 
stability), and the amount of information flux which passes across the cell border 
between reference frames is acted upon by reduced Δt in a reciprocal manner. A 
reduced time step at the cell border acts effectively as a numerical information fun-
nel. The propagation or observation of information as a function of the contained 

(13)∫
tn+1

tn
�(t, xi−1∕2)dt ≈ Δt�(Un

i−1
,Un

i
)

(14)� = f ({�i−i, �i−i...[Vi−i, c]}, {�i, �i...[Vi, c]})

(15)Smax = f ([Vi−1,Vi, c])

(16)� = f ({�i−i, �i−i...}, [S0...Sn], {�i, �i...})

(17)Δt = f (Smax)
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matter-velocities of neighbouring cells, therefore renders the construction as refer-
ence frame dependent.

Additionally, within locally computed stable time steps, the speed of light is con-
stant within every cell, and is never observed to be exceeded from any reference 
frame outside the cell with respect to the time steps of that frame. Under this con-
struction, it is impossible for any matter to be observed to exceed the speed of light, 
for any observer outside the cell, as the increase in its velocity within a cell directly 
results in the local reduction of time step at its cell borders.

It is important to note here that the arguments are being presented in a qualita-
tively mathematical form to demonstrate the rudimentary consistencies with relativ-
ity theory. Further developments such as deriving Lorentz factor scaling, proving 
general covariance is preserved, and quantitatively demonstrating synchronisation 
within frames, would require the definition of specific update schemes of the simu-
lation, and construction of an underlying mesh topology. The core arguments pre-
sented in this work are limited to the core qualitative and conceptual bases. How-
ever further explorations are invited, such as; including different, more complex, and 
even unstructured, mesh topologies paired with various numerical update schemes 
in order to derive further consistencies with properties of relativity.

5.3 � General Relativistic Effects

In this section we explore how the computational construction produces gravita-
tional time dilation and the gravitational deflection of light. Again, it is somewhat 
futile to reason quantitatively on these phenomena, without supposing an actual 
underlying mesh topology (discretisation of space). Therefore we examine first the 
core ideas and effects in a qualitative manner and then present a hypothetical (non-
realistic) mesh geometry to demonstrate these effects.

General relativity describes the manner in which stress or energy in the universe 
(specifically in the presence of large masses) curves and warps spacetime. The 
geometry of spacetime is described through the metric tensor g�� , with its contained 
curvature relating directly to gravitational effect.

In regions of a numerical simulation where higher precision is required, this can 
be achieved through higher resolution (or higher order methods). Where higher pre-
cision is required in regions of high complexity, greater resolution then results in 
greater information density. Though it seems reasonable to assume that regions in 
space of high density and energy are associated with regions of greater complex-
ity (requiring higher numerical precision), a definitive relationship cannot be drawn 
without a deeper understanding of the specific computational construction. There-
fore, it is simply assumed from the logical computing argument, in order to optimise 
computational resources, regions of higher precision (smaller cell size) and lower 
precision (larger cell size) are freely permitted. Regions of refinement and disperse-
ment of the underlying computational mesh creates the topology of the fabric of 
space in a computational reality. Where a uniform mesh represents the flat space-
time, a non-uniform mesh produces a warped spacetime. The prototypical depiction 
of the fabric of space, warped in the presence of large masses, is shown in Fig. 9.
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The computational explanation of gravitational time dilation can be laid out very 
simply: where we have defined local real time to be computed as a function of cell 
size and maximum wave speed, we observe that the smaller the finite computa-
tional cell volume the smaller the local computed stable time step Δt . The concept is 
depicted clearly in Fig. 10, where the the smaller Δx one dimensional cell results in 
a smaller stable Δt.

Thus far, we have presented all of the theory in one spatial dimension and one 
time dimension. If local time is computed as the optimum time step based on the 
given cell dimension, what then when the mesh is extended to multiple spatial 
dimensions? We extend the theory logically in a second dimension. Maintaining the 
same principle, consider local time to be computed optimally at the borders defining 
every cell dimension—that is, allow time to act effectively as a vector with respect 
to a computational cell and its boundaries.

Under the proposed computational model and its logical extension to higher 
dimensions, we observe that matter dynamics are influenced by a non-uniform mesh, 
and furthermore, light automatically bends according to regions of refinement and 

Fig. 9   (Left) 2D visual depiction of spacetime curvature in the presence of massive bodies, source: [28]. 
(Right) 3D grid offers a better representation (than 2D) of what spacetime may actually look like, depict-
ing a refined mesh in the vicinity of the mass, source: [29]

Fig. 10   Equivalent wave speeds S within 1D computational cells of different sizes Δx . In the large cell 
on the left, time progresses faster than the defined unit cell ( Δt > Δt⋆ ), and in the small cell on the right, 
time progresses more slowly than the unit cell ( Δt < Δt⋆)
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dispersement. The dynamics and stability of this model are best demonstrated through 
an example two-dimensional numerical simulation.

Reducing the complex system of conservation equations to the simplest possible 
demonstration equation, let’s consider the conservative linear advection of a massless 
photon at the speed of light. Our test equation is given by:

which, in 2 dimensions and for constant c is given by:

Any choice of conservative numerical scheme is reasonable, and we define here a 
simple first order upwinded Godunov scheme:

where the x-dimension up-winded boundary fluxes are given by:

and where i,  j denotes the spatial cell position and further subscript x or y on Δtn 
permits the time step to have x and y dimensional components at time n.

For this single advection equation there is simply one characteristic wave speed 
S = c.

The scalar advected variable � is initialised to a value of 1 across the spatial cells 
that the photon occupies, and zero elsewhere in the domain.

Setting CFL = 1 and the photon to have a velocity cx = cy = c travelling diagonally 
at 45o across the domain (see N.B.1 in Supplementary Information I), we arbitrarily 
distort the cell sizing across the domain, though the mesh remains regular (Cartesian). 
In this example the mesh is compressed in the middle in both dimensions ( Δxi and Δyj 
take a sinusoidal profile). Any time increment Δt⋆ can be chosen for the time stepping 
iterations, and by computing local Δtk and rescaling S⋆

k
= c⋆

k
 (subscript k represents 

either spatial dimension) the method is stable. Time and space are non-dimensional-
ised for simplicity with c = 1 . The remaining details of the simulation construction are 
described in Supplementary Information I.

The real local time step and scaled wave speeds are computed for both x and y 
dimensions :

��
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+ ∇ ⋅ [c�] = 0

��

�t
+ c ⋅

(
��

�x
+

��

�y

)
= 0

�n+1
i,j

= �n
i,j
+

Δtn
i,j,x

Δxi,j
[f (�i−1∕2,j) − f (�i+1∕2,j)] +

Δtn
i,j,y

Δyi,j
[f (�i,j−1∕2) − f (�i,j+1∕2)]
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At time n as the simulation evolves via the update formula:

Δtn
i,j,x

=
|||||

CFL ⋅ Δxi,j

c

|||||
,Δtn

i,j,y
=
|||||

CFL ⋅ Δyi,j

c

|||||

c⋆
x
=

cx ⋅ Δt
n
i,j,x

Δt⋆
, c⋆

y
=

cy ⋅ Δt
n
i,j,y

Δt⋆

Fig. 11   (Left) initial condition for test simulation with photon region set to 1.0. (Right) final time iterate 
solution. Mesh consists of 160 × 160 cells, sinusoidally spaced along both x and y axes (cell centres plot-
ted with black marker)

Fig. 12   Subsequent time steps, from iterate number 15 to iterate number 89. A ‘tail’ of 0.5 is added in 
order to visualise the path traced by the photon
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where for our test equation: f (𝜙i,j) = c⋆
k
𝜙i,j.

In Fig. 11, the initial conditions and final time solution is shown. In Fig. 12, the 
actual solution at the given time iterate is the region of photon value = 1 and zero 
elsewhere in the domain. A tail of 0.5 value has been added to the visualisation of 
the solution to track the path the photon travelled through the domain.

As can be seen, the motion of the photon takes a curved path through space, and 
distorts in shape moving through the mesh geometry. The evolution of local real 
time is tracked, and the final real time landscape across the domain is represented in 
Fig. 13 for this arbitrary non-uniform mesh. This is taken to be the summation of 
absolute time steps ( 

∑n

i=0
�(Δti

x+1∕2
, Δti

y+1∕2
)� ) computed at cell borders.

This simulation demonstrates how the advection of any quantity (including light) 
takes a path which is dependent on the underlying mesh construction of space. 
Regions of compression, expansion and distortion of the mesh directly impact the 
path of propagating quantities. It also demonstrates that the formulation of the 
numerical method is stable. That is, where space is non-uniform, real time is com-
puted as a function of space and wave speed, and under the time iterate transforma-
tion the advection constant is scaled, we show the solution evolves explicitly and in 
a stable manner by discrete time iterates.

This particular mesh geometry was not representative of anything physical. The 
purpose was to demonstrate that mesh distortion influences the path of light (and 
masses) but not the specific hyperbolic path light takes around a massive body due 
to gravitational effect. In theory, an underlying mesh geometry could be constructed 
as consistent with observed gravitational effect, causing light to take a hyperbolic 
deflected path around massive bodies. Such a construction would require a relation-
ship to be defined between energy and mesh resolution. As such, there may not be 
a unique solution, rather a viable solution space. The solution space may consider 

𝜙n+1
i,j

= 𝜙n
i,j
+

Δt⋆

Δxi,j
[f (𝜙i−1∕2,j) − f (𝜙i+1∕2,j)] +

Δt⋆

Δyi,j
[f (𝜙i,j−1∕2) − f (𝜙i,j+1∕2)]

Fig. 13   Evolved local real time for cells across the domain in 2D (left) and projected as a surface over 
the given mesh (right)
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different mesh types (not necessarily a Cartesian structured mesh as shown), differ-
ent finite volume cell types (not necessarily comprised of quadrilateral cells) and 
different numerical update schemes. This should be the subject of future work.

6 � Comments, Implications and Invitations

This paper proposes a new explanation for the fused nature of space and time as we 
observe it. By exploring the idea of reality as generated from laws of computation, 
it proposes how spacetime may be a construct invoked from numerical stability con-
straints as they arise in continuum computing. Such explorations, and the congrui-
ties they derive with relativistic physics, raise intriguing questions both scientifically 
and philosophically.

A continuum-type numerical method is described and proposed as a logical 
and viable construction of an underlying computational model. From established 
computing theory, the Courant–Friedrichs–Lewy stability restriction creates a 
dependency of time on space. The dependency is also related to the fastest wave 
of information propagation, which, when applied to the full set of (non-relativistic) 
conservation laws, derives a dependency on matter velocity and its fastest signalling 
wave: the speed of light. By relaxing time equivalence to therefore optimise every 
local computational step, time steps are computed at cell boundaries and vary across 
the domain depending on both the spatial resolution and maximum wave speed. 
According to the cell-data which describes the state in space and time, local char-
acteristics are preserved whilst scaled characteristics apply relative to the time iter-
ate axis, resulting in an observably stable solution evolution. The inference is that 
for pre-defined initial conditions and cosmological parameters of the system, a time 
explicit stable solution is able to evolve deterministically.

The construction of such a numerical method leads to observations consistent 
with our known reality: fast travelling objects or reference frames produce time dila-
tion (special relativistic phenomena), as does the compression or expansion of the 
fabric or mesh of space (a general relativist effect). In both cases the time dilation is 
produced as a condition of maintaining numerical stability within a construct which 
optimises computational efficiency.

Extending the model logically in multiple dimensions renders real time step 
computed at dimensional cell interfaces effectively acting as a vector relative to the 
cell. Where time steps are computed according to the topology of the spatial mesh, 
the consequent state scaling causes light (and other entities) to move along paths 
influenced by the geometry of the mesh defining space. The time dilation and path 
of advection is demonstrated through an example simulation programmed via the 
described method. Though a deflected path of motion was demonstrated, the ques-
tion remains—is it possible for a mesh topology to produce the type of unbound 
hyperbolic orbits light is observed to take around massive bodies? There is poten-
tially a large solution space of viable meshes which produce dynamics consistent 
with gravitational effect. Further explorations on this are warmly invited.

In terms of mesh topology there is a logical argument for mesh refinement in 
regions of massive bodies. It is standard in continuum computing to have high 
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resolution in regions where high precision is required (typically related to peak 
property gradients). In regions where high precision is required, this implies regions 
of greater complexity, and the local computational cells are of higher resolu-
tion in these regions, and low resolution elsewhere to best optimise computational 
resources. In a perfectly optimised simulation, mesh refinement and dispersement 
would be related to regions of high and low information density. Where matter is 
fundamentally stored as data, a notable advancement would be to develop a logi-
cal relationship between matter and complexity, whereby the corresponding opti-
mally refined mesh contained regions of refinement and dispersement related to the 
vicinity of massive bodies. Such a relationship could be tested for its prediction of 
numerical time-stepping in line with gravitational time dilation. The proposed con-
tinuum computational model therefore invites a new perspective when considering 
some of the deeper unanswered questions invoked by Einstein’s theory of relativ-
ity, such as: why do massive objects distort spacetime? The computational answer 
implied, is that gravity is an inherent emergent effect of mesh refinement which opti-
mises computational resources, based on spatially defined property complexity.

Intrinsic to this proposed model is the implication that time evolves as discrete 
iterates. That is, locally each cell computes a real time step, and globally every cell 
evolves simultaneously by a time update. The construction also implies a funda-
mentally discrete representation of reality at the level of the computational cell. The 
discrete fundamental state data of the cell gives rise to continuous physics as we 
observe it at the simulation macroscale. Something which is yet to be discussed in 
detail, is a supposed scale, or resolution, of the spatio-temporal computational con-
struct. The existence of a continuum-quantum border as the scale approaches the 
computational cell (implicit in this theory) gives credence to the prevailing observa-
tion of disparate governing models of the classical and quantum realms. The impli-
cation is that a universal theory perhaps be re-considered in terms of a universal 
computation.

The implication of the proposed construct is that the computational stability con-
straints of the individual cells result in necessary spacetime coupling, observed as 
relativistic effects on the broader scale. The philosophical interpretations of this are 
intriguing. Rather than programming the physics of the universe as we observe and 
understand—as is implied by the “Ancestor Simulation" of Bostrom’s Simulation 
Argument—the premise is reversed. That is, this work implies that aspects of our 
observed reality could arise inherently from laws of computation rather than simply 
using computation to replicate physical laws. The further inference is that a rela-
tivistic universe is a computational universe. However, one can argue this does not 
require that we view a computational universe as being actively simulated by some 
form of organic parent universe, as per popular discussion. All that can be directly 
proposed, is that theories based in laws of computation can provide a useful mode 
of exploring an alternative basis for fundamental physics. One may draw important 
conclusions about the possibility of a deeper role of information theory and compu-
tation in behaviours foundational to our reality.

The proposed computing construct provides a new basis for which further devel-
opments can be built upon in producing effects in alignment with observable physi-
cal phenomena. Quantitative developments will require supposing specific mesh 
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topologies and numerical update schemes in order to derive further consistencies 
with properties of relativity. This paper focusses specifically on the outlined con-
gruities as a minimal basis for such further explorations.

Given the core contribution is that of a new explanation for existing observa-
tions of reality, in this sense the core argument is a philosophical one. We return 
then to the original philosophical enquiry—can foundational aspects of the physics 
of our universe plausibly emerge from fundamental laws of computation? Though 
the concept appears to be growing within the academic community, the notion, in 
its absolute, is near impossible to test. Scientific theory, as it stands, can only ever 
be appraised on the merits of its predictive power. Therefore, where a philosophical 
conjecture becomes a scientific one, is where it offers new and provable hypotheses. 
This work demonstrates new ways in which numerical models can draw inherent 
mathematical consistencies with our observed reality, generating a shift in perspec-
tive for explorations of computational realities. The hope for such a proposed theory 
is its conceptual utility in developing new theory, which may in turn develop new 
predictive power to thus further our understanding of deeper foundations of our 
physics.
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