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Abstract
We propose that the ontic understanding of quantum mechanics can be extended to 
a fully realistic theory that describes the evolution of the wavefunction at all times, 
including during a measurement. In such an approach the wave equation should 
reduce to the standard wave equation when there is no measurement, and describe 
state reduction when the system is measured. The general wave equation must be 
nonlinear and nonlocal, and we require it to be time-symmetric; consequently, 
this approach is not a new interpretation but a new theory. The wave equation is 
an integrodifferential equation (IDE). The time symmetry requirement leads to 
a retrocausal approach, in which the wave equation is solved subject to initial and 
final conditions to determine history at intermediate times. We propose that differ-
ent outcomes from (apparently) identically prepared experiments may result from 
uncontrolled parameters; both the nonlocality and the retrocausality of the theory 
imply that Bell’s Theorem cannot rule out such “hidden variables.” Beginning with 
Hamilton’s principle, we demonstrate the construction of such a theory by replac-
ing the action with a functional designed to give rise to a nonlinear, nonlocal IDE 
as the wave equation. This IDE reduces to the standard wave equation (a differential 
equation) in the absence of a measurement, but exhibits state reduction to a single 
eigenvalue when the system interacts with another system with the properties of a 
measurement apparatus. We demonstrate several desirable features of this theory; 
for other properties we indicate their plausibility and possible avenues to a proof.
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1  Introduction: Completing the Realist Program

The ontic interpretation of quantum mechanics, that the wavefunction is an element 
of reality, is physically appealing because experience with other physical theories is 
that it is possible to describe real objects and fields mathematically, and it seems odd 
that only quantum mechanics should be different. A number of paradoxes can be 
avoided by adopting the epistemic interpretation—that the wavefunction describes 
a state of knowledge—but such a dramatic departure from the norm has not been 
found necessary in other fields of physics.

However, the realist approach must address multiple challenges, including EPR 
correlations, indeterminacy, and state reduction upon measurement (including as 
challenges both the departure from unitary evolution and the arrival at a state with 
a single eigenvalue of the relevant operator). It ought to be possible to complete 
the realist program by providing an unambiguous mathematical description of the 
evolution of the wavefunction that deals with these challenges in a reasonable way 
and applies in all circumstances (that is, with or without measurement). To be spe-
cific, there must exist a mathematical relationship among variables and functionals 
thereof (a “wave equation,” for short) that is valid at all times. It should describe the 
phenomena described by the wave equation in standard QM, but also the measure-
ment-induced transition from a superposition to a single (collapsed) eigenstate.

We believe that such a project is possible, and will demonstrate below that a plau-
sible framework can be constructed and shown to have many of the required prop-
erties. For some such properties we have not yet been successful in constructing a 
proof, but will outline steps that may lead to one.

We argue that the wave equation must be nonlinear, because it must describe the 
evolution of a system from a superposition of states into a single one of those states. 
A linear equation cannot do that, even if the measurement apparatus is explicitly 
accounted for, because the previous sentence still applies with “system” defined as 
the union of the system being measured and the apparatus.

The equation must also be nonlocal in space. We see this because for certain 
measurements (e.g., the energy of a nonrelativistic bound particle), the condition 
of being in a single eigenstate (or set of degenerate eigenstates) of the correspond-
ing operator is not a local property, that is, that condition is not determined by the 
value of the wavefunction, its derivatives, and other relevant parameters (e.g, the 
Schrödinger potential V(x)) at a single point in space (see Appendix A for details). 
Of course, relativistic frame invariance requires that the wave equation be nonlocal 
in time as well.

At this point it is apparent that we need more than a new interpretation; since we 
require a nonlinear, nonlocal wave equation, the formalism of QM must be modified. 
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In fact, the nonlocality requirement cannot be met by any differential equation; the 
most natural nonlocal form would be an integral or integrodifferential equation 
(IDE).

We will also require a “realistic” theory to be time-symmetric. Again, the best 
argument for this is that other fundamental physical theories are symmetric in time.1 
Even in conventional QM, the unitary evolution of the wavefunction is time-sym-
metric; the part that is not is the measurement-induced collapse, that is, the process 
that is least understood. Symmetry in time implies retrocausality, roughly speaking, 
the idea that effects may precede their causes in time. (To be more precise, in a 
retrocausal theory the solution at t is found as a function of, inter alia, variables at 
t′ > t.)

Multiple retrocausal approaches have been explored by various researchers, but 
the tack we will take is that Nature finds a stationary point of the action

where L is the Lagrangian and L the Lagrangian density, subject to initial and final 
conditions at ti and tf  (and of course spatial boundary conditions as well). The solu-
tion corresponding to that extremum describes the system at times and positions 
within the enclosed region of spacetime.2 This approach, called the Lagrangian 
Schema by Wharton [2] (see also [3]), is immediately compatible with Hamilton’s 
principle, which is the variational approach used by Schwinger [1] to construct 
quantum field theory. In an ideal measurement, we expect that the experimental 
preparation provides the initial conditions at ti , and the experimental features that 
allow the result to be read off provide the final conditions at tf  . The final conditions 
will be less stringent than the initial conditions, and may not be constraining at all, 
since the system is normally prepared in a single specified state but may end up 
in any one of multiple states. Accordingly, our variational analysis will employ a 
“natural boundary condition” (NBC) at tf  . [4] Note that this asymmetry in treatment 
of initial and final times is due to the experimental design (prepare the experiment at 
ti and read the result at tf  ), not time asymmetry in the theory.

Our exposition will be nonrelativistic, and we will find it useful to limit our atten-
tion to a single reference frame and in particular to dependence of variables on time 
in that frame. Nevertheless, the variational principle is inherently compatible with 
special relativity [1], and we expect that it can readily be expressed in a relativisti-
cally covariant formulation. Relativistic Lagrangians routinely appear in quantum 

(1)S ≡ �
tf

ti

dt L ≡ � d4xL

1 Thermodynamics seems to have a preferred direction of time, but the fundamental dynamic laws that 
give rise to it are time-symmetric.
2 Our description here of a solution in a spacetime region bounded by an initial and a final time is 
employed to simplify the exposition, but it clearly is not the most general case. In general, we consider a 
region of interest that is bounded by two spacelike surfaces, as in reference [1], such that at any point in 
space the region extends from one surface (the initial surface) to the other (the final surface). We expect 
that the analysis outlined below for the special (and frame-dependent) case in which ti and tf  are inde-
pendent of position can trivially be extended to the more general case.
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field theory, [5] and the four-dimensional integration of the Lagrangian density to 
produce the action is an operation invariant under change of reference frames.

Motivated yet again by a desire to have QM behave as other physical theories do, 
we propose that genuinely random variables are not root causes of physical phenom-
ena, but underlying physical mechanisms may depend on uncontrolled or poorly-
understood parameters such that a variety of outcomes are possible from experiments 
that appear to be identically prepared. The empirical fact that different outcomes 
may result from apparently identically-prepared repetitions of the same measurement 
proves that the boundary conditions underconstrain the problem. At ti , the system is 
prepared in a given quantum state or superposition of states, but that description falls 
short of a specification of every possible variable, as it must by quantum complemen-
tarity [3, 6]. Possibly the full specification of the initial (ontological) state consists of 
the given quantum state, plus additional parameters unknown to or uncontrolled by 
the experimenter. Similarly, the measurement of a quantum state at tf  does not deter-
mine the ontological state at that moment; in fact, the measurement readout at tf  is a 
weaker constraint than the preparation at ti , because it determines only the variable 
(operator) measured but not its value (eigenvalue). This indeterminacy provides the 
opportunity for uncontrolled variables to participate in determining the result of the 
measurement. It ought to be possible to identify such parameters and explain indeter-
minacy and Born’s rule in terms of their variation.

It may be argued that such uncontrolled parameters constitute “hidden variables” 
disallowed by Bell’s Theorem. In fact, Bell’s Theorem does not apply because the 
theory will be nonlocal, and also because the proof of the theorem relies on assump-
tions contradicted by retrocausality [7].

Ultimately, the frequencies of the different outcomes possible from a single 
experimental definition must reflect the distribution of uncontrolled parameter 
values in a large number of realizations of the experiment. The observed fact that 
that those frequencies may be described by a simple law (Born’s rule) presumably 
reflects a likelihood of an approximately universal distribution of the parameter val-
ues in experiments that are likely to be conducted. For instance, suppose the experi-
mental result depends on a high-frequency sinusoidal function of some experimental 
time. If in an ensemble of experimental realizations that time is naturally distributed 
over a range large compared to the period of oscillation, it is an excellent approxi-
mation to say that that time has a uniform distribution over a single period. In this 
way, it is reasonable to expect that naturally-occurring ensembles of experiments 
may be found reliably to give outcome frequencies satisfying Born’s rule.

Our theoretical development will be based on the variational approach used 
by Schwinger to construct quantum field theory.3 In this approach, the require-
ment of stationary action leads to a wave equation that is linear and local. We 
observe that if S is stationary then S2 is also; it would not be wrong4 to write 

3 The known [8] equivalence of Schwinger’s approach to the path-integral methods elaborated by Feyn-
man implies that our exposition could be recast in terms of path integrals, but it also implies that the 
variational-principle approach we use here suffices to make our case without recourse to them.
4 S2 has a stationary point at S = 0 that S in general does not have, but there is no requirement that every 
stationary point correspond to a physically reasonable state.
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the variational principle in terms of S2 . The squared expression is naturally writ-
ten as a double integral over some time interval of an integrand involving two 
instances of the wavefunction and two of the Lagrangian operator. This provides 
us an opportunity to introduce both nonlinearity and nonlocality by modifying 
which operator operates on which wavefunction.

This is promising by the following reasoning. In its simplest form, a varia-
tional principle leads to a differential equation, the Euler equation [4]. In order to 
describe a nonlocal process, we desire an integrodifferential equation (IDE). An 
IDE can be found as a stationary point of a more complex functional—a double 
rather than a single integral in time—but only if that functional does not factor 
into a product of single integrals. (See Appendix B for mathematical details.) For 
this reason we cannot produce the nonlocal (or, for that matter, the nonlinear) 
behavior we seek by simply replacing S by S2 in the variational principle, but we 
can if we modify the S2 expression so that it does not factor. (For clarity, we will 
henceforth refer to the resulting functional as the “superaction.”) Since we are 
trying to describe the measurement process, the modification is naturally limited 
to those spacetime locations where the measured system and the apparatus inter-
act. Consequently, in any region of spacetime that does not include such inter-
actions, the superaction factors to S2 , and the wave equation derivable from the 
original action S applies. Our approach thus will agree with standard QM in the 
absence of a measurement.

Another characteristic we require for a realistic theory is that we must not treat 
a measurement differently from other physical processes, or a measurement appa-
ratus differently from other systems, for the simple reason that we do not know 
how to convincingly justify such distinctions. We will define a measurement 
apparatus simply as another system that interacts with the system being measured 
in such a way that their states will tend to agree. When a measurement is being 
performed, there must be an interaction between the two subsystems; we will 
adopt a Lagrangian term quadratic in the discrepancy between the eigenvalues of 
the two systems. This is the simplest form that takes an extreme value when the 
eigenvalues agree. We may regard the quadratic form simply as proof of princi-
ple, in the hope that more complicated interactions will have similar behavior; but 
we will venture a stronger prediction, that more complicated interactions will be 
similar because their Taylor expansions about the point of equality of eigenvalues 
will begin with a quadratic term.

The modifications made to the (squared) action denote some form of coupling 
between the two instances of the wavefunction (or/and the two instances of the 
interaction term in the Lagrangian) in the integrand. At this point it is a largely 
mathematical construct, but one provocative interpretation is based on the obser-
vation that S is time-reversal invariant; it is agnostic as to whether it represents 
a state traveling “forward” or “backward” in time. Then S2 might be taken to 
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represent a forward and a backward wave passing each other without interact-
ing, and the modified form of S2 describes an interaction between them at the 
time when the measured system and the apparatus interact, which is appropri-
ate on physical grounds. In fact, this interaction sounds like, and may fulfill the 
functions of, the “handshake” between offer and confirmation wave in Cramer’s 
Transactional Interpretation [9–11]—although our approach differs from Cram-
er’s in important ways, some of which we will mention below.

We will show that our formalism predicts that (1) in the absence of a measure-
ment, both subsystems evolve according to the usual unitary relations, but (2) when 
a measurement is made, the pointer state of the apparatus will come to agree with 
the measured system, and the measured system will end up in a single eigenstate 
(or superposition of degenerate eigenstates) of the appropriate operator. We believe 
it should be possible to show that (3) this theory predicts outcomes distributed 
according to Born’s rule, based on likely distributions of the values of the govern-
ing uncontrolled parameters. That proof has so far eluded us, but in Appendix C we 
sketch out some of the approaches that may contribute to a successful theoretical 
analysis.

The retrocausal approach provides other advantages, such as a simple explana-
tion of EPR correlations. Correlations between two entangled and now widely sepa-
rated objects are easily explained because the measurement of one particle has an 
influence that can travel backward in time to the time and place where the parti-
cle became entangled, and then forward to the other particle. [12] In particular, in 
an EPR experiment, the final conditions constraining the solution will include the 
measurement apparatus settings (e.g., the choice of axis with respect to which a 
given detector will measure the spin of a particle or the helicity of a photon), so the 
solution describing the complete system between ti and tf  must be consistent with 
those settings and with the wave equation (which will enforce, e.g., conservation of 
total spin angular momentum.)

Another paradox that is trivially resolved is Wheeler’s delayed-choice experi-
ment. [13] That experiment involves some mechanism that interacts with the trave-
ling entity (e.g., photon), and that can be set to measure either a particlelike or a 
wavelike property of that entity. In our picture, that interaction imposes a spatial or/
and final boundary condition on the solution. The boundary condition applies when 
and where the traveling entity interacts with the mechanism, with the result that the 
solution of the variational principle over the entire relevant spacetime region is con-
sistent with the setting at that time and place, and displays at tf  the particlelike or 
wavelike property selected. The fact that the experimenter may have chosen the set-
ting after ti is completely irrelevant.

We expect that many other (real and thought) experiments that are regarded as 
paradoxical can be explained by our retrocausal variational approach.

We point out other retrocausal approaches that cannot achieve the goals we have 
set ourselves here. The principal reason for that is that they are interpretations, 
which by definition leave the formalism unchanged. For instance, the Two-State 
Vector Formalism of Aharonov, Bergmann, and Lebowitz [14] is a way to describe 
quantum states and their properties in a time-symmetric, perfectly even-handed 
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way, but cannot possibly make predictions different from those of standard quantum 
mechanics. [15]

Cramer’s Transactional Interpretation [9–11] is also presented as an interpretation 
consistent with the standard formalism. It describes interesting quantum phenomena 
in terms of “offer waves” and “confirmation waves,” all of which indeed satisfy the 
appropriate wave equation from standard QM. Unfortunately, there is no mathemati-
cal description of the important events in those processes—for instance, a boundary 
in spacetime between a region containing only an offer wave and one containing 
superposed offer and confirmation waves. Since in the standard formalism the wave 
equation does not describe those events, we suspect that supplying Cramer’s missing 
mathematical description would necessarily promote his approach from an interpre-
tation to a genuinely new theory, which might even resemble the theory we present 
in this article.5 However, he has not taken that step.

Another approach to quantum reasoning that may be termed retrocausal is Grif-
fiths’s “consistent histories.” [16, 17] It is based on a fundamentally probabilistic 
description of nature, and so does not satisfy our requirements for a realistic theory. 
(We point out that this objection also applies to another ontic approach, the collapse 
theory of Ghirardi, Rimini and Weber [18]—but we reject that approach as well on 
the grounds that it is not time-symmetric.)

In the next section, we will develop the theory based on a variational principle, 
generalized so as to result in a nonlocal equation. The subsequent section will dis-
cuss the predictions of that equation and compare them to the properties that we 
have argued must appear in a successful theory. In some cases the agreement will 
be clear, although it will remain for the future to describe the details of approach 
to the solution, and to prove that the solution is unique. For Born’s rule, we will 
argue for the possibility of relevant but uncontrolled parameters, and indicate how 
the expected output frequencies may follow from their distribution; however, ana-
lytic proof or numerical demonstration that our theory yields frequencies consistent 
with Born’s rule remains to be done. In the last section we will summarize what we 
have done, discuss new perspectives required by retrocausality and nonlocality, and 
list some of the next steps to be taken to continue developing these ideas. Appen-
dices present more technical material on how the nonlocality requirement follows 
from the requirement that a measurement finds only states with a single eigenvalue; 
an extension of variational calculus used in our analysis of the nonlocal variational 
principle; and the bulk of the speculative Born’s rule analysis.

2  Theoretical Development

2.1  Model of the Measurement Problem

As the principal issues motivating our theoretical development have to do with 
quantum measurement, we will consider an idealized model of such a measurement. 

5 We will later point out one difference between such a theory and ours.
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Suppose that the system is prepared in a known superposition 
∑

j Cj
����j

�
 of eigen-

states of the operator �op at time ti ; that is, the eigenstates are well-defined and the 
coefficients Cj(ti) are known. This superposition is known to be initially stable; 
Ċj(ti) = 0 for all j. The eigenstates themselves must be stable, so �op commutes with 
the Hamiltonian. Finally, the stability of an (unperturbed, unmeasured) superposi-
tion implies that the system is linear when in isolation, that is, it satisfies a wave 
equation linear in the wavefunction. This consideration will be seen to constrain the 
form of possible Lagrangians for the system. We will develop our ideas using a par-
ticular simple form, as proof of principle.

During all or part of the interval [ti, tf ] , a measurement apparatus (which we will 
call system 2) interacts with the measured system (system 1). A requirement for gen-
erality of the theory—validity of the properties of “quantum measurements” across 
all types of measurements—excludes all but the most general description of the 
measurement apparatus and its interaction with the measured system. We therefore 
use a minimal description, that the apparatus has a “pointer state” variable �2 , and 
that it is coupled to the measured variable �1 of the system. Without loss of general-
ity, we define �2 so that its value in a successful measurement equals the value of 
�1 . Then the composite (system + apparatus) Lagrangian must include an interac-
tion term that depends on both measured and pointer state variables, and attains an 
extreme (or stationary) value when they are equal. The simplest such term is quad-
ratic in the corresponding operators, that is, proportional to (�1

op
− �2

op
)2.

Note that good experimental design dictates that the combined system (1 and 2) 
be well isolated in spacetime. Spatial isolation is accomplished by physical isolation 
or other control of the boundaries of the domain, and temporal isolation by system 
preparation at ti and measurement readout at tf  . This blocks influences from outside 
the spacetime region, which is important so that the spacetime integrals in this non-
local theory can legitimately be limited to the experimental domain.

2.2  Variational Approach

An isolated system (system 1 or system 2, in our case, when they are not interact-
ing), is described by a Lagrangian L[𝜓 , �̇� , t] , which must satisfy the Euler equation

Evidently the requirement that (2) yield a linear wave equation implies that the 
Lagrangian must be quadratic in � and its time derivative.

2.3  Normal‑Mode Expansion: Single System

Since the point of the measurement problem is to describe the evolution of a super-
position of eigenstates of a given operator to a single eigenstate, it will simplify mat-
ters to define a basis set of such eigenstates. This expansion will be specific to a 
given inertial reference frame—the frame in which the measurement is performed 

(2)0 =
𝜕L

𝜕𝜓
−

d

dt

𝜕L

𝜕�̇�
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and described by the above characteristics—because that will simplify the analysis 
and its comparison to those points. However, as explained above, we expect that 
the general theory (the form of the action, without dependence on the normal-mode 
expansion we will use here) will be relativistically appropriate and can be expressed 
in covariant form.

At any given time t, let |||�
�

j

⟩
 be for system � = 1 or 2 an eigenstate of a Hermi-

tian operator ��

op
,

satisfying the applicable spatial BCs, and let those eigenstates form an orthonormal 
basis for states of system � . Since external fields acting on the system may change 
during the course of the measurement (perhaps due to the measurement process 
itself), the eigenvalues and eigenstates are in general functions of time. In many 
interesting cases they are slowly varying functions of time, and for simplicity we 
will confine ourselves to the case in which the eigenvalues ��

j
 are constant. We 

expect that the analysis presented below can be readily generalized to the time-
dependent case, for sufficiently slow variation.

We will also require each normal mode |||�
�

j

⟩
 to satisfy the Euler equation 

based on its single-system Lagrangian L� . This is possible because as stated 
above, the operator corresponding to the measured variable commutes with the 
Hamiltonian. The basis states will be taken to be simultaneous eigenstates of both 
operators, and eigenstates of the Hamiltonian satisfy the variational principle. 
Since a basis vector |||�

�

j
(t)
⟩

 was defined to be an eigenstate of the Hamiltonian, it 
has an energy E�

j
 and a time derivative

(Schödinger picture). We will also take the energies E�

j
 to be constant; then it fol-

lows that

Now if system � = 1 (measured system) or 2 (measurement apparatus) is isolated, its 
wavefunction can be expanded

and the usual normalization condition on ��(t) implies

(3)��

op

|||�
�

j
(t)
⟩
= ��

j

|||�
�

j
(t)
⟩

(4)
d

dt

|||�
�

j
(t)
⟩
= −

i

ℏ
E�

j

|||�
�

j
(t)
⟩

(5)
⟨
��

j
(t1)

|||�
�

k(t2)

⟩
= �jk e

−
i

ℏ
E�

j
(t2−t1)

(6)
|||�

�(t)
⟩
=
∑

j

C�

j
(t)
|||�

�

j
(t)
⟩

(7)
∑

j

|C�

j
(t)|2 = 1
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At present we expect this condition to hold for any t, but in Sect. 2.8 we will argue 
for removing this constraint.

The action is

Since the wavefunction �� is completely determined by the set of coefficients C�

j
(t) , 

the condition of stationarity of the action reduces to the problem of finding those 
coefficients, which must satisfy

This formulation of the problem replaces (2).
It is traditional in quantum field theory to perform the variational calculus analy-

sis by varying (differentiating with respect to) the physically significant canonical 
fields and momenta, and that approach is extremely useful in producing intuitively 
appealing and useful evolution equations. [1, 5] However, the stationarity of the 
action is a mathematical condition, and as long as our formulation spans the space 
of its allowed variations, the mathematics do not dictate our choice of the functions 
in terms of which those variations are expressed. Because we are interested in the 
eigenstate content of the wavefunction, the corresponding coefficients are particu-
larly useful to us, and we choose them as the description we will use in the vari-
ational principle.

2.4  Combined Systems

Now we can write from (8)

if there is no interaction or entanglement between the two systems, that is, the com-
bined state factors as ��⟩ ≡ ���1

����2
�
.

To allow the two subsystems to be entangled, we replace the product of single-
system states ||�1

⟩
 and ||�2

⟩
 by the joint state

(8)

S� ≡�
tf

ti

dt L�(t)

=�
tf

ti

dt
⟨
��(t)

|||L
�

op

|||�
�(t)

⟩

=
∑

j,k
�

tf

ti

dt
⟨
��

j
(t)
|||C

�∗
j
(t)L�

op
C�

k
(t)
|||�

�

k
(t)
⟩

(9)0 =
𝜕L�

𝜕C�

j

−
d

dt

𝜕L�

𝜕Ċ�

j

∀j

(10)S1 + S2 = ∫
tf

ti

dt
⟨
�1(t)

|||
⟨
�2(t)

|||(L
1

op
+ L2

op
)
|||�

1(t)
⟩|||�

2(t)
⟩

(11)��(t)⟩ =
�

j,k

Cjk(t)
����

1

j
(t)
�����

2

k
(t)
�
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whereupon the normalization condition6

implies

Then

and
To simplify the single-system terms, suppose L1

op
 and L2

op
 are of the form

so L1 and L2 take the form

with real constants A� and B� . Then the fact that |||�
�

j

⟩
 is an eigenstate of the Hamil-

tonian means that it satisfies the Euler equation (2), which we can write as

At this point we observe that the functional in question is a physical action and 
therefore real, so it is unchanged if we drop any imaginary part of the integrand. 
This has a simplifying advantage. When we use variational calculus to find a station-
ary state with respect to variations of a complex quantity ( |||�

�

j

⟩
 or Cjk ), we may treat 

the real and imaginary parts of that quantity independently, with an Euler equation 
for each of them. Alternatively, we may treat the quantity and its complex conjugate 
( 
⟨
��

j

||| or C∗
jk

 ) as the two functions to be varied. In our case, with a real integrand, 
doing so has the convenient feature that the two resulting Euler equations are 

(12)⟨�(t)��(t)⟩ = 1

(13)
∑

j,k

|Cjk(t)|2 = 1 ∀t

(14)

S1 + S2 =
�

j,k,�,m
∫

tf

ti

dt
�
�1

j
(t)
���
�
�2

k
(t)
���C

∗
jk
(t)(L1

op
+ L2

op
)C

�m(t)
����

1

�
(t)
� ���m2(t)⟩

(15)
L�
op

=A� − B� d2

dt2

=A� +
�⃖��d

dt
B� d

dt

(16)L� ≡ ⟨
𝜓�|||L

�

op

|||𝜓
�
⟩
= A�

⟨
𝜓�|||𝜓

�
⟩
+ B�

⟨
�̇��|||�̇�

�
⟩

(17)

0 =
𝜕L�

𝜕
⟨
𝜓�

j

|||
−

d

dt

𝜕L�

𝜕
⟨
�̇��

j

|||
=A�|||𝜓

�

j

⟩
− B�|||�̈�

�

j

⟩

6 The reader may notice that the domain of spatial integration implied by this inner product is not invari-
ant under change of reference frame. We will resolve this problem eventually, in footnote 8.
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complex conjugates of each other and we only need to solve one of them. Here in 
(17) we choose to vary the bra vector.

Substituting (15) into (14) and using property (17) of the eigenvectors, we find 
(introducing the shorthand notation B ≡ B1 + B2 ) that

Then

where in the last step we rely on the hypothesis that Ċjk vanishes at ti as a condition 
imposed by the experimental preparation, and at tf  since that is implied by the NBC. 
Finally, as intended, we discard the imaginary part of the integrand:

2.5  Interaction Term

As argued above, we must account for interaction by including in the action a term 
proportional to (�1

op
− �2

op
)2 . A simple form for such an interaction term is

for some constant � . Then, defining another shorthand notation Δjk ≡ �1

j
− �2

k
,

(18)

S1 + S2 =
∑

j,k,�,m
∫

tf

ti

dt
⟨
𝜓1

j
(t)
|||
⟨
𝜓2

k
(t)
|||C

∗
jk
(t)
[
(L1

op
+ L2

op
), C

�m(t)
] |||𝜓

1

�
(t)
⟩ |||𝜓

2

m
(t)
⟩

= − B
∑

j,k,�,m
∫

tf

ti

dt
⟨
𝜓1

j

|||
⟨
𝜓2

k

|||C
∗
jk

(
C̈
�m + 2 Ċ

�m

d

dt

) |||𝜓
1

�

⟩ |||𝜓
2

m

⟩

(19)

S1 + S2 = − B
∑

j,k,�,m
∫

tf

ti

dt
⟨
𝜓1

j

|||
⟨
𝜓2

k

|||C
∗
jk

(
C̈
�m −

2i

�
E
�m Ċ

�m

) |||𝜓
1

�

⟩ |||𝜓
2

m

⟩

= − B
∑

j,k
∫

tf

ti

dt C∗
jk

(
C̈jk −

2i

�
Ejk Ċjk

)

=B
∑

j,k
∫

tf

ti

dt
(
|Ċjk|2 +

2i

�
Ejk C

∗
jk
Ċjk

)

(20)S1 + S2 = B
∑

j,k
∫

tf

ti

dt
(
|Ċjk|2 + Re

{
2i

�
Ejk C

∗
jk
Ċjk

})

(21)SI = � ∫
tf

ti

dt ⟨�(t)�(�1

op
− �2

op
)2��(t)⟩

(22)

SI =�
∑

j,k,�,m
∫

tf

ti

dt
⟨
�1

j
(t)
|||
⟨
�2

k
(t)
|||C

∗
jk
(t) (�1

op
− �2

op
)2 C

�m(t)
|||�

1

�
(t)
⟩ |||�

2

m
(t)
⟩

=�
∑

j,k
∫

tf

ti

dt Δ2

jk
|Cjk(t)|2
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Then we might expect the complete action to be

2.6  Nonlocal Interaction Term

Since the phenomenon that requires nonlocality (measurement-induced collapse of 
the wavefunction) is due to the interaction between systems 1 and 2, we suppose 
that it is the interaction term SI that must be made nonlocal. We propose to add to 
it a nonlocal piece involving two integrations on time. We start with an expression 
resembling SI in (21) but with two integrations on time:

Here � is a real constant, and the primed ��

op
 operators combine with the primed bra 

and ket vectors in an inner product, as do the unprimed operators and bra and ket 
vectors. Now we make changes so as to couple the t1 and the t2 integrals. We move 
one of the primes in the operator kernel, changing it from (�1

op
− �2

op
) (�1�

op
− �2�

op
) to 

(�1

op
− �2�

op
) (�1�

op
− �2

op
) . We also move the prime from one ket vector to the other. 

Finally, we observe that in this form the interaction between the state at t1 and at 
that at t2 is a function of the time difference. It may be that that effect weakens with 
temporal separation, so a dimensionless non-negative real function f (t1 − t2) should 
be included in the integrand. By symmetry, f must be an even function, and we 
expect it to be a monotonically decreasing function of the absolute value of its argu-
ment. For later convenience, let us suppose that there is a real constant � such that 
f (t1 − t2) = 0 whenever |t1 − t2| ≥ � . These changes result in the term

Physically this expresses an interaction or “auto-entanglement” between the state ��⟩ 
at time t1 and the same state at t2 ; this is an expression of retrocausality in the sense 
that the state at the later time interacts with its earlier value. As mentioned earlier, a 
more speculative interpretation, based on the time symmetry of the variational prin-
ciple, is that this term describes interaction between “forwards” and “backwards” 
histories, something like the “transaction” in Cramer’s Transactional Interpretation, 
but it is not quite the same.7

(23)S = S1 + S2 + SI

(24)
�

�

∫
tf

ti

dt ⟨�(t)�(�1

op
− �2

op
)��(t)⟩

�2

= � ∫
tf

ti

dt1 ∫
tf

ti

dt2 ⟨�(t1)
��⟨�(t2)

��
�
(�1

op
− �2

op
) (�1�

op
− �2�

op
)���(t1)⟩���(t2)⟩

�

(25)

RI ≡ � �
tf

ti

dt1 �
tf

ti

dt2 f (t1 − t2)⟨�(t1)
��⟨�(t2)

��
�
(�1

op
− �2�

op
) (�1�

op
− �2

op
)���(t1)⟩

����(t2)⟩

7 In addition to the differences listed earlier, we point out that Cramer proposed a two-way interaction 
between lightlike separated events, whereas our form allows for the possibility of timelike, lightlike and 
spacelike interactions. We may of course restrict those options as we gain future understanding.
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We point out that for the extreme choice of f

the integrand takes a more intuitive form in terms of quantum expectation values 
⟨O⟩ ≡ ⟨��O��⟩:

in which

This suggests that minimizing the term 
⟨
(�1 − �2)2

⟩
 drives the action of measure-

ment (system and apparatus evolve to states with the same eigenvalue) and the other 
two terms drive wavefunction collapse (until each system ultimately has only a sin-
gle eigenvalue �� =

⟨
��

⟩
 ). We will find that the �-function form of f is unsuitable 

for our objectives, so the physical interpretation of RI is more subtle, but this limit-
ing case suggests that that term drives both the measurement property and wave-
function collapse.

Next we expand in normal modes according to (11) and use the eigenvalue 
relation (3):

Then, using (5) and defining Ejk ≡ E1

j
+ E2

k
,

where

In the second line of (30) we have replaced the integrand by its real part, for the rea-
sons discussed above, utilizing the property

(26)f (t1 − t2) = �(t1 − t2)

(27)

⟨�(t)�⟨�(t)��(�1

op
− �2�

op
) (�1�

op
− �2

op
)��(t)⟩��(t)⟩� =

�
�1
�2

− 2
�
�1�2

�
+
�
�2
�2

=
�
(�1 − �2)2

�
−
�
(Δ�1)2

�
−
�
(Δ�2)2

�

(28)Δ�� ≡ �� −
⟨
��

⟩
� = 1, 2

(29)

RI =� ∫
tf

ti

dt1 ∫
tf

ti

dt2 f (t1 − t2)
∑

j, k,�,m,

n, p, q, r

⟨
�1

j
(t1)

|||
⟨
�2

k
(t1)

|||C
∗
jk
(t1)

⟨
�1

�
(t2)

|||
�⟨
�2

m
(t2)

|||
�

C∗
�m
(t2) Δqp Δnr Cnp(t1)

|||�
1

n
(t1)

⟩�|||�
2

p
(t1)

⟩�

Cqr(t2)
|||�

1

q
(t2)

⟩|||�
2

r
(t2)

⟩

(30)

RI =∫
tf

ti

dt1 ∫
tf

ti

dt2 r
I(t1, t2)

=
1

2 ∫
tf

ti

dt1 ∫
tf

ti

dt2
[
rI(t1, t2) + rI(t2, t1)

]

(31)

rI(t1, t2) ≡ �f (t1 − t2)
∑

j,k,�,m

Δjm Δ
�k C

∗
jk
(t1)C

∗
�m
(t2)C�m(t1)Cjk(t2) e

−
i

ℏ
(Ejk−E�m)(t2−t1)
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2.7  Complete Superaction and Variational Analysis

Then the full superaction is

where s12 and sI are the integrands (including prefactors) in (S1 + S2) and SI , as given 
in (20) and (22):

We observe that in this form, the integrand of S is real and symmetric in t1 and t2 . It 
depends on the coefficients {Cpq} at two times. We need to find a stationary point of 
the action subject to the constraint (13). In Appendix B we outline the analysis of 
such a problem, including the use of a Lagrange mulitipler �(t) to enforce the con-
straint, leading to integral equation (71). For any given choice of j and k, we vary C∗

jk
 

by that procedure and define the operator

Accordingly, we find

This becomes

in which we define the function

(32)
[
rI(t1, t2)

]∗
= rI(t2, t1)

(33)

S =S1 + S2 + SI + RI

=∫
tf

ti

dt
[
s12(t) + sI(t)

]
+

1

2 ∫
tf

ti

dt1 ∫
tf

ti

dt2
[
rI(t1, t2) + rI(t2, t1)

]

=∫
tf

ti

dt1 ∫
tf

ti

dt2

{
1

2T

[
s12(t1) + sI(t1) + s12(t2) + sI(t2)

]
+

1

2

[
rI(t1, t2) + rI(t2, t1)

]}

(34)s12 = B
∑

j,k

[
|Ċjk|2 +

i

�
Ejk

(
C∗
jk
Ċjk − Ċ∗

jk
Cjk

)]

(35)sI = �
∑

j,k

Δ2

jk
|Cjk|2

(36)W ≡ 𝜕

𝜕C∗
jk
(t1)

−
𝜕

𝜕t1

||||t2
𝜕

𝜕Ċ∗
jk
(t1)

(37)

0 =
1

2
W s12(t1) +

1

2
W sI(t1) +

1

2 ∫
tf

ti

dt2 W
[
rI(t1, t2) + rI(t2, t1)

]

+ T �(t1)
�

�C∗
jk
(t1)

[
∑

�,m

|C
�,m(t1)|2 − 1

]

(38)C̈jk(t) =
2i

�
Ejk Ċjk(t) +

1

B

[
𝜇Δ2

jk
+ 2T 𝜆(t)

]
Cjk(t) +

𝜈

B
C̃jk(t)
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It can be seen by varying the action by Cjk instead of C∗
jk

 that �(t) must be real. To 
find it, we note that the second derivative of the normalization condition (13) is

We eliminate C̈jk between (38) and (40) and then solve for (a constant times) �(t):

Substituting that expression into (38),

This is the equation that we expect describes the evolution of the complete system 
(that is, system + apparatus), as described by the coefficients {Cjk(t)} in the normal-
mode expansion (6).

The BCs to be applied with (42) are the specified values of {Cjk(ti)} from the ini-
tial preparation, and the NBC at tf  , which takes the form

in which L is the integrand in the full action on the last line of (33). This form of the 
NBC is derived in Appendix B.

2.8  Alternative Treatment of the Normalization Condition

Comparison of (38) with (42) shows that rigorous enforcement of the normaliza-
tion condition (13) has complicated the mathematics. Since we hope to show that 
experimental results of great simplicity and generality (e.g. Born’s rule) follow from 
this theory, we are suspicious of the additional complexity and wonder whether it is 
absolutely necessary to satisfy the stated normalization condition at every instant t.

Our skepticism about that requirement is also based on a thought experiment 
described by Renninger [19, 20], which is equivalent to the following description. 
An excited atom at the origin is known to emit a photon at t = 0 , but the direc-
tion is unknown, so the photon’s wavefunction satisfies |�|2 = �(r − ct)∕(4�r2) . 

(39)C̃jk(t) ≡
∑

�,m

Δjm Δ
�k C�m(t) �

tf

ti

dt� C∗
�m
(t�)Cjk(t

�) f (t − t�) e−
i

�
(Ejk−E�m)(t

�−t)

(40)2
∑

j,k

(
|Ċjk|2 + Re

{
C∗
jk
C̈jk

})
= 0

(41)
2T𝜆

B
= −

∑

j,k

(
|Ċjk|2 +

𝜇

B
Δ2

jk
|Cjk|2 + Re

{
2i

�
Ejk C

∗
jk
Ċjk +

𝜈

B
C∗
jk
C̃jk

})

(42)

C̈jk =
2i

�
Ejk Ċjk +

𝜇

B
Cjk

(
Δ2

jk
−
∑

�,m

Δ2

�m
|C

�m|2
)

+
𝜈

B

(
C̃jk − Cjk Re

{
∑

�,m

C∗
�m
C̃
�m

})
− Cjk

∑

�,m

(
|Ċ

�m|2 + Re
{
2i

�
E
�m C∗

�m
Ċ
�m

})

(43)0 = ∫
b

a

dt2

(
𝜕L

𝜕Ċ∗
jk
(t1)

)||||||t1=tf
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A perfectly collecting hemispherical detector screen occupies the upper half of 
the sphere r = 1 light-second. Therefore, if the photon’s emission direction is 
within 𝜃 < 𝜋∕2 , it is collected and extinguished at t = 1 second. Otherwise, it 
is not registered by the detector screen, and its wavefunction changes to satisfy 
|�|2 = �(r − ct)H(� − �∕2)∕(2�r2) , where H is the Heaviside function. The instan-
taneous change in the denominator from 4�r2 to 2�r2 at t = 1 is not due to any meas-
urement, for there is none, nor to any physical change in the photon; it arises entirely 
from the normalization requirement. This seems unphysical, and our suspicion deep-
ens when we consider that this description depends on choice of reference frame; 
for instance, in any other frame the detector screen would not be (hemi)spherical but 
spheroidal, and so the resulting change in magnitude of the uncollected wavefunc-
tion would happen over a nonzero interval of time.

A more physically sound description would be that a photon intercepted by the 
detector screen does not simply vanish; it interacts with (a) particle(s) of the screen 
to produce some physical effect, for instance dislodging a photoelectron. A more 
complete description of the experiment would include that effect. Since half of the 
outgoing spherical photon wavefunction participates in that effect, it is unreasonable 
for the uncollected half to double its weight to satisfy a normalization condition. We 
argue instead that the outgoing uncollected photon wavefunction after t = 1 should 
be normalized to integrate to 1/2, and with that change we see that a discontinuous 
and unphysical change is no longer needed in that uncollected part at t = 1.

Armed with our reasoning that the normalization condition (13) is not absolute, 
we propose to relax it for the experiment that is the subject of this paper. Although 
for many experiments we do not expect to lose any of the wavefunction weight in 
mid-experiment, we point out that the total weight of the wavefunction (unity, mean-
ing one particle of whatever type is being described) is known only at ti and tf  . There 
is not, nor can there be, any experimental evidence for a unity (or any other) value 
of the weight at intermediate times. Therefore we propose that (13) (and equiva-
lently (12)) is a constraint only at ti and tf  . This is easily handled mathematically; 
we simply stipulate that (13) is part of the initial and final conditions.8 Then we can 
dispense with the Lagrange multiplier altogether, so the IDE to be satisfied is

8 As noted in footnote 2, the initial and final conditions are actually imposed on spacelike initial and 
final surfaces that are not generally surfaces of constant time. Now our decision to require normalization 
constraints only on those surfaces solves another problem. In the spatial integral ⟨�(t)��(t)⟩ , the domain 
of integration is frame-dependent, so a normalization condition of the form (12) is ill-posed. But the 
initial and final spacelike bounding surfaces are frame-independent. We therefore propose that in general, 
a wavefunction � is constrained by a normalization condition only on a spacelike surface � where it is 
constrained by an (initial or final) boundary condition, and that the condition is ⟨���⟩� = 1 (notation 
indicating integration over � ) rather than (12).
 Note that experiments with sources or sinks of the wavefunction (the quantum field) require careful 
definition of the initial and final surfaces. For instance, if the Renninger experiment were augmented 
with a lower-hemisphere detector at r = 2 , then the final surface would include two sheets: one at 
t = 1, r = 1, � ≤ �∕2 , and another at t = 2, r = 2, � ≥ �∕2 . Then the normalization value of 1 would 
apply on the union of those two sheets.
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Since we regard the simplicity of this equation in comparison to (42) as an argument 
for its plausibility, we will adopt it rather than the latter in the remaining sections of 
the paper; nevertheless, much of the following reasoning can be applied to (42) as 
well at the cost of more algebra.

3  Comparison to Desired Properties

3.1  Stability of a Superposition in the Absence of a Measurement

We observe at this point that (44) predicts the stability of an unperturbed superposi-
tion, as it should. When there is no interaction between the system and the measure-
ment apparatus, � = � = 0 . The resulting equation

has the solution Ċjk = 0 ∀j,k , that is, stability of the superposition. Furthermore, 
since (for each subsystem � = 1 or 2) the modes in the expansion (11) were defined 
as solutions of the no-measurement wave equation, the stable solution resulting from 
our analysis here agrees with the solution of the ordinary wave equation for each 
isolated system.

3.2  Collapse to a Single Eigenstate with �1

j
= �

2

k

This includes three events we expect in a measurement: system 1 must collapse to a 
single eigenstate of �1

op
 , or a superposition of eigenstates with the same eigenvalue; 

system 2 must similarly collapse; and the eigenvalues of the two systems must agree. 
The third condition (measurement) requires that for any j, k,

Although we will not analyze the differential equation (44) to describe the approach 
to these three conditions, we will show that it is consistent with their satisfaction in 
the steady state, when all time derivatives of {Cpq} vanish. Thus it is plausible for 
the combined system to reach such a state, and having done so, to remain in that 
state.

We see that condition (46) together with the steady-state condition cause every 
term in (44) to vanish except possibly the last. To understand those terms, consider 
that after the system attains a steady state, we can replace all the factors Cpq or C∗

pq
 

on the RHS of (39) by their final values, which satisfy (46). Then at times t greater 
than � after the full system reaches its steady state, any nonzero terms �,m on the 
RHS must have

(44)C̈jk(t) =
2i

�
Ejk Ċjk(t) +

𝜇

B
Δ2

jk
Cjk(t) +

𝜈

B
C̃jk(t)

(45)C̈jk =
2i

�
Ejk Ċjk

(46)Δjk = 0 or Cjk = 0
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If either of systems 1 and 2 has collapsed to a single state (or a set of states with a 
single eigenvalue), then by (46) the other system has also collapsed, and it is easy 
to see that (47) implies that Δjm = Δ

�k = 0 , so the only possible nonzero term in C̃jk 
is zero after all. Therefore the last term in (44) vanishes, so the equation is consist-
ent with the supposed late-time steady state. On the other hand, if systems 1 and 2 
have not collapsed, there are terms in (39) that do not trivially vanish. We conclude 
that the evolution equation predicts that a late-time steady state is only possible if 
both the measurement condition is satisfied (the apparatus state corresponds to the 
state of the system being measured) and both systems have collapsed to a single 
eigenvalue.

We would prefer to have a more rigorous analysis, both disposing of the pos-
sibility that the combined system never reaches a steady state and describing the 
approach to the steady state. This analysis must await future work, possibly includ-
ing numerical studies. Our objective in this paper is to show the possibility that a 
variational principle of the type we have developed can explain the measurement 
problem.

3.3  Consistency with Born’s Rule

At this point we take it as given that the system will collapse to a single value of the 
eigenvalue. Since the system being measured is denoted � = 1 , the weight corre-
sponding to eigenvalue �1

j
 is

(More generally, it is 
∑

j,k �Cjk(ti)�2 , where the sum on j is over all modes with a sin-
gle value of the eigenvalue. For simplicity, we will consider only the non-degenerate 
case, but the extension to the more general case should be straightforward.)

It will be convenient to denote averages over an ensemble of identically prepared 
experimental realizations by an overbar. Then, if it is taken as given that the collapse 
to a single eigenvalue is complete by tf  , we can see that the relation

is equivalent to Born’s rule. This equivalence holds because at the initial time ti , by 
the requirement of identical preparation, every member of the ensemble contributes 
the same value Pj(ti) to the ensemble average. At tf  , Pj = 1 in a fraction Pj(ti) of the 
realizations in the ensemble, and 0 in the others. So (49) is the relation that should 
be predicted by a successful theory.

We would like to be able prove that Born’s rule (49) follows from our nonlocal 
wave equation (42). The theoretical proof has eluded us so far; we may ultimately 
have to rely on numerical studies. However, we sketch out in Appendix C some of 
the ideas that may contribute to the theoretical analysis.

(47)Δjk = Δ
�m = 0

(48)Pj ≡
∑

k

|Cjk(ti)|2

(49)Pj(ti) = Pj(tf ) ∀j
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4  Discussion

4.1  Sensitivity of the System Evolution to a Measurement

The traditional challenge of quantum measurement is to explain the sensitivity 
of a quantum system to measurement, which changes its evolution from unitary 
evolution to collapse (state reduction). Our picture provides a quantitative expla-
nation for this sensitivity. The act of measuring a system involves causing it to 
physically interact with a measurement apparatus, and the variational principle 
describes the evolution of the combined system. The readout of the measurement 
at tf  defines the end of the domain of integration of the variational principle. Of 
course, the theory continues to apply after tf  , but the observation at tf  , like its 
preparation at ti and its spatial boundary conditions, imposes a leakproof barrier 
to influences from outside the problem domain, so that a solution may be found 
within that domain without reference to the rest of the universe.

Now if the measurement apparatus were read at some intermediate time tm , 
the structure of the problem would be different. Instead of applying between ti 
and tf  , the variational principle would apply twice, from ti to tm and from tm to tf  . 
The appearance of a constraint at tm as a final condition on the first interval and 
an initial condition on the second would make this a different problem than the 
original one from ti to tf  . (As we have explained, the intervention at tm results in 
the appearance of an NBC on the solution between ti and tm , even though it does 
not dictate the result of the reading at tm .) Consequently, the act of observing the 
system at tm changes it, just as in conventional interpretations.

The reader may object that we have not removed the mystery but moved it to 
a different concept. Instead of declaring by fiat that a measurement changes the 
system, we have declared that the domain of integration of the variational princi-
ple must end at the time (and place) at which the measurement apparatus is read. 
We haven’t explained what is special about the events at tf  that allow us to end the 
domain there.

The criticism is valid, but we point out that we have pushed back the mystery, 
or made it less mysterious, by relating it to considerations of BCs. Certainly the 
description of a measurement in terms of an action integral bounded at ti and tf  
must be an approximation to a more complete theory that includes a greater time 
interval before and after [ti, tf ] and a fuller description of the measurement pro-
cess. On the other hand, the empirical fact that broad statements of great general-
ity apply to measurements, regardless of the system under study or the mechanism 
of the process, strongly suggests that a simple description is possible, particularly 
regarding a point in time before the measurement ( ti ) and one after its completion 
( tf  ). The validity of the simple description is not necessarily a surprise; it may 
be that the interactions that can be so described have been adopted as measure-
ment procedures precisely because of their ability to give repeatable quantitative 
results. Thus measurements performed by such procedures can be described, to 
good approximation, in terms of the action within a domain bounded by ti and tf .
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If the simple description proposed in this paper turns out to be successful in 
description and prediction at some level of approximation, that will be evidence of 
its usefulness, without denying the possibility of a more complete theory. Eventually 
such an improved theory may show that collapse/decay to a single eigenvalue occurs 
at tf  in a physically justifiable way, based on the role of the apparatus in the action, 
and so it is appropriate to simplify the problem as we have done by terminating the 
integral at tf  and accepting the NBC there.

An extended analysis of that type would also be appropriate to explore another 
aspect of the new theory. We have argued that we can solve the variational principle 
between ti and tf  , which would presumably enable a prediction of the experimental 
outcome at tf  (based on (a) fixed value(s) of hidden variable(s), of course). We have 
asserted that the final condition at tf  provides a leakproof barrier to influences from 
outside that problem domain. But the theory must apply under reversal of the direc-
tion of time, so it should also be possible to apply an experimental preparation (ini-
tial condition) at tf2 ≡ tf+T and a measurement readout (NBC as a final condition) 
at tf  to predict an outcome at tf  based on physics between tf  and tf2 . We suspect that 
the theory retains sufficient flexibility to allow the two solutions (for ti ≤ t ≤ tf  and 
tf ≤ t ≤ tf2 ) to agree at tf  . It probably helps that we expect (in both cases) to apply 
natural BCs at tf  , so we are not actually constraining the value of the measured vari-
able. Also, continuity constraints on fields, wavefunctions and derivatives appear-
ing in the action may help to avoid contradictions. Since these two predictions must 
agree, the barrier at tf  is not completely leakproof. It might instead be described as 
a partially permeable membrane, as suggested by the applicability of an NBC that 
constrains some but not all properties of the system at tf  . This type of study may 
give insight into the nature of the constraint imposed by the measurement readout.

4.2  Causality and Time‑Ordering Issues

Retrocausality—the dependence of phenomena at a given time on phenomena in 
their future—conflicts with the usual notion of causality—the concept that causes 
precede their effects in time. However, multiple authors [10, 21, 22] have pointed 
out that such a notion of causality is not necessary to avoid contradictions. If event 
A ⇒ B , then B ⇒∼A would produce a contradiction. But if we are somehow pre-
vented from declaring that B ⇒∼A (or an equivalent combination of statements), 
then in principle A ⇒ B is possible even if B occurs earlier than A.

To apply this to our use of retrocausality in the variational principle, we are 
asserting that the NBC at tf  (which applies because a measurement result is read off 
at that time, even though that result is unconstrained) is an event A that constrains 
the solution between ti and tf  , so that solution at some intermediate time tm can be 
considered as event B. But the event B thus chosen is by definition consistent with 
A, since it is a point along the solution based on A. It is not possible to claim that 
B ⇒∼A , so no contradiction is possible.

Of course, the usual objection to this is that one could intervene at tm to change 
the trajectory of events and produce ∼A at tf  (going back in time and shooting one’s 
grandparent, in the usual cliche). But doing this changes the problem, as described 
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above; now the variational principle applies from ti to tm and from tm to tf  , with the 
intervention imposing new BCs at tm . Since this is a different problem than the origi-
nal one, the original solution does not apply and no claim of a contradiction can be 
made.

4.3  Choice of the Function f

We have relied on a supposed interaction between wavefunctions at t1 and t2 , as 
expressed in the nonlocal action term (25). The interaction is a physical process with 
a temporal range described by the function f. It will be important to determine the 
form of f; this may be explored numerically, but additional physical insight could be 
very useful.

Our earlier hypotheses that f is a decreasing function of the absolute value of its 
argument and that it has a finite range � are intuitively appealing, but they are not 
the only possibility. In fact, we cannot rule out the opposite extreme, that f (t) ≡ 1 . 
This would mean that the nonlocal interaction has infinite range, but in practice for 
a given measurement it would be limited to the interval [ti, tf ] . (Without the finite-
range limit � , our analysis in Sect. 3.2 would have to be revisited.)

4.4  Solving the Integrodifferential Equation

As mentioned above, it will be important to solve, or otherwise study, the IDE (44). 
That effort may be made theoretically, or numerically if need be. We would like to 
understand under what conditions the system reaches the collapsed state described 
in Sect. 3.2, how fast that late-time state is approached, and which of the possible 
collapsed states is reached, as a function of the uncontrolled parameter(s). It will 
also be important to test whether the equation produces outcome frequencies con-
sistent with Born’s rule, possibly following ideas in Sect. 3.3.

One question is whether, given a choice of initial conditions and uncontrolled 
parameter(s), the solution to the IDE is unique (and even whether a solution exists). 
If there is always a unique solution, the theory may be completely deterministic 
(although it is unclear what that means for a retrocausal theory!), so we may be able 
to dispense completely with the idea that quantum mechanical processes depend on 
instrinsically random variables. Such a discovery might have far-reaching ramifica-
tions in quantum information technologies that rely on (supposed) randomness.

If this understanding enables us to make predictions based on the theory, we will 
look for experimentally testable predictions. Although we have argued that the new 
theory will agree with many features of conventional theory, it is certainly possible 
that it could differ in some ways.9 One possibility is that results that have histori-
cally been seen to vary, supposedly due to intrinsic randomness, may vary less or 

9 We expect that it will differ in the normalization factor applied to the wavefunction in experiments like 
that of Renninger, as discussed above, but that is a difference in how a physical state is described math-
ematically, not a difference in the state itself, and so not experimentally testable.



1 3

Foundations of Physics (2022) 52:22 Page 23 of 32 22

not at all if a hidden (that is, historically uncontrolled) variable is controlled in new 
experiments (guided by new predictions about how well or to what values it must be 
controlled).

Of course, it is possible that the particular choice of action we have made, and 
the IDE resulting from it, do not correspond to nature. Even in that case, our exposi-
tion here shows that a variational principle of this type, including our assumptions 
of retrocausality, nonlocality, and one or more uncontrolled parameters, can lead to 
a plausible theory that avoids, resolves or explains problematic features of conven-
tional quantum theory. If the theory presented here is not borne out, a similarly-
constructed theory with a different form of the action may be more successful.

4.5  Summary: Successes, Limitations and Open Questions

Our explorations have touched quite a few issues, some more successfully than oth-
ers. Let us summarize.

We have shown that it is possible to develop a theory that is nonlinear (so as to 
enable state reduction), nonlocal (enabling recognition of eigenstates of the operator 
associated with a measurement), and time-symmetric. We have included the meas-
urement apparatus in the calculation, but without invoking any special treatment of 
that apparatus. (We do pay particular attention to the interaction between apparatus 
and measured system, but the same formalism would apply to any pair of interacting 
subsystems.) There was no need to refer to the presence or activity of any observer. 
We have indicated mathematically how this theory should agree with the stand-
ard QM wave equation in the absence of a measurement, and should describe state 
reduction when there is a measurement; and that state reduction should both satisfy 
the measurement property (pointer state corresponds to state of measured system) 
and reach the endpoint of a state (or degenerate states) with a single eigenvalue.

We have also described how the use of retrocausality (Wharton’s Lagrangian 
schema) leads to simple explanations for EPR correlations and for the delayed-
choice experiment. Finally, we have shown that the normalization of the wavefunc-
tion can be constrained in a relativistically acceptable way by limiting that constraint 
to the spacelike initial and final surfaces of a measurement (that is, the surfaces 
where the initial and final conditions are imposed by the design of the experiment).

These successes are mitigated somewhat by certain limitations in our analysis. 
As “proof of principle,” we considered a very simple model of the measured sys-
tem, the measurement apparatus, and their interaction. We believe that that descrip-
tion faithfully represents the relevant characteristics of more complicated systems, 
but that is a supposition that remains to be tested. For simplicity we assumed that 
eigenvalues—of the measured quantity as well as of energy—were constant in time. 
We considered a spacetime region bounded by initial and final surfaces that were 
constant in time (at ti and tf  ); we believe but have not shown that our results apply to 
more general surfaces. None of these simplifications invalidate our results, but they 
show the need for continued work.

More seriously, there are parts of the analysis that are incomplete or questionable. 
While we showed that the equations tend toward the desired state reduction, we did 
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not solve for the actual time dependence or show that the reduced state was inevita-
ble. The construction of the superaction included some ad hoc operations that could 
have been done differently (for instance, RI could have been substituted for SI rather 
than added to it)—we have not identified compelling reasons for all the choices we 
made—and we have not provided a general prescription for the modifications to be 
made to convert squared action S2 to a non-factorizable superaction (the step that 
resulted in (25)). We have not shown how to solve the IDE, or determined whether 
it has a unique or multiple solutions. Most importantly, we have not identified the 
needed uncontrolled parameter or demonstrated Born’s rule; the analysis in Appen-
dix C is suggestive but has several large gaps.

While these deficiencies are disappointing, we remind the reader that our objec-
tive was to see if it is possible to construct a “realistic” theory with the properties we 
specified at the outset. The answer seems to be yes, that it is possible. Since such a 
project is not generally regarded as feasible, it is significant that we have come as far 
as we have. The properties we identified as successes above are important. Although 
our derivations lack much generality (see the “limitations” above), they play the role 
of an existence proof, a demonstration that a “realistic” theory is a possibility. And 
while we have not shown how to solve the IDE or derive Born’s rule (and may not 
even have the IDE right, due to uncertainty about the form of the superaction), it 
seems possible that this theory (or one similar to it) could be solved, and could be 
consistent with Born’s rule. The “realist program” as we have defined it could turn 
out to describe nature, and it would be valuable to pursue this approach to find out if 
it does.

A: Necessity of a Nonlocal Theory

We asserted above that, to reproduce the observed behavior that a measurement 
always finds the system in a single eigenstate (or a superposition of degenerate 
eigenstates) of the operator corresponding to the measured quantity, the theory must 
be nonlocal. For a simple example of this, consider a system described by the one-
dimensional Schrödinger equation with potential function V(x). Consider the case 
in which the potential is attractive and the spectrum of energy eigenvalues E is dis-
crete, with (for simplicity) no degenerate eigenstates.

Now suppose that the values �(x0) and � �(x0) are given at some point x = x0 , and 
ask whether they belong to a solution that is a single eigenstate. In a conventional 
interpretation of quantum mechanics, this is the question Nature must answer when 
those values have developed due to the operation of the wave equation and then a 
measurement is made, requiring a single eigenvalue as its result. (We are here deal-
ing with the case in which the measured quantity is energy, but that case is enough 
to prove our point.) Nature must decide whether to accept the proposed values of 
�(x0) and � �(x0) as given or “collapse” to different values consistent with a single 
eigenstate.

In a local theory, that question must be answered on the basis of local informa-
tion alone, that is, V(x0) . That information is insufficient. With nonlocal informa-
tion, namely, the entire function V(x), it would be possible, given E, to solve by 
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integrating the differential equation twice. However, for most values of E, either the 
integrated solution violates the boundary conditions or the normalization integral 
diverges (or both). We conclude that determining whether �(x0) and � �(x0) are con-
sistent with a single eigenstate requires the use of information V(x) at all x to inte-
grate the solution and test boundary conditions and normalizability. A local theory 
cannot make that determination.

Therefore, since a measurement always finds an eigenstate of the relevant oper-
ator, we conclude that its complete mathematical description must be nonlocal in 
space. But a description that is nonlocal in space in one inertial reference frame is 
nonlocal in both space and time in any other frame, so in general the description of a 
measurement must be nonlocal in time as well.

B: Calculus of Variations: Two‑Time Variant

A basic problem in the calculus of variations [4] is to find the function �(t) for which 
the integral

is stationary with respect to infinitesimal changes in the function � . Here F is a 
given function with continuous first partial derivatives and piecewise continuous 
second derivatives. The function �(t) is required to be continuous with piecewise 
continuous first derivative, and must satisfy

for given A and B. Under these conditions a necessary condition for (50) is the Euler 
equation

B.1: Two‑Time Variant

In our case the integrated function F depends on the unknown function � at two 
times, both of which are integrated over:

As in the standard derivation, we find a necessary condition by defining

and requiring that

(50)S[𝜙] = ∫
b

a

dt F(t,𝜙(t), �̇�(t))

(51)�(a) = A �(b) = B

(52)0 =
𝜕F

𝜕𝜙
−

d

dt

𝜕F

𝜕�̇�

(53)S[𝜙] = ∫
b

a

dt1 ∫
b

a

dt2 F(t1, t2,𝜙(t1), �̇�(t1),𝜙(t2), �̇�(t2))

(54)�(t, �) = �(t) + � �(t)
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for any continuous function �(t) with piecewise continuous derivative and

Condition (55) becomes

Since �(t) is arbitrary (subject to the restrictions already stated), this requires that

and

as necessary conditions for the stationarity of S[�].

B.2: Special Case: F Factorizable

A special case of interest is when F factors into t1-dependent and t2-dependent factors:

so that

and the necessary conditions (58) and (59) become

and

(55)
dS[�]

d�

||||�=0
= 0

(56)�(a) = �(b) = 0

(57)

0 =∫
b

a

dt1 ∫
b

a

dt2

[
𝜂(t1)

𝜕F

𝜕𝜙(t1)
+ �̇�(t1)

𝜕F

𝜕�̇�(t1)
+ 𝜂(t2)

𝜕F

𝜕𝜙(t2)
+ �̇�(t2)

𝜕F

𝜕�̇�(t2)

]

=∫
b

a

dt1 ∫
b

a

dt2

[
𝜂(t1)

(
𝜕F

𝜕𝜙(t1)
−

𝜕

𝜕t1

||||t2
𝜕F

𝜕�̇�(t1)

)
+ 𝜂(t2)

(
𝜕F

𝜕𝜙(t2)
−

𝜕

𝜕t2

||||t1
𝜕F

𝜕�̇�(t2)

)]

(58)0 = ∫
b

a

dt2

(
𝜕F

𝜕𝜙(t1)
−

𝜕

𝜕t1

||||t2
𝜕F

𝜕�̇�(t1)

)

(59)0 = ∫
b

a

dt1

(
𝜕F

𝜕𝜙(t2)
−

𝜕

𝜕t2

||||t1
𝜕F

𝜕�̇�(t2)

)

(60)F(t1, t2,𝜙(t1), �̇�(t1),𝜙(t2), �̇�(t2)) = G(t1,𝜙(t1), �̇�(t1))H(t2,𝜙(t2), �̇�(t2))

(61)S[𝜙] = ∫
b

a

dt1 G(t1,𝜙(t1), �̇�(t1))∫
b

a

dt2 H(t2,𝜙(t2), �̇�(t2))

(62)0 =
𝜕G

𝜕𝜙(t1)
−

d

dt1

𝜕G

𝜕�̇�(t1)

(63)0 =
𝜕H

𝜕𝜙(t2)
−

d

dt2

𝜕H

𝜕�̇�(t2)
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if we exclude the possibility that either of the integrals in (61) vanishes. These rela-
tions are of course the stationarity conditions for those two integrals if they were 
considered independently. We observe that the special case in which F factors as in 
(60) is significantly different than the general case, in that the solution of the former 
can be expressed as differential equations but the latter requires integral equations.

B.3: Special Case: F Symmetric

In this paper our concern is limited to functions F that are symmetric in t1 and t2 , 
that is, invariant under their interchange. For this special case, equations (58) and 
(59) are equivalent, as are (62) and (63).

B.4: Natural Boundary Condition

Consider the case in which the boundary conditions (51) are replaced by

that is, the solution is not constrained at t = b (except, as will be shown, by the 
NBC). Then condition (56) is replaced by

(no constraint on �(b) ) and so the second line of (57) becomes

But since the functions � satisfying (56) are among the set of functions allowed by 
(65), F must satisfy (58) and (59), so the last equation becomes simply

so we find that the NBC is

and of course by symmetry

(64)�(a) = A

(65)�(a) = 0

(66)

0 =∫
b

a

dt1 ∫
b

a

dt2

[
𝜂(t1)

(
𝜕F

𝜕𝜙(t1)
−

𝜕

𝜕t1

||||t2
𝜕F

𝜕�̇�(t1)

)
+ 𝜂(t2)

(
𝜕F

𝜕𝜙(t2)
−

𝜕

𝜕t2

||||t1
𝜕F

𝜕�̇�(t2)

)]

+ ∫
b

a

dt2 𝜂(t1)

(
𝜕F

𝜕�̇�(t1)

)|||||

b

t1=a

(67)

0 =∫
b

a

dt2 𝜂(t1)

(
𝜕F

𝜕�̇�(t1)

)|||||

b

t1=a

= − 𝜂(b)∫
b

a

dt2

(
𝜕F

𝜕�̇�(t1)

)|||||t1=b

(68)0 = ∫
b

a

dt2

(
𝜕F

𝜕�̇�(t1)

)|||||t1=b
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B.5: Lagrange Multipliers

A related problem is to find a stationary point of S[�] , as given by (53), subject to a 
constraint

This can be addressed by the method of Lagrange multipliers, in a straightforward 
extension of the derivation given in reference [4]. For the special case of symmetric 
F, that analysis shows that we can introduce a Lagrange multiplier �(t) and replace 
condition (58) by

The solution of this differential equation is � as a function of t and the entire func-
tion � . Finally, �(t) is determined by requiring the satisfaction of (70).

C: Analysis Relevant to Born’s Rule

Our objective is to show that (49) follows from the IDE (44). We will outline how 
such a proof might be constructed, although several of the steps are incomplete.

By differentiating (48) twice, we see that (supposing that by the system prepara-
tion Ṗj(ti) = 0)

Now if we write Cjk = Xei� for real X and � , then

Then we argue that

(69)0 = ∫
b

a

dt1

(
𝜕F

𝜕�̇�(t2)

)|||||t2=b

(70)K(t,�(t)) = 0 ∀t

(71)

0 =∫
b

a

dt2

(
𝜕F

𝜕𝜙(t1)
−

𝜕

𝜕t1

||||t2
𝜕F

𝜕�̇�(t1)
+ 𝜆(t1)

𝜕K

𝜕𝜙

||||t=t1

)

=(b − a) 𝜆(t1)
𝜕K

𝜕𝜙

||||t=t1
+ ∫

b

a

dt2

(
𝜕F

𝜕𝜙(t1)
−

𝜕

𝜕t1

||||t2
𝜕F

𝜕�̇�(t1)

)

(72)

Ṗj(t) =2∫
t

ti

dt�
∑

k

(
|Ċjk|2 + Re

{
C∗
jk
C̈jk

})

=2∫
t

ti

dt�
∑

k

[
|Ċjk|2 +

𝜇

B
Δ2

jk
|Cjk|2 + Re

{
2i

�
Ejk C

∗
jk
Ċjk +

𝜈

B
C∗
jk
C̃jk

}

(73)
Re

{
2i

�
Ejk C

∗
jk
Ċjk

}
=Re

{
2i

�
EjkX(Ẋ + iX�̇�)

}

= −
2

�
EjkX

2�̇�
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by symmetry, since the phase � is equally likely to increase or decrease.
To deal with the term Re { 𝜈

B
C∗
jk
C̃jk} , we note that

in which we define the “moving average”

and the primed sum denotes the sum over all �,m except the single term � = j,m = k.

We have hypothesized that the solution {Cjk(t) ∀j, k, t} of the variational principle 
is constrained by the initial (preparation) condition at ti and the final (NBC) condi-
tion at tf  . We now venture a little further and suppose that the desired solution, in 
order to extremize the action, uses the entire interval from ti to tf  to evolve from ini-
tial to final values of {Cjk} ; this is plausible due to the term in the action [ 

⟨
�̇��||�̇��

⟩
 

in (16) or ∫ dt|Ċjk|2 in (20)] that penalizes rapid transitions. Therefore |Ċjk| ∼ 1∕T  . 
But a measurement adequate to resolve two states j, k and �,m with Ejk ≠ E

�m is 
conventionally understood10 to require a duration

We conclude therefore that there is an � such that

for any p, q and for any choice of j, k,�,m for which Ejk ≠ E
�m . We may also require 

the function f to be slowly varying in the sense that

where fmax is the maximum value taken by f. Consequently, with the additional 
assumption that Ejk = E

�m only if j = � and k = m , the integral in the second term 
of (75) can be integrated by parts twice:

(74)Re
{
2i

�
Ejk C

∗
jk
Ċjk

}
= 0

(75)

C∗
jk
(t) C̃jk(t) =Δ2

jk
⟨⟨C2

jk
(t)⟩⟩ �Cjk(t)�2

+ C∗
jk
(t)

��

�,m
Δjm Δ

�k C�m(t)∫
tf

ti

dt� C∗
�m
(t�)Cjk(t

�) f (t − t�) e−
i

�
(Ejk−E�m)(t

�−t)

(76)⟨⟨C2

jk
(t)⟩⟩ ≡ �

tf

ti

dt� f (t − t�) �Cjk(t
�)�2

(77)T ≫
�

|Ejk − E
�m|

(78)
�|Ċpq|

|Ejk − E
�m|

< 𝜖 ≪ 1

(79)
�|ḟ |

|Ejk − E
�m|fmax

< 𝜖 ≪ 1

10 Although it has been shown [23] that there is not a time-energy uncertainty principle, we suspect that 
many if not most experiments have been designed to satisfy (77), if only on the basis of the mathematics 
of Fourier analysis.
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Our hypothesis to explain the apparent randomness of quantum mechanical meas-
urements is that some “uncontrolled parameter” is not sufficiently well controlled 
in typical practice to determine a single outcome. Here the uncontrolled parameter 
appears to be the stop time tf  or equivalently the duration T of the experiment. If 
the uncertainty in tf  is ≫ 1∕ΔE for the smallest energy difference ΔE , the realiza-
tion average of the complex exponential factor exp[− i

ℏ
(Ejk − E

�m)(tf − t)] is zero. 
We would like to infer from that, neglecting O(�) , that the realization average of (80) 
vanishes, but there are two problems. We cannot factor the realization average

because the final values of the coefficients C∗
�m

 and Cjk are correlated with the com-
plex exponential factor. Also, the t� = ti term in (80) will not average to zero; since 
the initial conditions are imposed at the start time, uncertainty is ti is presumably not 
a source of variation in the outcome.

From the surviving terms in the realization average of (72) we see that

and therefore

with

(80)

∫
tf

ti

dt� C∗
�m
(t�)Cjk(t

�) f (t − t�) e−
i

ℏ
(Ejk−E�m)(t

�−t)

=
iℏ

Ejk − E
�m

[
C∗
�m
(t�)Cjk(t

�) f (t − t�) e−
i

ℏ
(Ejk−E�m)(t

�−t)
]tf
t�=ti

+
ℏ2

(Ejk − E
�m)

2

{
d

dt�

[
C∗
�m
(t�)Cjk(t

�) f (t − t�)
]
e−

i

ℏ
(Ejk−E�m)(t

�−t)
}tf

t�=ti

+
ℏ2

(Ejk − E
�m)

2 ∫
tf

ti

dt�
d2

dt� 2

[
C∗
�m
(t�)Cjk(t

�) f (t − t�)
]
e−

i

ℏ
(Ejk−E�m)(t

�−t)

=
iℏ

Ejk − E
�m

[
C∗
�m
(t�)Cjk(t

�) f (t − t�) e−
i

ℏ
(Ejk−E�m)(t

�−t)
]tf
t�=ti

[1 + O(�)]

(81)C∗
�m
(tf )Cjk(tf ) e

−
i

ℏ
(Ejk−E�m)(tf−t) ≠ C∗

�m
(tf )Cjk(tf ) e

−
i

ℏ
(Ejk−E�m)(tf−t)

(82)

Pj(tf ) − Pj(ti) =∫
tf

ti

dt� Ṗj(t
�)

=2∫
tf

ti

dt� ∫
t�

ti

dt�� p(t��)

=2∫
tf

ti

dt�� (tf − t��) p(t��)

(83)
|||Pj(tf ) − Pj(ti)

||| < 2 T ∫
tf

ti

dt�� ||p(t��)||
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If the previously identified issues in the proof of Born’s rule are resolved, it remains 
to show that the LHS of (83) vanishes, at least in the limit at T → ∞ . To do that, we 
must show that p(t) decays fast enough that the integral in (83) decreases faster than 
1/T.
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