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Abstract
We formalize the notion of isolated objects (units), and we build a consistent theory 
to describe their evolution and interaction. We further introduce a notion of indistin-
guishability of distinct spacetime paths of a unit, for which the evolution of the state 
variables of the unit is the same, and a generalization of the equivalence principle 
based on indistinguishability. Under a time reversal condition on the whole set of 
indistinguishable paths of a unit, we show that the quantization of motion of spinless 
elementary particles in a general potential field can be derived in this framework, 
in the limiting case of weak fields and low velocities. Extrapolating this approach 
to include weak relativistic effects, we explore possible experimental consequences. 
We conclude by suggesting a primitive ontology for the theory of isolated objects.

Keywords Foundations of quantum mechanics · Equivalence principle · Path 
integral formulation

1 Introduction

In this paper we build a theory where physical events are defined with respect to the 
identification of distinct isolated objects (units): elementary particles, or more com-
plex physical objects, whenever they do not significantly affect their surrounding 
environment.
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Since in isolation a unit is the only object validating the evolution of its own state 
variables, we start from the premise that such evolution is a physically valid local 
representation of reality, until the unit matches its locally available information in 
interaction with another unit. As we shall see, this premise has far-reaching implica-
tions in terms of how an isolated object is localized in an external frame of reference 
and of how it responds to external potential fields. To emphasize this point, we use 
the unusual term experience to refer to the evolution of the state variables of an iso-
lated object.

We will demonstrate that some basic additional assumptions on the notion of 
experience of isolated objects, and on the intermittent matching of the experiences 
of distinct isolated objects, are sufficient to derive the quantum mechanical propa-
gator for spinless elementary particles in the limiting case of weak fields and low 
velocities.

Note that the theory of isolated objects does not rely on any preferred role of 
conscious observers (or even less, of conscious objects) in determining the outcome 
of physical processes. Indeed, the notion of experience of a unit and the notion of 
matching of experiences that we propose in Sect. 2 simply assume that to properly 
understand physical evolution and interaction of units we must first consider the 
restricted information available to the objects directly involved. The theory of iso-
lated objects can then be seen as a contribution to the understanding of the role of 
information and computation in the foundations of quantum systems [24, 39].

Additionally, the theory we develop is relational, since it relies on matching dis-
tinct experiences, and it allows for multiple and compatible possibilities of motion 
of a unit to be meaningfully considered real physical quantities, as we will show in 
Sect. 2.2. These general characteristics are shared respectively with relational quan-
tum mechanics [32] and with the transactional interpretation of quantum mechanics 
[9, 25]. We also note that the emphasis on the perspective of distinct objects has 
been already suggested in a different form in [35], in the broader context of the real 
ensemble interpretation of quantum mechanics [34]. In this approach, every element 
of a physical system is associated with a “view” encoding the knowledge of the sys-
tem according to that specific element.

Broadly speaking, the paper is divided into three parts with different emphases: 
Sects. 2, 3, 4, and 5.

The longer Sect.  2 is concerned with the general theory of isolated units, that 
establishes the objects of interest and their properties. We introduce the notions of 
isolated unit and of experience of a unit and we list their basic properties, includ-
ing the assumption of an internal time state, which we then relate to de Broglie’s 
hypothesis on the existence of an internal clock frequency, first postulated in [10, 
Chapter 1] and expanded in its scope in recent years [5, 11, 12, 26, 28]. We further 
introduce a notion of indistinguishability of distinct spacetime paths of a unit, for 
which the evolution of its state variables is the same, and a generalization of the 
equivalence principle based on indistinguishability.

In Sects. 3 and 4, we develop the mathematical and physical apparatus implicit in 
the axioms and principles from Sect. 2. More particularly, the main result of Sect. 3 
is the construction of a relativistically invariant path integral propagator for simple 
units, i.e. units whose state variables do not change in time. This construction is 
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dependent on a time reversal condition on the whole set of indistinguishable paths 
of a unit and on identifying the frames of reference that can be meaningfully defined 
for isolated units. In Sect. 3.3 we show that the propagator for simple units approx-
imates the quantum mechanical propagator of a spinless elementary particle in a 
potential field, in the limiting case of weak potentials and low velocities. In Sect. 4 
we extrapolate the results of Sect.  3.3 to include weak relativistic effects on the 
propagator of a charged simple unit and we suggest the outline of an experimental 
setting that could detect small deviations from the predictions of standard quantum 
mechanics, under restrictive conditions on the extremal trajectory of the charged 
unit to minimize field radiation.

In Sect. 5.1 we suggest a possible primitive ontology (PO) for isolated objects, 
following the general definition of primitive ontologies outlined in [3], that empha-
sizes quantities in a theory that can be put in direct correspondence with the world 
we experience. Finally, in Sect.  5.2 we offer some concluding remarks on future 
developments of the approach developed in this paper.

The appropriate PO for isolated objects will be based on a localization of the 
matching of experiences for a wide class of units that have internal structure. The 
identification of the PO will also stress some implications of our theory for actual 
structured physical objects, and it will underline that the objects of interest in our 
theory are essentially objects as we experience them, as spacetime localizations of 
mass. The possibility of quantum-like behavior for isolated objects is a consequence 
of their being isolated and of the restricted information carried by their state vari-
ables, as we will show in Sects. 3 and 4. The phenomenological observations we 
will make, when developing the PO of isolated objects, will also provide a counter-
balance to the more abstract approach we take at the beginning of the paper.

Indeed, abstracting from the specific state variables of concrete objects allows 
to highlight the structure that any object in isolation must have, and to deduce the 
principles that must apply uniformly to all isolated objects, irrespectively of their 
structure or size. At the same time, it is important to keep in mind from the very 
beginning that simple units, having a fixed and unchanging set of state variables, are 
in correspondence with spinless elementary particles (seen as dimensionless point 
particles with fixed rest mass), whenever they are isolated, while more complex iso-
lated objects (structured units) with internal structure can be naturally put in cor-
respondence with isolated elementary particles with variable spin direction, atoms, 
molecules or larger solid compounds.

2  The Evolution of Isolated Objects

2.1  Isolated Objects

We now formally define isolated objects, and we introduce the key properties nec-
essary to understand their evolution. The purpose of this section is to explore the 
possibility of a consistent theory for isolated physical objects, assuming that their 
evolution (the “experience” of Definition 3) is subordinate to the restricted informa-
tion available to the objects themselves.
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Definition 1 An isolated object (or unit) is a physical object that is affected by 
potential fields generated by other objects and that does not significantly affect its 
surrounding environment.

This definition of units gives a basic criterion to establish when an object counts 
as distinct, by stressing the asymmetry in its interactions with the surrounding envi-
ronment. The terms “interaction” and “potential field” are assumed to be given 
primitive notions and in the following they will be clarified case by case in specific 
physical contexts. Note that, in principle, there is no restriction on the size or struc-
ture of an isolated object, as units are defined relationally: any physical object can 
be, however briefly, a unit if it does not significantly affect its surrounding environ-
ment (and following Definition 2 we give some examples of units of particular inter-
est). The expression “does not significantly affect” can be made precise by saying 
that the state of the surrounding environment in the presence of the unit cannot be 
distinguished from the state of the surrounding environment when the unit is absent.

If we consider macroscopic changes of the surrounding environment, this defini-
tion can be seen as a variation on the view that changes in the “position of things” 
[7, Chapter 19.2] are the relevant variables of a meaningful physical theory. How-
ever, according to Definition 1, a unit is not isolated also when there are changes of 
the microscopic states of another object (say, its spin direction), and not only when 
there are macroscopic changes in the state of the surrounding environment.

Assumption 1 Every unit has a set of internal state variables that define its physical 
properties and an associated internal time state with respect to which changes of the 
internal state variables are defined.

Internal state variables include the list of physical properties that define the char-
acteristics of an object needed to study its evolution. According to the interaction 
that is considered in the theory, different sets of internal state variables may be con-
sidered. For example, if we consider gravitational potential fields, we will take rest 
mass as one of the internal state variables of a unit, and if in addition electromag-
netic fields are considered, the charge of the unit will also be an internal state varia-
ble, and its spin in more general settings. Because of the equivalence of gravitational 
and inertial mass, and because of the fundamental role of the latter in describing 
motion of an object in any potential field, we will always assume that a unit has rest 
mass as one of its internal states.

Changes in the values of the internal state variables (when such changes are per-
missible) are established with respect to an internal time state � , and we note that 
in principle each interaction that we consider in the theory can separately affect the 
internal state variables of the unit. In this section and in Sect.  3.1 it is helpful to 
think of � as the proper time along the trajectory of the unit. We will see in Sect. 3.2 
that � needs to satisfy some specific mathematical constraints to be compatible with 
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the setting of isolated units, and we will give its analytical form, distinct from proper 
time, in Definition 9 of Sect. 3.2.

Definition 2 A unit whose internal state variables cannot change with respect to 
internal time is a simple unit.

The only physical embodiments of simple units are isolated spinless elemen-
tary particles, with internal state variables defined by mass and charge. Any unit 
that is not simple is a structured unit. Structured units include the following: iso-
lated composite units, such as atoms, made of simple units; complex molecules 
and macroscopic, composite objects; isolated elementary particles that can have 
spin states with varying directions; entangled elementary particles. This paper 
will be concerned mostly with simple units, structured units will be addressed 
separately. Still, whenever a result will not be specifically restricted to simple 
units, we may assume it to be valid for structured units as well. As already noted, 
the theory we are building affirms the primacy of the notion of isolated objects 
(whenever they arise) in understanding physical objects irrespective of the size 
or complexity of the units. Even though our main results in this paper concern 
simple units, and therefore spinless elementary particles, the theory of isolated 
objects is not specifically a theory of elementary particles.

In the following definition we address the relation of the evolution of the inter-
nal state variables of a unit and its surrounding environment.

Definition 3 A labelled experience of a unit is the evolution of its internal state vari-
ables over some period of internal time, for a given surrounding environment and a 
given spacetime localization (a path) within the surrounding environment.

When looking at the evolution of the internal state variables of a unit, there is 
in general no way from their changes to allow us to reconstruct the surrounding 
environment in which they are evolving. For example, a particle with spin may 
change its spin direction, which possibly implies the presence of a variable mag-
netic field, but the simple fact that the spin direction has changed does not allow 
us to reconstruct the surrounding field. However, a surrounding environment is 
implied nevertheless; note that two evolutions can be identical, and still need to 
be considered as distinct according to the environment in which they occur. This 
is the reason we refer to the evolutions of the internal state variables as “labelled” 
according to their localization in their environment.

We use the unconventional term “experience” in relation to the evolution of 
the internal state variables to stress that the restricted information available to 
an isolated object through its internal state variables determines, as long as the 
object is isolated, the ways it can be localized in its surrounding environment 
and the way it is affected by external potential fields. This simple observation, 
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brought to its extreme consequences, will have a crucial impact in the theory, and 
it will lead in Sect. 2.2 to the notion of indistinguishable paths of a unit and to a 
generalization of the equivalence principle for isolated units.

For ease of reading, we will often drop the qualification “labelled” for experi-
ences, and we will refer to them as “experiences” tout court.

Note that a specific embodiment for the internal time state of Assumption 1 is 
provided by the hypothesis of De Broglie of an internal frequency being attached to 
any finite mass body [10, Chapter 1]. In particular, de Broglie conjectured that for 
any body of finite rest mass M0 > 0 there is an internal phenomenon (a “clock”) of 
frequency �0 = M0c

2∕h attached to the body itself, where h is Planck’s constant and 
c is the speed of light. Alternatively, we can write �0 = M0c

2∕ℏ , if for simplicity we 
switch to units of measure such that angular frequency is measured in radians per 
second and we indicate with ℏ =

h

2�
 the reduced Planck constant.

In Sect. 3.2 we will derive a relativistically invariant propagator of simple units 
that uses in an essential way the internal clock frequency and in Remark 14 we will 
argue that the analytic form of the propagator requires that the internal clock fre-
quency for the internal time state must be a multiple � of the frequency conjectured 
by de Broglie. In Sect. 3.3 we will then show that our framework reduces to standard 
quantum mechanics (under the conditions in which the latter applies) if we choose 
� =

1

2
 . Accordingly, already in this section we redefine �0 as follows:

Definition 4 The internal clock frequency �0 of an isolated unit of rest mass M0 > 0 
is

where � is an appropriate scaling constant.

Remark 1 A direct probing of the reality of the internal clock frequency for a parti-
cle such as an electron would require the measurement of effects of the order of its 
Compton wavelength, something that is not yet feasible. However, the physical real-
ity of the internal clock frequency has been indirectly tested by electron channeling 
in silicon crystals [8, 21]. These preliminary experimental results seem consistent 
with a value of the internal frequency that is double the one predicted by de Broglie. 
Note however that the specific experimental deviation from de Broglie’s internal 
frequency has no direct role in what follows and does not contradict our choice of 
� =

1

2
 in Sect. 3.3, as the internal clock frequency will always appear in our work in 

relation to internal time, and not time as measured in an external frame of reference. 
Additionally, regardless of the possibility of a direct experimental confirmation of 
the existence of the internal frequency, in this paper we show that there are concrete 
physical consequences of assuming its existence, such as: the possibility (explored 
in Sect. 3.3) of relating an extension of the equivalence principle to the path integral 
for spinless particles; as well as the experimental possibility (in Sect.  4) of small 
deviations from the predictions of standard quantum mechanics for the trajectory of 

(1)�0 =
�M0c

2

ℏ
,
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slowly moving electrons. These deviations would be small, but they would still be at 
a much larger scale than the Compton wavelength of an electron.

The periodic representation of � compatible with the internal clock frequency 
�0 can be taken to be P(�) = ei�0� . Note that, in principle, any periodic function 
of period �0 would be suitable to define P(�) , in the setting we have described so 
far. The significance of the complex exponential in the setting of isolated units will 
become clear when evaluating differences of internal time states for distinct trajec-
tories of the unit, as we will do in the next section. Note also that the dependence 
of P(�) on the rest mass of the unit elevates mass to a special status among internal 
states, and this is another reason we assumed in the discussion of Assumption 1 that 
all units have rest mass as an internal state.

Remark 2 The notion of internal clock frequency has been used in several works 
exploring the interfacing of quantum mechanics with the theory of relativity and in 
the presence of gravitational or more general potential fields [5, 11, 12, 26, 28]. The 
most comprehensive approach to quantum mechanics based on de Broglie’s hypoth-
esis can be found in the body of work exemplified by [11, 12], where a Lorentz 
invariant description of elementary particles is given in terms of cyclic Minkowski 
spacetime coordinates associated to the internal clock frequency, and in the context 
of the deterministic dynamics of one-dimensional classical closed strings vibrating 
in a four-dimensional spacetime. In particular, in [12] the classical evolution of all 
de Broglie’s internal clock dynamics (that satisfy periodic boundary conditions in 
a cyclic time dimension) is proven to be equivalent to the Feynman path integral 
propagator in ordinary spacetime.

As it is the case for all recent works that assume de Broglie’s hypothesis, the 
crucial impact of the internal clock frequency in our theory is that it endows the 
notion of internal time state with a periodic representation. Nevertheless, the main 
objective of this work is to explore some of the concrete and most direct physical 
consequences of the theory of isolated units. Accordingly, the notion of isolated unit 
will continue to be the dominant thread in the way the internal clock frequency will 
be used, and, in particular, in establishing Lorentz invariance for the propagator of 
simple units in Sect. 3.2.

2.2  Indistinguishability and Isolated Equivalence

We established in Sect. 2.1 the basic notions of isolated unit and of experience of a 
unit. We now address how the type of internal state variables of a unit affect the pos-
sibility of internally distinguishing distinct labelled experiences.

Definition 5 Indistinguishability. Any two labelled experiences of a unit are inter-
nally indistinguishable if they cannot be distinguished through changes in the unit’s 
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internal state variables over internal time. The corresponding spacetime localiza-
tions of the two experiences are defined as the internally indistinguishable paths of 
the unit.

With Definition 5 we move to a crucial point: when the internal state variables 
are not changed (or are equally changed) by any pair of experiences, there is no way 
for the unit to establish in isolation which of the two has happened, they are not 
distinguishable.

Since the unit is an isolated object and it is the only object validating the reality 
of a specific evolution of its internal state variables, indistinguishable experiences 
that cannot be physically discriminated before interaction are all valid, real expe-
riences for the unit itself, and must eventually have a physical impact in interac-
tion. For a simple unit, whose internal state variables are unchanging, all externally 
labelled and distinct experiences will be internally indistinguishable and therefore 
physically valid in isolation.

Specifically, in the experience of a simple unit, its motion at any instant can be 
taken to be in any direction and at any velocity. Indeed, a simple unit has no abil-
ity to distinguish these distinct paths, since its internal state variables are unchang-
ing over internal time; therefore, all these possibilities of motion are fully consistent 
with the evolution of its internal state variables, even in the presence of potential 
fields that exert a force on the unit, as long as the unit itself does not need to match 
its experience with other units. Because motion at each instant could be at any 
velocity and in any direction, the labelled indistinguishable paths of a simple unit 
are all continuous, not differentiable paths. Even moving at a speed higher than light 
is logically allowed in this setting, as long as the unit is not forced to confirm this 
possibility with the external environment.1

Remark 3 Note that the “reality of possibility” is a basic tenet of the transactional 
interpretation of quantum mechanics [9, 25], where it is derived from the formal-
ism of quantum mechanics itself. In the setting of isolated units, the reality of the 
entire range of indistinguishable possibilities of motion is derived from the notion of 
isolation and from the type of internal state variables of the unit, before establishing 
a formal connection with quantum mechanics. In Sect. 3.1 we will argue that, dur-
ing interaction, the impact of the whole range of indistinguishable paths of a unit is 
always mediated by the assessment of the significance of each path with respect to 
all the others. In this respect, indistinguishable paths are not to be considered clas-
sical paths, because we cannot fully separate them from each other in determining 
their relational impact on external events such as localization at a specific spacetime 
point.

1 When dealing with structured units, care must be given to the identification of the appropriate set of 
indistinguishable paths that change the internal state variables in the same way. This set will be generally 
smaller than the corresponding set for simple units.
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We also note that the notion of indistinguishability, though set here as a property 
of the labelled experiences of general isolated units, has a direct antecedent in the 
sum-over-histories formalism of quantum theories with its distinction of variables in 
observables and unobserved labels (see for example [22]). In this formalism, prob-
ability amplitudes in path integrals are summed over the range of unobserved labels 
of a given object, if a corresponding “experiment does not determine the end of a 
history precisely, as most will not” [22]. Effectively, unobserved labels can be con-
sidered in our terminology as states defining indistinguishable labelled experiences.

This paper does not specifically address the mechanism of interaction, still, the 
theory of isolated objects would not be complete without the inclusion of a general 
prescription on how the labelled experiences of units, described by the evolution of 
their internal state variables, are affected in interaction. To this purpose, we define a 
notion of matching of experiences.

Assumption 2 Matching of experiences. When units interact, they match their 
labelled experiences to be reciprocally compatible.

This assumption basically asserts that the range of indistinguishable paths of 
a unit is reset every time it interacts with another unit. Consider, for example, the 
range of all indistinguishable paths of a simple isolated unit S; we have seen in the 
discussion of Definition 5 that all types of motions are allowed for such a unit in iso-
lation. Assume now that a macroscopic structured unit UM (say, a measuring device) 
does not have multiple indistinguishable paths. Then any interaction of S with UM 
will reset the range of labelled experiences of S, localizing them to the position of 
their interaction with respect to UM , and only indistinguishable paths of S compati-
ble with this localization will be preserved. Without this assumption, it would not be 
meaningful to speak of the propagation of a unit from a specific point A to another 
point B, as we will do in Sect. 3.3.

The definition of matching of experiences has also important implications on the 
isolated status of units. If a unit U1 , because of some changes in its internal state 
variables, experiences being no longer separated from unit U2 , then unit U2 will no 
longer be isolated, even if in its experience there is no change in its internal state 
variables. We will refer to this observation in Remarks 4 and 18 when evaluating 
under which conditions moving charged particles can be considered isolated units.

By assuring that every time units interact their labelled experiences are recipro-
cally consistent, we preserve a form of objectivity, while at the same time acknowl-
edging that such objectivity is always mediated by the act of matching the experi-
ences of the units to each other. Note that the moment two distinct units interact, 
i.e. they exert a reciprocal influence on each other, they cease to be distinct in the 
sense of Definition 1 for the whole duration of their interaction. Note also that no 
limitation is put on the conservation of the number of units before and after the 
interaction.
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The theory of isolated units allows a reformulation and an extension of the equiv-
alence principle that emphasizes its relation to indistinguishability. We introduce 
therefore the following principle:

Principle 1 Isolated equivalence: If a unit cannot internally distinguish the labelled 
experience of being in a stationary frame in a potential field from the labelled expe-
rience of being at rest in a non-inertial frame with uniform acceleration, then the 
two experiences are physically equivalent.

The theory of general relativity was motivated by the realization that locally there 
is no way to distinguish a frame of reference in uniformly accelerated motion from 
one that is stationary within a corresponding gravitational field. However, this is true 
only in the limit of infinitesimal systems, that do not experience the discriminating 
tidal effects in a gravitational field [29]. Under these limiting conditions, a single 
isolated charged particle can be effectively considered a simple unit (notwithstand-
ing possible spin states). For such a unit, a frame in uniformly accelerated motion 
will also be indistinguishable, for example, from a static frame in a Coulomb field. 
The unit will not be able to discriminate the nature of the field by detecting changes 
to its internal state variables.

Isolated equivalence assumes that the standard equivalence principle can be 
extended to all cases, such as this, where the unit cannot discriminate the nature of 
the field acting on it, if only in the isolated experience of a simple unit.2

Indeed, in the case of simple units, to be “physically equivalent” refers essen-
tially to dilation effects on internal time, since all other internal state variables are 
unchanging; internal time dilation is the same for the two indistinguishable experi-
ences with respect to time in an external frame of reference. Note that a surrounding 
environment is always implied when dealing with labelled experiences, in that we 
still need an external frame of reference to be able to quantify time dilation.3

The fact that the experience of the unit must be compatible with what can be 
quantified in an external frame of reference has an important role in ensuring tran-
sitivity of the notion of isolated equivalence. Indeed, let Es be the experience of the 
unit being in a stationary frame in a general potential field. To avoid the possibility 
for two experiences equivalent to Es not to be equivalent to each other, time dila-
tion must be the same for all non-inertial frames that are deemed equivalent to the 
stationary frame in the potential field, despite the fact that all non-inertial frames 
of reference are in principle indistinguishable for a simple unit. Since, additionally, 
the simple unit cannot distinguish gravitational fields from other potential fields, the 

2 We focus on simple units in the justification of the principle of isolated equivalence, because of their 
significance in subsequent sections. However, the principle is formulated to apply to general isolated 
units.
3 An external frame of reference can be defined with respect to the position and state of motion of the 
unit itself at the time of matching of experiences, as we explain in Sect. 3.2.
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non-inertial frames equivalent to the stationary frames in a general potential field 
must be the same as those of the corresponding gravitational fields. We can con-
clude that the only experiences of the simple unit in non-inertial frames that can 
meaningfully be considered equivalent to Es are those with the same acceleration as 
the one induced on the unit by the potential field.

Remark 4 Isolated equivalence does not contradict the fact that static reference 
frames in a general potential field are not in general equivalent to uniformly accel-
erated frames. Such equivalence is only valid for an isolated unit. The motion of 
continuously interacting units in an electromagnetic field will depend as expected on 
relativistic effects on the mass.4 In particular, radiation may affect the unit by mak-
ing it no longer isolated, as we argue in Remark 18 of Sect. 4. Lorentz invariance of 
electromagnetic laws is preserved in this case, consistently with the standard equiva-
lence principle and its experimental validations [38].

Unlike the standard equivalence principle of general relativity, isolated equiva-
lence is a conditional principle that depends on the inability of the unit to distin-
guish experiences. The dependence of isolated equivalence on the type of internal 
state variables of the unit, and especially on the unit being isolated, sets our contri-
bution apart from other generalizations of the equivalence principle to general fields 
such as the one developed in [18]. We will show in Sect. 3.3 that this dependence is 
also the key for the application of isolated equivalence to quantum mechanics.

3  Propagation of Simple Units

3.1  Relative Significance and Time Reversal Condition

We now explore the question of propagation  of a simple unit S in a reference frame, 
that is, of how a unit S that is localized at a point A = (xa, ta) is then found at point 
B = (xb, tb) . The localization of the simple unit at these two points is established by 
assuming interaction by matching of experiences with other units UA at A and UB at 
B. Even though this question applies to any isolated unit, we assume here that we 
deal only with simple isolated units such as spinless elementary particles, with mass 
and charge as internal state variables.

4 Note that the Abraham–Lorentz–Dirac force (due to the interaction of the charged unit with its own 
electromagnetic field and to the corresponding radiating field) does not break the equivalence in the iso-
lated perspective since it cannot affect the internal state variables of a simple unit. Such self-force can be 
interpreted in the experience of the unit as an effect of a varying potential field.

Remark 5 As already noted in Sect. 2.1, we continue in Sect. 3.1 to assume that � is 
analogous to proper time and we use the internal clock frequency �0 for the periodic 
representation P(�) . In Sect.  3.2 we give a specific representation for the internal 
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time state, distinct from proper time, and we define a relativistic form for the inter-
nal clock frequency.

To take all indistinguishable experiences and their corresponding paths as real, 
means that, in interacting with another unit, they all should have a physical impact. 
By considering the relation of indistinguishability and isolated equivalence of the 
experiences of a unit, we clarify the modalities of this impact in Definitions  6 and  7 
that together establish the notion of relative significance of the experience of a unit. 
They quantify to which extent a given experience of an isolated unit can be trusted 
to be physically significant in the process of matching of experiences.

Definition 6 Let �1 and �2 be two indistinguishable paths of a (simple) unit S starting 
at A and ending at B. Assume S takes internal time �1 to reach B from A along �1 , and 
�2 along �2 . The measure of equivalence M(�1, �2) of the labelled indistinguishable 
experiences associated to the two paths �1 and �2 is the periodic representation of the 
difference of their internal time durations,

Since for indistinguishable experiences internal state variables evolve in the same 
way, internal time differences become the only way to partially assess the impact of 
the surrounding environment on distinct indistinguishable experiences of the unit. 
With respect to the experience of the unit at B, any time interval, including the time 
difference �1 − �2 , can only be assessed through the periodization of internal time, as 
P(�1 − �2) = ei�0(�1−�2) . This representation of time differences assures that they are 
compared, across indistinguishable paths, with periodicity �0 corresponding to the 
unit’s internal clock frequency.

The measure of equivalence assesses the differential impact of the surrounding 
environment on the indistinguishable experiences of the unit. This impact may be 
due to the geometric characteristics of each path (say, its length), and to time dila-
tion effects due to potential fields via isolated equivalence.

Remark 6 As anticipated in Sect. 1.1 when introducing the periodic representation 
of internal time P(�) , the relevance of the complex exponential function for isolated 
units is in great part due to the possibility of expressing the periodic representa-
tion of the time difference �1 − �2 in terms of the periodic representation of �1 and 
�2 respectively, via the relation ei�0(�1−�2) = ei�0�1e−i�0�2 . This property is the key in 
Eq. (6) to an analytical form for the relative significance of the unit going from A to 
B.

We are now ready to quantify the significance of each experience in interactions.

Definition 7 The relative significance of an experience E with respect to a set S of 
experiences indistinguishable from E is the sum of all pairwise measures of equiva-
lence of E with the elements of S.

(2)M(�1, �2) = P(�1 − �2) = ei�0(�1−�2).
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The extent to which a specific experience of a unit can be trusted to be physically 
meaningful in an interaction is validated by all other indistinguishable experiences 
that are equally involved in the interaction. Therefore, the totality of all internal time 
differences of an experience with its set of indistinguishable experiences becomes a 
proxy for the significance of the experience itself. This concept will play a crucial 
role in understanding the propagation of units.

Note that a notion of “distinctiveness” of the views of elements of a system plays 
an important role in [35], similar to the one played by the relative significance and 
the measure of equivalence for isolated units.

Consider now several indistinguishable paths {�1,… , �n} starting at A and ending 
at B with internal time durations {�1,… , �n} respectively. In Definition 7 the relative 
significance of an indistinguishable experience E of the unit S is defined as the sum 
of all pairwise measures of equivalence of experience E with respect to the other 
indistinguishable experiences. Each path �i , i = 1,… , n identifies one experience of 
S, therefore the (normalized) relative significance of �i with respect to the remaining 
indistinguishable paths is

We can now express the normalized relative significance W(A, B) of the unit going 
from A to B as the sum of the relative significance of all paths starting at A and end-
ing at B, scaled by n:

We can calculate the relative significance of a path �̃�AB in the limit of infinitely many 
paths in analogy to Eq. (3), by assuming a suitable measure D�AB on the space of all 
paths from A to B. We define ��AB to be the total internal time along a generic path 
�AB and we write

Then, the relative significance W(A, B) of the unit going from A to B becomes the 
integral over �̃�AB of W(�̃�AB),

where we assume that the integrals can be separated.
We set ∫

�AB
d� to be an integral parametrization of the total internal time ��AB along 

the path �AB starting at A and ending at B, and we write

(3)W(�i) =
1

n − 1

∑

j≠i
M(�i, �j) =

1

n − 1

∑

j≠i
ei�0(�i−�j).

(4)W(A,B) =
1

n

∑

i

W(�i).

(5)W(�̃�AB) = ∫ ei𝜔0(𝜏�̃�AB
−𝜏𝛾AB

)D𝛾AB.

(6)
W(A,B) = ∫

(
∫ ei𝜔0(𝜏�̃�AB

−𝜏𝛾AB
)D𝛾AB

)
D�̃�AB

= ∫ ei𝜔0𝜏�̃�ABD�̃�AB ⋅ ∫ e−i𝜔0𝜏𝛾ABD𝛾AB,
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Now, in general the two integrals in Eq. (7) will be different. We note that

which can be interpreted to mean that W(A, B) depends both on paths from A to B 
and on those from B to A.

The time-symmetric structure of W(A, B) is reminiscent of the dependence of a 
quantum system on the boundary conditions in the future and in the past as posited 
by the two-state-vector formalism of quantum mechanics [1, 2], or by the transac-
tional interpretation of quantum mechanics [25].

We expect that the expression in Eq. (8) will be significant when exploring cau-
sality constraints for structured units. However, in this paper we make the following 
simplifying assumption that leads to a mathematical form for W(A, B) closer to the 
standard quantum mechanical propagator.

Time Reversal Condition Given the space ΓAB of indistinguishable paths from 
A to B, there is a map Σ ∶ ΓAB → ΓAB that satisfies the following conditions: 

1. Time reversal along each path: for every path �AB

2. Density: the image of Σ is dense in ΓAB.
3. Invariance: the measure D�AB in 

 is invariant (up to sign) with respect to Σ.
Under the Time Reversal Condition, we have that

If we want to compare the relative significance of different sets of indistinguish-
able paths, as for example the set of paths from A to B with those from A to B′ , we 
can provide a partial ordering of relative significance by taking the module of W in 
Eq. (11):

(7)W(A,B) = � e
i𝜔0 ∫�̃�AB d𝜏

D�̃�AB ⋅ � e
−i𝜔0 ∫𝛾AB d𝜏

D𝛾AB.

(8)� e
−i�0 ∫�AB d�

D�AB = � e
i�0 ∫�BA d�

D�BA,

(9)∫
�(�AB)

d� = −∫
�AB

d�.

(10)� e
−i�0 ∫�AB d�

D�AB

(11)

W(A,B) = � e
i�0 ∫�AB d�

D�AB ⋅ � e
−i�0 ∫�AB d�

D�AB

= � e
i�0 ∫�AB d�

D�AB ⋅ � e
i�0 ∫Σ(�AB) d�DΣ(�AB)

= ±
(
� e

i�0 ∫�AB d�
D�AB

)2

.
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This partial ordering of the relative significance makes sense only from an external 
perspective. Indistinguishable paths cannot be separated into subgroups unless dis-
tinct matchings of experiences are considered.

If we scale uniformly |W(A, B)| to make it into a probability distribution, we 
can equate it with the likelihood P(A, B) of a simple unit that interacted at A with 
another unit to then interact again with another unit at B. Up to a rescaling hidden 
in the measure of the integral, we can finally write

As much as the formal connection of |W(A, B)| with the computation of probabilities 
via path integrals in quantum mechanics is obvious, conceptually the process that 
led to Eq. (13) is very different.

We established how localization of a simple unit at two spacetime points A and B 
affects the relative significance of all compatible indistinguishable paths. We defined 
the relative significance of going from A to B and finally we imposed an ordering on 
the relative significance of distinct choices of the pair of points (A, B). The interplay 
of indistinguishability and equivalence naturally led to a representation of the likeli-
hood P(A, B) of propagating from A to B as the square of the module of a complex 
number.

Remark 7 The description of simple units by their internal time and its phase rep-
resentation is reminiscent of the description of light propagation suggested in [14], 
with its stress on stopwatches associated with each possible path of a photon. How-
ever, the dependence of probability amplitudes from elapsed time in the photon 
detection is not a fundamental characteristic of the physics of photons. It is rather 
a consequence of the excitation and decaying processes of atoms involved in emit-
ting and detecting the photons themselves [16, Sect. 4], [17]. We also note that the 
framework developed for simple units does not apply to photons in its current form, 
but rather to elementary particles of nonzero rest mass.

3.2  A Relativistically Invariant Propagator for Simple Units

As noted in Sect. 2.2, a simple isolated unit S experiences motion on the set of all 
its indistinguishable paths. Accordingly, it is not possible to reduce the integral in 
Eq. (13) only to paths that are time-like: the velocity v measured along the path must 
be allowed in principle to be higher than the speed of light c. While in general allow-
ing paths with speed greater than the speed of light leads to acausal effects [30], cau-
sality is definable only when units interact, and instead here we allow acausal paths 
only for simple isolated units. The physical mechanism that enforces v < c for a sim-
ple unit must be relational, and dependent on the matching of experiences.

(12)|W(A,B)| = |||� e
i�0 ∫�AB d�

D�AB
|||
2

.

(13)P(A,B) =
|||||� e

i�0 ∫�AB d�
D�AB

|||||

2

.
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Remark 8 On this last point, we note that a relational interpretation of quantum 
mechanics (RQM) was first introduced in [32]. RQM assumes a radical form of rela-
tionality according to which all physical quantities continue to have different values 
in the perspective of different reference systems. In our setting, the experiences of 
the units directly involved in the matching are privileged and determine which out-
comes are mutually compatible. Relationality ultimately is dependent on the type of 
internal state variables of the specific units that are matching their experiences.

Regardless, to be able to apply properly the principle of isolated equivalence, it 
is still necessary to consider possible relativistic effects on the scaled module of the 
measure of relative significance P(A, B), that we equated in Eq.  (13) to the likeli-
hood of a unit propagating from A to B.

The consideration of relativistic effects will require us to choose a specific form 
for the internal time differential d� in Eq. (13), and in turn of internal time intervals 
��AB = ∫

�AB
d� , such that: it respects the properties of simple isolated units; it satisfies 

the Time Reversal Condition; and it ensures relativistic invariance for P(A, B) for the 
frames of reference that are physically meaningful for the unit S under 
consideration.

Proper time does not satisfy the Time Reversal Condition. A possible choice 
for d� in the exponent of Eq. (13) could be to set it equal to the square root of the 
Lorentzian line element, corresponding to relativistic invariant proper time, i.e. 
d� = (ds2∕c2)1∕2 . This is the choice we implicitly made throughout Sects. 2 and 3.1 
and it is standard in Lagrangian approaches to relativity [23, Chapter 3.19], [31].

However, d� = (ds2∕c2)1∕2 is not truly compatible with the theory of isolated 
units, and a different expression for d� and ��AB will be given in Definition 9.

The first issue with the choice d� = (ds2∕c2)1∕2 is that it is explicitly incompatible 
with the Time Reversal Condition. If d� = (ds2∕c2)1∕2 , then for all paths 
��AB = ∫

�AB
d� = a + ib , with a, b > 0 (if in addition a path has some portions with 

v > c then b ≠ 0 ). Under these conditions, we cannot find a map of the space of 
paths onto itself to account for the negative sign in the integral on the right-hand 
side of Eq. (7).

Second, this choice of d� is not fully compatible with the setting of isolated 
units. To see this, recall that, by definition, indistinguishable paths cannot be dis-
criminated within the experience of the unit. Suppose now we have a path � with 
internal time interval ��AB = a + ib , then the periodized internal time would be 
ei�0(a+ib) = e−�0bei�0a . The exponentially decaying factor e−�0b , would break the 
uniformity of internal time states across indistinguishable paths: simply by having 
e−𝜔0b < 1 we would be able to ascertain whether that path had in its past portions 
with v > c.

Note that this second issue with d� = (ds2∕c2)1∕2 stands also when the relative 
significance W(A, B) is defined according to its form in Eq. (7), that does not depend 
on the Time Reversal Condition.

We conclude that, despite its relativistic invariance, proper time d� = (ds2∕c2)1∕2 
cannot be used to define internal time: it is not compatible with the Time Reversal 
Condition on the analytic form of the relative significance; and it does not guarantee 
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for simple units the indistinguishability of paths, because of the discriminant intro-
duced by complex valued internal time values dependent on the path.

Remark 9 Note that relativistic path integrals based on d� = (ds2∕c2)1∕2 recover cau-
sality for distances that are large enough [30], exactly because of the exponential 
decay e−b associated with paths where v > c . Nevertheless, the breakdown of causal-
ity at short distances is unavoidable even for this choice of d� . A similar conclusion 
was already reached in [22], where it is shown that simple quantum systems with no 
preferred time parameter lead to path integral propagators that must include acausal 
paths.

Frames of reference at points of matching of experiences. To define a suitable 
d� that preserves relativistic invariance for P(A, B), we need first to establish which 
frames of reference are physically meaningful for interacting units.

Recall that the simple unit S under consideration is localized at A and B by inter-
action respectively with units UA and UB . We argue that it is possible to define an 
external frame of reference that is relevant to the propagation of S, and whose rela-
tive velocity with respect to S is uniquely defined, only from the perspective of the 
experience of units such as UA and UB.5 Indeed, S is localized at A and all its indis-
tinguishable paths will agree on the position and velocity of S with respect to UA . 
Denote by u the relative speed of UA and S at A, we can then uniquely define, with 
respect to S, the frame of reference Fu at rest with UA at A (the same argument can 
be made for frames of references defined by UB at B).

We call this privileged set of frames of references defined at matching points the 
matching frames of reference of the unit S, and we only refer to such frames in the 
following arguments.6 We can now define:

Definition 8 The relativistic internal clock frequency of a unit S as observed from a 
matching frame of reference Fu in motion at speed u with respect to unit S as local-
ized at A is

All experiences of the unit are defined with respect to the periodic representation 
of internal time P(�) = ei�0� , dependent on the rest mass M0 of a unit. It follows that 
relativistic effects on �0 must be defined directly in terms of relativistic effects on 
the rest mass M0.

Remark 10 Note the discrepancy of our definition with respect to the definition 
of the relativistic internal clock frequency given in [10, Chapter 1.1]. De Broglie, 

(14)�u =
(
1 −

u2

c2

)−1∕2

�0.

5 Or from the perspective of localized units that are in an unbroken chain of matchings of experiences 
with U

A
 and U

B
.

6 We simplify our analysis in this section by assuming that the interaction at B is with a unit U
B
 that is 

also at rest in F
u
.
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building on the inverse relation of period and frequency and on time dilation, postu-
lates that

while the relativistic form in Eq. (14) is reserved in de Broglie’s work to the matter 
wave associated with the body and propagating in space. This suggestion of de Bro-
glie does not allow the construction of a relativistic propagator for simple units (see 
also Remark 11).

We now define a particular choice of internal time differential d� compatible with 
the setting of isolated units, with the corresponding likelihood P(A, B) and internal 
time path integral.

We denote by s spacetime point coordinates, and we parametrize s on all indistin-
guishable paths with respect to time t′ as measured in a matching frame of reference 
Fu . We further denote by ds

dt�
∗

ds

dt�
 the Lorentzian inner product of ds

dt′
 with itself.

Definition 9 Given a matching frame of reference Fu in motion at speed u with 
respect to the simple unit S as localized at A, the internal time differential is defined 
as

The corresponding internal time interval ��AB along the path �AB is

Remark 11 Recall that with respect to time t′ as measured in an external matching 
frame of reference we can write

The internal time differential in Definition 9 is simply a frame dependent represen-
tation of the differential of proper time where the square root in 

(
1

c2
ds

dt�
∗

ds

dt�

)1∕2 has 
been removed. We will show in Proposition 1 that, even though the internal time 
differential is frame dependent, the corresponding periodized internal time interval 
P(��AB) is relativistically invariant for matching frames of reference. In turn, P(��AB) 
is the only physical quantity that is significant for computing the measurable prob-
ability distribution P(A, B) we give in Eq. (17). Note that the original suggestion of 
de Broglie on the Lorentz transformation of the internal clock frequency (reported in 
Remark 10) would not allow relativistic invariance for P(��AB).

Definition  9 allows us to further define the corresponding expressions for the 
propagator of a simple unit S.

�u =
(
1 −

u2

c2

)1∕2

�0,

(15)d� =
1

c2
ds

dt�
∗

ds

dt�
dt�.

(16)��AB = ∫
�AB

1

c2
ds

dt�
∗

ds

dt�
dt�.

(ds2∕c2)1∕2 =
(ds2∕c2)1∕2

dt�
dt� =

(
1

c2
ds

dt�
∗

ds

dt�

)1∕2

dt�.
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Definition 10 The likelihood P(A, B) of S propagating from A to B is defined in Fu 
as7

The internal time path integral (or the propagator) associated to P(A, B) is

A relativistic periodic representation of internal time. One of the main conclu-
sions of this section is the following proposition:

Proposition 1 Let the periodic representation of the internal time interval ��AB of a 
single unit along a path �AB be

Then P(��AB) and the integrals P(A, B) and I(A, B), as in Definition 10, are all rel-
ativistically invariant with respect to matching frames of reference defined at the 
points of interaction.

Proof It is enough to show relativistic invariance of the argument of the exponent in 
P(��AB) , namely of the quantity

We denoted by t′ a parametrization of time in Fu , and similarly we denote by t a 
parametrization of time in F0 , the frame of reference at rest with respect to S at A. 
From the perspective of F0 , t� = �t with � =

(
1 −

u2

c2

)−1∕2 , and �u = ��0 , therefore

(17)P(A,B) =
|||�

�AB

e
i�u ∫�AB 1

c2

ds

dt�
∗

ds

dt�
dt�
D�AB

|||
2

.

(18)I(A,B) = �
�AB

e
i�u ∫�AB 1

c2

ds

dt�
∗

ds

dt�
dt�
D�AB.

P(��AB) = e
i�u ∫�AB 1

c2

ds

dt�
∗

ds

dt�
dt�
.

(19)Tu(�AB) = �u ∫
�AB

d� = �u ∫
�AB

1

c2
ds

dt�
∗

ds

dt�
dt�.

7 This definition follows closely the one of the scaled relative significance in Eq. (13).
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For any speed u, Tu(�AB) is identical with T0(�AB) , i.e. the same quantity as defined in 
the matching frame of reference F0 at rest with respect to unit S at A, and therefore 
Tu(�AB) and P(��AB) are relativistically invariant. Since P(A, B) and I(A, B) are also 
defined in terms of Tu(�AB) , they are relativistically invariant as well.   ◻

We will now show that the choice of ��AB in Definition 9 is compatible with the 
experience of simple units, and also with the Time Reversal Condition. We work 
for simplicity in the frame of reference F0.

First, note that it may happen that the internal time interval 
𝜏𝛾AB = ∫

𝛾AB

1

c2
ds

dt
∗

ds

dt
dt < 0 , but the periodization P(��AB) = ei�0��AB makes the distinc-

tion of positive and negative values of ��AB meaningless, so that no inconsistencies in 
the experience of the unit arise. Indeed, in the definition of indistinguishability, we 
considered changes in the internal state variables with respect to internal time, irre-
spective of the direction of flow of the internal time state.

We now address the compatibility of ��AB = ∫
�AB

1

c2
ds

dt
∗

ds

dt
dt with the Time Rever-

sal Condition.

Proposition 2 For every path �AB of total internal time � , there is a path � ′
AB

 of total 
internal time −� as close as we want to �AB itself, such that the map Σ(�AB) = � �

AB
 

satisfies the Time Reversal Condition.

A full proof of this proposition is beyond the scope of this paper, as the technical 
nature of such proof contrasts with the informal way we have handled path integrals 
so far. However, we sketch a justification here.

Sketch of Proof. Let us work in the frame of reference F0 . To show that 
��AB = ∫

�AB

1

c2
ds

dt
∗

ds

dt
dt satisfies the Time Reversal Condition, consider a piecewise 

linear path �(AB,N) made of N small segments [Ai,Ai+1] with A1 = A and AN = B and 
such that all segments’ endpoints are on �AB.

Let 𝜏[Ai,Ai+1]
= 𝛿𝜏i > 0 . For small ��i we can approximate 

��i =
1

c2

�si

�ti
∗

�si

�ti
�ti =

1

c2

�s2
i

�t2
i

�ti . Assuming without loss of generality that 𝛿ti > 0 , we 
conclude that 𝛿s2

i
> 0 , i.e. [Ai,Ai+1] is a time-like interval.

(20)

Tu(�AB) = �u ∫
�AB

1

c2
ds

dt�
∗

ds

dt�
dt�

= ��0 ∫
�AB

1

c2

(
ds

dt

dt

dt�
∗
ds

dt

dt

dt�

)
dt�

dt
dt

= ��0 ∫
�AB

1

c2

(
ds

dt
�−1 ∗

ds

dt
�−1

)
�dt

= ��0 ∫
�AB

1

c2
ds

dt
∗
ds

dt
�−1dt

= �0 ∫
�AB

1

c2
ds

dt
∗
ds

dt
dt = T0(�AB).



1 3

Foundations of Physics (2022) 52:18 Page 21 of 38 18

We can now build two connected segments [Ai,Hi] , [Hi,Ai+1] such that 
�[Ai,Hi]

+ �[Hi,Ai+1]
= −��i . For simplicity, and again without loss of generality, we 

show the existence of Hi on the 1 + 1 spacetime subspace identified by the segment 
[Ai,Ai+1] and by the t-axis.

We first select a time value 𝛿t̃ such that 0 < 𝛿t̃ < 𝛿ti , and we build the line of sim-
ultaneity L such that t = 𝛿t̃ . We choose 𝛿t̃ small enough that the intersection point 
H̄ of L and the light cone of Ai makes the segment [H̄,Ai+1] time-like. Under these 
conditions, 𝜏[Ai,H̄] = 0 and 𝜏[H̄,Ai+1]

> 0 , so that 𝜏[Ai,H̄] + 𝜏[H̄,Ai+1]
> 0.

If, on the other hand, we select H̃ on L that is outside the light cone of Ai and suf-
ficiently far from Ai and Ai+1 , the segments [Ai, H̃] and [H̃,Ai+1] will be space-like, 
with large negative spacetime intervals that we can denote respectively as �s2

1
 and 

�s2
2
.
Since 0 < 𝛿t̃ < 𝛿ti , the time differences 𝛿t1 = 𝛿t̃ − 0 (the time interval in F0 along 

[Ai, H̃] ) and 𝛿t2 = 𝛿t − 𝛿t̃ (the corresponding time interval along [H̃,Ai+1] ) will be 
positive. It follows that 𝜏[Ai,H̃] =

𝛿s2
1

𝛿t2
1

𝛿t1 < 0 and 𝜏[H̃,Ai+1]
=

𝛿s2
2

𝛿t2
2

𝛿t2 < 0 . More particu-
larly, H̃ can be chosen so that 𝜏[Ai,H̃] + 𝜏[H̃,Ai+1]

<< −𝛿𝜏i . We can then find an inter-
mediate point Hi between H̄ and H̃ on L such that �[Ai,Hi]

+ �[Hi,Ai+1]
= −��i , as 

needed.
A similar argument can be used to show that if 𝜏[Ai,Ai+1]

= −𝛿𝜏i < 0 , we can 
always build two connected segments [Ai,Hi] , [Hi,Ai+1] such that their total internal 
time is ��i.

If the segment [Ai,Ai+1] is null, then �[Ai,Ai+1]
= 0 . In this case, we simply replace 

[Ai,Ai+1] with the pair of segments [Ai,Hi] , [Hi,Ai+1] , with Hi any point in [Ai,Ai+1] , 
and we have two null segments with �[Ai,Hi]

+ �[Hi,Ai+1]
= 0.

By working on each segment [Ai,Ai+1] , we build in this way a new piecewise path 
� �
(AB,2N−1)

 of 2N − 1 segments denoted by the sequence of points 
{A1,H1,… ,HN−1,AN} and such that if ��(AB,N) = �N , then �� �

(AB,2N−1)
= −�N.

Denote by Γ(AB,N) the space of piecewise linear paths made of N segments, and 
define the map ΣN ∶ ΓAB,N → Γ(AB,2N−1) such that � �

(AB,2N−1)
 is the image of �(AB,N).

In the limit of N → ∞ , �AB is the limit of �(AB,N) . Let Σ be the limit of ΣN , and note 
that Γ(AB,N) , Γ(AB,2N−1) both converge to the space of (continuous and not differenti-
able) indistinguishable paths ΓAB.

Then ΣN(�(AB,N)) will also converge pointwise to the path �AB (even though its sto-
chastic structure will be different in terms of distribution of time-like, space-like and 
null local approximations). Since this is true for every path, and distances among 
paths are respected in the limit, we expect the measure DΣ(�AB) to be the same as 
D�AB.  ◻

We conclude that the choice of total internal time along a path given in Defini-
tion  9 is compatible with the experience of simple units, and also with the Time 
Reversal Condition.

Remark 12 Clearly, if � = ∫
�AB

1

c2
ds

dt
∗

ds

dt
dt satisfies the Time Reversal Condition, −� 

will also satisfy it. We will use this simple observation again in Sect.  3.3 while 
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deriving the standard path integral formulation of quantum mechanics for spinless 
elementary particles from the general framework of internal time path integrals.

Remark 13 In the definition d� =
1

c2
ds

dt
∗

ds

dt
dt , we could replace L =

1

c2
ds

dt
∗

ds

dt
 with 

any polynomial in L, and d� would still be compatible, in principle, with the general 
setting of isolated units. However, polynomials in L of degree > 1 would not lead to 
a relativistic invariant P(��AB) , as it can be easily seen by replacing L in Eq. (20) with 
a polynomial in L of higher degree.

Remark 14 There is a crucial consequence of taking d� =
1

c2
ds

dt
∗

ds

dt
dt as the cor-

rect expression for the internal time differential of isolated units. Since all meas-
urable quantities are derived experimentally in the context of a time differential 
d� = (ds2∕c2)1∕2 , it follows that the value of the internal frequency �0 to be used in 
the internal time path integral cannot be measured directly from experimental evalu-
ations. Internal frequency at rest must be defined with respect to internal time dif-
ferential d� =

1

c2
ds

dt
∗

ds

dt
dt . For this reason, in Definition  4 we allowed �0 to be a 

multiple � of the de Broglie frequency. We will show in Sect.  3.3 that enforcing 
consistency with standard quantum mechanics in the limit of weak fields and low 
velocities implies � =

1

2
.

Remark 15 For a realistic isolated charged spinless elementary particle, the propaga-
tor I(A, B) in Definition 10 would not fully describe its evolution in a general non-
gravitational potential. As we already pointed out in Remark 4, since accelerating 
charged particles radiate, they are likely to intermittently stop being isolated at some 
points between A and B. We will further explain this point in Remark 18 in Sect. 4, 
and we will point out that these radiating effects actually play a crucial role, as they 
make sure that the dynamics of motion of a simple unit subject to a non-gravita-
tional potential retains dependence from relativistic mass effects, and, under most 
experimental conditions, does not display significant induced metrical effects when 
subject to strong non-gravitational potentials.

The connection between the propagator of simple isolated units and quantum 
mechanical propagator of spinless elementary particles is fully fleshed out in Sect. 3.3, 
where we shall assume that only low energy classical paths are associated to the propa-
gation of a unit, so that higher order relativistic effects can be neglected and the internal 
clock frequency at rest �0 can be used as an approximation of �u in all calculations.

3.3  The Propagator’s Path Integral for Spinless Elementary Particles

Let us assume now that a simple isolated unit S is subject to a scalar potential �(x) . The 
principle of isolated equivalence implies that, irrespective of the nature of the poten-
tial, the effects of �(x) on the internal time state along indistinguishable paths of S are 
the same of those of a corresponding scalar gravitational potential � , what we call the 
induced potential as experienced by the isolated unit.
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However, when we represent a general potential as an induced potential, we need to 
scale it appropriately by the mass of the unit subject to the potential. For example, in 
the case of a charged simple unit S of charge e and mass me subject to a static electric 
potential � , the corresponding potential energy is V(x) = e� , we define then the 
induced potential experienced by the unit in isolation as � =

e�

me

 , so that V(x) = �me as 
it would be the case for a gravitational potential.

Given that for simple isolated units there is this simple correspondence between a 
general, non-gravitational scalar potential � and its induced potential � , in the follow-
ing we can work directly and without loss of generality with a gravitational potential �.

We first restrict ourselves in this section to the case of a static, radially symmet-
ric gravitational potential � , and we further assume that � is weak, that is, such that 
|𝛷| << c2 . Under this last assumption, and following closely [23, Sect. 17.9], we can 
approximate the line element ds

2

c2
 as

where d�2 = dx2 + dy2 + dz2 . This expression for the line element pro-
vides the necessary information on the local metric to be able to compute 
the Lorentzian inner product in d� =

1

c2
ds

dt
∗

ds

dt
dt . In particular, the Lorentz-

ian inner product of two vectors P1 = (t1, x1, y1, z1) and P2 = (t2, x2, y2, z2) will 
be defined locally by P1 ∗ P2 = g11t1t2 + g22x1x2 + g33y1y2 + g44z1z2 where 
(g11, g22, g33, g44) =

(
1 +

2�

c2
,−(1 −

2�

c2
),−(1 −

2�

c2
),−(1 −

2�

c2
)
)
.

Note that the principle of isolated equivalence ensures that, for a simple isolated 
unit, a unique local induced metric can always be defined for any scalar potential, sim-
ply by establishing the corresponding induced potential at that point.

The total internal time along an indistinguishable path from a point A to a point B is

where we substituted v2 = (
dx

dt
)2 + (

dy

dt
)2 + (

dz

dt
)2 , and we assume that t is measured in 

an external frame of reference FA at rest with respect to the potential field.
If v << c , then ��AB can be approximated as

in which case the internal time path integral is approximately

Since we assume a non-relativistic setting, the speed u of the simple unit at A is such 
that u << c , and we can approximate �u ≈ �0 . Define

(21)ds2

c2
=
(
1 +

2�

c2

)
dt2 −

(
1 −

2�

c2

)
1

c2
d�2

,

(22)��AB = ∫
�AB

1

c2
ds

dt
∗
ds

dt
dt = ∫

�AB

[(
1 +

2�

c2

)
−
(
1 −

2�

c2

)
v2

c2

]
dt,

(23)��AB = ∫
�AB

(
1 +

2�

c2
−

v2

c2

)
dt,

(24)I(A,B) = � e
i�u ∫�AB

(
1+

2�

c2
−

v2

c2

)
dt
D�AB.
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which is independent of the specific choice of the path �AB , and substitute �0 =
�M0c

2

ℏ
 

from Eq. (1), then

We set V = �M0 and divide and multiply by 2 to write

Recalling the time symmetry argument in Remark 12, the sign of the integrand in

does not affect the value of P(A,B) = |I(A,B)|2 , and we can conclude that

where, since we deal with a probability distribution, we have absorbed the constant 
K into the measure D�AB.

We recall now that the probability distribution Pqm(A,B) of a quantum spinless 
point particle with Lagrangian −V(x) + 1

2
v2M0 and propagating from A to B can be 

described as follows [15]:

There is an obvious difference between P(A, B) and Pqm(A,B) : in P(A, B), the con-
stant ℏ is replaced by ℏ∕2 . The only way to make P(A,  B) consistent with quan-
tum mechanics in the limit of weak potentials and low velocities is to set � =

1

2
 in 

�0 =
�M0c

2

ℏ
 in Eq. (1). That is, if we compute physical quantities by using the stand-

ard definition of time and therefore we use the probability density Pqm(A,B) , the 
observed internal frequency of spinless elementary particles will be close to twice 
the internal frequency to be used in P(A, B).

In the limit of weak potentials and velocity v << c , we conclude that the square 
module of the internal time path integral for a simple isolated unit can be reduced to 
the square module of the path integral describing the propagator of quantum spin-
less point particles.

Remark 16 In moving from the internal time path integral to its approximation, we 
assume that we can set v << c in the argument of the path integral while keeping 
the measure D�AB unchanged. This is essentially equivalent to a regularization of 
the integral argument, and to the assumption that the integral is well approximated 

K = e
i�0 ∫�AB 1dt

,

(25)I(A,B) = K � e
i
�

ℏ
∫
�AB

2�M0−M0v
2dt
D�AB.

(26)I(A,B) = K � e
i

�

ℏ∕2
∫
�AB

V(x)−
1

2
M0v

2dt
D�AB.

∫
�AB

V(x) −
1

2
M0v

2dt

(27)P(A,B) = |I(A,B)|2 = |||� e
i

�

ℏ∕2
∫
�AB

−V(x)+
1

2
M0v

2dt
D�AB

|||
2

,

(28)Pqm(A,B) =
|||� e

i
1

ℏ
∫
�AB

−V(x)+
1

2
M0v

2dt
D�AB

|||
2

.
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under such regularization. We make the same approximation in Sect.  4 when we 
calculate possible effects of a weak Coulomb potential on the local metric defined 
along each indistinguishable path.

The arguments derived in this section for scalar potentials can be adapted in a 
straightforward way to more general vector potentials, if we continue to restrict our-
selves to simple units with no spin.8 More particularly, for a spinless elementary par-
ticles of rest mass me in a non-relativistic regimen subject to a general electromag-
netic field, we note that V(x) along a path x(t) takes the form V(t) = −e𝜙 +

e

c
A ⋅ ẋ , 

where � is the scalar potential, A is the vector field associated to the external charges 
distribution and motion, e is the charge of the simple unit, and we denote by ẋ the 
derivative of x and by “ ⋅ ” the Euclidean inner product.

Because the internal state variables of the simple unit cannot change in time, 
paths subject to vector and scalar potentials are not distinguishable for simple 
units. At each instant t, the simple unit behaves as if it is subject to a scalar poten-
tial � such that V(t) = −e𝜙 +

e

c
A ⋅ ẋ = 𝛷me . The computation of I(A, B) in Eq. (25) 

is modified (in a non-relativistic scenario) by setting the induced potential as 
𝛷 = (−e𝜙 +

e

c
A ⋅ ẋ)∕me and allowing a dependence of � on t in the path integral.

The possibility of this straightforward generalization to vector potentials also 
implies that the range of indistinguishable paths of a simple unit in a scalar potential 
is the same as the range of indistinguishable paths in a general potential. On the 
other hand, the spacetime metric induced by the vector potential at each point is not 
uniquely defined: the metric of the line element is dependent not just on the specific 
test unit, but also on the indistinguishable path of the unit.

Remark 17 In [28] the propagator of a quantum mechanical particle was also derived 
from de Broglie’s internal clock hypothesis in the context of weak gravitational 
potentials, while in [11, 12] the Feynman path integral propagator in the presence of 
general gauge fields is derived from spacetime geometrodynamics. Another geomet-
ric interpretation of quantum mechanics valid for general potentials was proposed in 
[36], starting from Bohm’s pilot wave interpretation of quantum mechanics.

In our work the effects on the local metric induced by a general potential are 
deduced from first principles; the structure of isolated units and the principle of iso-
lated equivalence allow to extend the analysis of weak gravitational potentials to 
scalar and vector potentials for simple units. Moreover, our theory is not an interpre-
tation of quantum mechanics, as it reduces to the latter only under the condition of 
weak potentials and low velocities, when the propagator of a simple unit in Eq. (18) 
approximates the quantum mechanical propagator of a spinless elementary particle.9 

8 We note however that our results extend, at least formally, to the more complex case of units with spin. 
The discreteness of spin states preserves the possibility of having a suitable space of continuous indistin-
guishable paths on which to build an internal time path integral.
9 As noted in Remark 18, for a charged unit in a general electromagnetic potential the predictions of the 
standard theory are preserved under most experimental conditions because of the intermittent loss of iso-
lated status of the unit due to its radiating field.
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We shall see in Sect. 4 that the condition of isolated evolution of a unit can be har-
nessed to devise simple experimental tests of our approach.

4  Weak Relativistic Effects and Experimental Considerations

We now explore whether it is possible to experimentally detect induced effects due 
to a non-gravitational potential on the local spacetime metric defined along the 
indistinguishable paths of a simple unit.

To connect our results on simple units to possible experimental predictions for 
non-gravitational potentials, the correspondence (noted at the end of Sect. 1) of sim-
ple units with isolated spinless elementary particles is not enough. We need to move 
a step closer to real objects that are affected by non-gravitational potentials, and we 
assume that an isolated electron can be a suitable physical embodiment of an iso-
lated charged spinless elementary particle. The implication of this assumption is that 
we can only consider experimental scenarios where the spin direction of the electron 
can be neglected, such as, for example, in determining the motion of an electron in 
an electrostatic Coulomb potential.

Additionally, the whole experimental setting we suggest here is meaningful only 
under restrictive conditions on the potential and the extremal trajectories of the elec-
tron, seen as a simple unit. These conditions are meant to ensure that the radiating 
field of the electron is negligible and does not impact its isolated status, and that the 
results of Sect. 3.3 can be extended to include weak relativistic effects of the order 
of u

2

c2
 , with u the velocity of the electron at the beginning of propagation.

We avoid any scenario that would require an accurate evaluation of P(A,  B) 
= |I(A,B)|2 , because d� =

1

c2
ds

dt
∗

ds

dt
dt indirectly defines a local Lorentzian geom-

etry, but in general the internal time path integral is not defined on a single Lor-
entzian manifold. A potential that depends on the velocity of the unit (such as, for 
example, a vector potential) will induce on each indistinguishable path its own local 
metric. A proper perturbation theory for such types of path integrals is not available.

In light of these computational limitations, in what follows we work only with 
static potentials and on measurements of the shape of extremal paths associated to 
the internal time path integral that are not essentially dependent on a complete per-
turbative analysis of the integral itself. As we said at the beginning of this section, 
this limitation to static potentials is also in line with the restrictions on the experi-
mental setting that we must enforce to be able to approximate the behavior of an 
electron as the one of a simple unit.

Weak Relativistic Effects. Our derivation of quantum mechanics for spinless ele-
mentary particles in Sect. 3.3 assumes a non-relativistic regimen where the relativ-
istic expression �u for the internal clock frequency was replaced by the approxima-
tion �0 . However, the most general expression for the internal time path integral 
in Eq.  (18) used �u and was relativistically invariant for the frames of reference 
defined at the matching points. This raises the possibility that our formalism could 
be extrapolated to consider weak relativistic effects, while eschewing the difficulties 
of a fully relativistic setting.
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Accordingly, in this section we continue to assume that v << c , but we seek very 
small effects of the order of v

2

c2
 , and in particular of the order of u

2

c2
 , where u is the 

velocity of the simple unit as established at the point A in an external frame of refer-
ence at rest with respect to the potential field and with the whole experimental appa-
ratus. We further assume that we are in the presence of static, radially symmetric 
Coulomb potential � , and that the induced potential � due to the Coulomb potential 
is weak, i.e. |𝛷| << c2.

For an electron of charge e and rest mass me , the relativistic internal clock fre-
quency is �u = �

�mec
2

ℏ
 , with � =

1

2
 (as we established in Sect.  3.3), and 

� =
(
1 −

u2

c2

)−1∕2 . Similarly, if we wish to consider weak relativistic effects, the rela-
tivistic mass �me will appear in the computation of the induced potential due to the 
static electric potential, as � = �

e

�me

.
Following the expression for the total internal time along a path given in Eq. (22), 

the corresponding approximate internal time path integral for the induced weak 
potential is

We can assume that there is only one extremal path from A to B for I(A, B). Multi-
ple extremal paths among points A and B may arise for strong potentials. However, 
the energy of the particle along extremal paths that do not correspond to the classi-
cal trajectory between A and B would generally be high. In these cases, relativistic 
effects would be significant, while we are considering only the case of paths with 
initial velocity u << c and subject to weak potentials.

The relativistic mass affects the extremal trajectories of the path integral in 
Eq. (29) through the equality � = �

e

�me

 . The relativistic internal clock frequency �u 
is also dependent on the relativistic mass, but the specific value of �u affects only 
the value of the path integral, and not its extremal trajectories.

Remark 18 The integral in Eq.  (29) has extremal trajectories that differ in general 
from the classical trajectory of a charged particle in a static electric potential, even 
in the limiting case of weak potentials: the impact of the relativistic mass is fixed at 
the point of matching of experiences in A and does not change as long as the unit is 
isolated. This is a consequence of the principle of isolated equivalence that we need 
to reconcile with the predictions of the classical theory of electromagnetism, where 
the equations of motion depend on the relativistic mass.

To this end, we note that the electromagnetic radiation of the electron is unavoid-
able in the context of any significant acceleration. This radiation would affect the 
state of the surrounding environment and it would make the unit, at least intermit-
tently, not isolated. The intermittent matching of experiences would achieve two cru-
cial results: break the isolated equivalence that gives rise to induced metric effects; 
reset every time the value of u in the relativistic mass �me =

(
1 −

u2

c2

)−1∕2
me appear-

ing in Eq. (29) in �u and � . The intermittent breaking of isolated equivalence (and 
of the induced metric effects) and the resetting of the relativistic mass ensure that 
a correspondence with the standard classical trajectory of a charge accelerated in 

(29)I(A,B) = � e
i�u ∫�AB

[(
1+

2�

c2

)
−
(
1−

2�

c2

)
v2

c2

]
dt
D�AB.
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an electromagnetic field is preserved under most experimental scenarios, as already 
pointed out in Remarks 4 and 15 . Indeed, radiating effects are relevant when con-
sidering accelerated motion of a simple unit subject to any realistic non-gravitational 
potential.

This caveat implies that there is no possible equivalent for high speed simple units 
of a Klein-Gordon theory for spinless elementary particles (seen as test particles in 
a general potential): any fully relativistic extension of the theory we developed in 
this paper (as opposed to a relativistically invariant formulation, as in Sect. 3) must 
explicitly include the possibility of radiating fields for any object of the theory that 
can be affected by non-gravitational potentials. However, a full account of radiating 
interaction with other units can be properly addressed only by generalizing the cur-
rent work to include structured units.

Experimental Considerations. The experimental setting we assume in this section 
is essentially a single slit diffraction experiment (see for example [15, Chapter 3.2]), 
where we pay particular attention to the distance of screen and detector and where 
we add a radially symmetric weak Coulomb potential between screen and detector.

Let xa be the position of the mouth of an electron gun pointing right at a screen that 
is orthogonal to the line l that goes through the gun mouth. Set a slit on the screen at 
the intersection of the screen and the line l. Position a detector plane parallel to the 
screen and to its right. Suppose that electrons are emitted with initial velocity that is 
very narrowly distributed around some value u, so that without loss of generality we 
can consider only paths with initial velocity exactly u. Assume also that a radially sym-
metric Coulomb potential is centered at a distance D from the line l and to the right of 
the screen. Let A = (xa, ta) with xa at the mouth of the electron gun, and B = (xb, tb) 
with xb a point on the detector and tb > ta.

The velocity of the electron is assumed to be large enough that the potential field 
only deflects the electron, and it does not significantly change the norm of the veloc-
ity. These assumptions are crucial also to ensure that the transversal acceleration is 
small, so that the relative loss of kinetic energy due to electromagnetic radiation can 
be neglected as well. We stress that a very low radiating field is necessary to ensure the 
electron will be an isolated unit until it reaches the detector.

We first analyze a particular path in this experimental setting, the one corresponding 
to the classical trajectory with initial velocity u. We then argue that the maximum of 
the distribution of the electron’s hits on the detector is located at the intersection of this 
path with the detector itself.

Note that since the velocity along the extremal trajectory is assumed to be nearly 
constant, the relativistic mass is constant as well. Under this condition, the caveats of 
Remark 18 do not apply, and the computation of the deflection of the extremal path 
associated to the path integral in Eq. (29), with starting point xa at the mouth of the 
electron gun and velocity equal to u, follows the calculations for the deflection of finite 
mass particles in a weak gravitational potential.

In a radial, static gravitational potential that is flat at infinity, the total angle deflec-
tion of the trajectory of a particle of initial velocity u can be approximated as [27, 
Sect. 25.5]
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where D is the distance of the closest point of the trajectory to the potential field 
source (the impact parameter), M is the total mass of the field source, and we assume 
that u is large enough to allow the particle to escape the field.

The scalar, induced potential for a given static Coulomb potential is, in radial 
coordinates,

with ke the Coulomb constant, Q the charge of the Coulomb field, e the charge of the 
electron, and me its mass.

Let Γ be the unique geodesic (of the geometry induced by the potential � in 
Eq. (31)) from xa to the detector plane with initial velocity u. Substituting �(D) for GM

D
 

in Eq. (30) we have this corresponding formula for the deflection angle of Γ:

Let now BΓ be the intersection of Γ and the detector plane, and denote by PA(xb,�) 
the restriction of the probability distribution P(A,  B) on the detector plane in the 
presence of the potential �.

Since Γ is the only permissible classical path in our experimental setting, it is 
the only extremal path that will contribute to the corresponding WKB semiclassical 
limit. In this limit, it will be the path reaching the detector with the largest construc-
tive interference of nearby paths. Accordingly, the maximum of PA(xb,�) is located 
at BΓ and the deflection angle �� is measurable from PA(xb,�).

In a classical setting, without induced effects on the local metric, the deflection 
angle due to the Coulomb field would be [27, p. 671]

This calculation considers first-order effects in u
2

c2
 and strictly speaking we cannot 

apply standard non-relativistic quantum mechanics here. However, since u << c and 
since in the WKB limit we expect to recover the classical trajectory also for rela-
tivistic quantum mechanics, we can assume that the deflection angle ��C will cor-
respond to the peak of the distribution of hits on the detector plane as predicted by a 
standard quantum mechanical analysis of this setting.

By approximating 
(
1 −

u2

c2

)1∕2
= 1 −

1

2

u2

c2
 and retaining only terms of the order of 

u2

c2
 we can write �� − ��C ≈ 2ke

Qe

Dmec
2
 . This difference will be small in absolute terms, 

because the condition of weak induced potential |𝛷| << c2 implies that 
2ke

Qe

Dmec
2
<< 1 . Still, �� − ��C gives an estimate of the interval of accuracy for the 

measurement of �� that would be required to validate experimentally the weak rela-
tivistic effects conjectured in this section.

(30)��G ≈ 2
GM

D

1

u2

(
1 +

u2

c2

)
,

(31)�(R) = ke
Qe

R

1

�me

= ke
Qe

R

1

me

(
1 −

u2

c2

)1∕2

,

(32)�� ≈ 2ke
Qe

D

1

me

(
1 −

u2

c2

)1∕2 1

u2

(
1 +

u2

c2

)
.

(33)��C ≈ 2ke
Qe

D

1

me

(
1 −

u2

c2

)1∕2 1

u2
.
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We conclude that the maximum of the probability distribution of hits on the 
detector plane should be deflected by the Coulomb field by an angle �� and not 
by ��C , as it would be predicted by standard quantum mechanics. Once more, we 
stress this result would hold only assuming the radiating field of the electron can 
be neglected and does not affect its isolated status, and extrapolating the results of 
Sect. 3.3 to hold when effects of the order u

2

c2
 are very small, but not negligible.

5  Further Developments

5.1  A Primitive Ontology for Isolated Objects

In Sects. 3 and 4 we have analyzed in depth only the propagation of a single simple 
unit. The abstract approach of Sect. 2, defining simple units independently of their 
specific physical embodiment as isolated spinless elementary particles, emphasized 
the general role of the notion of internal state variables in determining the labelled 
indistinguishable paths associated to any isolated object (unit), including composite, 
structured units. We first explored the general structure of the matching of expe-
riences in light of the equivalence principle, by defining the relative significance 
of labelled indistinguishable paths, and we constructed a relativistically invariant 
propagator for simple units. Only then we showed how these ideas could be used to 
derive in Sect. 3.3 the path integral formulation of Schrödinger equation for a spin-
less elementary particle.

Note that all our results on the propagator of a simple unit were derived under 
the assumption of a surrounding environment for the unit, to assess whether the unit 
was indeed isolated. However isolated objects, whether simple or structured, should 
be identifiable independently of an arbitrary partition of a physical system into a 
unit and its surrounding environment. This is especially significant if we want to 
establish a satisfactory primitive ontology (PO) for the theory of isolated objects, 
to better understand how multiple indistinguishable paths of isolated objects can be 
related to our direct experience of a classical world.

To be more precise, we recall that the PO of a theory is the set of elements of the 
theory “that make direct contact with the world of our experience”, as stated in [3, 
Sect. 4.1] (a key reference on POs on which we rely heavily in this section). Note 
that this definition of a PO implies that its entities must be at least expressible in 
classical terms, expanding on the idea that the “positions of things” are ultimately 
the relevant variables of any meaningful physical theory [7, Chapter 19].

We shall see that the identification of a suitable PO for isolated objects will lead 
to valuable insight into how changes of acceleration affect the range of indistin-
guishable paths of structured units, and later explore the relation of the PO of iso-
lated objects with two POs of the Gherardi-Rimini-Weber collapse theory [6, 19, 20, 
37], that share some interesting points of contact with the PO of isolated objects we 
are about to define.

Our starting point to build a PO for isolated units is an argument we made in 
Sect. 2 when motivating Assumption 2 on the matching of experiences of distinct 
units. We stressed that talking of propagation of a unit S from a point A to a point B 
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implies the possibility of localizing the unit by matching of experiences, and this can 
only be done if there are additional structured units UA and UB with single indistin-
guishable paths, i.e. fully localized units. Then interaction of S with UA at A and UB 
at B would effectively localize S as well because of their matching of experiences.

We call the spacetime event corresponding to a matching of experiences with a 
fully localized unit a local matching of experiences (local ME), and we claim that 
the PO of the theory of isolated objects is the set of all local MEs. Indeed, local MEs 
are local events shared and validated by all units that partake of the matching and 
they are described in terms of classical notions of space and time.

Interestingly, the localized isolated objects that allow the local MEs to exist do 
not directly belong to the PO: in isolation they are not accessible to other units and 
do not make up a shared reality; during the matching of experiences, a unit is only 
assumed to change its experience (defined by the evolution of its internal state vari-
ables) to be compatible with the experience of another interacting unit, it does not 
directly have access to the experience of the other unit. Matching of experiences is 
only a process of verification of compatibility of experiences: what is not compat-
ible simply does not appear in the matching.

These are the reasons we assume that only the set of all local MEs can be part of 
the PO of isolated objects, and not the isolated objects themselves. However, since 
the set of all local MEs depends on the interaction of isolated objects, it follows that, 
given an external frame of reference, all objects that are isolated at each time t need 
to be identified for the PO to be completely defined, even if the specific set of iso-
lated objects can and likely will change in time.

We do not directly address in this section relativistic invariance of the set of iso-
lated objects, as the notion of isolation is inherently non-local. We will simply prove 
here that for each given frame of reference all isolated objects can be identified at 
time t, and assume that the same set of local MEs is generated regardless of the 
frame of reference used to identify the isolated objects.

Note however that Proposition 1 in Sect. 3.2 establishes relativistic invariance of 
the general propagator of simple units. This result already ensures that local MEs 
are relativistically invariant when restricted to simple units, and it is likely that the 
PO specified by all local MEs is relativistically invariant as well, conditionally to the 
following assumptions: we equate a local ME of a structured unit to a collection of 
local MEs for its constituent elementary particles; the results in Proposition 1 for the 
propagator of simple units can be extended to units with variable spin direction.

We can take the existence of local MEs as an additional a priori element of the 
theory, and in this case the PO of isolated objects will be fully independent from 
phenomenological assumptions. However, the set of local MEs does indirectly intro-
duce a phenomenological aspect to the PO, in the sense that we do not describe the 
microscopic mechanism leading some units to have single indistinguishable paths 
and be localized. Localization is nevertheless a concrete and plausible assumption 
for structured, macroscopic objects, describing a property that we can experimen-
tally validate and see in our own experience.

Moreover, we will shortly see that the existence of a localized structured unit 
is dependent on the geometry of the bonds among the constituent parts of the unit 
itself, and its impact on the mass of the unit. In other words, the phenomenological 
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understanding of bonds and molecular geometry in molecules and crystal structures 
will be used to deduce general properties of isolated objects.

Note that the only plausible PO of the orthodox interpretation of quantum 
mechanics (OQM) also has a phenomenological component: visible changes of the 
macroscopic states of measuring devices, even though not fully understood with 
respect to the underlying microscopic description of the system, can be considered 
the PO of OQM [3, Sect. 4].

We stress that not all partitions of a system into separate objects allow, even in 
principle, the existence of the local MEs that we need to define the PO of isolated 
objects. For example, imagine a partition that is only made of unconstrained elemen-
tary particles (i.e. a partition that has only simple units and no structured units): they 
will all, always, have multiple indistinguishable paths in isolation, and their match-
ing of experiences can potentially be anywhere, without the need of being localized 
in any specific point. Indeed, the difficulty of localizing the matching of experiences 
for simple units is just the way the measurement problem and the need for a quan-
tum state reduction present themselves in the context of isolated objects.

Since localized structured units are essential to the definition of local MEs, it is 
not possible to have a PO of simple units on their own, and, more particularly, a PO 
only for spinless elementary particles that are not interacting and bonding with each 
other in significant ways to generate structured units. Because of the importance of 
localized structured units in establishing local ME and a proper PO, we will sug-
gest now which physical objects can be assumed to be essentially localized when 
isolated.

First of all, we stress that when we spoke of objects in the definition of isolated 
objects in Sect. 2, we meant objects as we see them in our experience: as spacetime 
localizations of mass. We further assume now that each such localization of mass is 
the largest possible aggregate of elementary particles (each with a fixed rest mass) 
related to each other by some constraints (corresponding in practice to atomic and 
intramolecular forces10). This idea is formalized in the following definition:

Definition 11 An isolated set U of elementary particles is a structured isolated 
object (structured unit) at time t if: 

1. The energy of U is in a stable (locally minimal) equilibrium at time t.
2. The mass M of U is not equal to the sum of the mass of any partition of U into 

two subsets of elementary particles.
3. U is the maximal, i.e. there is no larger set of particles that includes U that satisfy 

properties 1 and 2.

In other words, with Definition 11 we are essentially assuming that a structured 
unit is a distinct atom, molecule or larger solid object with energy in a stable equi-
librium, and such that the mass of the unit depends also on the energy of its bonds, a 

10 We neglect here for simplicity possible weaker intermolecular forces that may also exist in liquid and 
gas states.
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dependence that usually manifests itself as mass defect. Note moreover that realistic 
elementary particles with variable spin direction can be considered as well, even 
though we do not specifically focus on them in this section.

Definition  11 allows for all structured units at time t to be uniquely identified 
(simply by assuming that each elementary particle is included into its unique maxi-
mal set of particles connected by bonds), and it confirms the special role of mass, 
since we argued in the justification of Assumption 1 in Sect. 2 that mass must always 
be one of the internal state variables of a unit.

Of course, Definition 11 is not a dynamical description of structured units, since 
the mechanism that leads a set of particles to be in a stable energy equilibrium is 
not explained. Our point is that, given the existence of such stable sets of particles, 
a specific and unique partition of all elementary particles into simple or structured 
objects is possible at each time t, and their status as isolated or not can then be 
ascertained.

We further assume now that there are at least some structured objects that are 
sensitive to acceleration in the sense clarified by the following definition.

Definition 12 A structured object S is acceleration-sensitive if it is not perfectly 
rigid and if its molecular geometry is such that any change of acceleration the object 
is subject to can be orthogonally decomposed to have at least one component paral-
lel to one of its bonds.

Note that with Definition 12 we move one step closer to real objects, by using the 
notion of molecular geometry, i.e. the spatial arrangement of atoms within a mol-
ecule that is in a stable energy equilibrium.

Any molecule or solid compound with a three dimensional crystal structure satis-
fies Definition 12, and since an acceleration-sensitive object is not perfectly rigid, 
a sudden change of acceleration along one of its possible indistinguishable paths 
would change the distances of at least some of the particles in the object and there-
fore the energy stored in its bonds.11 This means that the total mass of the object, 
dependent in part on the energy of the bonds, would also be changed for any change 
of acceleration that is large enough to deform the object and affect at least the energy 
of one of its bonds. Moreover, the larger the object, the greater the chance that at 
least one of its bonds will be affected by a change of acceleration.

Note that we are making here a non-degeneracy assumption that changes of 
acceleration along a possible indistinguishable path are not uniform within an object 
with extended volume, either because of the presence of tidal effects, or because 
of forces being applied unevenly to the particles within the object. We focus on 
changes of acceleration instead of acceleration itself because in a uniformly acceler-
ated object its particles will eventually be in equilibrium and at rest one with respect 

11 To be more precise, for an object with extended volume we should speak of indistinguishable world 
tubes in spacetime generated by the motion of the object, rather than indistinguishable spacetime paths 
(i.e. world lines).
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to the other, so that its mass will not be subject to changes due to variations in the 
energy in its bonds.

Assume now that an acceleration-sensitive object is at rest with respect to an 
inertial frame of reference from point A to point B. In such a state, it is not subject 
to changes of acceleration and its rest mass is constant in isolation along the cor-
responding spacetime path �1 from A to B. Any other spacetime path �2 starting at A 
and ending at B but distinct from �1 will have a change of acceleration at some point. 
If this change of acceleration is enough to locally deform the object, it will lead the 
object to have a different mass because of the arguments above on the correspond-
ence between bonds’ energy and mass. Since mass is one of the internal state vari-
ables, �2 will be distinguishable from �1.

The range of indistinguishable paths of the object reduces in this case to the path 
associated to its inertial state, and possibly to a narrow range of paths that are so 
close to �1 , and with such slight changes of acceleration, to be unable to deform 
the object. Under these conditions the object is effectively localized, because any 
change of acceleration that could affect the position of the center of mass of the 
object, would also deform it. Note that this simple argument on the mass of an 
object is relevant for determining localization only because we assume that the inter-
nal state variables of the object as a whole do matter in establishing its indistin-
guishable paths.

We can conclude that any matching of experiences with an acceleration-sensi-
tive object in inertial state will localize other objects, whether microscopic or not: 
the local ME of a localized unit with an elementary particle will be single points 
in spacetime, while the local ME with a structured unit will be a larger set of 
points corresponding to all the elementary particles in the unit. Since in practice 
most large solid objects have a three-dimensional molecular geometry that makes 
them sensitive to changes of acceleration, and none is perfectly rigid, we expect 
local MEs to be exceedingly common events.

Remark 19 Note that if the molecular geometry of a configuration of particles 
is essentially two dimensional, the energy of its bonds would not immediately be 
affected by a slight change of acceleration in the direction perpendicular to the plane 
established by the configuration. Similarly, simpler, one-dimensional molecular 
geometries are possibly deformed by changes of acceleration without immediate 
impact on the energy of the bonds.

Remark 20 The PO of isolated objects specified by local MEs shares some significant 
similarities with a PO of the Gherardi-Rimini-Weber theory (GRW), a well-known 
modification of quantum mechanics that assumes a stochastic, discontinuous collapse 
of the wave function [20]. In [6] it was suggested that the PO of GRW is comprised of 
the spacetime events corresponding to the spontaneous collapses of the wave function, 
and this suggestion was further developed in [37] where these events were labelled 
“flashes” and relativistic invariance of the resulting GRW flash ontology (GRWf) was 
proven (but see [13] for a critical examination of the claim of relativistic invariance 
in [37]). Indeed, local MEs and flashes are both events related to the localization of 
objects, however flashes within GRWf are completely determined at the microscopic 
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level, while the physical plausibility of the PO specified by local MEs is essentially 
dependent on a realistic world that includes multiple acceleration-sensitive structured 
objects. Moreover, in the PO specified by local MEs, no separate mechanism for col-
lapse is assumed, but simply a matching of experiences in interaction with localized 
objects, and the probability of a local ME arising is derived, at least for matching with 
simple units, from the concept of relative significance described in Sect. 3.1.

Remark 21 Our emphasis on mass changes within the isolated object, albeit mediated 
by changes in the bonds’ energy, established an interesting link with yet another PO 
of GRW that sets the density of mass in space for each time t as the PO of the theory, 
usually referred to as GRWm [3, Sect. 3.1, 19]. In particular, our discussion on pos-
sible changes of the center of mass of the object and distinguishability of spatially 
distinct mass distributions is paralleled by similar concerns in GRWm. Note however 
that the key property of objects that we needed to localize them is a lack of rigidity in 
their structure, while quasi-rigid solids are emphasized in the arguments establishing 
the definite state of macroscopic objects in [19, Sect. 3.3 (ii)]. Additionally, we dealt 
with geometric configurations of discrete point particles in our analysis, as opposed to 
continuous mass distributions in GRWm. At a more fundamental level, mass has a dif-
ferent ontological status in the PO of isolated objects and GRWm. Mass distributions 
appear directly as entities in GRWm, while mass appears as an internal state variable 
of isolated objects in our framework: changes to mass distributions have only an indi-
rect an effect on the local MEs, being the key to define acceleration-sensitive objects, 
and therefore to establish that local MEs are physically plausible events.

5.2  Concluding Remarks

This work started from the assumption that the evolution of a physical object (of 
any size) is subordinate to the restricted information available to the object itself 
through the evolution of its state variables (the experience of the unit), whenever no 
other object validates this information. From this broad assumption, we developed 
a theory of isolated units, i.e. objects that do not significantly affect their surround-
ing environment. Such units were then assumed to intermittently match their experi-
ences during interaction.

The main physical implications of the theory of isolated units are the following: 
the equivalence principle can be conditionally extended to non-gravitational poten-
tials whenever an isolated unit cannot distinguish the nature of the potentials via its 
state variables; similarly, all spacetime paths of an isolated unit that cannot be dis-
tinguished must be considered physically real in isolation, and must eventually have 
an impact when the unit interacts with other units.

From these assumptions, we derived a relativistically invariant propagator for 
simple units (isolated units whose state variables do not change), under an addi-
tional assumption on the existence of an internal periodic representation of time for 
nonzero mass units (adapted from de Broglie’s internal clock frequency hypothesis). 
We then demonstrated that the propagator for simple units reduces to the standard 
quantum mechanical propagator of spinless elementary particles in the limiting case 



 Foundations of Physics (2022) 52:18

1 3

18 Page 36 of 38

of weak potentials and low velocities. By extrapolating these results to include weak 
relativistic effects, and under restrictive conditions meant to minimize field radia-
tion and ensure that a moving electron can be considered an isolated unit, we sug-
gested an experimental setting that can detect small deviations from the predictions 
of standard quantum mechanics for the propagator of an electron slowly moving in a 
weak Coulomb potential.

In fact, as pointed out in Remark 18, radiating charged particles only intermit-
tently retain isolated status, and the setting of simple units is insufficient to account 
for a fully relativistic theory of moving charged units, so that it will need to be 
extended to include structured units. This extension will be necessary also for a 
proper treatment of units with spin.

Note however that the isolation of a unit is a non-local, relational property, and in 
principle it is amenable to experimental manipulation, by controlling its surround-
ing environment. We expect therefore that an experimental and phenomenological 
exploration of the notions of isolated unit and of the matching of experiences will 
yield further interesting results, even before a complete theory for structured units is 
developed.

A phenomenological approach was already evident when we proposed a primi-
tive ontology (PO) for isolated objects in Sect. 5.1. The PO we suggested depended 
on the matching of experiences with localized structured objects, each having a sin-
gle indistinguishable path. In turn, the physical plausibility of a localized structured 
object was deduced simply on the basis of general phenomenological considerations 
on its possible molecular geometry, and the way such geometry would respond to 
variations in acceleration along a path and affect the mass of the object.

In particular, we expect the range of permissible indistinguishable paths of large 
molecules to be restricted by the geometry of their molecular configurations (along 
the lines of the observations in Remark 19), and by the way these configurations 
respond to variable acceleration effects induced by general potentials. A better 
understanding of this relation may allow to establish qualitative constraints on the 
observed quantum superposition that persists for large, composite objects [4], and 
contribute a different viewpoint on the transition from quantum to classical behavior.
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