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Abstract
The standard argument for the Lorentz invariance of the thermodynamic entropy in 
equilibrium is based on the assumption that it is possible to perform an adiabatic 
transformation whose only outcome is to accelerate a macroscopic body, keeping its 
rest mass unchanged. The validity of this assumption constitutes the very founda-
tion of relativistic thermodynamics and needs to be tested in greater detail. We show 
that, indeed, such a transformation is always possible, at least in principle. The only 
two assumptions invoked in the proof are that there is at least one inertial reference 
frame in which the second law of thermodynamics is valid and that the microscopic 
theory describing the internal dynamics of the body is a field theory, with Lor-
entz invariant Lagrangian density. The proof makes no reference to the connection 
between entropy and probabilities and is valid both within classical and quantum 
physics. To avoid any risk of circular reasoning, we do not postulate that the laws of 
thermodynamics are the same in every reference frame, but we obtain this fact as a 
direct consequence of the Lorentz invariance of the entropy.

Keywords Thermodynamics · Special relativity · Field theory

1 Introduction

The total thermodynamic entropy S, in equilibrium, must be Lorentz invariant. 
Every statistical mechanical view on thermodynamics agrees on this point. Whether 
we identify S with the Boltzmann entropy [1, 2], or with the Gibbs/Shannon entropy 
[3, 4], or with the von Neumann entropy [5, 6], its Lorentz invariance seems ines-
capable. This fact is also a foundational feature of relativistic fluid dynamics [7, 8] 
and of thermal quantum field theory [9].

Intuitively, the invariance of the entropy with respect to Lorentz transforma-
tions is usually justified by invoking its statistical connection with microscopic 
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probabilities (or numbers of quantum states), which are supposed to have an 
invariant nature [10, 11]. However, when it comes to proving rigorously, from 
first principles, that the thermodynamic entropy (namely, the macroscopic state 
function which is subject to the second law) must necessarily be a scalar, some 
conceptual problems arise and it is easy to fall into circular reasoning.

The thermodynamic argument for the Lorentz invariance of the entropy that is 
often repeated in the literature [12, 13] is an oversimplified version of an argu-
ment originally proposed by [14]. Consider the following thought experiment: a 
body X is accelerated from being at rest with respect an observer A to being at 
rest with respect to an observer B (in motion with respect to A). If the process 
is adiabatic, it is reversible, hence the entropy of X measured by A is the same 
before and after the acceleration: Si(A) = Sf (A) . Now let’s assume that during this 
process the rest-frame properties of the body do not change (hence we may call 
this process a pure acceleration). It follows that the initial state, as seen by A, is 
identical to the final state, as seen by B, which implies Si(A) = Sf (B) (recall that 
the entropy is a state function). Thus, A and B agree on the value of the entropy 
at the end of the process, Sf (A) = Sf (B) , proving the Lorentz invariance of the 
entropy.

The problem with this argument is that what determines whether a process 
is reversible or not is the difference in entropy between the initial and the final 
state (if �S = 0 , the process is reversible). Hence, assuming that pure accelera-
tions are reversible is equivalent to assuming that the entropy does not depend 
on the velocity of the body, which is exactly what we are trying to prove. To the 
best of our knowledge, the first author who noted this circularity problem was van 
Kampen [15], who elevated the existence of reversible pure accelerations to the 
rank of fundamental postulate of relativistic thermodynamics. He showed that 
no entirely thermodynamic argument can be used to prove ab  initio the Lorentz 
invariance of the entropy, but, to set the foundations of covariant thermodynamics 
rigorously (and to avoid any circularity issue), one only needs to postulate that 
pure accelerations are reversible.

The goal of the present paper is to explore the validity of van Kampen’s postu-
late in greater detail. In fact, from an operational point of view, the postulate can 
be rephrased as follows: adiabatic accelerations (i.e. slow variations of velocity 
generated by weak mechanical forces) do not alter the rest-frame properties of 
a body; in particular, they do not affect its rest mass. Given that this is a sim-
ple statement about the behaviour of many-particle systems subject to external 
forces, it should be possible to test it using relativistic dynamics and quantum 
field theory.

We remark that the purpose of this paper is not to convince the reader that the 
entropy is Lorentz invariant; this is already a well established fact [16]. Instead, the 
aim is to explain why this is the only possibility and to prove that any alternative 
construction of relativistic thermodynamics would lead to serious inconsistencies.

Throughout the paper we adopt the signature (−,+,+,+) and work with natu-
ral units c = kB = ℏ = 1 . The study is performed within special relativity, hence the 
metric is assumed flat. Greek space-time indices �, �, � run from 0 to 3, while latin 
space indices j, k run from 1 to 3.
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2  The Rationale of the Argument

If we want to make our argument solid and unquestionable, we need, first, to under-
stand which assumptions about relativistic thermodynamics we are reasonably 
allowed to uphold, and which might lead us to circular reasoning.

2.1  Must the Laws of Thermodynamics be the Same in Every Reference Frame?

It is possible to formulate many arguments for the Lorentz invariance of the entropy, 
based on the assumption that the laws of thermodynamics should be the same in 
every reference frame. A well-known example is Planck’s original argument (which 
is more refined than the version reported in the introduction), of which we present 
a slightly more formal version in appendix A. The rationale of Planck’s argument 
[14], and of most of the other thermodynamic arguments present in the literature, is 
that the entropy is ultimately a rule, which dictates which processes are possible (for 
thermally isolated systems) and which are not. For example, if a macroscopic state 
� has a lower entropy than a macroscopic state � ′ , this means that, if we keep the 
system thermally isolated, the process � → � ′ is possible, while the inverse process 
is not. Clearly, statements about the possibility for a process to occur cannot depend 
on the reference frame, hence the entropy must be Lorentz invariant.

The problem with these arguments is that they all treat thermodynamics as a fun-
damental theory, which should be subject to the principle of relativity in the same 
way as dynamics is, and whose laws should, therefore, be equally valid in every ref-
erence frame. In other words, it is assumed in these arguments that thermodynam-
ics should share the same symmetries of dynamics. However, we already know that 
there is at least one symmetry for which this is not true: CPT. While CPT is a fun-
damental symmetry in quantum field theory [17], it is manifestly violated by the 
second law of thermodynamics. This shows us that we are in general not allowed to 
treat thermodynamics on the same footing as dynamics.

The fundamental distinction between dynamics and thermodynamics is that 
dynamics studies the evolution of systems with arbitrary initial conditions, which 
implies that the solutions of the equations which govern dynamics form a set � that 
is necessarily invariant under the action of the symmetry group G of the spacetime 
( G� = � ). On the other hand, thermodynamics deals only with a subset 𝜆 ⊂ 𝛬 of 
solutions, whose initial conditions have precisely those statistical properties (e.g. 
molecular chaos, see [18]) which give rise to the second law as an emergent quality. 
It might be the case (and for CPT it is the case!) that these constraints on the ini-
tial conditions lead to a symmetry breaking, namely to a situation in which G� ≠ � . 
Considering that specifying the laws of thermodynamics is essentially equivalent to 
specifying � , it follows that thermodynamics might in turn not be symmetric under 
G.

Let us remark that we are not claiming that the laws of thermodynamics are not 
Lorentz covariant. They are. But (as we will show in subsection 2.3) their covari-
ance follows from the invariance of the entropy, and not vice-versa. Thus, in a 
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paper whose goal is to prove the invariance of the entropy, we are not allowed to 
include the assumption that thermodynamics is the same in every reference frame 
among the hypotheses.

As a last comment on this issue, we point out that, if one adopts Jaynes’ statis-
tical justification for the second law [3], then the initial conditions that give rise 
to � are actually the overwhelming majority of initial conditions which are com-
patible with the initial macroscopic data (in the thermodynamic limit). Hence, it 
is to be expected that, if the group G conserves the causal ordering of the events 
(namely if it does not convert initial states into final states), then � should be 
approximately invariant under G . This would explain why thermodynamics is not 
invariant under CPT (namely CPT� ≠ � ) while it is expected to be invariant under 
the proper orthochrounus Lorentz group ( SO+(3, 1)� = � ). In fact, CPT converts 
initial data into final data, whereas SO+(3, 1) conserves the causal structure of the 
field equations by construction [19]. This is the actual statistical justification for 
the covariance of thermodynamics, because it is not grounded on the interpreta-
tion that one chooses to give to the entropy, but on the statistical origin of irre-
versibility, which constitutes the very foundation of thermodynamics. However, 
as this argument is qualitative, and thermodynamics does not entirely reduce to 
Jaynes’ view [20, 21], it is important to have also a more formal proof, which is 
the purpose of the present paper.

2.2  The Assumptions of the Argument

Motivated by the complication outlined in the previous subsection, we need to make 
an argument for the Lorentz invariance of the entropy which does not build on the 
assumption that the second law of thermodynamics is valid for every observer. 
Instead, we will base our argument only two uncontroversial assumptions, namely 

 (i) There is a global inertial reference frame A in which it is possible to unambigu-
ously define a notion of entropy S that obeys the second law: Ṡ ≥ 0 . In this 
reference frame, bodies may interact with each other, accelerate, decelerate 
and be destroyed, but the total entropy of isolated systems can never decrease.

 (ii) The microscopic dynamics can be modelled using a field theory, governed by 
a Lorentz invariant Lagrangian density.

Assumption (i) is simply the requirement that there is at least one observer for 
which the laws of thermodynamics, in their standard “textbook” formulation, are 
valid. Assumption (ii) is the statement that, although thermodynamics might in 
principle not admit a covariant formulation, dynamics does. We are enforcing the 
principle of relativity on the underlying microscopic theory, rather than imposing 
it directly on thermodynamics.

Throughout the rest of this paper, we will always work in the reference frame A 
introduced in assumption (i), so that thermodynamics works as usual. In this way 
we will avoid any possible source of confusion.
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2.3  Van Kampen’s Argument

Let us now briefly revisit van Kampen’s argument for the Lorentz invariance of the 
entropy [15].

We consider an isolated (freely moving) body in thermodynamic equilibrium 
with total four-momentum p� and rest mass M =

√
−p�p�  . The entropy in equi-

librium must be a function of the constants of motion of the body. To capture the 
essence of the problem, we assume for simplicity that the only relevant constants of 
motion are the components of the four-momentum,1 so that

At this stage, the function S(p�) may be completely arbitrary, because (as we antici-
pated) we are not excluding a priori the possibility that thermodynamics may break 
Lorentz covariance. Similarly to what we did in the introduction, let us postulate that 
it is possible to make infinitesimal reversible pure accelerations, namely transforma-
tions �p� such that

and

If these accelerations can have arbitrary direction (i.e. if those �p� that satisfy (2) 
and (3) form a 3D plane), then it follows that there is a function T such that

which in turn implies

The fact that the entropy can be written as a function of a Lorentz scalar implies 
that, when we perturb the system, the second law of thermodynamics ( Ṡ ≥ 0 ) takes 
the form of a Lorentz-invariant statement:

(1)S = S(p�).

(2)�S =
�S

�p�
�p� = 0 (reversible)

(3)�M = −
p�

M
�p� = 0 (pure acceleration).

(4)dS =
dM

T
,

(5)S = S(M).

(6)
Ṁ

T(M)
≥ 0.

1 The only relevant constants of motion of an ergodic body are four-momentum, angular momentum 
(tensor) and conserved charges (like the baryon number). If we work at fixed conserved particle numbers, 
and assume that the body is non-rotating, equation (1) follows. The volume cannot be treated as an inde-
pendent variable in relativistic thermodynamics. In fact, if a given volume is imposed through external 
walls, the body is not isolated. Finite isolated bodies are self-bounded, hence their volume is an equilib-
rium property (like the volume of stars and nuclei) and not a free parameter [22].
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But this implies that the set � of all the initial conditions which realise the second 
law is invariant under the action of the proper orthochronous Lorentz group (for-
mally, SO+(3, 1) � = � ), proving that thermodynamics admits a covariant formu-
lation, in which S is a Lorentz scalar. This sets solid foundations for relativistic 
thermodynamics.

Our goal, now, is to prove that, if assumptions (i) and (ii), as stated in the previ-
ous subsection, are valid, a set of infinitesimal transformations that satisfy both (2) 
and (3) always exist (at least in principle), converting van Kampen’s postulate into a 
theorem.

3  Reversible Accelerations

Our first task is to understand how we may induce an ideal reversible acceleration on 
a body. Following [23], the most perfect form of reversible process is an adiabatic 
process, namely an infinitely slow transformation in which the system is kept ther-
mally isolated. Such processes can be modelled, at the microscopic level, as trans-
formations induced by a weak and slow time-dependence of the microscopic Hamil-
tonian. Our aim is to design an adiabatic transformation which can alter the state of 
motion of a relativistic body.

3.1  Small Kicks

Let �i be the microscopic fields of the body and LBody(�i, ���i) the Lagrangian den-
sity governing the microscopic dynamics. Assume that we are able to generate and 
control an external potential � (a real scalar field, for simplicity), which interacts 
with the body through a small dimensionless coupling constant � , so that the action 
takes the simple form

where G(�i) is an observable. The potential � is an assigned real function of the 
coordinates �(x�) . It is not a dynamical degree of freedom of the total system 
(“body + �”), but it plays the role of a source in the action I[�i] , which breaks the 
Poincaré invariance of the theory. In a quantum description, the field � plays the 
role of a classical source [19]; it is not a quantum field. We model � in this way 
because we want to treat it as a purely mechanical and non-statistical entity (like any 
other source of thermodynamic work, see e.g. [22]), so its evolution must be com-
pletely known and cannot be affected by the statistical fluctuations of the dynamical 
fields �i . In this sense, the potential � may be seen as an analogue of the perfectly 
reflecting walls of an adiabatic box: it carries no entropy. This implies that the body 
remains thermally isolated [23] and the second law of thermodynamics holds for the 
entropy of the body alone [3], also during its interaction with �.

Assume that � = 0 for t ≤ 0 (recall that we always work, for clarity, in the 
reference frame A in which we have a notion of entropy). The configuration of 

(7)I[�i] = ∫

[
LBody(�i, ���i) + � �G(�i)

]
d4x ,
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the system for t ≤ 0 is the initial state of the body, which is assumed to be an 
equilibrium state, with four-momentum p� . At t = 0 we switch on the external 
potential and we keep it active for a finite time � , namely

No assumption about the duration � of the process, nor about the exact space-time 
dependence of �(x�) , is made. We only require that there is at least a small region of 
space-time (between the times 0 and � ) in which

so that we know that the action (7) is not invariant under space translations, breaking 
the Noether conservation of linear momentum of the body. At the end of the process 
( t = � ), the four-momentum of the body has changed of a finite amount �p� . After 
some more time passes, the system can reach a new state of equilibrium, whose 
entropy is S(p� + �p�) . The total variation of entropy experienced by the system dur-
ing all this process (including the final relaxation to a new equilibrium) is the finite 
difference

The aforementioned process may be interpreted as a small kick generated by an ideal 
mechanical device:

– For t ≤ 0 the body is completely isolated and in thermodynamic equilibrium. 
It moves freely across space-time, with initial mass M =

√
−p�p�  and center-

of-mass four-velocity u� = p�∕M . It is in the maximum entropy state possible 
(as measured in the frame A) compatible with this value of four-momentum.

– For 0 < t < 𝜏 the body interacts with a mechanical device with no micro-
scopic degrees of freedom (zero entropy). The interaction is mediated by a 
potential � , which is generated solely by the device (and therefore carries no 
entropy). Through this interaction, the body feels a force, which impresses 
on it a small kick, changing its total four-momentum by an amount �p� . This 
amount of energy and momentum is transferred through � to the device, 
which is however not explicitly modelled here.

– For t ≥ � the body is again completely isolated and has time to dissipate all 
the fluctuations and vibrations induced by the kick, to reach a new equilib-
rium.

Comparing this description with subsection 6.2 of our previous paper [22], one 
can see that the variation of four-momentum �p� produced in a kick has the 
nature of pure work (using the terminology we introduced there: �p� = �W� ), 
because the external agent can be modelled as a purely mechanical entity. 
Hence, kicks are the simplest form of work-type energy-momentum transfers in 
relativistic thermodynamics.

(8)� ≠ 0 for t ∈ (0, �).

(9)(𝜕1𝜙)
2 + (𝜕2𝜙)

2 + (𝜕3𝜙)
2 > 0 ,

(10)�S = S(p� + �p�) − S(p�).
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3.2  Infinite Infinitesimal Kicks

The key insight which leads us to a notion of adiabatic acceleration is how the 
changes �p� and �S scale with the strength of the coupling constant � , in the limit in 
which � → 0 . We take this limit at fixed initial state of the body (for t ≤ 0 ) and keep 
the function �(x�) fixed.

Since � quantifies how strongly the system reacts to the presence of the exter-
nal potential � ( � is analogous to the coupling constant q in the electrostatic force 
� = q� ), it is easy to see that, to the leading order in � , we have the scaling

However, the variation of the entropy scales differently. In fact, the second law 
implies �S(�) ≥ 0 ∀ � . On the other hand, � may have arbitrary sign,2 which implies 
that if we assume �S ∼ � we get a contradiction with the second law. Thus, the lead-
ing order must be

or higher (but even).
Now, consider a sequence of N kicks ( N → +∞ ) with a coupling constant 

� = 1∕N → 0 . The total variation of the four-momentum (due to the whole sequence 
of kicks) is

while the total variation of entropy is

This implies that, as the number of kicks goes to infinity and their intensity goes 
to zero, the resulting transformation is non-trivial ( �p� is finite) and reversible 
( �S = 0 ). Hence, we have just built a microscopic model for a reversible accelera-
tion. As expected, it is infinitely slow (duration ≥ � × N → +∞ ), so we have redis-
covered the well-established fact that adiabatic transfers of energy-momentum (i.e. 
infinitely slow processes in which �p� = �W� ) are reversible (see [24], section 6, for 
another example). Note also that the reversibility of this transformation has been jus-
tified using only condition (i), namely the second law of thermodynamics; no other 
property of the entropy has been invoked.

In order to show that this reversible process is a pure acceleration, which would 
prove van Kampen’s postulate, see equation (3), we only need to show from micro-
physics that necessarily

(11)�p� ∼ � .

(12)�S ∼ �2 ,

(13)(�p�)N kicks ∼ N × (�p�)1 kick ∼ N ×
1

N
= 1 ,

(14)(�S)N kicks ∼ N × (�S)1 kick ∼ N ×
1

N2
=

1

N
.

2 Nothing forbids us to impose 𝜖 < 0 in the action (7). In fact, changing the sign of � keeping � fixed is 
equivalent to keeping � fixed and changing the sign of �.



1 3

Foundations of Physics (2022) 52:11 Page 9 of 22 11

as this would immediately imply that (�M)N kicks ∼ 1∕N → 0 . The next two sections 
of the paper contain two alternative proofs of (15).

4  Variation of the Mass Induced by a Kick: Field Theory Approach

We derive equation (15) from a field theory point of view.

4.1  Classical Case

Let us define the tensor field

where we are applying Einstein’s summation convention also to the label i. Given 
that the Euler-Lagrange equations, computed from the action (7), are

one can easily show that T�
� obeys the equation

This implies that for t ≤ 0 and t ≥ � , i.e. in those space-time regions in which � = 0 , 
the tensor field T�

� is conserved, namely ��T
�
� = 0 . Indeed, T�

� is the Noether stress 
energy tensor associated with LBody [17], therefore it can be used to define the four-
momentum of the body before and after the kick, by means of the formulas

Recalling that the four-velocity of the center of mass is u� = p�∕M and applying 
Gauss’ theorem to the spacetime region R = (0, �) ×ℝ

3 (assuming that the body is 
finite, so that the fields are zero at infinity), one can use (18) to prove that

The second equality in equation (20) is exact, whereas the first is valid up to the first 
order in � . In the limit of small � , we may use linear response theory and model G as 
the sum

(15)�M ∼ �2 ,

(16)T�
�
= LBody �

�
�
−

�LBody

�(���i)
���i ,

(17)
�LBody

��i

− ��

(
�LBody

�(���i)

)
= −� �

�G

��i

,

(18)��T
�
�
= −� � ��G.

(19)
p� = �

T0
�
d3x for t ≤ 0 (before the kick)

p� + �p� = �
T0
�
d3x for t ≥ � (after the kick) .

(20)�M = −u��p� = �
∫
R

� u���Gd4x .



 Foundations of Physics (2022) 52:11

1 3

11 Page 10 of 22

where G0 is the value that the observable G(�i) would have (on the spacetime point 
under consideration) if no kick were impressed on the body, while �G1 describes 
the perturbation to G due to the kick. Let us focus on the function G0(x

�) . If no kick 
were impressed on the body, the body would remain in a state of thermodynamic 
equilibrium, and would be drifting rigidly with constant four-velocity u� without 
experiencing any macroscopic deformation, because it would keep the equilibrium 
shape. This implies that statistically (i.e. once we average over the microscopic fluc-
tuations) we must have

This formula can be justified with the qualitative argument above, but it can also be 
proved rigorously from condition (ii), see Appendix B. If we plug (21) into (20), we 
obtain

which is what we wanted to prove (see equation (15) and recall that �2 = 1∕N2 ). In 
conclusion, van Kampen’s postulate is valid, the entropy is Lorentz invariant and 
thermodynamics admits a covariant generalization.

4.2  Quantum Case

The above calculations are essentially the same if we move to a quantum context. 
Equation (18) becomes an operatorial identity (in the Heisenberg picture), while 
(20) becomes a Kubo formula for the quantum statistical average −u𝜈⟨p̂𝜈⟩ . Equation 
(22) remains valid, if we interpret G0 as the quantum statistical average ⟨Ĝ⟩eq , see 
Appendix B. No further assumption about the equilibrium density matrix needs to 
be invoked in the proof. For example, we do not need to assume it to be of Gibbs-
like form [21], because this might point towards a von Neumann interpretation of 
the entropy, leading us back to circularity issues.

As a final comment, we remark that the Unruh effect [25] disappears in the limit 
in which the accelerations are adiabatic. In fact, with a simple order of magnitude 
estimate (see Appendix C.1), one can verify that

This shows that the Unruh effect is non-perturbative in � : it decays to zero faster 
than any finite power of �.

(21)G = G0 + �G1 ,

(22)u���G0 = 0.

(23)�M = −u��p� = �2
∫
R

� u���G1 d
4x ∼ �2 ,

(24)(Unruh corrections) ∼
e−1∕�

�
.
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5  Variation of the Mass Induced by a Kick: Quantum Mechanics 
Approach

The proof of (15) given above, using a field theory approach, makes the role of con-
dition (ii) manifest. However, it somehow hides the physical meaning of our result. 
Why does a small kick conserve (to the first order) the mass of a system of particles 
in equilibrium, while accelerating it? Why must it be that

In this section, we will show, with a simple quantum mechanical argument, that (25) 
is a consequence of the mathematical structure of the Poincaré group. The argument 
is rigorously formulated within relativistic quantum mechanics [26], while the con-
nection with quantum field theory is somehow heuristic. This makes the argument 
that follows probably less conclusive than the one outlined in the previous section, 
but it gives a deeper insight into the dynamical origin of (25).

5.1  The Mass Spectrum of a Finite Body

For the total four-momentum p� to be finite, the body must be of finite size. But a 
completely isolated finite body in thermodynamic equilibrium must be self-bounded 
[22], otherwise it would eventually break up into smaller pieces in relative motion. 
It is well-known from ordinary quantum mechanics that bound states of many par-
ticles have a discrete mass spectrum (as we see, for example, in nuclear and atomic 
physics). The intuition behind this fact is that the degrees of freedom of a many-
body system decouple into center of mass degrees of freedom plus internal degrees 
of freedom. Since, in a bound state, the particles cannot escape the conglomerate,3 
the internal degrees of freedom (which describe essentially the relative positions 
between the particles) are bounded and, hence, have discrete energy eigenvalues. 
Recalling that the rest mass is the energy measured in the rest frame (i.e. it is the 
Hamiltonian of the internal degrees of freedom, see [26]), the discreteness of the 
mass eigenvalues follows.

Let us see the mathematical implications of the argument above. Given that the 
space-time translation operators p̂𝜈 , computed from the Lagrangian density LBody , 
commute with each other, we can take, as basis of the Hilbert space of the body, 
some states

satisfying the eigenvalue equations

(25)�(p�p�) ∼ �2 whereas �p� ∼ � ?

(26)�p� , a⟩ ,

(27)p̂𝜈�p𝜈 , a⟩ = p𝜈�p𝜈 , a⟩ .

3 For large objects, at T ≠ 0 , perfect confinement is almost impossible and some form of radiation is 
always emitted. For this reason, relativistic thermodynamics is an idealization, which becomes valid in 
the limit in which the surface of bodies plays the role of a perfect mirror, keeping all the energy inside.



 Foundations of Physics (2022) 52:11

1 3

11 Page 12 of 22

The additional quantum number a is arbitrary (it is used to break possible degenera-
cies) and can be taken discrete. The eigenvalues p� must be continuous (they organ-
ise themselves into three-dimensional hyperboloids), due to the mathematical struc-
ture of the Poincaré group [17]. The square mass operator

commutes with all the generators of the Poincaré group (computed from LBody ) and 
is diagonal on the basis (26), with eigenvalue equation

The scalar m > 0 can be interpreted as the mass of the state �p� , a⟩ . Combining the 
fact that p� is “3D-continuous”, with the fact that m and a are discrete, we can con-
clude that

The standard normalization factor 2p0(2�)3 guarantees that (30) is Lorentz-invariant 
[19].

Equation (30) is crucial for us, because it shows that we can build a normalisable 
(i.e. physical) state ��⟩ which is eigenvector of the mass operator, namely

However, the same is not true for the individual components p̂𝜈 : the physical state 
��⟩ must be a wavepacket, namely a continuous superposition of eigenstates of p̂𝜈 . 
As we are going to show, this is the central difference between p̂𝜈 p̂𝜈 and p̂𝜈 , which is 
responsible for the different scalings of the corresponding perturbations.

5.2  Kicking Mass Eigenstates

Due to the presence of the term � �G in the action (7), the operators p̂𝜈 (which are 
computed from LBody ) are not conserved during the kick. As a first step, let us compute 
the variation of the mass of the body, induced by a kick, when the initial state ��⟩ is an 
eigenvector of M̂ , satisfying the eigenvalue equation (31).

As �(x�) is an assigned function of the coordinates, the evolution of the body is uni-
tary (the final state is still a pure state); this is the definition of thermal isolation [23] or, 
equivalently, of no heat transfer [3]. Working in the Schrödinger picture, we may call 
���(�)⟩ the state of the body at the time � (just after the perturbation has been switched 
off) as a function of the coupling constant � , parameterizing the intesity of the kick. 
Clearly, for � = 0 , the mass is conserved (no kick has occurred), so that we may write

Expanding this function to the first order in � we obtain

(28)M̂2 ∶= −p̂𝜈 p̂𝜈

(29)M̂2�p𝜈 , a⟩ = m2�p𝜈 , a⟩ m2 = −p𝜈p𝜈 .

(30)⟨p̃𝜈 , ã�p𝜈 , a⟩ = 2p0(2𝜋)3𝛿(3)(p̃j − pj) 𝛿m̃ m 𝛿ã a .

(31)M̂�𝛹⟩ = m�𝛹⟩.

(32)𝛿M(𝜖) =
⟨𝛹𝜖(𝜏)�M̂�𝛹𝜖(𝜏)⟩
⟨𝛹𝜖(𝜏)�𝛹𝜖(𝜏)⟩

−
⟨𝛹0(𝜏)�M̂�𝛹0(𝜏)⟩
⟨𝛹0(𝜏)�𝛹0(𝜏)⟩

.
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If we compute the derivative in � explicitly, we get

with

The final step consists of realising that, if the initial state ��⟩ obeys equation (31), 
then

because, when � = 0 , the Hamiltonian is p̂0 , which commutes with M̂ . Inserting (36) 
into the second equation of (35) we find ��⟩ = 0 , which immediately implies

It is interesting to note that this result does not depend on the details of the full 
Hamiltonian of the system, because the explicit formula for �� ′⟩ is completely irrel-
evant. However, the assumption that ��⟩ is a mass eigenstate is crucial. If we repeat 
the calculations above, taking as initial state a superposition

�m1⟩ and �m2⟩ being two normalised mass eingentates, relative to two different eigen-
values m1 and m2 , we now obtain (truncating to the first order in �)

which does not vanish. By analogy, it becomes immediately clear why, in a kick, one 
is always able to induce an acceleration: any physical state must be a superposition 
of eigenstates of p̂𝜈 , hence the variation of ⟨𝛹 �p̂𝜈�𝛹⟩ is of order � for the same rea-
son why the variation of (⟨m1� + ⟨m2�)M̂(�m1⟩ + �m2⟩) is of order �.

(33)𝛿M(𝜖) = 𝜖
d

d𝜖

�⟨𝛹𝜖(𝜏)�M̂�𝛹𝜖(𝜏)⟩
⟨𝛹𝜖(𝜏)�𝛹𝜖(𝜏)⟩

�����𝜖=0
+O(𝜖2) .

(34)�M(�) = �
⟨� ���⟩ + ⟨��� �⟩
⟨�0(�)��0(�)⟩

+O(�2) ,

(35)
�𝛹 �⟩ =

d�𝛹𝜖(𝜏)⟩
d𝜖

����𝜖=0

�𝛥⟩ = M̂�𝛹0(𝜏)⟩ −
⟨𝛹0(𝜏)�M̂�𝛹0(𝜏)⟩
⟨𝛹0(𝜏)�𝛹0(𝜏)⟩

�𝛹0(𝜏)⟩ .

(36)M̂�𝛹0(𝜏)⟩ = m�𝛹0(𝜏)⟩ ,

(37)�M(�) ∼ �2 .

(38)
�m1⟩ + �m2⟩√

2
,

(39)��⟩ =
m1 − m2

2
√
2

�
�m1(�)⟩ − �m2(�)⟩

�
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5.3  Kicking Thermal States

As we explained qualitatively in subsection 4.1 (and proved rigorously in Appen-
dix B), a system that is in thermodynamic equilibrium has constant shape. Its inter-
nal structure is conserved over time and the only change that the system can experi-
ence is a rigid macroscopic motion. Given that M̂ is the Hamiltonian of the internal 
degrees of freedom, it immediately follows that the density matrix of a macroscopic 
body in equilibrium satisfies the equation

It is not hard to show that this condition is essentially equivalent to equation (61) of 
Appendix B.4

Equation (40) implies that there is an orthonormal set of mass eigenstates �� (n)⟩ , 
with

such that

with

Taking this as initial state and recalling that the evolution is unitary, it follows that 
the average value of M̂ at a time � (at the end of the kick) is

Given that equation (37) applies to each contribution in the sum over n (because 
each state �� (n)

�
(�)⟩ is the time-evolved of a mass eigenstate), it applies also to a body 

with density matrix �̂�eq , completing our proof.
There is a final remark that we need to make. All our analysis was performed 

within the assumption that the system does not radiate particles as a result of the 
kick (particles can be created and destroyed inside the body, but no particle can 
abandon the body). This is an important assumption, because, if it happens that the 
system emits particles along the way, the calculations above remain valid, but the 
quantity M can no longer be interpreted as the mass of the body alone, but as the 

(40)
[
�̂�eq , M̂

]
= 0 .

(41)M̂�𝛹 (n)⟩ = mn�𝛹 (n)⟩ ⟨𝛹 (ñ)�𝛹 (n)⟩ = 𝛿ñ n ,

(42)�̂�eq =
�

n

Pn�𝛹 (n)⟩⟨𝛹 (n)�

(43)P
n
> 0

∑

n

P
n
= 1 .

(44)M𝜏 =
�

n

Pn

⟨𝛹 (n)
𝜖
(𝜏)�M̂�𝛹 (n)

𝜖
(𝜏)⟩

⟨𝛹 (n)
𝜖 (𝜏)�𝛹 (n)

𝜖 (𝜏)⟩
.

4 There is a small difference between (40) and (61), which is due to the fact that the present description 
is entirely quantum-based, while in the appendix we use a hybrid approach. For macroscopic bodies this 
difference becomes negligible and the final result is the same.



1 3

Foundations of Physics (2022) 52:11 Page 15 of 22 11

rest-frame energy of the total system (“body + emitted particles ”) invalidating the 
assumptions that lead to (12). Luckily, one can easily prove (see Appendix C.2) that 
also the probability of stimulated emissions induced by a kick is of the order �2 (and, 
therefore, vanishes for adiabatic accelerations).

6  Conclusions

We have proved that the equation of state of isolated moving bodies (including only 
the four-momentum among the relevant variables) is always S = S(M) . Rather than 
showing this by arbitrarily postulating the Lorentz covariance of the laws of thermo-
dynamics, we have focused on the dynamical consequence of assuming S = S(M) . In 
fact, declaring that two macroscopic states � and � ′ have the same entropy is equiv-
alent to stating that there must be an adiabatic transformation that leads from � to 
� ′ and vice-versa. Using tools from both classical and quantum field theory we have 
shown that, indeed, infinitely slow accelerations, generated by a time-dependence of 
the Hamiltonian, must conserve the rest mass of bodies initially in thermodynamic 
equilibrium, making S = S(M) the only equation of state possible.

This sets solid foundations for relativistic thermodynamics and, again, shows that 
the axiomatization proposed by [15] and [16] is the only one possible. Furthermore, 
this paper complements our previous study on the nature of the temperature [22], in 
that it clarifies further the meaning of the work four-vector �W� . In the same way in 
which one may intuitively decompose the heat four-vector �Q� into time and space 
components as

one may consider the analogous (non-rigorous but useful) pictorial decomposition 
of the work four-vector as

In the same way in which a wall can exert work on a gas (changing its energy), a 
potential can induce a kick on a freely moving body (changing its momentum). Both 
these processes, if executed slowly enough, become reversible. The first becomes 
the standard pressure-volume (“PdV”) adiabatic work, while the second becomes a 
pure acceleration.

(45)�Q� =

(
Heat

Friction

)
,

(46)�W� =

(
Work

Kick

)
.
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Appendix

Planck’s Original Argument Revisited

Here we present a new version of Planck’s original argument [14], which is slightly less 
abstract, but logically equivalent.

Let SX be the entropy of a body X, as measured in its own rest frame, and assume 
that, if an observer A (say, Alice) sees X moving with a given speed vXA , she will attrib-
ute to X an entropy

with n a constant exponent to be determined. This is a reasonably general assump-
tion about the transformation law of the entropy, as it includes the possibility for the 
entropy to be a scalar ( n = 0 ), the zeroth component of a four-vector ( n = 1 ) or an 
arbitrary power of it.

Let us consider a second observer B (say, Bob), in motion with respect to Alice. Bob 
should assign an entropy to X using a rule that is analogous to that of Alice (there is 
nothing spacial about Alice’s frame), namely

where vXB is the speed of X with respect to Bob. Now, assume that X is initially at 
rest with respect to Alice (namely, �XA = 1 ) and consider an infinitesimal reversible 
transformation in which X is slowly set into motion. If the transformation is revers-
ible, it should conserve the entropy in Alice’s reference frame, hence

where we have used the fact that

because initially vXA = 0 . On the other hand, it should be reversible also in the ref-
erence frame of Bob, because reversibility is a statement about the possibility of 
both the process itself and its inverse to occur, which cannot depend on the observer. 
Hence, using (49), we obtain

Considering that in general vXB �vXB ≠ 0 , the exponent n must vanish and, conse-
quently, the entropy must be a scalar.

(47)SA = �n
XA
SX �XA = (1 − v2

XA
)−1∕2,

(48)SB = �n
XB
SX �XB = (1 − v2

XB
)−1∕2,

(49)0 = �SA = �(�n
XA
SX) = �n

XA
�SX = �SX ,

(50)��XA = �3
XA
vXA�vXA = 0,

(51)0 = �SB = �(�n
XB
SX) = nSX�

n+2
XB

vXB�vXB.
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Isolated Bodies in Equilibrium Move Rigidly

Here we prove that, when a body in thermodynamic equilibrium is perfectly isolated 
(also dynamically, hence � = 0 ), it drifts rigidly at constant velocity without experi-
encing any change of shape. The key assumption to be used in the proof is condition 
(ii), see subsection 2.2. We recall that all the calculation are performed, for clarity, 
in the preferred reference frame A introduced in condition (i).

Centroids

It is always possible to build, starting from the Noether stress-energy tensor T�� , 
which is not necessarily symmetric, the Belinfante-Rosenfeld stress-energy tensor 
��� , which is symmetric [17]. This tensor field can be used to write the angular 
momentum tensor J�� , which is the generator of the Lorentz group and is conserved 
(for isolated bodies), in the form

This formula can be used to show that the conservation of J0j implies [27]

where xj
CD

 is the position of the centroid of the system, defined as

This well-known fact is the relativistic generalization of the Newtonian law accord-
ing to which the center of mass evolves following a uniform rectilinear motion. No 
matter how complicated the internal dynamics of the body is, as long as the body is 
isolated, condition (ii) guarantees that

The Density Matrix at Equilibrium

Consider a body in equilibrium with four-momentum p� and centroid xj
CD

 , at a given 
time. The state of the system must be a function of these parameters. Since in quan-
tum mechanics any physical state can be modelled through a density matrix, there 
must be a formula

(52)J�� =
∫

(
x���0 − x���0

)
d3x .

(53)
dx

j

CD

dt
=

pj

p0
=

uj

u0
=∶ vj ,

(54)x
j

CD
=

1

p0 ∫
xj�00 d3x .

(55)x
j

CD
(t) = x

j

CD
(0) + vjt .

(56)�̂�eq[p
𝜈 , x

j

CD
] ,
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which gives all the physical properties of a system in thermodynamic equilibrium as 
a function of its four-momentum p� and of its centroid xj

CD
 . No other free parameter 

needs to be included in (56) because we are assuming that there are no (relevant) 
additional constants of motion. We do not specify any precise formula for (56), 
because this would imply giving a statistical interpretation to the entropy, which is 
something we want to avoid here.

If p̂𝜈 are the four-momentum operators, then the unitary operator

is a space-time translation, which acts on the field operators �̂�i as follows [17]:

Clearly, if we consider a system in thermodynamic equilibrium, and we operate on it 
a pure translation in space, the final state must still be an equilibrium state, namely

Rigid Motion

By definition, if an isolated body is in equilibrium at a given time, it is also in equi-
librium at later times. Hence, recalling that the four-momentum is conserved and 
that equation (55) must hold, we have

Using equation (59), we find

Multiplying this equation by an arbitrary field of observables Ĝ(x𝜈) and taking the 
trace of the result, we find

Taking the derivative of this formula with respect to �t we finally obtain

which is what we wanted to prove.
Note that this result is in perfect agreement with the relativistic formulation of the 

zeroth law of thermodynamics. In fact, following [22], in thermal equilibrium there 
must be one reference frame in which perfect stationarity is achieved. From (63), we 

(57)Û(𝛥x𝜈) = exp
(
− ip̂𝜈 𝛥x

𝜈
)

(58)Û(𝛥x𝜈) �̂�i(x
𝜈) Û†(𝛥x𝜈) = �̂�i(x

𝜈 + 𝛥x𝜈) .

(59)Û(𝛥xj) �̂�eq[p
𝜈 , x

j

CD
] Û†(𝛥xj) = �̂�eq[p

𝜈 , x
j

CD
+ 𝛥xj] .

(60)e−ip̂
0𝛥t �̂�eq[p

𝜈 , x
j

CD
] eip̂

0𝛥t = �̂�eq[p
𝜈 , x

j

CD
+ vj𝛥t] .

(61)�̂�eq[p
𝜈 , x

j

CD
] = Û

(
u𝜈𝛥t

u0

)
�̂�eq[p

𝜈 , x
j

CD
] Û†

(
u𝜈𝛥t

u0

)
.

(62)tr

[
�̂�eqĜ(x

𝜈)

]
= tr

[
�̂�eqĜ

(
x𝜈 −

u𝜈𝛥t

u0

)]
.

(63)u𝜈𝜕𝜈⟨Ĝ⟩eq = 0 ,
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see that this reference frame is identified by the four-velocity u� = p�∕M , in agree-
ment with [22].

Effect of Absorption/Emission Processes on Adiabatic Accelerations

In C.1 we show that the Unruh effect does not play any role in adiabatic accelera-
tions. In C.2 we show that the probability of emission of particles out of the body, 
stimulated by the kick, is of order �2.

Unruh Effect for Adiabatic Accelerations

From the point of view of a particle detector that accelerates with constant accelera-
tion a, the average number of particles (scalar bosons, for simplicity) with energy E 
is given by [28, 29]

The detector can make level transitions by absorbing and emitting particles, with a 
stimulated absorption/emission rate which is proportional to f (�m) , where 𝛥m > 0 
is the mass separation between two levels of the detector. Therefore, if a detector 
experiences a uniform acceleration a, for an interval of proper time t, the transition 
probabilities (associated with Unruh-particle absorption/emission processes) scale 
as [30]

For a reversible acceleration, as described in subsection (3.2), t ∼ N , while a ∼ 1∕N , 
hence

Therefore, in the limit of adiabatic accelerations ( N → +∞ ), the corrections due to 
the Unruh effect are exponentially suppressed.

Can an Adiabatic Acceleration Stimulate Emissions?

The Hilbert space of the body, generated by the discrete-mass basis �p� , a⟩ , intro-
duced in equation (26), is only a subspace of the full Hilbert space upon which the 
quantum fields �̂�i act (as operators). There are many other states, including, in par-
ticular, states in which the body coexists with other particles. These states constitute 
the continuous part of the mass spectrum [19]. The projector

(64)f (E) =
1

e2�E∕a − 1
.

(65)PUnruh ∼
t

e2��m∕a − 1
.

(66)PUnruh ∼
N

eN − 1
∼ Ne−N ⟶ 0.
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projects onto this second part of the Hilbert space ( ̂� is the identity operator acting 
on total Hilbert space of the field theory). Given a normalised state ��⟩ , the aver-
age ⟨𝛹 �P̂�𝛹⟩ is the probability that we observe “something that is not just the body 
alone”. Therefore, we can interpret the quantum average

as the probability that the body has emitted something during a kick. Now, from 
equation (27) it follows that (as long as � = 0)

Furthermore, since in the initial state there is only the body, we know that

Combining (69) with (70) we immediately find that, if � = 0 , PEm(�) vanishes. On 
the other hand, PEm(�) ≥ 0 (recall that P̂ = P̂† = P̂2 ), therefore we cannot impose 
PEm(�) ∼ � , because � has arbitrary sign. Hence, the leading order must be

or higher (but even), which is what we wanted to prove.
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