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Abstract
This paper presents an in-depth analysis of the anatomy of both thermodynamics 
and statistical mechanics, together with the relationships between their constituent 
parts. Based on this analysis, using the renormalization group and finite-size scaling, 
we give a definition of a large but finite system and argue that phase transitions are 
represented correctly, as incipient singularities in such systems. We describe the role 
of the thermodynamic limit. And we explore the implications of this picture of criti-
cal phenomena for the questions of reduction and emergence.

Keywords  Scaling · Renormalization · Large systems · Incipient singularities · 
Reduction · Emergence

1  Introduction

Thermodynamics and statistical mechanics coexist in a collaborative relationship 
within the envelope of thermal physics. In many presentations of the subject, par-
ticularly in undergraduate texts, it is heuristically advantageous to intermingle the 
macroscopic concepts of thermodynamics with the micro-picture provided by sta-
tistical mechanics. And it is, of course, self-evident that statistical mechanics1 needs 
the basic structure of thermodynamics with inter-theory connecting relationships 
defining the thermodynamic quantities like internal energy, temperature and entropy. 
On the other hand, there are some advantages, both aesthetic and mathematical, in 
producing an account of thermodynamics which makes no reference to the underly-
ing microstructure of the system, as would seem to be one of the aims of (among 
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others) the books of Giles [39] and Buchdahl [17] and the papers of Lieb and Yng-
vason.2 For Buchdahl we have the first law implying the existence of the internal 
energy function U and Carathéodory’s [23] version of the second law yielding the 
entropy S and temperature T; for Lieb and Yngvason three sets of axioms accom-
plish the same task. This, together with an account of the nature of adiabatic pro-
cesses (as described, for example, in [17, Chaps. 5, 6, 75, Sect. 2.1, 68, Sect. 2.1.1]) 
provides the basic framework into which the models of statistical mechanics are 
embedded.

This raises the question of how statistical mechanics and thermodynamics relate 
to each other. Attempts to answer this question run up against a problem. The neat 
labels ‘statistical mechanics’ and ‘thermodynamics’ mask the fact that neither theory 
is a monolithic bloc. Indeed, each has a complicated internal structure with several 
layers of different theoretical postulates and assumptions. So the question of how 
statistical mechanics and thermodynamics relate ought to be interpreted as the more 
complex question of (a) what the internal structure of each theory is and of (b) how 
the various parts of each theory relate to the various other parts of the other theory. 
The complexity of the internal structures of both theories, as well as the intricacy of 
their interrelations, seems to have been somewhat under-appreciated in the philo-
sophical literature on the subject, and so the first aim of this paper is to present an 
in-depth analysis of the anatomy of both theories and the connections between their 
parts.3 

Figure 1 provides a schematic advance summary of the analysis that we develop 
in this paper. It sees statistical mechanics and thermodynamics as parallel devel-
opments, each decomposed into separate levels representing the stages of theory-
based development in which features are added to the system. The cross-interactions 
between the levels in the two columns contain interventions integral to this develop-
ment. On the left are the levels for thermodynamics, as described in detail in Sect. 2. 
These levels are related to each other by adopting special assumptions, beginning at 
the bottom with  basic thermodynamic theory (labelled ��� ). Adding the extensiv-
ity assumption to this theory takes us to the next level, the density representation of 
thermodynamics (labelled ��� ). Augmenting ��� with the notion of phase transi-
tions and critical phenomena (PTCP) gives thermodynamics with PTCP (labelled 
��� ). Finally, supplementing ��� with a version of the Kadanoff scaling hypothesis 
leads us to thermodynamics with scaling theory (labelled ���).

The parallel development for statistical mechanics is represented on the right of 
Fig. 1, as described in detail in Sect. 3. The picture here is a little more complicated, 
involving, as we explain in our discussion, three different paths. At the bottom is 
the fundamental theory, which we here take to be Gibbsian statistical mechanics 

3  For surveys of the philosophical discussions about statistical mechanics and thermodynamics see, for 
instance, Sklar [117], Uffink [121] and Frigg [35].

2  Lieb and Yngvason [75] is the most comprehensive account of their work, with briefer versions in Lieb 
and Yngvason [74] and Lieb and Yngvason [76]. The extension to non-equilibrium is given in Lieb and 
Yngvason [77].
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(labelled ���).4 Assuming that the systems to which the theory is applied are large 
leads us to the next layer, large statistical mechanical systems (labelled ��� ). This 
marks a branching point in the structure of the theory: three different additions can 
be made to ��� , resulting in three different branches. Adding the thermodynamic 
limit to ��� leads to the statistical mechanics of infinitely large systems (labelled 
��� ). Adding renormalization group techniques to ��� leads to the renormalization 
group approach to statistical mechanics (labelled ��� ). Finally, adding the analysis 
of phase transitions for finite systems5 to ��� leads to the statistical mechanics of 
finite-system phase transitions (labelled ���).

It is our aim in this work to keep the developments of thermodynamics and sta-
tistical mechanics as separate as possible, in order to make visible the internal struc-
ture of each separate theory. However, as indicated above, on close examination it 
becomes evident that there are in fact some ‘messages’, both implicit and explicit, 
sent from statistical mechanics (FSM), that is to say from the microstructure, to ther-
modynamics, which provides the macrostructure. These are spelled out in FSM–1, 
FSM–2, FSM–3, FSM–4. In the other direction the connecting relationships from 
thermodynamics (FTD), labelled FTD–1, FTD–2, FTD–3, identify quantities in 
statistical mechanics with thermodynamic variables. As we shall see FSM–1 also 
plays a role in the connecting process and can be seen as in dialogue with FTD–3. 
The remaining interventions FSM–2, FSM–3, FSM–4, can be viewed as an aid to 
the clarification of a number of important issues. We discuss these links between 
elements of both theories in the appropriate places in Sects. 2 and 3.

Much of the recent interest in the relationship between thermodynamics and sta-
tistical mechanics has concentrated on PTCP. It is the second aim of this paper to 
revisit the issue of PTCP in the light of our analysis of the internal structure of the 
two theories and their interrelations. Doing so will lead us to some unexpected, and 
we think important, conclusions.

In the modern theory of critical phenomena, dating from the middle of the 1960s,6 
critical exponents, which classify the type of singular behaviour in the approach to 
a critical region, play an important role. In our development of thermodynamics in 
Sect. 2 scaling theory is the final destination with scaling laws relating these critical 
exponents. However, as already indicated and as described below, thermodynam-
ics is a structured shell into which particular models are embedded, either by the 
assumption of a phenomenological form for the entropy function or from statisti-
cal mechanics. In the absence of such an embedding it is not possible to calculate 
values for critical exponents, nor to discuss universality. This is the idea [54] that 
all critical situations7 can be divided into universality classes, characterized by the 
values of their critical exponents and differentiated by a small number of properties 

4  We set aside Boltzmannian statistical mechanics. For discussion of the relation between Gibbsian and 
Boltzmannian statistical mechanics see Lavis [66] and Frigg and Werndl [36].
5  Where, as described in Sect. 4, phase transitions are defined in a way which avoids the involvement of 
singularities.
6  For an historic account see Domb [28].
7  Of which there may be more than one in any model.
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of which the most important are the (physical) dimension d of the system and the 
symmetry group of the order parameter. The first, but not the second, of these plays 
an important role in our discussions,8 in particular in the case of the Ising model, 
which we shall use as an illustrative example throughout this work. This, the most 
well-known and thoroughly investigated model in the statistical mechanics of lat-
tice systems, is briefly described in Appendix 2. With the list of critical exponents 
given there for d = 2 , d = 3 and d ≥ 4 , it provides an example of the dependence 
of these exponents and hence the universality class on the dimension of the sys-
tem. The dimension d is also of importance, in our discussion of scaling theory in 
Sect. 2.4, of finite-size scaling in Sect. 3.4.2 and of phenomenological renormaliza-
tion in Sect. 3.4.3(c).
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Fig. 1   Schematic representation of the relationship between thermodynamics and statistical mechanics

8  For an account of the role of the order parameter in critical phenomena see, for example, Binney et al. 
[15, Sect. 1.2].
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These observations concerning universality classes together with the inter-theory 
connecting relationships FSM–2, FSM–3, FSM–4, provide the impetus to inves-
tigate, and clarify a number of important issues relating to PTCP. These are (not 
necessarily in the order in which they arise in the discussion): 

	 (i)	 Are infinite systems really necessary in thermodynamics or statistical mechan-
ics and: 

(a)	 If so, what for?
(b)	 If they are, is this solely because extensivity is not exactly true in most cases 

in statistical mechanics?
(c)	 Is the thermodynamic limit irrelevant to thermodynamics or has it already 

been implicitly applied?9

(d)	 Is the thermodynamic limit in statistical mechanics necessary for the imple-
mentation of the procedures of the renormalization group?

(e)	 Is there a meaningful way to represent PTCP in finite systems?

	 (ii)	 Given that, in thermodynamics, critical behaviour involves discontinuities in 
densities and singularities in response functions, is this necessarily still the 
case in statistical mechanics?

	 (iii)	 Are the ideas of enrichment and substantiation helpful in describing the rela-
tionship between thermodynamics and statistical mechanics?

	 (iv)	 Where do reduction and emergence feature in the accounts of the relationship 
between thermodynamics and statistical mechanics?

As indicated, in the title of this work and by the progression between levels in the 
statistical mechanical column in Fig. 1, we will discuss these issues with a special 
focus on large systems and infinite systems. In particular we shall address the ques-
tion as to where realism is to be found, in the study of large systems, because real 
systems are finite but large (in the sense that they typically have ∼ 1023 constituents), 
or in the thermodynamic limit of an infinite system, because singular behaviour (in 
susceptibilities and compressibilities) is believed to be experimentally observed, and 
in theories this arises only in the thermodynamic limit. This broad categorization of 
large systems is refined in Sect. 4. The process of taking the thermodynamic limit is 
the determination of the asymptotic properties of a system as it becomes infinitely 
large. In general this will involve taking d limits in each of the linear dimensions of 
the system and such a d-dimensionally infinite system, which where appropriate we 
call a fully-infinite system, is implicitly the object of investigation by scaling theory 
in Sect. 2.4.10 However, relevant to our discussions is the case of a partially-infinite 

9  It is an interesting observation that discussions of PTCP in the context purely of thermodynamics (e.g. 
Pippard [105, Chap. 9], Buckingham [18]) rarely if ever feel the need to invoke or even refer to the ther-
modynamic limit.
10  Underlying this description is, of course, the question of the existence of the thermodynamic limit and 
whether it depends on the boundary conditions of the erstwhile finite system. For a discussion of these 
questions see, for example, Griffiths [41], Griffiths [43, pp. 10–41] and Ruelle [110, Chaps. 2, 3].
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system, where the limit is taken in only � < d dimensions. Here it is � rather than d 
which should count for the critical behaviour as the dimension of the system. The 
idea underlying our approach to PTCP is that reality lies with fully-finite systems 
( � = 0 ) and that the judgment as to whether the large system will show behaviour 
which in practical terms is indistinguishable from singular behaviour is based on 
comparing the behaviour of systems of ever increasing size to see whether their 
properties indicate convergence towards those of the infinite system. In principle, 
as described in Sect. 4 this limiting process is in all d dimensions. In practice, as we 
see in our discussion of d = 2 transfer matrix calculations in Sect. 3.3, it also has 
relevance to the case where one limit has already been taken and increasing size is in 
the remaining dimension.

Thus, as we have indicated, Sects. 2 and 3 trace the steps in our developments 
of thermodynamics and statistical mechanics with the inter-theory connections 
between them; with Sect. 3.5 addressing different proposed resolutions to the con-
tradiction between the finiteness of real systems and the perceived necessity of 
phase transitions being portrayed as singularities in infinite systems. Section  3.6 
discusses the proposal of Mainwood [80] for representing the occurrence of phase 
transitions in finite systems. Using the account of finite-size scaling in Sect. 3.4.2 we 
propose in Sect. 4 our alternative quantitative account for phase transitions in finite 
large systems. Section 5 contains some after-thoughts on enrichment, substantiation, 
reduction and emergence and our conclusions are in Sect. 6.

2 � From Classical Thermodynamics to Scaling Theory

Accounts of thermodynamics range from those designed for the practical needs 
of engineers to those which aim for a degree of mathematical rigour. However, all 
share some common features and assumptions some of which are at variance with 
the insights gained in statistical mechanics. As indicated above, we flag these differ-
ences in the form of messages from statistical mechanics (FSM–1 to FSM–4).

2.1 � The Structure of Thermodynamics

All accounts of thermodynamics contain (in some form or another) the first law, 
which establishes the existence of the internal energy function U and the second 
law which establishes the existence of the entropy S and temperature T. Details are 
not necessary for the present discussion. The only thing we need to carry forward is 
the fundamental thermodynamic differential form. Given a thermodynamic system 
with: 

	 (i)	 One mechanic extensive/intensive11 conjugate variable pair (X, �) , where X 
could stand for the volume V or magnetic moment M with conjugate intensive 

11  The extensive variables U, X and N scale with the size of the system, intensive variables T, � and � are 
invariant with respect to such scaling.
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variables, which in the case of V is the (negative) pressure -P and in the case 
of M is the magnetic field H;

	 (ii)	 A (dimensionless) extensive variable N which counts the number of units of 
mass in the system with a conjugate (intensive) energy � , called the chemical 
potential, carried by each unit of mass;12

for a differential change in the space �0 of the variables (U, X, N) the differential 
change in the entropy S satisfies13

where

are couplings. It is clear that the couplings are intensive and dimensionless. That the 
variables (U,X,N) ∈ �0 appear as differentials on the right of (1) should be under-
stood as signifying that they are independent variables. This means that the system 
is thermally, mechanically and chemically isolated with U, X and N fixed by an 
experimenter. Legendre transformations can be used to replace U and X successively 
as independent variables by �1 and �2 . Firstly, with Helmholtz free energy

we have

so that the independent variables are (�1,X,N) ∈ �1 . The system is in contact with a 
source of thermal energy at temperature T = �∕�1 . Secondly, with Gibbs free energy

we have

(1)dS = �1dU − �2dX − �3dN,

(2)�1 ∶= �∕T , �2 ∶= �∕T , �3 ∶= �∕T ,

(3)�1 ∶= �1U − S,

(4)d�1 = Ud�1 + �2dX + �3dN,

(5)�2 ∶= �1U − �2X − S,

(6)d�2 = Ud�1 − Xd�2 + �3dN,

12  In most presentations of thermodynamics N is simply taken to be the number of particles in the sys-
tem. Our usage is designed to avoid reference to the microstructure of the system and to allow N to have 
non-integer values.
13  At this point it is convenient: (i) To clarify the dimensionality of the thermodynamic variables. It 
is straightforward to show that, by scaling with respect to suitable constants, T and � can be made of 
the dimensions of energy ( J ∶= m2kg s−2 ) and U, S and X made dimensionless. In the case of U this is 
achieved by factoring out an energy constant 𝜀 > 0 . This is the field-extensive variable representation of 
Lavis [67, Sect. 1.1], where scaling for S and T is effected using Boltzmann’s constant k B . The further 
change to the coupling-extensive variable representation is achieved by taking ratios of � , � and � with 
respect to T as shown in (2). (ii) To observe that the generalization to more than one mechanical variable 
pair is straightforward. (iii) To emphasise that this differential form should not be understood as some 
sort of equilibrium process in the space �0 [68].
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so that the independent variables are (�1, �2,N) ∈ �2 . The system is now, through 
�2 , also in mechanical contact with its environment, be it a fluid system subject to 
a pressure P or a magnetic system subject to a field H . The couplings �1 and �2 are 
referred to as the thermal and field (or mechanical) couplings respectively.

It is tempting to suppose that this process could be taken one step further, inter-
changing the roles of N and �3 . However, it is not difficult to see that the Legendre 
transformation implementing this would involve a free energy �3 which is constant 
and can thus without loss of generality be taken to be identically zero. A viable form 
of thermodynamics must retain (at least) one extensive variable (here we choose that 
to be N, although we could have used X) which registers the size of the system.

Observing that in thermodynamics the uncontrolled variables remain constant 
when the corresponding controlled variables are held constant, this is now the point 
for the first message from statistical mechanics:

14  Or from some extensions to the approach of Lieb and Yngvason [75].
15  The Clausius version of the second law needs modification to include negative temperatures [64, 108] 
and both the Kelvin–Planck and Clausius versions need modification to accommodate negative heat 
capacities (Lavis, 69).
16  It is a matter of dispute (see, for example, Lavis [69] and references therein) whether statistical 
mechanical models support the existence of negative temperatures, and the experimental evidence is also 
questioned. The same is the case for negative heat capacities.

FSM–1 Unlike in thermodynamics, extensive variables in statistical mechanics 
that are uncontrolled quantities fluctuate even when the corresponding controlled 
variables are kept constant. (In �1 the energy corresponding to the internal energy 
U fluctuates, and in �2 the variable corresponding to X, be it the volume or the 
magnetic moment, fluctuates. This is born out by experiment [79].) The variances 
of the fluctuations are given in terms of response functions and are O(N) . This 
means that standard deviations of fluctuations are O(

√
N) and become negligibly 

small compared to O(N) variables only in the thermodynamic limit N → ∞.

For fixed N let (U,X,N)
A
−−→(U�,X�,N) denote an adiabatic process. It can be 

shown [69], from Carathéodory’s first version of the second law [23],14 that ther-
modynamic systems are of four types according to whether the adiabatic process 
gives U ≤ U′ or U ≥ U′ and S ≤ S′ or S ≥ S′ corresponding, respectively, to the pos-
sibilities of the temperature and heat capacity being positive or negative.15 Stand-
ard accounts of thermodynamics concentrate solely on the case where both internal 
energy and entropy increase, which is the situation where both temperature and heat 
capacity are positive. We shall restrict out attention to that case.16

2.2 � Extensivity and the Thermodynamic Limit

Departing from the formulation TD1 of the structure of thermodynamics we ascend the 
left-hand column in Fig. 1, where it is now useful to consider the embedding of particu-
lar models. In this context they are of two types, ones which posit a phenomenological 
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equation of state and ones derived from some microstructure according to the proce-
dures of statistical mechanics. Most examples in the first category, the perfect gas equa-
tion, the Weiss-field equation for ferromagnetism and the van der Waals equation17 
introduce the models in terms of an equation relating the mechanical variable pair (X, �) 
and N to the temperature. However, it is more consonant with our approach to begin 
with a defining relationship for the entropy surface S(U, X, N), from which T, � and � , 
or equivalently the couplings �1 , �2 and �3 can be calculated using (1). Thus:

•	 For the perfect gas

 for some constant c,18 giving19 

•	 For the van der Waals fluid

 giving 

The entropy (7) is a concave function of (U, V), but for (9) it is necessary to take 
the concave envelope. This is, of course, equivalent in the case of the van der Waals 
[122] fluid and other phenomenological equations of state to the application of Max-
well’s equal areas rule [81], which avoid the inclusion of unstable states and leads to 
a first-order gas-liquid phase transition (see Sect. 2.3).

It will be noted that, for both the perfect gas and van der Waals fluid with densi-
ties u ∶= U∕N and v ∶= V∕N , there exists an entropy density s satisfying

for all N > 0 , which avoids any reference to the size N of the system. But, of course, 
these are rather special models and the question arises as to whether entropy, in gen-
eral, when X replaces V and x ∶= X∕N replaces v, satisfies

For this question the following result is important:

(7)S(U,V ,N) ∶= Nc +
3

2
N ln

(
U

N

)
+ N ln

(
V

N

)
,

(8)T =
2U�

3N
, P =

NT

V
.

(9)S(U,V ,N) ∶= Nc +
3

2
N ln

(
U

N
+

N

V

)
+ N ln

(
V

N
− 1

)
,

(10)T =
2

3
�
(
U

N
+

N

V

)
, P =

NT

V − N
−

�N2

V2
.

(11)s ∶=
S(uN, vN,N)

N
= s(u, v),

(12)s ∶=
S(uN, xN,N)

N
= s(u, x), ∀ N > 0.

17  And a number of lesser known relationships like the Redlich–Kwong and Dieterici equations of state.
18  Which can be evaluated using statistical mechanics but whose value is unimportant here.
19  Remember that �2 ∶= −P∕T .
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Theorem 1  Equation (12) is true iff

is true.

Proof  That (12) follows from (13) is easily seen by taking � = 1∕N and defining 
s(u, x) ∶= S(u, x, 1).

In the reverse direction, this last relationship s(u, x) = S(u, x, 1) in fact follows 
from (12) by setting N = 1 . Then from (12) S(U,X,N) = NS(U∕N,X∕N, 1) and 
again setting � = 1∕N recovers (13). 	�  ◻

Equation (13) is the condition that S is an extensive function and it is easily 
shown from (3) and (5) that the free energies �1 and �2 are extensive functions if 
and only if the entropy is an extensive function. But, as pointed out by Menon and 
Callender [83, Sect. 2] and show in Sect. 3.3,

(13)S(𝜆U, 𝜆X, 𝜆N) = 𝜆S(U,X,N), ∀ 𝜆 > 0,

20  See footnote 10.

FSM-2 The extensivity of entropy and of free energies assumed in thermodynam-
ics is not exactly true for all systems in statistical mechanics, but is approximately 
true for large systems.

For entropy the thermodynamic limit in statistical mechanics, assuming it 
exists,20 is given by

But for thermodynamics the corresponding formula is (12), without the need for 
the limiting process. Exact extensivity in thermodynamics can be regarded as unnec-
essary or trivially true.

Differentiating (13) with respect to � , and substituting from (12) gives

when � is put equal to 1. From (1) to (12),

which is a version of the Gibbs–Duhem relationship. In terms of densities (15) 
becomes

and substituting into (1)–(6)

(14)lim
N→∞

S(uN, xN,N)

N
= s(u, x).

(15)S = �1U − �2X − �3N,

(16)ud�1 − xd�2 − d�3 = 0 ,

(17)s = �1u − �2x − �3,

(18)
ds =�1du − �2dx − (s − �1u + �2x + �3)dN∕N

=�1du − �2dx.



1 3

Foundations of Physics (2021) 51:90	 Page 11 of 69  90

Then, for free-energy densities �1 ∶= �1∕N and �2 ∶= �2∕N,

These are the fundamental size-free thermodynamic relationships in terms of 
density variables and density functions. They are exact in thermodynamics but 
approximately true only for large systems in statistical mechanics. The question 
of large systems and the thermodynamic limit in statistical mechanics is treated in 
Sects. 3.3, 3.5 and 4.

2.3 � Thermodynamics with PTCP

Having arrived at a formulation of thermodynamics in terms of densities and cou-
plings the modern theory of PTCP is largely concerned with an investigation and 
classification of the singular properties of systems (see e.g., [18]). Specifically the 
singularities which could occur on the hypersurface of the entropy density, or the 
appropriate free-energy density, which defines the state of the system. However we 
should be forewarned that the account of statistical mechanics in Sect. 3 concludes 
that:

(19)�1 =�1u − s = �2x + �3, d�1 = ud�1 + �2dx,

(20)�2 =�1u − �2x − s = �3, d�2 = ud�1 − xd�2.

FSM-3 The association of PTCP with singularities in the entropy and free-energy 
densities which is made in thermodynamics can be made in statistical mechanics 
only for infinite systems.

The association of PTCP with singularities in both TD3 and SM3 leads to a ten-
dency for them to be mistakenly conflated. (We shall discuss this in more detail in 
relation to limit reduction in Sect. 5.1).

We now consider three thermodynamic spaces, �̃0 , �̃1 and �̃2 , which correspond 
respectively to the spaces �0 , �1 and �2 defined in Sect. 2.1 except that now den-
sities replace extensive variables. In reverse order, since this is more heuristically 
transparent:

	 (i)	 In the space �̃2 of the vector ��� ∶= (�1, �2) the free-energy density �2(�1, �2) is 
a surface with normal in the direction (1,−u, x) and phases are separated by 
lines of transitions. The simplest example is a line L⋆ across which there 
is a discontinuity of the gradient ∇�2 = (u,−x) ; an isothermal section ( �1 
constant) of this surface is shown in Fig. 2. The point 𝜁𝜁𝜁⋆ ∶= (𝜁⋆

1
, 𝜁⋆

2
) ∈ L

⋆ , 
with 𝜁⋆

3
= 𝜙2(𝜁𝜁𝜁

⋆) . L⋆ can be regarded as representing the coexistence of two 
phases with different densities. As ��� is varied across L⋆ through 𝜁𝜁𝜁⋆ there is a 
first-order phase transition where the densities change discontinuously. In the 
case of both fluid and magnetic systems a first-order transition will involve a 
discontinuity of the internal energy density u. In a fluid system there will be a 
discontinuity of the (physical) density as the system changes between a liquid 
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and a gas. In a magnetic system there will be a discontinuity in the magnetiza-
tion (or equivalently the magnetization density) as shown for the Ising model 
in Fig. 9.

	 (ii)	 In the space �̃1 of the vector (�1, x) the free-energy density �1(�1, x) is a surface 
convex with respect to x with normal in the direction (1,−u,−�2) , as shown by 
an isothermal ( 𝜁1 = 𝜁⋆

1
 ) section in Fig. 3. A first-order transition corresponds 

to the part of the isotherm, labelled C⋆ , which is linear with respect to x. At 
the ends of (𝜁⋆

1
, x(⋆+)) and (𝜁⋆

1
, x(⋆−)) of C⋆ all three couplings �1 , �2 and �3 

have the same values as is otherwise shown in Fig. 2. Typically, as 𝜁⋆
1

 varies 
along L⋆ the ends of C⋆ converge to a critical point where the system exhibits 
a second-order transition. There the densities are continuous but one or more 
of the response functions (that is to say the curvature components of the free-
energy surface) is singular.21 A projection of the linear coexistence region in 
Fig. 3 is shown in Fig. 4, and the situation where the corresponding transition 
line L⋆ terminates is shown in Fig. 5.

	 (iii)	 The space �̃0 of the vector(u, x), in which the entropy density s(u, x) is a con-
cave surface is similar to that for �1(�1, x),22 except that now the linear genera-
tor C⋆ of the coexistence region has endpoints (u(⋆+), x(⋆+)) and (u(⋆−), x(⋆−)) . 
As 𝜁𝜁𝜁⋆ varies along L⋆ , C⋆ traces out the boundary of a ruled23 region on 
the entropy surface with C⋆ converging in one direction to the critical point 
described in (ii).

Critical exponents at the critical point are associated with the curvature of the coex-
istence curve in �̃1 and the coexistence line in �̃2 , and the asymptotic singular 
behaviour of the (per particle) heat capacities cx and c� at constant density and field 
respectively and a response function �T , which in a fluid corresponds to the com-
pressibility and in a magnet to the susceptibility. It will also be useful to include the 
coefficient of thermal expansion �� . These are defined together with their critical 
exponents in Appendix 1. The heat capacities cx and c� are normally positive and 
from (105) it follows that, if 𝜑T > 0 , then c� dominates both cx and �2

�
∕�T as T → Tc . 

For the critical exponents σ and σ� characterizing the singularity of cx on approach to 
the critical point from above and below Tc , and the analogously defined critical 
exponents α and α� characterizing the singularity of c� , and γ and γ� characterizing 
the singularity of �T , as well β characterizing the curvature of the coexistence curve, 
this means that

(21)σ ≥ α , σ� ≥ α�, σ� + 2β + γ� ≥ 2.

21  Such critical points can also occur as lines. A line of first-order transitions can terminate on a line of 
second-order transitions at a point called a critical end-point, or be continued as a line of second-order 
transitions at a point called a tricritical point.
22  That convexity is replaced by concavity is clear from the negative sign of s in (19).
23  A ruled surface (like, for example, the surface of a cylinder) is one densely covered by a set of straight 
lines.



1 3

Foundations of Physics (2021) 51:90	 Page 13 of 69  90

The condition 𝜑T > 0 is true for a magnetic system and in this case the third ine-
quality in (21) was first established by Rushbrooke [113]. The stronger condition

was obtained by Griffiths [42] for both magnetic and fluid systems using the con-
vexity properties of the free energy. In fact it is a consequence of scaling theory 
(Sect.  4) that, for systems with a special symmetry which is present in magnetic 
systems where, as for the Ising model in Appendix 2, the coexistence curve coin-
cides with the zero field axis, σ� = α� and inequalities (21) and (22) become identi-
cal. Otherwise σ� = γ� . Griffiths [42] also derived a number of other inequalities. In 
particular

where δ , given by (109), is the exponent characterizing the (critical) equation of 
state.

2.4 � Thermodynamics with Scaling Theory

In view of our aim to keep as distinct as possible the developments of thermodynam-
ics and statistical mechanics, we choose here to present scaling theory as a math-
ematical axiomatization of the properties of PTCP in thermodynamics. Although, as 
we see below, it has deep roots in, and is substantiated by, statistical mechanics, in 
particular renormalization group theory,24 where, in almost all cases,25 the realiza-
tion of this picture of scaling involves approximations and yields scaling forms of 
only local validity.

(22)α� + 2β + γ� ≥ 2,

(23)γ� ≥ β(δ − 1),

Fig. 2   A first-order transition 
showing as a discontinuity of 
slope in an isothermal section 
( 𝜁1 = 𝜁⋆

1
 ) of �2 = �3 plotted 

against �2

24  The assumption (24) that, near to a critical region, the free-energy density can be divided into smooth 
and singular parts is justified in terms of the form of the Hamiltonian [44, p. 3519].
25  An exception being the one-dimensional Ising model (see e.g. [67, Sect. 15.5.1]).
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Originating in the work of (among others) Widom [126, 127] and Kadanoff [53] 
our approach is essentially that of Hankey and Stanley [44]. Given here in brief out-
line26 it is sufficient for an analysis of power-law singularities in the critical region.27

Suppose we have the free-energy density of a system in terms of its maximum 
number of independent couplings. In the discussion above that maximum number 

Fig. 3   A first-order transition 
showing as the linear section C⋆ 
in an isothermal section of the 
�1 surface

Fig. 4   A first-order transition 
showing as a horizontal part 
C
⋆ of an isotherm of �2 plotted 

against x together with the 
isotherm through the critical 
point � . As �1 varies the ends 
of C⋆ trace the boundary of the 
coexistence region (shaded)

Fig. 5   A critical point (�1c, �2c) 
in �̃2 . The first-order transition 
(coexistence curve) 𝜁2 = 𝜁⋆

2
(𝜁1) 

is represented by a broken line 
and the critical isochore, along 
which the density x takes its 
critical value x = xc by a dotted 
line. The directions of the axes 
of the two relevant scaling fields 
at the critical point, as described 
in Sect. 2.4, are shown

27  For statistical mechanical systems like the Ising model with d = 2 which exhibit logarithmic singu-
larities, it has been shown by Nightingale and ’T Hooft [95] that a slight generalization needs to be used.

26  For a more detailed account see, for example, Lavis [67, Chap.4].
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was two, but for the moment we generalize to n couplings so the free-energy den-
sity is �n(���) , where ��� ∶= (�1, �2,… , �n) , which is represented as a hypersurface of 
dimension n in the (n + 1)-dimensional space (�n,��� ) . Now suppose that there is a 
critical region C of dimension n − s . Although �n(���) itself is continuous and finite 
across and within C it may have discontinuous first-order derivatives, meaning that 
C is a region of phase coexistence with a first-order transition when, as is shown 
in Fig. 2, the phase point crosses through C , or it may have singular second-order 
derivatives in C , as is the case in the situation described above where a line of first-
order transition terminates at a critical point.28

With respect to some origin ���◦ ∈ C a system of orthogonal curvilinear coordi-
nates �1, �2,… , �n called scaling fields is constructed. These are smooth functions 
of the couplings which parameterize C so that �1 = ⋯ = �s = 0 within C . The 
scaling fields in this subset are called relevant with those in the remaining subset 
�s+1, �s+2,… �n , called irrelevant, acting as a local set of coordinates within C.29 The 
free-energy density �n(���) is separated into two parts

where �smth(��� ) is a regular function and, with △��� ∶= ��� − ���◦ , �sing(△���) , for which 
�sing(000) = 0 , contains all the non-smooth parts of �n(���) in C . It is now assumed that 
�sing(△���) can be re-coordinated in terms of the scaling fields so that it is a general-
ized homogeneous function satisfying the Kadanoff scaling hypothesis30

for all real 𝜆 > 0 , where d is the physical dimension of the system, and yj , 
j = 1, 2,… , n are scaling exponents satisfying

The exponents in the first subset are, like the corresponding scaling fields, called 
relevant   and those in the latter subset are called irrelevant.31 Of the assumptions 
made here, that scaling fields can be derived is not particularly demanding; at the 
very least it is usually straightforward to obtain their linear parts near to the origin. 
And the division of the free-energy density (24) into smooth and singular parts has 

(24)�n(��� ) = �smth(��� ) + �sing(△���) ,

(25)�sing(�
y1�1,… , �yn�n) = �d�sing(�1,… , �n) ,

(26)yj > 0, j = 1,… , s, yj < 0, j = s + 1,… , n.

28  Or there may be discontinuities or singularities in higher-order derivatives; but we shall for simplicity 
concentrate solely on cases involving first- and second-order derivatives.
29  ‘Relevance’ here refers to their role in an understanding of the nature of the criticality in C.
30  The physical dimension d of the system is not something which plays a significant role in most of 
thermodynamics. It is included here to bring compatibility with the discussion of statistical mechanics. It 
could be removed by redefining �.
31  We have for the sake of simplicity excluded the possibility of a zero exponent; such an exponent is 
called marginal. Marginal exponents are associated in renormalization group theory with an ‘underlying’ 
parameter of the system, often resulting in lines of fixed points as we see in our treatment of the one-
dimensional Ising model in Sect. 3.4.3. It will also be assumed that no exponent is complex. In practice 
this is not always the case (see e.g., [67, Sect. 15.5.2]), but situations arising from complex exponents are 
not difficult to interpret in particular examples.
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very little content until we explore in more detail the consequences of the scaling 
hypothesis (25) which we now do for the case of a critical point terminating a coex-
istence curve.

There are many general accounts of scaling theory, treating a variety of critical 
phenomena. Here we restrict attention to the case of a critical point terminating a 
line of first-order transitions, as shown in Fig. 5. So we have two critical regions. 
The first is the critical point with two relevant scaling fields and scaling exponents 
with axes chosen perpendicular to and along the coexistence curve. For this we shall 
show that the critical exponents defined in Appendix 1, can be expressed in terms of 
the two scaling exponents. The second is the coexistence curve which has one rel-
evant and one irrelevant scaling field constructed with respect to some chosen origin 
(not shown in Fig. 5) on the coexistence curve.

For the sake of further simplifying our presentation we restrict attention to a 
simple ferromagnetic system with � ∶= H , the magnetic field, X ∶= M , the mag-
netization and x ∶= m = M∕N , the magnetization density. The coupling �1 is the 
thermal coupling so we relabel it as �T = �∕T  and �2 is the field coupling which 
we relabel as �H = H∕T  . This model, of which an example in statistical mechanics 
is the Ising model described in Appendix 2, has the advantage of having the spe-
cial symmetry that the coexistence curve lies along the zero-field axis in an interval 
T ∈ [0, Tc] with Hc = mc = 0 . This axis with T > Tc is the critical isochore. Thus 
(referring to Fig. 5) the coexistence curve lies along the �H = 0 axis in an interval 
[�Tc,∞) . This same phase diagram for the Ising model, now plotted with respect to 
the temperature T and the magnetic field H , is shown in Fig. 8.

We consider separately the critical point and the coexistence curve, beginning 
with the critical point where we can take the scaling fields to be

The scaling hypothesis (25) becomes

and, from (24) and (103),

Since mc = 0 , ��smth∕��H = 0 at the critical point. For an approach to the critical 
point along the coexistence curve �H = 0 and setting � = �

−1∕yT
T

 in (30) and substi-
tuting into (29) gives

(27)�T ∶= �T − �Tc = �

(
1

T
−

1

Tc

)
≥ 0, �H ∶= �H =

H

T
.

(28)�sing(�
yT�T , �

yH�H) = �d�sing(�T , �H) ,

(29)m = −
��smth

��H
−

��sing

��H
,

(30)
��sing

��H
(�yT�T , �

yH�H) = �d−yH
��sing

��H
(�T , �H).
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which, when comparing with (107) establish the identification

At this point we could carry out a similar procedure for the response functions 
in (104) and (105) to determine the critical exponents defined in (106)–(110). How-
ever, the analysis can be shortened by a closer examination of the way that the 
expression (32) for β was obtained. From this we see that the scaling exponent yH in 
the numerator indicates that differentiation was once with respect to �H . And that the 
approach was in the direction of varying �T is indicated by the scaling exponent yT in 
the denominator. So with the same reasoning it follows from (109) that

and bearing in mind that the analysis yields singularities for response functions so 
�smth can play no role, from (108),

When we come to consider c� ∶= cH , given by (104), the situation becomes a 
little more complicated, since there are three terms and we need to know which 
dominates as the critical point is approached. This will depend on the relative mag-
nitudes of yT and yH and it can be shown (Lavis, [67], Sect. 4.5.1) that, in general 
for a critical point terminating a line of first-transitions, the exponent associated 
with approaches tangential to the coexistence curve is smaller (less relevant) than 
that associated with an approach at a non-zero angle to this curve. These are called 
respective weak and strong approaches and in the present context we have yH > yT , 
these being respectively the weak and strong exponents. Returning to the formula 
for cH in (104) we see that the third term on the right-hand side would be the one 
that dominates meaning that, from (110), σ = σ� = γ . However, because of the sym-
metry of the magnetic model �2c = �Hc = 0 and the only remaining term is the first, 
meaning that

Finally we need to determine the asymptotic form for cx ∶= cm using (105). 
Here the situation need a more detailed analysis, when it can be shown (Lavis, [67], 
Sect. 4.5.4) that, whether or not the magnetic symmetry applies cancellation of coef-
ficients leads to an asymptotic form equivalent to that of a second-order derivative 
with respect to �T ; that is,

This means that it is the asymptotic form of the heat capacity with constant inten-
sive variable (pressure or magnetic field) which is dependent on symmetry. In the 
magnetic system the exponent is the same as that of the heat capacity with constant 

(31)m ≃ −�
(d−yH)∕yT
T

��sing

��H
(1, 0) ∼ (Tc − T)(d−yH)∕yT ,

(32)β = (d − yH)∕yT .

(33)δ = yH∕(d − yH),

(34)γ = γ� = (2yH − d)∕yT .

(35)σ = σ� = (2yT − d)∕yT .

(36)α = α� = (2yT − d)∕yT .
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extensive variable (the magnetization) and in a fluid, where there is no symmetry it 
is equal to that of �T , which is the compressibility. Equations (32)–(36) are formulae 
for the exponents α , β , γ and δ in terms of yT and yH . They are, therefore, not inde-
pendent and two relationships exist between them. These can be expressed in the 
form α + 2β + γ = 2 , called the Essam–Fisher scaling law [30], which is a strength-
ening of the inequality (22) and γ� = β(δ − 1) , called the Widom scaling law [126], 
which is a strengthening of the inequality (23).

For the coexistence curve, scaling fields, chosen with respect to some arbitrary 
origin �T = �◦

T
 , �H = 0 are

with y′
T
 and y′

H
 irrelevant and relevant exponents respectively. In general it can be 

shown that relevant exponents are less than or equal to d meaning in this case that 
0 < y′

H
≤ d . With primes attached to the exponents and fields (29) and (30) continue 

to applied to the magnetization density. If y′
H
< d

and m is continuous at the origin; there is no first-order phase transition. If y�
H
= d 

then (38) does not necessarily hold. There may be a contribution to (29) from the 
derivative of �sing . This will be the only way in which the magnetization can be dis-
continuous across the coexistence curve. So a scaling exponent equal to d is a neces-
sary, but not sufficient condition for a first-order transition. An example of such a 
first-order transition with an exponent of d is at zero temperature in the one-dimen-
sion Ising model (Sect. 3.4.3(a)). Discontinuities in higher-order derivatives can be 
treated in a similar way.

2.5 � Dimensionality and Phase Transitions

Although, as we have seen, thermodynamics, and particularly its treatment of PTCP, 
assumes that the system is infinite, the dimension d of the system entered into the 
discussion in Sect. 2.4. And once dimensionality has entered then finiteness has also 
appeared. Thus, for example, a two-dimensional system can be viewed as a three-
dimensional system of ‘thickness’ one in the third dimension and it is only a small 
step from there to increase the thickness to two. In Sect. 1 we referred to the classi-
fication of singularities in terms of universality classes. This, as we asserted, can be 
discussed only in the context of statistical mechanics, with d one of the factors deter-
mining the universality class of an occurrence of singular behaviour. If the number 
of directions in which the system is infinite is increased, then its critical behaviour 
will change from one universality class to another. This is an example of what in 
scaling and renormalization group theory is called ‘cross-over’.32 The dimension of 

(37)��
T
∶= �T − �◦

T
, ��

H
∶= �H = H∕T ,

(38)
��sing

��H
(0, 0) = 0,

32  Of course, such a change of universality class is counter-factual [50], in the sense that one cannot 
change the dimension or extensivity properties of a real system.
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the system affects not just the universality class of singular behaviour but whether it 
occurs at all. However, that dimension is not d but � ≤ d , the number of directions in 
which the system is infinite.33 And the final message sent from statistical mechanics 
to thermodynamics is that:

33  The connection between the thermodynamic limit and extensivity is retained in a partially-infinite sys-
tem with Nk sites in the k-direction and N1N2 ⋯Nd = N , when, in the case, for example, of entropy, (13) 
is replaced by

where N(�) ∶= N�+1N�+2 ⋯Nd and �� ∶= �1�2 … ��.
S(��U, ��X, �1N1, �2N2,… , ��N�,N

(�)) = ��S(U,X,N1,N2,… ,N�,N
(�)) ,

FSM–4 There exists a lower-critical dimension d LC such that, if � ≤ d LC < d 
singular behaviour can occur in the fully-infinite system but not in the partially-
infinite system. If d > � > d LC then singular behaviour can occur in both, but in 
different universality classes.

3 � From Gibbsian Statistical Mechanics to the Renormalization Group

The move from thermodynamics to statistical mechanics is, we shall argue, an 
enrichment and substantiation of the picture we have of any system under investiga-
tion. This operates at two levels. The first is structural, where renormalization group 
theory embedded in statistical mechanics provides a fuller picture in terms of renor-
malization group transformations and fixed points than scaling theory embedded in 
thermodynamics. The second is in the provision of specific models which arise from 
assumptions about the microstructure of the system. We now consider the develop-
ment represented by the right-hand column in Fig. 1, beginning with the basic struc-
ture of statistical mechanics.

3.1 � Inter‑Theory Connecting Relationships

Let the microstate of the system be given by a value of the vector variable ��� in the 
phase space �  . In the case of a fluid system ��� will be a set of values for the posi-
tions and momenta of all the particles; for a spin system on a lattice, like the Ising 
model in Appendix 2, ��� will be the set of values of all the spin variables. The micro-
scopic and macroscopic structure of the system is then determined by the Hamilto-
nian. This is an explicit function of the independent couplings with the independent 
extensive variables imposing constraints on ��� . Thus we have three cases: 

	 (i)	 When (U,X,N) ∈ �0 are the independent variables the Hamiltonian is 
Ĥ0(���;X,N) , with values constrained by 
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 and ��� constrained, according to the nature of the particular model by X and 
N.34

	 (ii)	 When (�1,X,N) ∈ �1 are the independent variables the Hamilto-
nian Ĥ1(���;�1,X,N) is a linear function of �1 . The constraint (39) is removed 
but ��� remains constrained by X and N.

	 (iii)	 When (�1, �2,N) ∈ �2 are the independent variables the Hamilto-
nian Ĥ2(���;�1, �2,N) is a linear function of �1 and �2 . The only remaining con-
straint is from N.

Connecting relationships are now invoked in three stages:

(39)Ĥ0(���;X,N) = U,

34  N fixes the number of particles in ��� . If the system is a fluid, with X ∶= V the volume of its container, then 
this constrains the range of the configuration component of ��� . Rather less physically achievable, if the system 
is a magnet, with X ∶= M the magnetization, this will constrain the spin configuration of the microsystems.
35  Where there is still some dispute about the appropriate form for the entropy (see, for example, [69], 
and references therein).
36  Of course, according to the nature of the system this could involve an integral rather than a sum.

FTD–1 The independent variables in �0 , �1 and �2 are endowed with their ther-
modynamic meanings.

To proceed to the next stage of the inter-theory connecting process we need to 
give a form in cases (i), (ii) and (iii), respectively, for the entropy, and the free ener-
gies �1 and �2 . Case (i) gives the microcanonical distribution35 and cases (ii) and 
(iii) give, respectively, the canonical distribution and the constant pressure or mag-
netic field distribution. For the sake of simplicity we concentrate exclusively on case 
(iii), where the Gibbs free energy is defined by

where

is the Gibbs partition function.36 Then

(40)�2(�1, �2,N) ∶= − ln{Z2(�1, �2,N)},

(41)Z2(�1, �2,N) ∶=
∑

{���}

exp{−Ĥ2(���;�1, �2,N)},

FTD–2 �2 is endowed with its thermodynamic properties and, using (3)–(6),

(42)U =
��2

��1
, X = −

��2

��2
, �3 = −

��2

�N
,

establishes the connection between U, X, �3 , �1 and S and their thermodynamic 
equivalents.

(43)�1 = �2 + �2X, S = �1U −�1,
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This completes a sufficient set of the connecting relationships. However, we can 
make some further links. Suppose that

Then, from (40)–(43),

(44)Ĥ2(���;�1, �2;N) ∶= Û(���)�1 − X̂(���)�2.

(45)U = ⟨Û(���)⟩, X = ⟨X̂(���)⟩.

37  The restriction of this presentation to a hypercubic lattice is in the interests of simplicity. It can easily 
be generalized to other lattices.
38  It is convenient for our discussions to suppose that the microsystems are confined to the sites of a 
lattice. It is, of course, the case that a whole area of statistical mechanics concerned with fluid systems 
treats the case of microsystems/molecules moving in a continuum.

FTD–3 U and X are identified respectively as the expectation values of Û(���) and 
X̂(���) with respect to the probability distribution with density

(46)�(���;�1, �2) ∶=
exp[−Ĥ2(���;�1, �2;N)]

Z2(�1, �2,N)
.

And it further follows from (40)–(46) that

where �T is the response function given by (104). This is an example of a fluctua-
tion–response function relationship. Similar relationships apply to Û(���) and all 
uncontrolled extensive variables.

3.2 � Correlation Function and Correlation Length

As is already evident, thermodynamics is a ‘black-box’ theory with a set of macro-
variables some of which are independent and controllable and others whose values 
change in response to the changes in the independent variables. The only concession 
made to internal structure was, in Sect. 2.1, to allow a counting of the number N of 
mass units of the system. Now with the ‘enrichment’ provided by statistical mechan-
ics we are able to record the microstate ��� of the system, which is simply the aggre-
gate of the states of the individual microsystems.

Suppose that we take the d-dimensional hypercubic lattice37 Nd with sites 
rrr ∶= (n1, n2,… , nd)� , for nk = 1, 2,… ,Nk with N = N1N2 ⋯Nd , where � is the lat-
tice spacing.38 Then, given that the states of the microsystems on sites rrr and rrr′ of the 
lattice are �(rrr) and �(rrr�) , respectively, how does the state of one effect the state of 
the other; that is to say, how are their states correlated? More specifically, how is the 
correlation between �(rrr) and �(rrr�) affected by: 

(47)Var[X̂(���)] =
�2�2

��2
2

= N�T ,
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	 (i)	 the distance |rrr − rrr�| between the sites?
	 (ii)	 the closeness of the thermodynamic state of the system to a critical region?

To begin to answer these questions suppose that, as for the Hamiltonian (44) in 
the Ising model in Appendix 2, X̂(���) is a linear sum of the states on the sites of N  . 
And (temporarily) suppose that the coupling �2 takes different values �2(rrr) at the 
sites. Then, denoting the set of couplings �2(rrr) by the vector ���2,

and from (46), the expectation values of �(rrr) is

If the states �(rrr) and �(rrr�) are uncorrelated ⟨�(rrr)�(rrr�)⟩ will factor into 
⟨�(rrr)⟩⟨�(rrr�)⟩ . So

called the pair correlation function is a measure of the degree of correlation between 
�(rrr) and �(rrr�) . If all the couplings �2(rrr) are set equal to �2 , it follows from (104) that

which is a fluctuation-response function relationship. If translational invariance is 
assumed, then (rrr, rrr�;𝜁1, 𝜁2) = (r̄rr;𝜁1, 𝜁2) , where r̄rr ∶= rrr − rrr� and

where ⋆(kkk;𝜁1, 𝜁2) is the Fourier transform of (r̄rr;𝜁1, 𝜁2).39 The correlation length 
ξ(�1, �2) , given by40

is a measure of distance over which microscopic degrees of freedom are statistically 
correlated.

(48)Ĥ2(���;�1,���2;N) ∶= Û(���)�1 −
∑

{rrr}

�(rrr)�2(rrr)

(49)⟨�(rrr)⟩ =
�

{���}

�(rrr)�(���;�1,���2) = −
��2

��2(rrr)
.

(50)(rrr, rrr�;�1, {�2(rrr)}) ∶= ⟨�(rrr)�(rrr�)⟩ − ⟨�(rrr)⟩⟨�(rrr�)⟩ = −
�2�2

��2(rrr)��2(rrr
�)
,

(51)
∑

{rrr,rrr�}

(rrr, rrr�;�1, �2) = N�T ,

(52)
∑

{r̄rr}

(r̄rr;𝜁1, 𝜁2) = 𝜑T with 
⋆(000;𝜁1, 𝜁2) = 𝜑T ,

(53)ξ2(𝜁1, 𝜁2) ∶= c(�)

∑
{r̄rr} �r̄rr�2(r̄rr;𝜁1, 𝜁2)∑

{r̄rr} (r̄rr;𝜁1, 𝜁2)
= −c(�)

∇2
kkk

⋆(000;𝜁1, 𝜁2)

⋆(000;𝜁1, 𝜁2)
,

39  Given by


⋆(kkk;𝜁1, 𝜁2) ∶=

∑

{r̄rr}

(r̄rr;𝜁1, 𝜁2) exp(−ikkk ⋅ r̄rr), (r̄rr;𝜁1, 𝜁2) =
1

N

∑

{kkk}


⋆(kkk;𝜁1, 𝜁2) exp(ikkk ⋅ r̄rr).

40  The prefactor c(�) is dependent on the number of dimensions � , in which the system is infinite. It can 
be show from Ginzburg-Landau theory that c(�) = 1∕(2�) [67, Sect. 5.6].
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We are now able to augment the scaling theory, described in Sect. 2.4, by apply-
ing it to the correlation function and correlation length. Again adopting the magnetic 
model used in of Sect. 2.4, suppose that near a critical point these functions can be 
re-expressed in terms of the scaling fields �T and �H ; r̄rr and kkk can also be treated as 
scaling fields which, on dimensional grounds will have exponents −1 and +1 respec-
tively. Then the relationships (52) between the correlation function and the response 
function �T , together with the formula (112) derived from Ginzburg–Landau theory 
suggests a scaling form41

for the correlation function, and, hence

for its Fourier transform. Then, from (53), the scaling form for the correlation length 
is

From (52), (55) and (104), d − 2yH = η − 2 and, setting � = |�2|−1∕yT in (56) 
gives, from (111)

Then, from (34) and (36), ν(2 − η) = γ , which is the Fisher scaling law [32] and 
d ν = 2 − α , which is the Josephson hyper-scaling law [52].42

3.3 � Transfer‑Matrix Methods

As we have already shown S, �1 and �2 are all extensive functions of their extensive 
variables or none of them is. The message FSM–2 sent from statistical mechanics to 
thermodynamics is that the latter is the case, and in particular that

is true only as an approximation for large systems.43 We shall now substantiate this 
claim by considering a particular way to develop statistical mechanical models, 

(54)(𝜆−1r̄rr;𝜆yT𝜃T , 𝜆
yH𝜃H) = 𝜆η+d−2(r̄rr;𝜃T , 𝜃H),

(55)
⋆(𝜆kkk;𝜆yT𝜃T , 𝜆

yH𝜃H) = 𝜆η−2⋆(kkk;𝜃T , 𝜃H),

(56)ξ(�yT�T , �
yH�H) = �−1ξ(�T , �H).

(57)ν = ν� = 1∕yT .

(58)�2 ∶=
�2(�1, �2,N)

N
= �2(�1, �2)

41  The exponent of minus one for r̄rr is chosen on dimensional grounds. It is also equivalent to the rescal-
ing of length in the renormalization group (item (iii) in Sect. 3.4.1).
42  This is the only scaling law which involves the dimension d of the system. For reasons which become 
evident if Ginzburg–Landau theory is used in the Gaussian approximation [67, Sect.  5.6] it becomes 
invalid when d > d UC , the upper-critical dimension. This is the dimension such that, when d ≥ d UC , 
critical exponents become dimensionally independent with the classical values given by, for example, the 
van der Waals fluid. For the Ising and similar non-quantum systems (see Appendix 2) d UC = 4.
43  In fact the Sackur–Tetrode formula for the entropy of a perfect gas given by (7) and treated there as an 
assumption is, when derived from statistical mechanics, also not completely extensive. This condition is 
achieved only when N is large and the Stirling formula for N! is applied.
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namely the method of transfer matrices. Although, of course, statistical mechanics 
can model systems of microsystems (molecules) moving, as in a fluid, through a 
continuum of points, transfer matrix methods are restricted to microsystems con-
fined to the points of a lattice. In principle lattices of any dimension can be con-
sidered, but we shall, for easy of presentation, consider only the two-dimensional 
case. A virtue of this development is that it can be clearly seen how it unfolds as the 
two lattice directions in which the system gets larger and then infinite are applied 
separately.

Consider a square lattice, of lattice spacing � , with N H sites in the horizontal 
direction, N V in the vertical direction, so that N = N H N V . This situation is like the 
one considered for finite-size scaling in Sect. 3.4.2, when extensivity can be con-
sidered separately in the two directions. Periodic boundary conditions are applied 
so that the lattice forms a torus with horizontal rings of N H sites and rings in a 
vertical plane of N V sites.44 We suppose that the sites of the lattice are occupied by 
identical microsystems having � possible states.45 The state of the whole system is 
𝜎𝜎𝜎 ∶= (𝜎̃𝜎𝜎1, 𝜎̃𝜎𝜎2,… , 𝜎̃𝜎𝜎N H

) , where 𝜎̃𝜎𝜎i , the state of the i-th vertical ring of sites, has one 
of N R ∶= �N V values. Given that contributions to the Hamiltonian arise (at least in 
the horizontal direction) only between first-neighbour sites the Hamiltonian can be 
decomposed into interactions between neighbouring rings of sites and within rings. 
The latter can be distributed between interacting pairs of rings so that the Hamilto-
nian takes the form of the sum of contributions of interactions between rings and it 
is straightforward to show that the partition function is expressible in the form

where VVV  is the N R-dimensional transfer matrix with elements consisting of the expo-
nentials of the negatives of the inter-ring interactions. Assuming that VVV  is diagonal-
izable,46 it is an elementary algebraic result that its trace is equal to the sum of its 
eigenvalues, which in decreasing order of magnitude we denote as �(�)(�1, �2,N V ) , 
� = 1, 2,… ,N R . Then, from (40) and (59),

As we can see the factors N H and N V of N are ‘buried’ at different places in this 
expression and it is clear that the extensivity condition (58) is not satisfied and the 
negative aspect of the message FSM–2 from statistical mechanics to thermodynam-
ics is justified. However, we can make some progress because, if all the elements of 
VVV  are strictly positive, as will usually be the case, an important theorem of Perron 
[104] (see also, [37, p. 64], [67, p. 673]) states that the largest eigenvalue of VVV  is 
real, positive and non-degenerate. This means that, in the approximation when N H 
becomes large,

(59)Z2(�1, �2,N) = Trace{VVVN H },

(60)
�2(�1, �2,N) = − ln{[�(1)(�1, �2,N V )]N H +⋯ + [�(N R )(�1, �2,N V )]N H }.

44  The point we are establishing with respect to extensivity is even more evident in systems with open 
boundaries.
45  The Ising model of Appendix 2 is an example of such a model with � = 2.
46  The condition for this to be the case is that VVV  is simple [63, p. 146].
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with extensivity achieve in the horizontal direction. Two strategies emerge at this 
point:

The first is to calculate an expression of the form

valid in the limit N V → ∞ and giving

in the limit N → ∞ . If this calculation can be carried out it is an effective proof of 
the existence of the thermodynamic limit,47 which achieves complete extensivity, 
with free-energy density given by (63). It is, however, a strategy that has been suc-
cessfully applied in only a few cases, of which Onsager’s [98] solution of the two-
dimensional zero-field Ising model and Baxter’s [11] solution of the eight-vertex 
model are the most well-known instances.

In the absence of a complete solution as represented by (63), the strategy most 
often adopted is to treat N V as a parameter indexing a sequence of models. That is

and

In the case of the Ising and similar semi-classical models it can be shown by a 
method due to Peierls [103] that �(n)

2
(�1, �2) is a smooth function for all n > 0 which 

exhibits maxima in response functions. A quantitative analysis using finite-size 
scaling theory (see Sect. 3.4.2) shows that such maxima become increasingly steep 
for increasing values of n, with convergence to the singularity associated with the 
transition in the two-dimensionally infinite system as n → ∞ . In particular to the 
corresponding singularities in Onsager’s solution of the two-dimensional zero-field 
Ising model. However, in view of the discussion later in this work it should be noted 
that the limiting process is singular. Although the maxima in the finite-N V models 
converge to the singularities in the N V = ∞ model they remain of a different (non-
singular) character however large N V becomes.

The pair correlation function and correlation length were defined in Sect. 3.2. In 
terms of this transfer matrix formulation it can be shown [67, Sect. 11.1.3] that in 
the limit N H → ∞

(61)�2(�1, �2,N) ≃ −N H ln{�(1)(�1, �2,N V )}

(62)�1(�1, �2,N V ) ∶= [�(�1, �2)]
N V ,

(63)�2(�1, �2) = − ln{�(�1, �2)}

(64)� (N V )(�1, �2) ∶= �(1)(�1, �2,N V )

(65)�
(n)

2
(�1, �2) ≃ −

ln{� (n)(�1, �2)}

n
.

(66)ξ(�1, �2,N V ) ≃ −�
{
ln ||�2(�1, �2,N V )||

}−1
,

47  Although, of course, the current absence of such a calculation is not a proof of the contrary assertion.
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where � , the lattice spacing, is now the distance between neighbouring rings of sites,

and

in the limit |rrr − rrr�| → ∞ , where rrr and rrr′ lie on the same vertical ring of sites which 
establishes an asymptotic form for fd(|r̄rr|∕ξ) in (112).

The situation where N H → ∞ and N V is finite corresponds to that to be dis-
cussed in Sect. 3.4.2, below, for finite-size scaling, where here � ∶= 1 and the thick-
ness of the lattice ℵ ∶= N V , with a maximum in �T and in other response functions 
signalling an incipient singularity.48 The eigenvalue ratio �2(�1, �2,N V ) can also be 
used as a means of detecting an incipient singularity, but in a slightly different way. 
Since, in Onsager’s solution for the Ising model, the largest eigenvalue is degenerate 
along the first-order transition line below the critical temperature [27, p. 194], we 
expect that �2(�1, �2,N V ) will begin, as N V is increased, to form a ‘plateau’ with 
small (negative) slope for small temperatures. The end of this plateau, where the 
negative curvature is a maximum can then be construed as the location of an incipi-
ent singularity.49 The finite-size scaling argument of Sect. 3.4.2 can be applied to 
all these quantities showing that the maxima converge towards the infinite-system 
critical value as N V increases. However, of course, for finite N V we cannot expect 
these locations to exactly coincide. These perceptions are given further weight by 
the phenomenological renormalization group procedure described in Sect. 3.4.3(c).

As we have already indicated, the use of transfer matrix methods to determine 
exact solutions for infinite systems leads into our discussion in Sect.  3.5.1 of the 
thermodynamic limit. In a similar way our account of incipient singularities result-
ing from an analysis of systems with N V finite leads into our discussion of phase 
transitions in finite systems is Sect. 3.6.

3.4 � The Renormalization Group Method

Once it became evident, around the turn of the twentieth century that the exponents 
associated with a critical point, both in experimental systems and theoretical models 
were not those derived from classical models, like van der Waals equation, an inter-
est developed in determining their exact values, in experimental systems and also 
in theoretic models, where of course it was also necessary in many cases to derive 
the critical temperature. Before the advent of renormalization group methods the 
most successful way to do this was by using high and low temperature series. These 
were very successful in obtaining critical temperatures and exponents at second-
order critical points. However, although they can be adapted to deal with first-order 

(67)�2(�1, �2,N V ) ∶= �(2)(�1, �2,N V )∕�(1)(�1, �2,N V )

(68)2(rrr, rrr
�;�1, �2,N V ) ∼ exp{−|rrr − rrr�|∕ξ(�1, �2,N V )},

48  In Sect. 3.4.2 we are primarily concerned with fully-finite systems, although as we indicated there, the 
analysis also applies to cases where, like here, 0 < � ≤ d LC < d.
49  Similar arguments apply to the three-state Potts model [67, Sect. 11.32].
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transitions, this is not their main strength and they are also not designed to map out 
the whole picture of phase transition curves in thermodynamic space. This contrasts 
with the renormalization group methods developed in the late sixties–early seven-
ties. They are able (when they work) not only to deal with critical points but also 
curves of first-order and second-order transitions. However, any account of these 
methods should be proceeded by some words of warning, like those of John Cardy. 
As he says [25, pp. 28–29]:

Not only are the words ‘renormalization’50 and ‘group’51 examples of unfor-
tunate terminology, the use of the definite article ‘the’ which usually precedes 
them is even more confusing. It creates the misleading impression that the 
renormalization group is a kind of universal machine through which any prob-
lem may be processed, producing neat tables of critical exponents at the other 
end. This is quite false. It cannot be stressed too strongly that the renormaliza-
tion group is merely a framework, a set of ideas, which has to be adapted to the 
nature of the problem at hand. In particular, whether or not a renormalization 
group approach is quantitatively successful depends to a large extent on the 
nature of the problem, but lack of success does not necessarily invalidate the 
qualitative picture it provides.

Here we shall concentrate solely on the approach to the renormalization group 
which is usually referred to as happening in ‘real space’; in contrast to the approach 
initiated by Wilson [128] where renormalization is performed in wave-vector space 
resulting in expansions in the parameter � ∶= d − 4.52

The core of real-space renormalization group (RSRG) methods is the construc-
tion of a semi-group of transformations on the independent couplings, or functions 
thereof. There is a variety of procedures for doing this. Many are based on the block-
spin method of Kadanoff [53], and another popular technique is decimation, where 
the states of a proportion of the microsystems is summed out of the partition func-
tion. In fact decimation applied to the one-dimensional Ising model, or related mod-
els like the Potts model, (see, e.g. [67] Sect. 15.5.1, and Sect. 3.4.3(a) below) is one 
of the few examples of an exact RSRG transformation. Most transformation involve 
approximations, which thus means that the critical exponents are approximations 
with, in many cases no obvious way to make improvements, unlike series methods 
where, in principle and often with a great deal of labour, improvements are made by 
extending the series.

In essence the RSRG transformation involves some fractional reduction in the 
number of degrees of freedom. It would, therefore, seem to follow that there must 

50  A carry-over on the part of Wilson [128] from his work on the high-energy behaviour of renormalized 
quantum electrodynamics.
51  It is in fact a semi-group since it has no inverse.
52  A comprehensive collection of articles on both types of renormalization group methods is contained 
in the articles in Domb and Green [29] and on real-space methods in the volume edited by Burkhardt 
and van Leeuwen [19]. For a description of renormalization methods in wave-vector space the reader 
is referred to Ma [78] and Amit [1]. Accounts of both approaches are given by Goldenfeld [40], Binney 
et al. [15] and Cardy [25].
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have been a prior application of the thermodynamic limit. Whether this is required 
for the renormalization group and, more generally, whether it is needed at all in 
the statistical mechanics of critical phenomena is a question that we return to in 
Sect. 3.5, following a brief account of the ideas involved in the RSRG.

3.4.1 � General Theory

Underlying the semigroup of transformations on couplings, which is the real-space 
renormalization group, is a mapping from a lattice N  to a lattice Ñ  . For the sake 
of simplicity we suppose that both are hypercubic lattices with periodic boundary 
conditions. Then: 

	 (i)	 The number of sites N and Ñ of N  and Ñ  are related by Ñ = N∕�d , where 
𝜆 > 1.

	 (ii)	 The lattice spacings � and �̃ of N  and Ñ  are related by �̃ = 𝜆�.
	 (iii)	 The size of Ñ  is reduced by a length scaling |r̃rr| = |rrr|∕𝜆.

The renormalization group is constructed by imposing onto the lattice transforma-
tion a statistical mechanical transformation. To do this we modify the Hamiltonian 
(44) to

where, for reasons that will become evident below, we have added a term including 
a trivial coupling �0 and, as in the presentation of scaling theory at the beginning 
of Sect.  2.4, generalized the number of non-trivial couplings from two to n, with 
��� ∶= (�1, �2,… , �n).53 The terminology ‘trivial’ signals the fact that, if in (46) Ĥ2 is 
replaced by Ĥ′

2
 and Z2 by

then the probability density function is left unchanged and

Bearing in mind the remarks of Cardy, given above, a successful application of 
this method depends on being able to construct relationships between the couplings 
�0,��� in the system on N  and the couplings 𝜁0,𝜁𝜁𝜁 in the system on Ñ  , done in such a 
way that the values for the couplings for N  place it in a critical region if and only 
the same is the case for the values of the couplings for Ñ  . Since the critical proper-
ties of a system are contained within the partition function the invariance

(69)Ĥ�
2
(���;�0,��� ;N) ∶= N�0 + Ĥ2(���;��� ;N),

(70)Z�
2
(�0,��� ,N) ∶=

∑

{���}

exp{−Ĥ�
2
(���;�0,��� ,N)},

(71)�2(��� ,N) ∶= − ln{exp(N�0)Z
�
2
(�0,��� ,N)}.

53  As we see in the example of the two-dimensional Ising model in Sect. 3.4.3(b) below, the renormali-
zation group transformation will in many cases generate further couplings beyond the set dictated by the 
physics of the model under consideration.
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of that function is a sufficient guarantee; and this is achieved by the relationship

where the weight function w(𝜎𝜎𝜎, 𝜎̃𝜎𝜎) satisfies

Running over the set of states 𝜎̃𝜎𝜎 in (73) will, in principle, produce recurrence 
relationships54

and for 𝜁0 a recurrence relationship which we choose, for convenience to express in 
the form

The ‘in principle’ caveat entered here is important. As we shall see it is rarely 
possible to implement this programme and to choose a weight function without 
some kind of approximation being applied. And it is frequently the case that consist-
ency can be achieved only by increasing the value of n from its initial value. When 
this happens it is necessary, in order to apply repeated iterations, to back-track and 
for the extra couplings to be included from the start.

The importance of (76) is that it can be used, together with (71) and (72) to obtain 
the relationship

between the free-energy densities per lattice site at ��� and 𝜁𝜁𝜁 . Then, given that (75) 
can be iterated to produce a sequence of points ��� (0) → ��� (1) → ��� (3) → ⋯ in �2,

is the free-energy density at an initial point ��� (0) . Although this result seems to imply 
the need for an infinite number of iterations, this is clearly not possible in practical 
computations. It is, therefore, fortunate that it is usually found that this series con-
verges after a very few iterations, allowing densities and response functions to be 
calculated (see the discussion Sect. 3.5.1).

(72)Z�
2
(𝜁0,𝜁𝜁𝜁 , �N) = Z�

2
(𝜁0,𝜁𝜁𝜁 ,N)

(73)exp{−�H�
2
(𝜎̃𝜎𝜎;𝜁0,𝜁𝜁𝜁 , �N) =

∑

{𝜎𝜎𝜎}

w(𝜎𝜎𝜎, 𝜎̃𝜎𝜎) exp{−�H�
2
(𝜎𝜎𝜎;𝜁0,𝜁𝜁𝜁 ,N)},

(74)
∑

{𝜎̃𝜎𝜎}

w(𝜎𝜎𝜎, 𝜎̃𝜎𝜎) = 1.

(75)𝜁j = Kj(𝜁𝜁𝜁 ), j = 1, 2,… , n,

(76)𝜁0 = 𝜆d[𝜁0 +K0(𝜁𝜁𝜁 )].

(77)𝜙2(𝜁𝜁𝜁 ) = 𝜆d𝜙2(𝜁𝜁𝜁 ) − 𝜆dK0(𝜁𝜁𝜁),

(78)�(��� (0)) =

∞∑

s=0

1

�sd
K0(���

(s)),

54  To be precise, the recurrence relationships are derived from (73) as relationships between the Boltz-
mann factors exp(𝜁j) and exp(�j) , j = 0, 1,… , n of the couplings.
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A fixed point 𝜁𝜁𝜁⋆ of (75) is associated with either a single-phase region or a criti-
cal region C in �2 . To analyze its nature we linearize with [△△△𝜁𝜁𝜁 (s)] T ∶= 𝜁𝜁𝜁 (s) − 𝜁𝜁𝜁⋆ to 
give △△△𝜁𝜁𝜁 (s+1) ≃ LLL⋆△△△𝜁𝜁𝜁 (s) , where LLL⋆ is the fixed-point value of the matrix LLL with ele-
ments Lij ∶= �Ki∕��j . In general LLL⋆ is not symmetric, with different left and right 
eigenvectors wwwj and xxxj for the eigenvalue �j . It can then be shown55 that in a neigh-
bourhood of the fixed point there exist scaling fields �j = �j(△△△���) , j = 1, 2,… , n 
which are smooth functions of the couplings with

which is a realization of the relationship between scaling fields and couplings 
described in Sect. 2.4.

From (79) �(s+k)
j

= �k+s
j

�
(0)

j
 and the semi-group character of this transformation 

implies that �j = �yj , for j = 1, 2,… , n and a set of exponents y1, y2,… , yn . Then, in 
a neighbourhood of the fixed point 𝜁𝜁𝜁⋆ the couplings �j and 𝜁j in (77) can be expressed 
as

where xxxi ∶= (x
(1)

i
, x

(2)

i
,… , x

(n)

i
) . In (77) the function K0(��� ) is regular. So in a 

region around 𝜁𝜁𝜁⋆ the singular part �sing(△���) of �2(���) , with �sing(0) = 0 , can be re-
expressed in terms of the scaling fields to give

which is a substantiation of (25).

3.4.2 � Finite‑Size Systems

This treatment of criticality, which plays an important role in our understanding 
of PTCP in real systems (see Sect. 4), was initiated by Fisher [33] and Fisher and 
Barber [34].56 For simplicity we suppose, as in Sect.  3.3, that the system under 
consideration consists of N identical microsystems on the sites of a d-dimensional 
hypercubic lattice Nd with Nk sites in the k-direction and N1N2 …Nd = N . A par-
tially-infinite system of thickness ℵ ∶= [N(�)]1∕(d−�) , where N(�) ∶= N�+1N�+2 …Nd , 
is obtained if the thermodynamic limit Nk → ∞ is taken only for k = 1, 2,… , � < d . 
In a fully-finite system � = 0 and N(�) = N . We denote the critical region in the par-
tially-infinite system, when � > d LC , by C(�;ℵ) , with C(d;∞) = C . Finite-size scaling 

(79)�j(0) = 0, �
(s+1)

j
= �j�

(s)

j
,

(80)�j ≃ wwwj ·△△△��� , △△△��� ≃

n∑

j=1

xxxj�j,

(81)𝜁j = 𝜁⋆
j
+

n∑

i=1

x
(j)

i
𝜃i, 𝜁j = 𝜁⋆

j
+

n∑

i=1

x
(j)

i
𝜆yi𝜃i,

(82)�sing(�
y1�1,… , �yn�n) = �d�sing(�1,… , �n),

55  Assuming that LLL⋆ is a simple matrix.
56  For a review see Barber [3] and, for a collection of papers on finite-size scaling, Cardy [24].
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theory can be applied both to a partially-infinite system, where there is the possibil-
ity of a critical region consisting of some kind of singular behaviour, and a fully-
finite system where there is not. In a fully-finite system or a partially infinite system 
with � ≤ d LC the critical region is replaced by:

Definition 1  For a fully-finite, or partially-infinite system with � ≤ d LC , a region 
IS(�;ℵ) in the space of couplings is one of incipiently singularity,57 if in the limit 
ℵ → ∞ , it maps into a critical region C of the infinite system.

Expressed in a slightly different way a system has an incipient singularity at cer-
tain size-dependent values of it couplings if, as the system size ℵ is increased, those 
values converge to ones where thermodynamic functions exhibit properties that 
have no finite limits.

The basic assertion of finite-size scaling is that 𝜃ℵ ∶= 1∕ℵ , which is a measure 
of the inverse of finite linear extent of the system measured in units of lattice spac-
ing, can be treated as another scaling field with yℵ = 1 , meaning that 𝜃ℵ is a relevant 
scaling field, and 𝜃ℵ = 0 for the infinite system. The only condition required for this 
is that the system is sufficiently large for the renormalization group transformation 
in the space of all the other couplings to be unmodified by the finite size of the 
system. That is to say, that the renormalized couplings can be represented in the 
system. For simplicity we confine our attention to the simple magnetic system used 
in Sect. 2.4. The critical region for the infinite system is just a critical point T = Tc , 
H = 0 with scaling fields �T and �H , given by (27), measuring departures from this 
point. When the system has finite thickness ( 𝜃ℵ ≠ 0 ), the incipient singularity is at 
a different temperature, but because of the symmetry of the system still with H = 0 . 
Again, for simplicity, attention will be restricted to the zero-field axis where two 
temperatures come into play: 

	 (i)	 For a system of finite thickness ℵ , �T(ℵ) is the shift temperature such that, as 
ℵ → ∞ , �T(ℵ) → Tc , the temperature at which the infinite system has a singu-
larity. If � > d LC then �T(ℵ) is also a critical temperature, but for the system 
of finite thickness. If � ≤ d LC , and in particular when � = 0 and the system is 
fully-finite, T = �T(ℵ) is a quasicritical temperature [34] which is exhibited 
by a maximum in the susceptibility.58 This temperature is an example of an 
incipient singularity. In keeping with the other assumptions of scaling theory 
it is assumed that this convergence is algebraic, so, with scaling field 

(83)𝜃T (T ,ℵ) ∶= 𝜀

(
1

T
−

1

�T(ℵ)

)
,

57  It should be noted that this is a slightly different usage from that in Lavis [67, Chap. 11], where such 
occurrences are called ‘incipient phase transitions’.
58  Another response function like the heat capacity can replace the susceptibility, with a slightly different 
quasicritical temperature.
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 the condition 

 where χ > 0 is the shift exponent, is sufficient to ensure convergence.
	 (ii)	 T̊(ℵ) , called the rounding temperature is an important, but rather more elusive, 

property of the system. It is the temperature at which the susceptibility first 
shows significant deviation from that of the fully-infinite system. With 

 it is supposed that 

 where τ > 0 is the rounding exponent.

Scaling around the infinite system critical point is shown in Fig. 6. Our interest in 
this work is in the occurrence of an incipient singularity; so henceforth the assump-
tion is that � ≤ d LC.59 Thus we have three relevant scaling fields with the critical 
region of the infinite system at the origin (𝜃T , 𝜃H, 𝜃ℵ) = (0, 0, 0) . However, this is not 
the complete picture; in general there will be a number of irrelevant scaling fields, 
which parametrize the critical region and affect its asymptotic properties. For the 
sake of simplicity we just include the most nearly relevant.60 of these designated as 
𝜃⋆ , with exponent y⋆ < 0 . Then on the zero-field axis (82) is replaced by

As we have already seen, singular parts of thermodynamic functions like densi-
ties and response functions are obtained by differentiations with respect to the scal-
ing fields. In particular, for the susceptibility �T , given by (108),

with ω ∶= 2yH − d = γ∕ν , where γ is given by (34) and ν ∶= 1∕yT , given in 
(57), is the critical exponent of the correlation length. Asymptotic behavior in a 

(84)
△̃(ℵ) ∶= 𝜃T (T) − 𝜃T (T ,ℵ) = 𝜀

(
1

�T(ℵ)
−

1

Tc

)

= 𝜃T (�T(ℵ)) = −𝜃T (Tc,ℵ) ≃ Csℵ
−χ as ℵ → ∞,

(85)𝜃̊T (T ,ℵ) ∶= 𝜀

(
1

T
−

1

T̊(ℵ)

)
,

(86)
△̊(ℵ) ∶= 𝜃T (T ,ℵ) − 𝜃̊T (T ,ℵ) = 𝜀

(
1

T̊(ℵ)
−

1

�T(ℵ)

)

= 𝜃T (T̊(ℵ),ℵ) = −𝜃̊T (�T(ℵ),ℵ) ≃ Crℵ
−τ, as ℵ → ∞,

(87)𝜙sing(𝜆
yT𝜃T , 𝜆

y⋆𝜃⋆, 𝜆𝜃ℵ) = 𝜆d𝜙sing(𝜃T , 𝜃⋆, 𝜃ℵ) .

(88)𝜑T (𝜃T , 𝜃⋆, 𝜃ℵ) = 𝜆ω𝜑T (𝜆
yT𝜃T , 𝜆

y⋆𝜃⋆, 𝜆𝜃ℵ) ,

59  In Sect.  3.3 on transfer matrix methods, and Sect.  3.4.3(c) on phenomenological renormalization, 
� = d LC = 1 and d = 2 . Our later discussion in Sect. 4 is concerned with phase transitions in fully-finite 
systems where � = 0.
60  That is |y⋆| ∶= minj∈s+1,…,n |yj|.
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neighbourhood of the critical point, that is when |𝜃T ≪ 1 , is then as usual exposed 
by choosing the scale parameter � = |�T |−1∕yT , giving

where the ±1 branches of 𝜑T (±1,�⋆,�ℵ) apply to the cases 𝜃T > 0 and 𝜃T < 0 , 
respectively, and �⋆(T ,ℵ) ∶= |𝜃T (T)|−y⋆ν𝜃⋆ , �ℵ(T ,ℵ) ∶= |𝜃T (T)|−νℵ−1 are scaling 
functions. In a similar way, with 𝜆 = ℵ,

In the thermodynamic limit ℵ → ∞ , it follows from (89) that the susceptibility 
has the form

where the amplitudes

which are, in general, different for 𝜃T > 0 and 𝜃T < 0 , are dependent on �T by vir-
tue of the presence of the irrelevant scaling field 𝜃⋆ . This contribution will become 
small, as |�T |−y∗ν → 0 for |�T | → 0 , eventually becoming negligible for sufficiently 
small |�T | . The susceptibility will then display an asymptotic algebraic singularity 
of the form

The singularity is a divergence, if γ > 0 , which is generally the case for response 
functions.

Given that both (89) and (90) are valid, and that a finite statistical mechanical 
system cannot exhibit non-analytic behaviour, whereas singular behaviour does 
occur at critical points in the limit of infinite system size, the scaling function 
𝜑T (±1,�⋆,�ℵ) in (89) must exhibit asymptotic behaviour of the form

Since the susceptibility has maxima along the curve T = �T(ℵ) of shift tempera-
tures in Fig. 6 these maxima will be in one of the branches of B(±)

T
(�⋆) with the other 

branch being a monotonically decreasing function of �⋆ in the vicinity of �⋆ = 0 . 
Along the curve of shift temperatures, from (84), �⋆(

�T(ℵ),ℵ) ≃ C
−νy⋆
s ℵχνy⋆𝜃⋆ 

and �ℵ(
�T(ℵ),ℵ) ≃ C−ν

s
ℵχν−1 . On this curve 𝜃⋆ ≠ 0 , and if it is supposed that the 

two shift functions have the same asymptotic dependence on ℵ , the shift exponent 
will be related to yT = 1∕ν and y⋆ < 0 by χ = yT∕(1 − y⋆) with the shift amplitude 
Cs ≃ [�⋆(

�T(ℵ),ℵ)∕�ℵ(
�T(ℵ),ℵ)𝜃⋆]

χ.
As already indicated finite-size corrections to the pure power-law behaviour of 

�T , as described by (93), will begin to be observed whenever the system is finite 
(with 𝜃ℵ ∶= ℵ−1 ≠ 0 ) at the rounding temperature T̊(ℵ) . It has been argued [31] that 

(89)𝜑T (𝜃T , 𝜃⋆, 𝜃ℵ) = |𝜃T |−γ𝜑T (±1,�⋆,�ℵ) ,

(90)𝜑T (𝜃T , 𝜃⋆, 𝜃ℵ) = ℵω𝜑T (�
−1∕ν

ℵ
,�

1∕y⋆
⋆ , 1) .

(91)𝜑T (𝜃T , 𝜃⋆, 0) = A
(±)

T
(�⋆)|𝜃T |−γ,

(92)A
(±)

T
(�⋆) ∶= 𝜑T (±1,�⋆, 0),

(93)�T ≃ A
(±)

T
(0)|�T |−γ , as |�T | → 0 .

(94)𝜑T (±1,�⋆,�ℵ) ≃ B
(±)

T
(�⋆)�

−ω
ℵ
.
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this is the temperature at which the size ℵ of the system is of the same order as the 
correlation length �(T).61 It follows from (111) that |𝜃T (T̊(ℵ),ℵ)|−νℵ−1 ≃ C , where 
C is a constant, which establishes, from (86), that C = Cr and the rounding exponent 
τ = 1∕ν = yT with ω = γτ . Thus on the basis of some plausible assumptions we have 
the condition χ < τ , which, for large systems, motivates the disposition of the curves 
in Fig. 6.

3.4.3 � Renormalization Schemes

The practical implementation of the renormalization group procedure in Sect. 3.4.1 
involves the choice of a weight function and leads to recurrence relationships 
between systems related by a size parameter � , together with a method for calculat-
ing the free-energy density which satisfies the scaling relationship. In (a) and (b) in 
this section we give examples of the implementation of two of the most commonly 
used weight functions and in (c) we briefly outline a different scheme which, using 
transfer matrix methods, relates the correlation lengths of systems of different sizes.

For d-dimensional lattices, most weight functions are based on a division of the 
lattice N  into equal blocks of �d sites. The mapping from N  to Ñ  is given by asso-
ciating each lattice site r̃rr ∈ �N  with a blocks of sites in N  denoted by B(r̃rr) . 

(a)	� The decimation weight function. For this weight function the sites of Ñ  con-
sist of a subset of the sites of N  , chosen so that Ñ  forms a lattice which is 
isomorphic to N  . So we can take r̃rr ∈ B(r̃rr) with 

Fig. 6   Scaling around the critical point C, showing the curves 𝜃̊(T ,ℵ) = 0 and 𝜃(T ,ℵ) = 0 of rounding 
and shift temperatures

61  This can quite easily be established explicitly for a one-dimensional Ising model on a ring of N sites, 
where the magnetization density m(T ,H,N) is given by m(T ,H,N) = tanh[N∕2�(T)] × m(T ,H,∞).
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 The effect of this is that the summation on the right-hand side of (73) is a partial 
sum over all the sites of the lattice N  except those of Ñ  . For a range of one-dimen-
sional models (including the Ising and Potts models), which can be solved exactly 
using transfer matrix methods, exact RSRG decimation transformations can also be 
obtained. For the one-dimensional ferromagnetic case of the Ising model it can be 
shown [67, 87] that the most convenient variables are not those given in Appendix 2 
but rather �1 ∶= tanh([2J + H]∕2T) , �2 ∶= exp(−2H∕T) , and for � = 2 , with the 
partial summation in (73) over alternate sites, the recurrence relationships take the 
form 

 It is then not difficult to show that there is a fixed point �1 = �2 = 1 ( T = H = 0 ), 
with both scaling exponents equal to d = 1 . As we saw in the discussion of scaling 
theory in Sect. 2.4, an exponent equal to the dimension of the system is indicative 
of the possibility of a first-order transition. In this case the critical point is at zero 
temperature on the zero field line, meaning that the first-order coexistence curve has 
contracted to a point coinciding with the critical point at zero-temperature. At this 
point there is a first-order transition across the zero-field axis with a change of sign 
of the magnetization. It can also be shown that the curve 

which corresponds to the interaction J between microsystems being set to zero, is 
invariant under (96). At every point it has exponents 0 and −∞ ; the first of these is 
marginal, which indicates that the line consists of fixed points, and the latter that it 
is ‘infinitely attractive’ to points not on the line. The end points of the line �1 = 0 , 
�2 = 1 ( H = ∞ , T = 0 ) and �1 = 1 , �2 = 0 ( T = ∞ , H = 0 ) are fixed points in their 
own right in the invariant subspaces T = 0 and H = 0 respectively. The phase dia-
gram is shown in Fig. 7. Of course, for reasons just explained, the one-dimensional 
Ising model is less interesting than the two-dimensional model where the ferromag-
netic critical point is not at zero temperature. So, suppose that we try to carry out 
the same procedure in that case. A possibility is to choose blocks of two sites as 
shown in Fig. 8. The lattice Ñ  consists of the black sites and the partial summa-
tion in (73) is over the spin states on white sites. But this will create an interaction 
between the four sites surrounding each white site. So we would need to back-track 
and increase n from two to three, inserting this interaction from the beginning. But 
this would in turn generate an interaction between nine sites. And so on. This prolif-
eration of interactions is typical of the problems encountered with decimation. The 
usual trick is to cut off the proliferation at a certain level. Such an approximation for 

(95)w(𝜎𝜎𝜎, 𝜎̃𝜎𝜎) ∶=
∏

{r̃rr}

𝛿kr(𝜎̃(r̃rr) − 𝜎(r̃rr)) .

(96)𝜁1 =
4𝜁1

2 − (1 − 𝜁2)(𝜁1
2 − 1)

4 + (1 − 𝜁2)(𝜁1
2 − 1)

, 𝜁2 =
𝜁2

2(1 + 𝜁1)
2 + (1 − 𝜁1)

2

2(1 + 𝜁1
2)

.

(97)�2 =

(
1 − �1
1 + �1

)2

,
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this model was investigated by Wilson [128] with a rather poor outcome compared 
to the known exact results.
(b)	� The majority-rule weight function. This weight function was introduced by 

Niemeijer and van Leeuwen [90, 91]. The first step in assigning 𝜎̃(r̃rr) for the 
block B(r̃rr) can be described in terms of the ‘winner takes all’ voting procedure 
used in some democracies. Given that each microsystem has � states and that 
among the sites of B(r̃rr) one of the � state occurs more that any other, 𝜎̃(r̃rr) is 
assigned to have this value. If � ∶= 2 and the number of sites �d in a block is 
odd this rule works; a case in point being the treatment of the Ising model on 
the triangular lattice with a block of nine sites ( � ∶= 3 ) by Schick et al. [115]. 
But unless these conditions hold it is clear that the simple majority rule is not 
sufficient to determine 𝜎(r̃rr) for every configuration of the block. A ‘tie’ can 
occur in the voting procedure and a strategy must be adopted to deal with such 
cases. One possibility is to assign to 𝜎(r̃rr) one of these predominating values on 
the basis of equal probabilities. In some cases this may not, however, be the 
most appropriate choice. In their work on the Ising model using a square first-
neighbour block ( � = 2 ) Nauenberg and Nienhuis [86] divided the configura-
tions with equal numbers of up and down spins between block spins up and 
down with equal probabilities. The rule (one of four) which they chose ensured 
that the reversal of all the spins in the block reversed the block spin.

(c)	� Phenomenological renormalization. The idea of finite-size scaling, introduced 
in Sect. 3.4.2, leads quite naturally [3, Sect. IV] to the RSRG method devel-
oped by Nightingale [93]. The essential feature of finite-size scaling is that, 
for a d-dimensional system, infinite in � dimensions and of thickness ℵ , the 
quantity 1∕ℵ is treated as an additional scaling field 𝜃ℵ . If attention is restricted 
to the simple magnetic system with the two other scaling fields �T and �H , the 
response function �T satisfies the scaling relationship (88). A similar inclusion 
of 𝜃ℵ in the scaling relationship (56) for the correlation length gives 

 With the slight change of notation ξ(ℵ)(𝜃T , 𝜃H) ∶= ξ(𝜃T , 𝜃H, 𝜃ℵ) , (98) can be 
regarded as relating the correlation lengths of two similar systems denoted by L�(ℵ) 
and L�(

�ℵ) with couplings �T , �H and 𝜁T , 𝜁H and thicknesses ℵ and �ℵ ∶= ℵ∕𝜆 , 𝜆 > 1 , 
respectively. The relationship (98) can be reexpressed as 

 where 

 relate the scaling fields for L�(ℵ) and L�(
�ℵ) . These relationships form the basis 

of Nightingale’s phenomenological renormalization method, where the correlation 
lengths for systems of the two widths are obtained from transfer matrix calculations 
using (66). In the case of one scaling field ( H = 0 ) the method yields the critical 
temperature fixed point 𝜃⋆

T
∶= 𝜃T = 𝜃T and the thermal exponent for a number of 

(98)ξ(𝜆yT𝜃T , 𝜆
yH𝜃H, 𝜆𝜃ℵ) = 𝜆−1ξ(𝜃T , 𝜃H, 𝜃ℵ).

(99)ξ(ℵ)(𝜃T , 𝜃H) = 𝜆ξ(ℵ̃)(𝜃T , 𝜃H),

(100)𝜃T = 𝜃T (𝜁T , 𝜁H) = 𝜆yT𝜃T (𝜁T , 𝜁H), 𝜃H = 𝜃H(𝜁T , 𝜁H) = 𝜆yH𝜃H(𝜁T , 𝜁H)
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different models [60, 93, 94, 118], which in the case where exact results are know 
are at a high level of accuracy.62

3.5 � The Thermodynamic Limit

In the development of statistical mechanics represented by the right-hand column 
in Fig. 1 system size appears twice. Firstly in the passage for ��� to ��� , where 

Fig. 7   The trajectory flows 
for the renormalization group 
transformation of the one-
dimensional Ising model

Fig. 8   Two site blocks for the first-neighbour Ising model on a square lattice. The lattice N  consists of 
both white and black sites and Ñ  of only black sites

62  However, if there is more than one coupling ( H ≠ 0 ) then substituting 𝜃⋆
T
∶= 𝜃T = 𝜃T and 

𝜃⋆
H
∶= 𝜃H = 𝜃H in (99), does not completely define the critical point. A number of methods for dealing 

with this case have been developed, [60, 118]
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the system becomes large yielding approximate extensivity. This is needed for the 
discussion of finite-size phase transitions represented by ��� . Secondly in the other 
branch from ��� , via the thermodynamic limit, to an infinite system represented by 
��� . This entails the identification of the infinite statistical mechanical system SM3 
with thermodynamics, or at least the version, labelled TD3 in Fig. 1, of thermody-
namics with some PTCP defined. But are SM3 and TD3 actually identical? The 
answer is clearly ‘no’. TD3 is the result of a development in the left-hand column of 
Fig. 1, from the basic structure through the assumption of extensivity to a grafting 
on of a picture of PTCP, in the manner of Pippard [105] or Buckingham [18]. On the 
other hand, as we have just indicated, SM3 is the result of a statistical mechanical 
development in the right-hand column in Fig.  1. It retains its microstructure with 
a probability distribution, and in most cases it is the result of the implementation 
of the thermodynamic limit for a particular model, the most well-known examples 
being the two-dimensional zero-field Ising model and the eight-vertex model. Thus 
it should be recognised for later reference (see Sect.  5.1) that this way of under-
standing the relation between thermodynamics and statistical mechanics involves 
the unwarranted conflation of two quite different pictures. Although one can argue 
that SM3 is an enrichment of TD3, since the former has all the features of the lat-
ter together with the extra ones provided by microstructure and precise results con-
cerning critical values and exponents. That having been said, one may still question 
whether the thermodynamic limit is:63

(1)	 Necessary, in principle, because statistical mechanics is not complete without 
it.

(2)	 Useful because calculations become much simpler in the thermodynamic limit 
and the relationship FSM–3 of SM3 to TD3 makes it easier to identify the order 
of phase transitions.

Although both of these possibilities deserve consideration it is the the first which has 
received the most attention, principally because of the role of the thermodynamic 
limit in the understanding of PTCP; this will be discussed in detail is Sect. 3.5.1.

In this work we propose, in Sect.  4, a particular view of the usefulness of the 
thermodynamic limit in the context of phase transitions in finite systems. However, 
it is pertinent to note the range of possible circumstances calling for the use of the 
thermodynamic limit. In particular one might suppose an additional kind of neces-
sity interposed between the two items in our list:

(1a) Necessary in practice, because calculations for particular models are not 
tractable without its use.

However, of course, tractability, and hence necessity in practice, is ephemeral, 
evolving (one might hope) with an increase in computing power and technical inge-
nuity into mere usefulness.

63  A third possibility that the thermodynamic limit is neither necessary nor useful can surely be dis-
counted, with respect to usefulness, after a cursory survey of the corpus of work on statistical mechanics.



1 3

Foundations of Physics (2021) 51:90	 Page 39 of 69  90

3.5.1 � Phase Transitions in Infinite Systems

The argument for the necessity in principle of the thermodynamic limit for PTCP 
effectively involves asserting the truth of the contradictory set of propositions: 

P–IA	� PTCP occur in nature.
P–IB	� PTCP occur in nature as discontinuities in densities (first-order transitions) 

and as singularities in response functions (higher-order transitions).64

P–IIA	� PTCP in thermodynamics are defined by singularities in derivatives of 
first or higher order in the free energies and are treated as such using scal-
ing theory.

P–IIB	� PTCP must necessarily be represented in thermodynamics by singularities.
P–IIIA	� PTCP should be able to be modelled in statistical mechanics.
P–IIIB	� PTCP should be modelled in statistical mechanics in the same way that 

they are in thermodynamics.
P–IV	� Real systems are of finite size.
P–V	� Thermodynamic functions for finite systems in statistical mechanics are 

regular functions.
P–VI	� Thermodynamic functions for infinite systems in statistical mechanics can 

show singularities.

For later use it is relevant to compare this list with that of Callender [22, p. 589] 
(repeated by Mainwood [80, pp. 13–14]): 

CP–I	� Real systems have finite [size].
CP–II	� Real systems display phase transitions.
CP–III	� Phase transitions occur when the partition function has a singularity.65

CP–IV	� Phase transitions are governed/described by classical or quantum statisti-
cal mechanics (through [the partition function]).

A number of items in our list are indisputable and are not included in Callender’s 
list:

•	 That PTCP are defined in thermodynamics by singularities, can be confirmed by 
a visit to the thermodynamics section of any academic library (P–IIA is true). 
Whether it is necessary for thermodynamics to be formulated in this way (that 
P–IIB should be accepted), given a possible denial that PTCP occur in nature as 
singularities (that P–IB is true) is a different question.

•	 The joint assertions that thermodynamic functions are regular for finite systems 
but can have singularities for infinite systems (included in our list as P–V and P–
VI, respectively, but not contained in Callender’s list) are facts about the math-

64  This latter group also includes other sorts of weaker singular behaviour.
65  In relation to this statement, see footnote 76.
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ematical structure of statistical mechanics which cause the total list to be contra-
dictory.

And on Callender’s list:

•	 It is difficult to argue that phase transitions do not occur in real systems (that 
P–IA (CP–II) is false), although it is plausible to deny that they arise as some 
kind of singularities (to argue that P–IB (not in Callender’s list) is false), on the 
grounds that a first-order transition (say that between liquid water and water 
vapour) may look like a sudden change of density, but on closer observation 
would turn out to be a very steep continuous change. Likewise, apparent singu-
larities in compressibility in fluids and susceptibility in magnets may just be very 
steep maxima.

•	 It is also difficult to argue that real systems are not finite (that P–IV (CP–I) is 
false), given that no system takes up the whole of the universe.66 A sort of argu-
ment could be constructed on the basis that no system is completely isolated, but 
this would mean accepting the need for computation, not with an infinite system 
as envisaged here, but with a system joined to a complicated and largely undeter-
mined environment.

•	 If the ability to model PTCP were not deemed to be a necessary part of statisti-
cal mechanics (P–IIIA (CP–IV) is rejected), then most of the work on statistical 
mechanics in the last half century and more would be pointless. It is, however, 
relevant here to mention the work of the late Ilya Prigogine (in particular, [106]). 
Although, in a sense he accepts P–IIIA, it is a radically different form of sta-
tistical mechanics that he has in mind. From the assertion that “[a]s long as we 
consider merely a few particles, we cannot say if they form a liquid or gas” (ibid, 
p. 45) he concludes that “[s]tates of matter as well as phase transitions are ulti-
mately defined by the thermodynamic limit. … Phase transitions correspond to 
emerging properties. They are meaningful only at the level of populations and 
not of single particles” (op. cit.). This entails for him the reformulation of statis-
tical mechanics so that the underlying dynamics in not that of trajectories but of 
measure.67

There remain P–IB and P–IIIB, which together with P–IIB is equivalent to CP–III, 
and we now consider the consequences of denying one or both of them. 

	 (i)	 If P–IB is accepted, that is that PTCP in nature do occur as singularities, then 
it is clearly necessary for thermodynamics to represent them in this way; P–
IIB must be accepted. Then we seem to be driven toward the conclusion that 
statistical mechanics should model them in the same way (that is the accept-
ance of P–IIIB) which leads back to the contradiction. This is avoided by 

66  Which, in any event, may be finite.
67  This being the approach that he and his Brussels group also used to resolve the problem of irrevers-
ibility (see, for example, [107]).
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denying P–IIIB. Then PTCP can be modelled in statistical mechanics without 
singularities, by, for example, transfer matrix methods, while at the same time 
admitting that this is not the situation in reality.

	 (ii)	 If P–IB is denied then it can be argued either: 
(a)	 That it is not necessary for thermodynamics to model PTCP as singularities 

(P–IIB is false). In this case P–IIIB can be accepted, with PTCP modelled 
without singularities in statistical mechanics, with thermodynamics refor-
mulated to do the same.

		     or 
(b)	 That in statistical mechanics PTCP should be modelled without singulari-

ties, but because for large systems steep maxima in response functions and 
steep changes in densities look very much like singularities and disconti-
nuities, it is still necessary (on the grounds of tractability and simplicity) to 
model PTCP in thermodynamics as singular behaviour; P–IIB is accepted 
and P–IIIB is rejected.68

So given that all of P–I to P–VI are accepted is there any way out of the paradox? 
One radical approach, which has already been noted, is that due to Prigogine, where 
statistical mechanics is reformulated to ‘build in’ the thermodynamic limit.69 Some-
what similar, but less radical, is the approach of Robert Batterman, a philosopher 
of physics who has written extensively on questions related to phase transitions, the 
renormalization group and the thermodynamic limit [4–9]. Rather than formulating 
a novel form of the mechanics underlying statistical mechanics, his argument, fol-
lowing the lead of Kadanoff [57], is that the renormalization group is itself a novel 
approach, revolutionary in the sense of Kuhn [62], which has the thermodynamic 
limit built in. His starting point is that thermodynamics70 

is correct to represent [phase transitions] mathematically as singularities. (A: 
[5, p.234].)

And:

Further, without the thermodynamic limit, statistical mechanics would com-
pletely fail to capture a genuine feature of the world. Without the thermody-
namic limit, in fact, statistical mechanics is incapable even of establishing the 
existence of distinct phases of systems. (B: op. cit.)  

If there is any doubt about his view of real systems, this is dispelled by his forthright 
assertion that he wants

to champion the manifestly outlandish proposal that despite the fact that real 
systems are finite, our understanding of them and their behaviour requires, in a 

68  To preview Sect. 4, this is the position we shall defend.
69  This involves an extension of the Koopman [61] formulation to a space beyond the Hilbert space in 
which it is set.
70  For reference in the summary (a)–(f) of his position on the renormalization group in Sect. 3.5.2 the 
quotations from Batterman’s work are given labels A–F.



	 Foundations of Physics (2021) 51:90

1 3

90  Page 42 of 69

very strong sense, the idealization of infinite systems and the thermodynamic 
limit. (C: ibid, p. 231.)

‘Outlandish’ or not his position is one which would appear, in our experience, to be 
that adopted implicitly or explicitly by many working physicists, including, albeit 
in a radical sense as indicated above, by Prigogine, and Kadanoff [55, p. 238], who 
asserts that the “ existence of a phase transition requires an infinite system. No phase 
transitions occur in systems with a finite number of degrees of freedom”. Kadanoff 
calls this the “extended singularity theorem” [57, pp. 154–156] because “these sin-
gularities have effects that are spread out over large regions of space” [58, p. 24]. 
Having asserted that

the idea that we can find analytic partition functions that “approximate” sin-
gularities is mistaken, because the very notion of approximation required fails 
to make sense when the limit is singular, [which it is in this case because the] 
behaviour at the limit (the physical discontinuity, the phase transition) is quali-
tatively different from the limiting behaviour as that limit is approached. (D: 
ibid, p. 236)

Batterman’s proposal for resolving the puzzle is to resort to the renormalization 
group. In the next section this possibility is examined.

3.5.2 � Infinite Systems and the Renormalization Group

‘Infinity’ as it arises in accounts of renormalization group methods consists not so 
much in the limiting process, evident in, say, Onsager’s solution of the zero-field 
two-dimensional Ising model, whereby the dimensions of the system are taken to 
infinity, but rather in the perception that to make the method intelligible one must 
be working with a system which is already infinite [101, 102]. To spell this out, a 
renormalization group scheme consists of the following: 

	 (i)	 In the space of couplings (or of functions thereof) a semigroup of transforma-
tions is derived which generates recurrence relationships under which any 
critical regions are invariant.

	 (ii)	 In this ‘dynamic system’ the critical regions are the basins of attraction of 
critical fixed points. And there are sinks associated with non-critical regions 
(phases) of the system.

	 (iii)	 A critical fixed point determines the universality class of the system at each 
point in its basin of attraction, with an associated set of critical exponents.

	 (iv)	 In general a system may be able to be in more than one universality class deter-
mined by the symmetry group of the Hamiltonian when there is a particular 
relationship between the couplings.71

71  For example, a renormalization scheme for the spin-1 Ising model will have fixed points for both the 
spin-1

2
 Ising model and the 3-state Potts model.
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It is clear that this way to do statistical mechanics is very different from the standard 
procedures (mean-field and other classical approximations, series expansions and 
exact solutions). So much so that, as we have already indicated, it is characterized 
by Kadanoff [57] as a Kuhn-type revolution, a view endorsed by Batterman [8]. The 
argument presented by Batterman concerning the whole question of  singularities/
real singular systems/the thermodynamic limit needs to be carefully rehearsed and 
for this his [8] tribute to Leo Kadanoff provides the clearest account.

He presents his view in contradistinction to that of Jeremy Butterfield who con-
tends [21, p. 1077] that: “The use of the infinite limit … is justified, despite N being 
actually finite, by its being mathematically convenient and empirically correct (up to 
the required accuracy)”. For an understanding of Batterman’s view two quotes are 
particularly useful. In the first he asserts that:

the RG is not just a theory of the critical point, but rather it is a theory of the 
critical region. And this covers large but finite systems. So contrary to the line 
of reasoning presented [by Butterfield] the explanation of the behaviour of real 
finite systems requires the use of mathematical infinities, but does not require 
there to be infinite real systems. (E: [8, p.571].)

At this point we have cause to be grateful to a referee of his paper, who objected that 
this quote was actually in line with “the claims of those supporting the idea that real 
phase transitions aren’t sharp”. In response to this Batterman added a footnote in 
which he clarified his position in the following way:

It seems to me that if one is going to hold that the use of the infinite limits is a 
convenience, then one should be able to say how (even if inconveniently) one 
might go about finding a fixed point of the RG transformation without infinite 
iterations. I have not seen any sketch of how that is to be done. The point is 
that the fixed point, as just noted, determines the behaviour of the flow in its 
neighbourhood. If we want to explain the universal behaviour of finite large 
systems using the RG, then we need to find a fixed point and, to my knowl-
edge, this requires an infinite system. (F: op. cit.)

So to summarize his view (using the labelled quotes A–F, given above): 

(a)	 Phase transitions are real discontinuities in experimental systems (A). [An 
acceptance of P–IA,B and P–IIA,B].

(b)	 The thermodynamic limit is needed in statistical mechanics to exhibit phase 
transitions (B). [An implicit acceptance of P–V and P–VI and an endorsement 
of P–IIIA,B.]

(c)	 Real systems are finite but in order to understand them we need the idealization 
of infinite systems and the thermodynamic limit (C). [An endorsement of P–IV, 
and more.]

(d)	 The idea that the study of large systems can play a role here is wrong because the 
properties of large systems and infinite systems are qualitatively different (D).

(e)	 To represent the situation correctly we need to engage with mathematical sin-
gularities but not real infinite systems (E).
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(f)	 We need infinite iteration (of the RG transformation) to obtain fixed points (and 
all the information they provide) (F).

And to summarize the summary of Batterman’s position:

Although phase transitions in real systems are accompanied by singular behav-
iour, and in statistical mechanical models this singular behaviour is exhibited 
only by infinite systems, we don’t need infinite systems, just the use of math-
ematical singularities, these being required to derive the fixed points in renor-
malization group calculations.

At this point we wish to challenge the last part of this statement by providing72 the 
‘sketch’ that Batterman (quote F) requires of the means of the determination of 
renormalization group fixed points.

The first thing to note is that the recurrence relationships (75) and (76) are 
derived (almost always with some approximations involved) between the couplings 
of two finite systems with sizes N and Ñ with N∕�N = 𝜆d > 1 . Once this is done no 
point in the space of couplings is intrinsically associated with a system of a par-
ticular size and, by the same token, fixed points, obtained from (75) with 𝜁j = 𝜁j , 
are not associated with infinite systems. However, if we were to choose to associ-
ate a particular system-size N with the first point of a trajectory, it would be neces-
sary to assume only that we are working with a system large enough to allow the 
required number of iterations.73 (Hence the inclusion of SM2 in the path from SM1 
to SM4 in Fig. 1.) As Norton [97, p. 222] says, fixed points are the “limit points” of 
the sequences generated by the recurrence relationships; the “mathematical pegs on 
which to hang limit properties” which are never reached in a finite number of itera-
tions. They do not arise from an investigation of the properties of infinite limit sys-
tems, and, although they are properties of the transformation, iteration is not always 
needed for their determination. In some simple cases, like the one-dimensional Ising 
model described in Sect. 3.4.3, the fixed points can be extracted by direct analytic 
solution of the fixed point equations. But, in more complicated cases numerical 
computation comes into play. Although in principle iteration of the recurrence rela-
tionships starting from a point in the basin of attraction of a fixed point will generate 
a sequence of points approaching the fixed point, this is not usually a viable strat-
egy for their determination. Since those of greatest interest, associated with critical 
regions, have both irrelevant directions of attraction within the critical region (the 
basin of attraction) and relevant directions along which the trajectory is driven away 
from the critical region. Except in special cases it is difficult to start a trajectory in 
a critical region, but nearby points are useful and possible. Then the trajectory will 
hover near the critical fixed point before it moves away to the sink associated with 
the phase containing the trajectory. These ‘hover points’ can be spotted by inspec-
tion of the computer output and used as initial guesses for a numerical solution of 
the fixed point equations. These kinds of numerical techniques, used also to map the 

72  Based on practical experience [70, 71, 119, 120, 129].
73  Here we are agreeing with Batterman that an infinite system is not required.
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critical regions themselves, provide a good picture of the whole phase diagram. And 
linearization of the recurrence relationships about the fixed points allows the critical 
exponents to be obtained.

3.6 � Phase Transitions in Finite Systems: Mainwood’s Proposal

Given, as we have concluded in the previous section, that the thermodynamic limit 
is not necessary to enable renormalization group calculations to provide the PTCP 
structure, is it still useful in other statistical mechanical treatments of PTCP? An 
assessment of usefulness, as distinct from necessity, is obviously heavily influenced 
by the position adopted with respect to whether PTCP occur in nature as singulari-
ties (P–IB). If it is false and real systems, by virtue of their size ( ∼ 1023 microsys-
tems) exhibit behaviour approximating to singular behaviour, in the sense, say, that 
the maximum in the compressibility of a fluid is experimentally indistinguishable 
from a singularity, then we have the means to remove the contradiction in the set 
of statements at beginning of Sect.  3.5.1. One way would be to deem it unneces-
sary for PTCP to be treated as singularities in thermodynamics (a denial of P–IIB). 
Although this would allow thermodynamics and statistical mechanics to be mod-
elled in the same way (for P–IIIB to be accepted) we would argue, for the reasons 
given in Sect. 4, that it is not a tenable possibility.

The alternative, which is the one discussed in this section, and which is favoured 
by ourselves, is to accept that thermodynamics must represent PTCP in terms of 
singularities (P–IIB) on the basis that this is an appropriate approximation to real 
systems. Thus rejecting the assertion that thermodynamics and statistical mechan-
ics must model PTCP in the same way (P–IIIB), since statistical mechanics models 
phase transitions in finite systems. Given that real systems are very large (in terms 
of the number of microsystems) and finite, with phase transition giving the appear-
ance, but not the exact reality of singularities, can calculations avoid using the ther-
modynamic limit? Or, more generally can recourse to a system where PTCP occur 
as singularities be avoided? Here we examine a proposal of Mainwood [80] which 
definitely answers the question in the negative and in the next section we propose an 
answer which is more nuanced.

The definition of a phase transition provided by Mainwood (ibid, p. 28) can74 be 
described in the following way. For a statistical mechanical system �N of size N 
with partition function Z2(�1, �2,N) , the free energy �2(�1, �2,N) is given by (40) 
and satisfies (5) and (6).75 Suppose that the thermodynamic limit

exists, with �2(�1, �2) the free-energy density of the system �∞ . Then:

(101)lim
N→∞

�2(�1, �2,N)

N
= �2(�1, �2)

74  With some changes of notation to give conformity with our usage.
75  We have chosen the system with two independent couplings for convenience.
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Definition 2  (�1, �2) is a point with a particular criticality for �N iff (�1, �2) is a point 
where �∞ has a singularity associated with this same criticality.

And Mainwood (ibid, p. 29) asserts that:76 

Rather surprisingly, using this definition it is possible to hold on to all of Cal-
lender’s four statements [(given above as CP–I to CP–IV)] without contradic-
tion; though only in a Pickwickian sense—it is a “trick” possible only due to 
his choice of wording. Namely, the singularity referred to in [CP–III] is one 
not in the partition function [of �N ] but in [the partition function of �∞].

If this is regarded as a positive point in favour of Mainwood’s definition, the overall 
conclusion seems to be more mixed. Mainwood ‘worries’ that:77 

(1)	 The definition means that a phase transition can be predicted in a finite system, 
however small it might be (ibid, p. 32).

(2)	 “While there exist standard procedures for taking the thermodynamic limit, … 
these procedures are human inventions, and choices could have been made differ-
ently. … The definition of a phase transition thus seems arbitrary in a disastrous 
sense: we can choose whether one is occurring or not by modelling it differently, 
or taking the limit according to a different scheme” (ibid, p. 31).

(3)	 “[T]he facts we need to decide whether or not [a physical system] is undergoing 
a phase transition should be physical facts, about actual states of affairs … They 
should not exist only in an idealized model on a theoretician’s blackboard” (ibid, 
p. 29).

Although Mainwood adds (1) as a final difficulty it is probably the one which would 
first spring to mind, since the definition would imply a phase transition in an Ising 
model of four spins in a square at the critical temperature given by Onsager’s solu-
tion. Mainwood thinks that “this bullet can and should be bitten” (ibid, p. 32), but 
the consequences are not, we think, ones which would recommend themselves to 
any working physicists; not to put too fine a point on it, they would bring chaos 
to discussions of critical phenomena. The tractable alternative, also suggested by 

76  In relation to both this assertion and CP–III, the following quibble might not be out of place. The 
thermodynamic limit is taken for thermodynamic functions which are approximately extensive for 
large systems and become extensive in the thermodynamic limit [41]. The partition function is not of 
this sort, as one can see by using a little ‘reverse engineering’ to define the partition function of �∞ as 
Z∞(�1, �2,N) ∶= exp{−N�2(�1, �2)} . Apart from the retained dependence on N, a singularity, which is 
an infinity of �2(�1, �2) would be a zero of Z∞(�1, �2,N) . In fact this brings to the fore a problem with 
CP–III. Phase transitions do not correspond to points “when the partition function has a singularity”. 
For (say a lattice system) the partition function is, for a finite system, a polynomial whose zeros give 
singularities of the free energy, none of which lies on the positive real axis. In the thermodynamic limit a 
phase transition corresponds to a point of accumulation of zeros on the real axis. The quibble is resolved 
by replacing ‘partition function’ by ‘free energy’ in CP–III and Mainwood’s assertion.
77  It is convenient to take his worries in reverse order.
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Mainwood, is to restrict the definition to large systems.78 This would seem to us to 
be an inevitable step, but it also has consequences which we discuss in more detail 
below.

At one level both (2) and (3) are examples of the standard concern with respect 
to modelling, namely that we may not have a very good model which is not giv-
ing results which agree with experiment. And Mainwood’s response to this is, as 
would be expected, that we should find a better model. But worry (3) also contains 
a second element, namely that his definition contains the use of a counterfactual, an 
idealized infinite model. His argument here is more complex and draws on a strong 
parallel with Lewis’s [72] analysis of counterfactuals. On this basis he argues that

it is the character of [the real finite system] that determines the nature of the 
infinite system that we then consider. When we draw conclusions about the 
nature of the phase transitions, they are conclusions about the character of [the 
real finite system], but by reference to the infinite model we can express them 
in a concise and illuminating form (ibid, p. 30).

However we have worries of our own which do not seem to concern Mainwood. 
These can best be described by considering the transfer matrix treatment in 
Sect. 3.3, where, if we restrict attention to the two-dimensional square-lattice spin-1

2
 

Ising model in zero field, the exact critical temperature is known for the model on an 
infinite lattice (see Appendix 2). To apply the transfer matrix method (see Sect. 3.3), 
the square lattice is taken to have N H sites in the horizontal direction and N V sites in 
the vertical direction, so that N = N H N V . Periodic boundary conditions are applied 
so that the lattice forms a torus with horizontal rings of N H sites and rings in a verti-
cal plane of N V sites. It is assumed that the system is large in the horizontal direc-
tion, so that, parameterized by N V , we have a sequence of one-dimensional models 
of increasing complexity. Each exhibits a maximum in the heat capacity, including 
the simplest case N V = 1 [27, p. 166].79 These maxima (although they will differ 
slightly for all N V however large and finite) are taken as incipient singularities80 and 
for increasing N V show good agreement with the Onsager result, which is the case 
N V = ∞.

However, the prescription to be applied by the Mainwood proposal is that their 
critical temperatures, for all N V , are the Onsager value. This would seem to us to 
reverse the order of the way of working of physicists. We think it is probably true 

78  This is also discussed by Ardourel [2], who proposes to use the Lee–Yang formulation of phase tran-
sitions in terms of the zeros of the partition function to describe, and to understand, the emergence of 
anomalies of thermodynamic functions in terms of accumulations of Lee–Yang zeros in the vicinity of 
the critical temperature on the real axis in the complex temperature plane. While this does indeed pro-
vide a useful intuition, it is not substantially different from exactly solving the statistical mechanics of 
finite systems, and does not by itself allow us to predict the way in which anomalies approach singulari-
ties of the infinite system, when the system size is increased.
79  Although we have shown by an exact renormalization group method in Sect. 3.4.3 that when N V = 1 
the critical fixed point is at zero temperature.
80  As we have indicted in Sect. 3.3 maxima in other response functions and also the behaviour of the 
ratio of the two largest eigenvalues of the transfer matrix can also be used as identifiers of incipient sin-
gularities.
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to say that, with notable exceptions like Kadanoff [56–58], physicists involved in 
model calculations do not consider whether their interest is in very large systems or 
infinite systems. Their concern is whether a phase transition occurs. If they suppose 
that it does, one tool81 to determine its location is to use transfer matrix calculations 
[12, 65, 99, 100, 111, 112]. The method is to determine incipient singularities for as 
large a vertical width of system as possible as an estimate for the transition tempera-
ture for a very large/infinite width. Here one cannot use Mainwood’s prescription to 
assign the infinite-width result to the finite-width systems, since the former is not 
known.82 When, as in the case of the zero-field spin-1

2
 Ising model, the infinite-width 

result is known exactly or has been determined to a good approximation by series 
methods, the motivation for determining finite-width results is to test the efficacy of 
the method, or to cross-check with other results.

In his discussion of Mainwood’s proposal Butterfield [21, p. 1130] states it in a 
more restricted form. Again using our notation this is:

Definition 3  A phase transition occurs in �N iff �∞ has non-analyticities.

This Mainwood–Butterfield proposal has the advantage that it doesn’t project a 
result from the infinite system onto finite systems of any size (or maybe onto just 
large-size systems). However, given that it asserts the existence of a phase transi-
tion in a finite system of any size N, where does this occur? At the maximum of 
one of the response functions (heat capacity or susceptibility/compressibility), or by 
extraction from the behaviour of the ratio of the two largest eigenvalue of the trans-
fer matrix? These will all give different results, as will also the results of taking the 
limits in different ways and for differing numbers of dimensions, all of which in turn 
will differ with N. If all these values are taken to be estimates of some ‘true’ value 
will this be N-dependent or the same for all N, including presumably N = ∞ , when 
we would be back with the problems of Mainwood’s original proposal?

4 � Phase Transitions in Large Systems: Our Proposal

As we shall see, our discussion in previous sections of the structure of thermody-
namics and of statistical mechanics in general, and of PTCP in particular, will allow 
us to paint a more nuanced and quantitative picture of their relationship than that 
provided by previous approaches. In particular we are concerned with the role in 
that relationship played by large finite systems. Mainwood suggests that we ‘bite the 
bullet’ by countenancing the possibility of phase transitions in small systems. How-
ever, we suggest that he is proposing to bite the wrong bullet. The one which should 
be bitten is the need for a criterion giving a demarkation in system size between 

81  Among others, including duality transformations and series expansions.
82  Although one can, in some cases, prove the existence of a phase transition, even if the transition tem-
perature is not known [45–47, 103].
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small systems and large systems, and our proposal, which uses the discussion of 
finite-size scaling in Sect. 3.4.2, is intended to encompass this need.

Thermodynamics, on the one hand, characterises PTCP in terms of singulari-
ties of thermodynamic functions, which may occur at special values of externally 
controllable parameters. This characterisation appears, at first sight, to be warranted 
by the phenomenology of phase transitions as they are observed in nature–appar-
ent discontinuities of thermodynamic functions at first-order phase transitions, and 
apparent algebraic singularities of thermodynamic functions including divergent 
response functions at second-order phase transitions. In statistical mechanics, on the 
other hand, singularities of thermodynamic functions can emerge only in the limit 
of infinite system size. As realistic systems are clearly of finite size, this creates an 
internal inconsistency in the list P–I to P–VI of propositions given above, if indeed 
the characterisation of PTCP as they occur in nature in terms of singularities (that is 
proposition P–IB) is accepted.

Our aim now is to present an argument, based on the account of finite-size scaling 
in Sect. 3.4.2, which shows that this inconsistency can be resolved within statistical 
mechanics and in a fully quantitative manner. In Sect. 3.4.2, and also here, discus-
sion is restricted to a system with a thermal coupling �T and a magnetic coupling �H , 
in the cases where (i) it is fully-finite with thickness ℵ and (ii) it is fully-infinite with 
ℵ = ∞ . In case (ii) on the zero-field axis H = 0 , �H = 0 there is a critical tempera-
ture T = Tc with �T = 0 where response functions are singular. There is no singular-
ity in the finite system but maxima appear in the response functions. We now sum-
marize the relevant conclusions of finite-size scaling: 

FSS–I	� In the thermodynamic limit ℵ → ∞ when �T is small, but not infinitesi-
mal, the asymptotic form for the susceptibility at T = Tc , given by (91), 
has a singular component with exponent γ , but amplitudes which, by vir-
tue of the presence of an irrelevant field 𝜃⋆ , are dependent on �T.

FSS–II	� As �T → 0 , the influence of 𝜃⋆ becomes negligible and the susceptibility 
exhibits a pure power-law singularity at T = Tc as described by (93).

FSS–III	� When ℵ is finite there is no singular behavior and two temperatures are 
defined:83 the shift temperature �T(ℵ) where the susceptibility has a maxi-
mum and the rounding temperature T̊(ℵ) at which the profile of the sus-
ceptibility in the finite system begins to diverge from that in the infinite 
system.

FSS–IV	� Assuming, as in (85) and (86), that |Tc − �T(ℵ)| ∼ O(ℵ−χ) and 
|T̊(ℵ) − �T(ℵ)| ∼ O(ℵ−τ) , it can be shown that the shift exponent 
χ = [ν(1 − y⋆)]

−1 and the rounding exponent � = ν−1 ; that is that the rate 
of convergence of both the incipient singularity and the range of influ-
ence of finite-size effects around the incipient singularity are determined 
by exponents present in the infinite system.

83  Each will, of course, depend of the particular response function under consideration.
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This renormalization group scaling approach to the description of critical phe-
nomena thus explains in a quantitative way, how singularities that might occur in 
infinite systems are smoothed out by finite-size effects. This, being fully in line with 
the fundamental observation that statistical mechanical systems of finite size cannot 
exhibit any singularities, resolves the inconsistency in the list of propositions P–I to 
P–VI. In particular FSS–IV gives a quantitative measure of the deviations of criti-
cal phenomena, as observed in finite systems, from the behaviour expected for infi-
nite system size. From (89), deviations from critical behaviour characteristic of the 
infinite system will be observable in a narrow region around the infinite system criti-
cal point. This, however, is precisely the region, where one would stand the chance 
of observing asymptotic singular behaviour, as only in this region is the influence 
of irrelevant scaling fields on PCTP expected to be sufficiently small. In order to 
observe asymptotic critical singularities it is thus required that |�T | be sufficiently 
small to keep corrections to asymptotic critical singularities due to irrelevant scaling 
fields under control, but also not too small, in order to prevent finite-size corrections 
from becoming significant. As the range of �T within which finite-size corrections 
dominate critical behaviour shrinks with system size ℵ like ℵ−1∕𝜈 , one has to choose 
systems sufficiently large in a quantitatively well-defined sense in order to be able to 
observe asymptotic critical singularities characteristic of the respective universality 
class of a system.

In the context of the list P–I to P–VI of propositions, it is important to realise 
that the characterisation of PTCP in terms of singularities of thermodynamic func-
tions constitutes an extrapolation of empirical observations, as properly establishing 
the existence of a discontinuity of a thermodynamic function would require experi-
mental control of infinite precision, while establishing a divergence of a response 
function would require an actual measurement of an infinite quantity. Neither 
requirement can conceivably be met in any realistic experiment. Given that realistic 
systems contain O(1023) constituents, the linear dimension ℵ of such systems, meas-
ured in terms of atomic distances, is very large and the temperature range over which 
finite-size corrections to singular behaviour would manifest themselves, will be very 
small. It is thus understandable that such effects have been beyond experimental 
resolution.84 On the other hand, in computer simulations of statistical mechanical 
systems, one can handle only relatively small systems, and finite-size roundings of 
critical singularities are therefore quite prominent. In such situations such round-
ings, as predicted (and captured) by finite-size scaling are indeed observed and rou-
tinely used to extract asymptotic critical exponents from finite-size data [14]. The 
renormalization group and its formulation of finite-size scaling theory thus predicts 
in a quantitative way, both, the emergence of critical singularities, described as pure 
power-law singularities sufficiently close to an infinite system critical point,85 and 
their shifting and rounding in systems of finite size.

84  Except for fairly recently in thin films [73, 124].
85  For the sake of completeness, it should be mentioned that under certain well understood conditions, 
logarithmic corrections to pure power laws can occur [125]. They translate into analogous logarithmic 
corrections in finite-size scaling relations [82].
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According to our definition of an incipient singularity (Definition 1, above) such 
will occur in a finite system at certain values of their external parameters, if at those 
values thermodynamic functions exhibit properties that have no finite limits as the 
system size ℵ is increased. This could be a steep increase in the the slope of mag-
netization as a function of the external field across the zero-field axis at low tem-
peratures, as shown in Fig. 9, which is indicative of the possibility of a first-order 
transition in the infinite system. Or it could be the size-dependent height of the 
maximum of a response function as shown in (90) with ω > 0 , which is indicative 
of the possibility of a second-order transition in the infinite system. However it is 
important to note that an assertion of the occurrence of a incipient singularity in a 
finite system can never be made with absolute certainty by looking at the behaviour 
of a single system of any fixed finite size, but only by comparing the behaviour of 
systems of different sizes. That said, our investigations have now provided us with a 
well-defined notion of a large system:

Definition 4  For a system to be counted as large it must be big enough to exhibit a 
range of values of a thermodynamic variable (for example, the temperature) within 
which the following two phenomena can both be avoided: 

	 (i)	 the corrections to scaling (due to the existence of non-zero irrelevant scaling 
fields) which require the system to be close to an incipient singularity,

	 (ii)	 the noticeable finite-size corrections in a close neighbourhood of an incipient 
singularity (due to a finite value of ℵ ), which requires the system to be suf-
ficiently far away from an incipient singularity.

Although, as we saw above, these two conditions pull in opposite directions this 
tension will become less acute as the system size increases. For such systems incipi-
ent singularities will be observable in a range of temperatures (or couplings), which 
are described by the asymptotic critical exponents of infinite systems. These expo-
nents describe incipient singularities which will never fully materialize in a system 
of finite extent. They do, however, provide an economy of description, and lead to 
a classification of systems according to their universality class, as described earlier. 
Quite often the full complexity of the crossover between behaviour described by 
asymptotic critical exponents and finite-size rounding of thermodynamic functions 
is far beyond the capabilities of available analytic tools. Taking the thermodynamic 
limit in a statistical mechanical analysis of a system is also often,86 the only way to 
carry the calculation through to its end.

The renormalization group approach to PTCP actually plays a dual role in the 
analysis of critical phenomena.87 On the one hand it provides micro-reductive meth-
ods, firmly embedded in the arsenal of techniques of statistical mechanics, to evalu-
ate critical exponents for given statistical mechanical systems, albeit in most cases 
only approximately. On the other hand it embodies a new way of looking at such 

86  As in the case of the Onsager [98] solution of the zero-field two-dimensional Ising model.
87  This aspect is also highlighted in Hüttemann et al. [50].
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systems, by describing statistical properties of systems at different length scales. It 
is this radically new way of analysing systems which allows it to put systems with 
different microscopic properties into a common context, which in turn leads to the 
identification of fixed points and their basins of attraction as universality classes, 
thereby revolutionizing the analysis of critical phenomena.

It is perhaps appropriate to add a final twist. Asymptotic critical exponents char-
acterising singularities at phase transitions as they would occur in infinite systems, 
including exponents that describe corrections to scaling due to irrelevant scaling 
fields, are obtained from the eigenvalues of a renormalisation group transformation 
that is linearized in the vicinity of (one of) its fixed points. They are thus obtainable 
without ever touching or contemplating systems of infinite size! As we have seen in 
our discussion above, these critical exponents also govern the way in which finite-
size corrections to critical phenomena manifest themselves. In some sense, there-
fore, it would be fair to say that critical exponents are bona-fide properties of finite 
systems—rather than, as mostly discussed, simply properties of potentially infinite 
systems.

The aim of our analysis has been to eliminate some of the confusion that has 
characterised much of the discussion surrounding PTCP in the philosophical (and 
physics) literature. To summarize our position:

•	 It cannot be denied that phase transitions occur in nature. (P–IA is accepted).
•	 The assertion that they are characterized by singularities is an unwarranted 

extrapolation of empirical findings. (P–IB is rejected). (Asserting the existence 
of a singularity in an experimental result requires infinitely precise experimental 
control, or an actual ‘measurement of the infinite’, which is clearly infeasible.)

•	 Within thermodynamics, there is no choice but to describe phase transitions in 
terms of singularities. (That is, P–IIA and P–IIB are valid statements about the 

Fig. 9   Isothermal curves of magnetization density plotted against the field coupling. System size 
increases from the broken to the chain to the dotted curves with the infinite system represented by the 
continuous line
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structure of thermodynamics). Equations of state either have unique solutions – 
in which case there is no phase transition – or they may exhibit bifurcations in 
their solution manifolds, in which case singularities and discontinuities arise.

•	 Phase transitions, as they occur in nature, are correctly described by statistical 
mechanics, the renormalization group and finite-size scaling. Thermodynam-
ics, on the contrary, is fundamentally incapable of an adequate description as it 
is, from the outset, conceived as a theory of infinitely large systems. (P–IIIA is 
accepted but P–IIIB is rejected).

•	 Investigating systems in the limit of infinite system size provides added value in 
that it allows one to (i) identify exact asymptotic power laws, which the incipi-
ent singularities would follow if system sizes could be taken arbitrarily large, (ii) 
provide a classification of systems according to their universality class.

5 � After‑Thoughts on Reduction and Emergence

Figure 1 is a diagrammatic attempt to encapsulate the relationship between thermo-
dynamics including scaling theory, and the Gibbsian version of statistical mechan-
ics including various approaches to PTCP: the use of the thermodynamic limit, the 
renormalization group and phase transitions in finite systems. Apart from the for-
mal links spelled out as messages FSM–1, … , FSM–4 from statistical mechanics to 
thermodynamics and the connecting relationships FTD–1, … , FTD–3, provided by 
thermodynamics to statistical mechanics, there is another element of collaborative 
interaction, as shown in Fig. 1, in the direction from statistical mechanics to ther-
modynamics; specifically from the renormalization group to scaling theory. This has 
two aspects substantiation and enrichment:

•	 The Kadanoff scaling relationship (25) is introduced as a hypothesis, which is 
substantiated as (82) in renormalization group theory.

•	 Scaling about an arbitrary origin in a critical region with relevant and irrelevant 
directions is a consequence of scaling theory. This picture is enriched in renor-
malization group theory, where scaling origins are not arbitrary, but fixed points 
of the flow determined by the recurrence relationships, and corresponding to 
different universality classes. Relevant and irrelevant directions correspond to 
directions in which a fixed point is repulsive and attractive to the flow. Follow-
ing a trajectory as it approaches one fixed point, but is finally repulsed towards 
another, is an example of crossover between different types of critical behaviour, 
that is between different universality classes.

Having spelled out a picture of the anatomy of thermodynamics and statistical 
mechanics, as well as the relationships between their different parts, we can now 
ask what consequences this has for our understanding of reduction and emergence 
as regards PTCP. The literature on reduction and emergence is vast, even when 
restricted to the specific area of PTCP. So reviewing and discussing this entire 
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literature is beyond the scope of this work,88 with a more extensive treatment being 
the subject of a future paper. Our aim in this section is simply to sketch the main 
contours of the lie of the land in the light of the picture we have developed, hoping 
that this will serve as a springboard for further discussions.

To aid our account, we introduce the following terminology. Let � C and � F be 
two theories, where ‘ C ’ stands for ‘coarse’, meaning less detailed, and ‘ F ’ stands for 
‘finer’, meaning more detailed.89 Intuitively, � C is the theory that is supposed to be 
reduced to � F . In the terminology that has become standard in the philosophical 
literature on the topic, � F is supposed to be the reducing theory and � C is supposed 
to be the reduced theory. We say ‘supposed to be’ because this is what reductionists 
would expect. The question is whether this expectation bears out, and if so in what 
sense of reduction.

Accounts of reduction might be divided into two broad families, called limit 
reduction and deductive reduction.90 We now have a look at each in turn and con-
sider whether they can account for the relation between � C and � F that emerges 
from our account.

5.1 � Limit Reduction

The core idea of limit reduction is that � C reduces to � F if the former turns out to 
be a regular limit of the latter. An example of such a reduction is letting the param-
eter c, the speed of light in the special theory of relativity, tend toward infinity and 
thereby recovering classical Newtonian mechanics [89].91 In general, let us call 
the relevant parameter � ; the limit, denoted as lim� , can be toward any value of � , 
the most frequent cases being � → 0 and � → ∞ . Batterman [10] adds the further 
requirement that the limit be regular, which means that the relevant formulae in � F 
approach the relevant formulae in � C smoothly as the parameter approach the rel-
evant limit value.92 Taking these elements together yields the following:

Definition 5  Limit Reduction
� C limit-reduces to � F iff lim� � F = � C and the limit is regular.

88  For surveys of the various positions in the discussion concerning reduction see Hüttemann and Love 
[49] and Van Riel and Van Gulick [123]. For surveys of the discussions of emergence see Humphreys 
[48] and the contributions of Gibb et  al. [38]. For an overview of discussions of phase transitions see 
Shech [116].
89  Butterfield [20, p. 928] replaces ‘ C ’ by ‘t’ to stand for top, tangible or tainted and ‘ F ’ by ‘b’ to stand 
for bottom, basic or best.
90  The distinction goes back to Nickles [89]. Batterman [10] calls them the “physicist’s sense of reduc-
tion” and the “philosopher’s sense of reduction”. We avoid this terminology because, as we will argue, 
physicists do present deductive reductions.
91  We note that the terminology of what reduces to what varies. Nickles says that in taking the limit � F 
reduces to � C ; in keeping with the terminology previously introduced, we say that � C reduces to � F . 
Nothing in what follows depends on this purely terminological matter.
92  See Berry [13] and for discussions of singular and regular limits see Butterfield [21] and Nguyen and 
Frigg [88].
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This definition plays an important role in the discussion about the reduction of 
PTCP because � C is commonly associated with thermodynamics and � F with sta-
tistical mechanics. The failure of the limit to be regular as the number of microsys-
tems tends to infinity is then seen as an indication that reduction fails.

How does this argument play out in our scheme? To answer this question we 
first need to identify certain elements in Fig.  1 with � C and � F . There are two 
possibilities: 

(a)	 Work within the renormalization group ��� . In this case, as described in 
Sect. 3.4.1, the limiting process is implemented by the renormalization trans-
formation which applies a succession of reductions in the number of lattice sites. 
This reduces the fluctuations (and correlation length) away from critical regions, 
but leaves the essential statistical mechanical structure intact.

(b)	 Apply the infinite system limit 𝖲𝖬𝟤 → 𝖲𝖬𝟥 . Away from critical regions this 
removes fluctuations in the uncontrolled extensive variables, but leaves the 
microstructure and the probability distribution intact.

However, neither of these is a reduction to a version of thermodynamics. Both 
(a) and (b) are procedures lying entirely within statistical mechanics. That having 
been said, (b) is probably the closest to the above idea of reduction. However, while 
it uses the thermodynamic limit, that limit does not take the system to a thermody-
namic system, but to an infinite statistical mechanical system (SM3). To arrive at 
thermodynamics it is necessary to conflate SM3 with TD3. While SM3 like TD3 
contains the singular characteristics deemed necessary (by some) for the occurrence 
of phase transitions it also has a microstructure which is lacking in TD3.

So there is no part of Fig. 1 which involves the kind of limit that would ground 
a limit reduction. However, far from being a problem, this is simply irrelevant to 
the issue of the reduction of PTCP. As we have indicated in Sect. 4 the role of the 
thermodynamic limit is, in the first instance, to provide a condition for maxima in 
response functions to be incipient singularities; some finite systems do not show 
PTCP no matter how large they become. In the second instance it provides the 
critical exponents that can be regarded as properties of the real system. Limits and 
renormalization group techniques are classification tools that enable us to separate 
phase transitions into different universality classes.

5.2 � Deductive Reduction

This notion of reduction is closely associated with Nagel. The broad idea is that 
� C is reduced to � F if the laws of � C are deducible from the laws of � F and some 
auxiliary assumptions. A mature formulation of this idea, known as the Generalised 
Nagel-Schaffner Model of Reduction, is as follows:93

93  The original reference is the first (1961) edition of Nagel [85], of which Schaffner [114] provides a 
reformulation. An alternative account by Butterfield [20, 21] uses the notion of a definitional extension. 
Our presentation here follows that of Dizadji-Bahmani et al. [26].
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Definition 6  Deductive Reduction
� C reduces to � F iff there is a corrected version �⋆

C
 of � C such that: 

	 (i)	 Connectability: If � C contains terms that do not appear in � F , then for every 
such term there is a bridge law connecting it to a term in � F.

	 (ii)	 Derivability: Given the associations in (i), �⋆
C
 is derivable from � F plus 

bridge laws and, possibly, some auxiliary assumptions.
	 (iii)	 Strong analogy: � C and �⋆

C
 are strongly analogous to one another.

As a simple example, consider the derivation of the perfect gas law PV = NT  
(given as the second of equations (8)) from the kinetic theory of gases. Here the 
perfect gas law is � C and the kinetic theory is � F . � C contains the term ‘tempera-
ture’, which is not in � F . The bridge law T ∶= 2U�∕(3N) (which is the first of equa-
tions (8)) with the internal energy U identified as the expectation value of the kinetic 
energy of the gas, connects this term to � F . �⋆

C
 is the version of the perfect gas law 

in which, subject to the physical constraints on the system, P, V, and T are variables 
that can fluctuate (something they cannot do in � C ). �⋆

C
 and � C are strongly analo-

gous in that fluctuations are small (to the point of being negligible) in contexts in 
which � C is applied.

The introduction of �⋆
C
 is a concession to practice. Ideally one would be able to 

derive � C from � F , but that is usually not possible. So one rests content with deriv-
ing a theory �⋆

C
 that is not identical with, but strongly analogous to, � C . What does 

it mean to be strongly analogous? Schaffner [114] blocks the worry that an appeal to 
strong analogy is an entry ticket to ‘anything goes’ by imposing the following two 
conditions: 

(a)	 �
⋆
C
 corrects � C in that �⋆

C
 makes more accurate predictions than � C.

(b)	 � C is explained by � F through �⋆
C
 being a deductive consequence of � F and 

�
⋆
C
 being strongly analogous to � C.

With this in place, we can now ask whether the above schema indicates that a 
deductive reduction is taking place. For this we first need to know which theories 
are in play: what is reduced to what? Since we are interested in a reduction of PTCP, 
we should focus on a version of thermodynamics with PTCP in it. So we set � C ∶= 
TD3. Then it might seem tempting to choose SM3 as the reducing theory because, 
in Fig.  1, TD3 ‘communicates’ with SM3. This, however, would be the wrong 
choice. What we are interested in is the reduction of thermodynamics to a funda-
mental theory of large systems, and this is SM2. This is because SM2 contains the 
fundamental principles of statistical mechanics with the only added assumption 
being that systems are large; so � F ∶= SM2 is appropriate. SM3, by contrast, con-
tains a limit assumption which does not belong in the fundamental theory. So the 
task we set ourselves here is to check whether the reduction of ��� to ��� fits the 
mould of deductive reduction. We shall argue that it does and, to this end, we now 
consider this contention in relation how to the elements (i)–(iii) of Def. 6 play out in 
Fig. 1. 
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For (i)	� connectivity requires a number of bridge laws. We have avoided this 
designation for the relationships FTD–1, FTD–2 and FTD–3 in Fig. 1, 
preferring to call them ‘inter-theory connections’. However, now we shall 
consider the possibility that they can assume the role of bridge laws as 
required in the present context. The paradigmatic example of a bridge 
law in the philosophical literature is provided, as indicated above, by the 
perfect gas. There the bridge law identifies the temperature in statistical 
mechanics using the underlying identification of the expectation value of 
kinetic energy of the gas with its internal energy. But, on closer examina-
tion, this example glosses over two other identifications, of volume and 
pressure.94 In a perfect gas contained in a cylinder closed by a movable 
piston, the piston position will fluctuate; that is to say, from a statistical 
mechanical point of view, the volume of the gas is a fluctuating quan-
tity. So, just as the internal energy must be identified with the expectation 
value of the kinetic energy, the thermodynamic volume must be identified 
with the expectation value of the statistical mechanical volume. Other 
instances of the same kind are provided by other systems and they are all 
covered by FTD–3, which in the current context plays the role of a bridge 
law. In the case of the perfect fluid the identification of internal energy 
and the expectation value of the kinetic energy and of the thermodynamic 
volume with the expectation value of the statistical mechanical volume 
is sufficient to provide a bridge for temperature, pressure and for entropy 
via the Sackur-Tetrode formula and consequentially for all other thermo-
dynamic variables, as described by the connecting relationships FTD–1 
and FTD–2. These could, therefore, be regarded as consequences of the 
underlying bridge law FTD–3, rather than as bridge laws in their own 
right. In more complicated situations, where there is a need to connect a 
larger set of thermodynamic and statistical mechanical variables, it is a 
reasonable economy to regard them, together with FTD–3 as comprising 
an exhaustive set of bridge laws.

For (ii)	� by definition �⋆
C
 is a corrected version of � C that can be derived from 

� F plus bridge laws. In the current context �⋆
C
 is a version of TD3 in 

which the relevant quantities are allowed to fluctuate, and the fluctuations 
show roughly the pattern given in SM2 (but without �⋆

C
 containing any 

of the microstructure of matter specified in statistical mechanics). It is 
obvious that �⋆

C
 thus defined is a deductive consequence of SM2: it is 

obtained simply by applying the bridge laws to SM2.95

For (iii)	� we need to show that �⋆
C
 and � C stand in the proper strong analogy 

relationship. In effect the derivation of SM3 from SM2 through the 

94  And also of the number of particles of the gas if it is enclosed in a permeable container.
95  Terminological note: the term ‘corrected’, which is customary in the discussion of reduction, is some-
what ill-chosen, because it might suggest that that TD3 is in some way faulty, which it is not. It is in fact 
one of the most successful and enduring models in physics. The term ‘corrected’ here should be read in 
a unemphatic (and non-pejorative) way, as simply indicating that conditions (a) and (b), listed above, are 
met.
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thermodynamic limit and the fact that SM3 corresponds to TD3 amounts 
to saying that there is a strong analogy between SM2 and TD3. However, 
a more detailed analysis is useful and for this we check whether Schaf-
fner’s two criteria are satisfied:

For (a)	� the messages FSM–1 and FSM–2 are relevant. FSM–1 asserts that uncon-
trolled thermodynamic variables fluctuate with variances of O(N) related 
to response functions. This means that the variances of the correspond-
ing density variables are O(1∕N) . That these fluctuations are small for 
large systems is related to, but not exactly equivalent to the fact, asserted 
in FSM–2, that extensivity is an approximate property of large systems. 
So �⋆

C
 modifies � C by replacing equality in the basic relationship with 

approximate equality, valid when the system is large. It also contains fluc-
tuation–response function relationships between fluctuations, which are 
recognised in �⋆

C
 but not in � C , and response functions which appear in 

both. Thus �⋆
C
 makes more adequate predictions than � C because real sys-

tems do show fluctuations.
For (b)	� the way that � C ∶= TD3 is explained by � F ∶= SM2 follows straight-

forwardly from Sect.  4 once the bridge laws are accepted and we have 
in place the definition of an incipient singularity (Def. 1). Maxima in 
response functions are identified as incipient singularities if they map into 
real singularities in the thermodynamic limit, which is the step from SM2 
to SM3. And, as we have already noted, TD3 communicates with SM3 
in the sense that it communicates its understanding of the singularities in 
SM3 to TD3.

From the above we conclude, that TD3 reduces to SM2 in the sense of deductive 
reduction. However, the structure of Fig. 1 prompts a consideration of the possibil-
ity of further reductive relationships higher in the figure. In particular does � C ∶= 
TD4 and � F ∶= SM4 satisfy the required conditions?96 It is straightforward to see 
that connectability and derivability, where �⋆

C
 is a version of TD4 that has certain of 

the features of SM4 built into it, are satisfied as before. Scaling in TD4 is a phenom-
enological means of capturing the structure of the way thermodynamic functions in 
critical regions depend on variables (in the form of homogeneous functions of con-
trollable variables). It can in a sense be regarded as being built from renormalization 
group theoory with the scaffolding removed. This is what we referred to above as 
the substantiation of scaling theory by the renormalization group. On the other hand 
the values of critical exponents and the interpretation of the origin of scaling as the 
fixed point of a semi-group transformation is absent from TD4 but present in SM4. 
In that sense the later provides an explanation or enrichment of the former.

96  Replacing SM4 with SM5, would rather complicate the situation, since TD4 has extensivity in all d 
dimensions, whereas this is the case for only � dimensions (which includes the fully-finite case � = 0 ) in 
SM5.
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5.3 � Emergence

In the case of emergence things are even more difficult than with reduction. As 
Humphreys notes in a recent review of the field, not only is there no unified frame-
work or account of emergence, there is not even a generally agreed set of core exam-
ples of emergent phenomena on which a discussion could build [48]. Our aim here 
is not, therefore, to comprehensively review the field; we rather discuss some senses 
of emergence that have played a role in the debate and assess whether, in the light of 
our analysis, PTCP are emergent in these senses.

For Butterfield, whose view of reduction is essentially Nagelian, there is no con-
flict between reduction and emergence. The view that reduction and emergence are 
compatible is based on an understanding of emergence as there being “properties or 
behaviour of a system which are novel and robust relative to some appropriate com-
parison class” ([20, p. 921], orig. emph.). He adds the comment that this is intended 
to cover the case where a system consists of parts, where the idea is that a composite 
system’s “properties and behaviour are novel and robust compared to those of its 
component systems, especially its microscopic or even atomic component” (op. cit.). 
We agree that thus understood, there is emergence in the large but finite systems 
we are studying and PTCP can be regarded as both emergent and reduced. Illus-
trative of this is the transfer matrix approach where maxima in response functions 
and the correlation length (or critical properties if � > d LC ), calculated for a lat-
tice which is infinite in � dimensions, converge towards the critical properties of a 
(� + 1)-dimensional system as the size in that dimension is increased. This account, 
affords a understanding of dimensional crossover between universality classes, with 
the ‘gradual emergence’ of critical behavior.

Humphreys [48] introduces the triplet of conceptual emergence, ontological 
emergence and epistemological emergence, which we now consider: 

(1)	 We have conceptual emergence “when a reconceptualization of the objects and 
properties of some domain is required in order for effective representation, pre-
diction, and explanation to take place” (op. cit. p. 762). This is close to Butter-
field’s notion of reduction, and there is emergence in this sense because various 
notions that are not native to statistical mechanics, have been introduced into 
the theory in order to deal with PTCP, both through inputs from thermodynam-
ics (FTD-1, FTD-2 and FTD-3) and through the introduction of the notion of 
a large system at level SM2. As we have argued in Sect. 4 and in our discussion 
of transfer matrix methods, it is precisely in such large systems that PTCP are 
manifested in the form of incipient singularities.

(2)	 Ontological emergence amounts to the following: “A ontologically emerges from 
B when the totality of objects, properties, and laws present in B are insufficient 
to determine A ” (op. cit. p. 762). As we have seen in Sect. 4, the properties of 
a system’s micro-constituents together with the laws that govern them are suf-
ficient to determine PTCP; in fact they can be shown to happen in finite systems. 
So PTCPs are not ontologically emergent.

(3)	 Epistemological emergence is present when the limitations in our knowledge 
prevent us from predicting the relevant phenomenon. As Humphreys puts it, A 
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epistemically emerges from B “when full knowledge of the domain to which B 
belongs is insufficient to allow a prediction of A at the time associated with B ” 
(op. cit. p. 762). This is also the notion of emergence that Morrison appeals to 
when she notes that “what is truly significant about emergent phenomena is that 
we cannot appeal to microstructures in explaining or predicting these phenom-
ena, even though they are constituted by them” [84, p. 143].97 We submit that 
PTCP are not epistemically emergent because, as we have seen in Sect. 4, they 
in fact can be deduced and predicted from the underlying micro-theory. What is 
important here is PTCP appear in finite systems.

Batterman’s account of emergence [7], centres around the application of the 
renormalization group. As we have seen in Sect. 3.5.2 he (and Kadanoff) regard the 
use of renormalization group as a wholly different type of approach to PTCP from 
which novel properties emerge. In particular the fixed points of the renormalization 
transformation which allocate the universality classes. We agree with this except for 
two reservations: 

	 (i)	 Batterman takes the thermodynamic limit as an essential feature of this 
method. As we have indicated in Sect. 3.5.2 we do not regard this as being 
necessary.

	 (ii)	 There is nothing automatic about setting up a renormalization group analysis 
of a system. It does not arise in a straightforward algorithmic way from the 
basic structure of statistical mechanics. Indeed physical insight is required 
both in the the choice of the lattice scaling N → Ñ  and of the weight function. 
These must be compatible with the nature of the ordered state and the critical 
phenomena to be explored. The recurrence relationships are determined by 
these choices, and the fixed points ‘emerge’ as properties of the recurrence 
relationships. These in turn have exponents which give the universality classes 
of the various critical regions. As we have already indicated, most renormali-
zation schemes involve some degree of approximation, with a consequent vari-
ation in fixed points and their exponents.98 However, weight-function depend-
ent variations can also occur even when no approximation is involved. An 
example of this is the one-dimensional Ising model with the scheme described 
in Sect. 3.4.3 with � = 2 , but with J < 0 , that is the antiferromagnetic case. 
In principle one expects a fixed point associated with antiferromagnetism, 
but, although the free-energy density is correctly computed the fixed point is 
missing. For this to appear, as is shown by Nelson and Fisher [87], one needs 
to take � = 3 ; that is blocks of three sites. That, in general, different fixed 
points and hence different universality classes emerge from different choices 

97  For detailed discussion of Morrison’s position see Hüttemann et al. [50].
98  An example of such variations, in the case of the Ising model on a triangular lattice, for the exponents 
yT and yH and for the location of the fixed point (the Curie temperature) is provided by Table IV on page 
482 of Niemeijer and van Leeuwen [92].
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of lattice scaling and weight function for the same system means that this is a 
qualified type of emergence.

Finally, emergence is often characterised as the failure of reduction [59, p. 21]. 
That is, reduction and emergence are taken to be mutually exclusive and a prop-
erty is emergent only if it fails to be reducible. PTCP are not emergent in this sense 
because, as we have seen above, they are reducible in the sense of a deductive 
reduction.

6 � Conclusions

We have presented a picture of the way that thermodynamics and statistical mechan-
ics coexist and collaborate within the envelope of thermal physics. We showed that 
the relationship between the two developments, represented by the columns in Fig. 1 
depends, on the one hand, on inter-theory connecting relationships from thermody-
namics to statistical mechanics, one of which, FTD–3, can, in the context of deduc-
tive reduction be regarded as a bridge law, with the remaining two, FTD–1 and 
FTD–2, being consequences of FTD–3. On the other hand, from statistical mechan-
ics to thermodynamics, there is also a sequence of ‘messages’ that are effectively 
warnings about the idealized nature of thermodynamics.

We address the problem that real systems are finite, and singular behaviour asso-
ciated with PTCP can occur only in infinite systems, using finite-size scaling and a 
clear specification of a large system. This enables us to develop a picture of the way 
that PTCP in finite systems can be defined in terms of incipient singularities. Within 
this picture the role of the infinite system is threefold: (a) the existence of a critical 
region in the thermodynamic limit is a necessary condition for there to be a region 
of incipient singularity in the real finite system, (b) as one (but not the only) way 
to determine quantitative properties like the value of critical exponents of the real 
system (c) to simplify calculations. In these senses the infinite system is an indispen-
sable, idealized approximation to the real finite system.

The usual arguments for limit reduction are based on an unwarranted conflation 
between a thermodynamic system with critical behaviour (TD3) and an infinite sta-
tistical mechanical system (SM3). On the other hand, the arguments for the deduc-
tive reduction of TD3 to the statistical mechanics of a large system (SM2) are valid. 
Next we argue that PTCP are neither ontologically or epistemologically emergent, 
but they are conceptually emergent. Rather less frequently remarked upon are the 
ways that statistical mechanics both substantiates and enriches the picture of PTCP 
in thermodynamics.

Appendix 1

Response Functions and Critical Exponents

In terms of densities and fields the response functions are
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And in the coupling–density representation the densities are given by

with the response functions by

The simplest way to treat cx is to use the standard formula

In the standardized notation of PTCP [18] the critical exponents α , α� , β , δ , γ and 
γ� are defined by

It also convenient to define the exponents σ and σ� according to

In addition to these purely thermodynamic critical exponents three more expo-
nents � , �′ and � arise, from statistical mechanics, for the pair correlation function 
and correlation length defined in Sect. 3.2. For the correlation length the exponents 
� and �′ are given by

(102)
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(105)c� − cx = k B �
2
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(106)cx ∼

{
(T − Tc)

−α , along the critical isochore, T > Tc,

(Tc − T)−α
�

, along the coexistence curve, T < Tc,

(107)x − xc ∼(Tc − T)β , along the coexistence curve, T < Tc,

(108)𝜑T ∼

{
(T − Tc)

−γ , along the critical isochore, T > Tc,

(Tc − T)−γ
�

, along the coexistence curve, T < Tc,

(109)� − �c ∼(x − xc)|x − xc|δ−1 , along the critical isotherm.

(110)c𝜉 ∼

{
(T − Tc)

−σ , along the critical isochore, T > Tc,

(Tc − T)−σ
�

, along the coexistence curve, T < Tc.

(111)ξ ∼

{
(T − Tc)

−ν , along the critical isochore, T > Tc,

(Tc − T)−ν
�

, along the coexistence curve, T < Tc.
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which encapsulates the asymptotic behaviour of the correlation length in a neigh-
bourhood of that critical point. The situation for the correlation function is rather 
more complicated since we are concerned not only with its dependence on the cou-
plings near to a critical region but also on its asymptotic form for a pair of widely 
separated lattice sites. However, the result

from Ginzburg–Landau theory (see, for example, [67], Chap. 5) in which depend-
ence on the couplings is mediated through the correlation length is believed to have 
wide applicability.

Appendix 2

The Ising Model

For simplicity we consider a d-dimensional hypercubic lattice Nd of N sites with peri-
odic boundary conditions. At rrr ∈ Nd there is a microsystem �(rrr) with values ± 199  
so that the microstate of the system is ��� ∶= {�(rrr)} and the Hamiltonian is

where the first summation is over all first-neighbour pairs of lattice sites and the 
thermal and field couplings are

respectively, J being an energy parameter, so that J > 0 corresponds to ferromag-
netic behavior, where alignment of the states of all first-neighbour pairs of sites is 
favoured, and J < 0 corresponds to antiferromagnetic behaviour, where anti-align-
ment of the states of all first-neighbour pairs of sites is favoured;100 H is a magnetic 
field. It will be noted that these are the couplings introduced for the simple magnetic 
system in Sect. 2.4 except that there we used � instead of J and it was assumed that 
𝜀 > 0 . This two-state model which was first solved for d = 1 by Ising [51],101 is usu-
ally now called the spin-1

2
 Ising model.102 On the basis of this solution, and a wealth 

of other results for larger dimensions (including the exact zero-field solution for a 

(112)(r̄rr;𝜁1, 𝜁2) =
fd(|r̄rr|∕ξ)
|r̄rr|d−2−η

,

(113)Ĥ(�T , �H;���) ∶= −�T

(1)∑

{rrr,rrr�}

�(rrr)�(rrr�) − �H
∑

{rrr}

�(rrr),

(114)�T ∶= J∕T , �H ∶= H∕T ,

99  These states are usually thought of as spin directions up (+ 1) and down (− 1).
100  A perfect arrangement like this is possible for hypercubic lattices, but not for so-called ‘close-
packed’ lattices like the plane triangular lattice and the face-centred cubic lattice.
101  In fact it was suggested to Ising by his research director Wilhelm Lenz and historians of science like 
Brush [16] and Niss [96] often call it the Lenz-Ising model.
102  The corresponding three-state model with states 0,±1 being the spin-1 Ising model.
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square lattice by Onsager [98]) the ferromagnetic phase diagram in the space of the 
temperature T and the field H is known to have the form shown in Fig. 10, where, 
for d = 1 , Tc = 0 , for d = 2 , Tc = 2.2692 J and, for d = 3 , Tc = 4.5108 J . Apart 
from in the one-dimensional case where the critical point is at zero temperature (see 
Sect. 3.4.3(a)), there is a line of first-order transitions along the interval [0, Tc) of the 
zero-field axis across which the magnetization M changes between equal and oppo-
site values. The universality class of the second-order transition at the critical point 
depends on the dimension of the system. The critical exponents for d = 2 are α = 0 
(a logarithmic singularity), β =

1

8
 , γ =

7

4
 , δ = 15 ν = 1, η = ¼. For d = 3 the expo-

nents are obtained to a high level of accuracy by series methods with α ≃ 0.11008 , 
β ≃ 0.326419 , � ≃ 1.237075 , � = 4.78984,  � ≃ 0.629971,  � ≃ 0.036298 . When 
d ≥ d UC = 4 the critical exponents take their classical values α = 0 , β =

1

2
 , γ = 1 

and δ = 3.103 
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