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Abstract
We show that there is no non-constant assignment of zeros and ones to points of 
a unit sphere in ℝ3 such that for every three pairwisely orthogonal vectors, an odd 
number of them is assigned  1. This is a new strengthening of the Bell–Kochen–
Specker theorem, which proves the non-existence of hidden variables in quantum 
theories.
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1  Introduction

The Bell–Kochen–Specker theorem [1, 9] is an important no-go theorem in quantum 
mechanics, which proves the incompatibility of quantum physics with local hidden-
variable theories. The Kochen–Specker proof is based on a construction of a set of 
117 vectors from ℝ3 admitting no {0, 1}-coloring (definitions follow).

Since then, many simplifications of the proof appeared in the sense of the number 
of vectors needed, 33 in [12] and 31 in [13]. Another notable result is a simple proof 
of Kochen–Specker theorem in 4 dimensions, which uses 18 vectors [2].

There are numerous generalizations of the Kochen–Specker theorem, e.g., using 
rational vectors [4, 7], or replacing a {0, 1}-coloring with a ℤ2-coloring. It was 
shown in [14], that there is no ℤ2-coloring of vectors in ℝ4 and consequently no ℤ2

-coloring in dimensions greater than four, see [11]. We show that there is no non-
constant ℤ2-coloring even for ℝ3 , which was an open question, formulated, e.g., in 
[6, 10]. The existence of a ℤ2-coloring in ℝ2 is trivial; hence we answer the only 
remaining case.
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A computer was used to symbolically solve a system of two polynomial equations 
in two variables.

2 � Definitions

We will work in ℝ3 , so we restrict the definitions to this case. 

1.	 A {0, 1}-coloring is a mapping m ∶ ℝ
3 ⧵ {�} → {0, 1} such that, for every three 

pairwisely orthogonal vectors, �, �,� , it holds that m(�) + m(�) + m(�) = 1.
2.	 A ℤ2-coloring is a mapping m ∶ ℝ

3 ⧵ {�} → {0, 1} such that, for every three 
pairwisely orthogonal vectors, �, �,� , it holds that m(�)⊕ m(�)⊕ m(�) = 1 , 
where ⊕ denotes addition modulo 2.

3.	 Two vectors, � , � , are called isochromatic if m(�) = m(�) for all ℤ2-colorings m.

We are interested in ℤ2-colorings and we call them just colorings in the sequel. We 
are not interested in coloring of the origin. For brevity, we write vector instead of 
non-zero vector. Any two linearly dependent vectors are isochromatic, and so are 
all vectors of any one-dimensional subspace of ℝ3 . For simplicity, we call such sub-
spaces rays and will use vectors and rays interchangeably. Standard linear-algebraic 
definitions of the dot product, cross product, and angles are used, where the angle 
between two rays is between 0 and �∕2.

3 � Basic Construction

At first, a construction of 21 rays is shown. It contains three non pairwisely-orthog-
onal rays � , � , � such that in every coloring m, m(�)⊕ m(�)⊕ m(�) = 1 . In Sect. 4, 
we shall show that this property of three rays is sufficient for every coloring to be 
constant.

The figure shows a hypergraph that represents a set of rays used in the proof of the 
main theorem. Vertices (dots) of the hypergraph represent rays. Its edges (smooth 
curves) represent orthogonality relations in such a way that two vertices contained in 
an edge are orthogonal. E.g., ray � is orthogonal to rays �, �, � , �.

We shall show that there exist rays with these orthogonality relations. We do so 
by the following explicit construction that ensures the orthogonality relations drawn 
by thin straight lines in the figure. Each line represents three binary orthogonality 
relations, ensured by the choice of vectors or by choosing one vector as the cross 
product of the remaining two orthogonal vectors. The construction uses two non-
zero real parameters, x, y, which will be specified later.1

1  We evaluate the coordinates of the vectors only in simple cases; then the complexity of expressions 
grows rapidly and they are omitted here.
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It remains to ensure the orthogonality relations drawn by bold round curves 
in the figure. The last line of the table contains the respective two framed cross 
products whose arguments need not be orthogonal. We shall achieve their orthog-
onality, � ⟂ � , � ⟂ � , by adjusting the parameters x, y. This requires to solve the 
following system of two polynomial equations:

It has real roots, e.g., the following:

We shall further verify that all the constructed vectors, �, �,… , � , are non-zero. It 
can be checked by a computer, but we show it for the sake of completeness. The 
vectors �,… , � are clearly non-zero. The cross product of two vectors is zero if and 
only if the vectors are linearly dependent. Assume to the contrary that some of the 
vectors are zero vectors. Let � be the first such vector in alphabetical order, hence 
it is defined using only non-zero vectors. We inspect multiple cases and arrive at a 
contradiction in every branch: 

1.	 If � ∈ {�, �, �,�, �, �, �, �} , then it is a cross product of two orthogonal vectors.
2.	 If � = � = � × � : The contradiction is immediate.
3.	 If � = � = � × � : Vector � is orthogonal to � , but � is not.
4.	 If � = � = � × � : Vector � is orthogonal to � , but � is not.
5.	 If � = � = � × � : Vector � is orthogonal to � , but � is not.
6.	 If � ∈ {�, �} : We have chosen x, y such that � is a cross product of two orthogonal 

vectors.

� ⋅ � = 0 ,

� ⋅ � = 0 .

y =
1

3

�

1 +
3

�
163 − 9

√
57 +

3

�
163 + 9

√
57 ≐ 1.14 ,

x = −

�
y2 +

√
4y8 + 16y6 + 25y4 + 16y2 + 4

2y2 + 2
≐ −1.61 .
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Suppose that there is a coloring, m. Then we sum its values over all vertices of all 13 
edges:

Vertices from F =
⋃

E ⧵ {�, �, �} are contained twice in the latter sum, thus their 
coloring does not influence the result. Only vertices �, �, � are contained in a single 
edge. We may rewrite the sum as

It remains to prove that the rays �, �, � are not all pairwisely orthogonal. We shall 
verify that � ̸⟂ � . According to [5], the hypergraphs representing orthomodular lat-
tices cannot contain cycles of lengths 3 or 4.2 As �, � already have distance 3 in our 
hypergraph, they can be neither identified, nor connected by an edge, without break-
ing this rule; hence � ≠ � , � ̸⟂ �.

Remark 3.1  We give a detailed argument for readers not familiar with the properties 
of hypergraphs of orthomodular lattices (Greechie diagrams). Suppose that � ⟂ � . 
Then � × � would be both � and � , but these are distinct.

We do not verify that there are no other orthogonality relations not drawn in the 
figure, but this is not needed in the sequel. We could say more about the rays �, �, � : 
they are distinct, not coplanar, etc.

However, the hypergraph techniques have limitations; the fact that � ≠ � does not 
follow from the hypergraph. Nevertheless, it can be checked for our particular case 
by computer algebra.

4 � Application to the Coloring Problem

The coloring is independent of the choice of a coordinate system. For any ortho-
normal matrix � ∈ ℝ

3×3 , if m is a coloring, then m� ∶ ℝ
3 ⧵ {�} → {0, 1} , defined 

by m�(�) = m(��) , is also a coloring because the multiplication by an orthonormal 
matrix preserves the dot product.

Rotations and reflextions are represented by orthonormal matrices. For any two 
pairs of rays, (�, �), (��, ��) , such that ∠(�, �) = ∠(��, ��) , i.e., ��⋅��

‖�‖‖�‖ =
���⋅���

‖��‖‖��‖ , there 
exists an orthonormal matrix � such that �� = �� and �� = ��.

s =
⨁

e∈E

⨁

�∈e

m(�) ≡ 13 ≡ 1 (mod 2) .

s = 2

(⨁

�∈F

m(�)

)
⊕ m(�)⊕ m(�)⊕ m(�) = m(�)⊕ m(�)⊕ m(�) = 1 .

2  More exactly, cycles of lengths 3 or 4 may occur under special circumstances. This requires lattices 
of height more than 3, which is not the case of the lattice of subspaces of ℝ3 (dimension at least 4 is 
needed). See [3] or [8] for details.
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Corollary 4.1  If some pair of rays with angle � is isochromatic, then every pair of 
rays with angle � is isochromatic.

Theorem  4.2  If two different rays are isochromatic, then the only coloring is the 
constant one.

Proof  Let �, � be isochromatic rays, � = ∠(�, �) ≠ 0 . We define � as the set of all 
rays � such that ∠(�,�) = � . All rays from � are isochromatic and their mutual 
angles span the whole interval [0,min(�∕2, 2�)] . By Corollary 4.1, every pair of rays 
with angle in [0,min(�∕2, 2�)] is isochromatic. We repeat this procedure, extending 
the result to larger angles, and after ⌊log2

�

2�
⌋ repetitions we obtain that all rays are 

isochromatic. 	�  ◻

Theorem  4.3  If there are three different rays �, �,� that are not all pair-
wisely orthogonal and a constant c ∈ ℤ2  such that every coloring m  satisfies 
m(�)⊕ m(�)⊕ m(�) = c , then every coloring is constant.

Proof  We split the proof into two cases. The first is when the three rays are coplanar. 
Then there is a ray � orthogonal to all of �, �,� . (It need not be unique in singular 
cases, which are allowed here.) The rotation by �∕2 about � maps � ↦ �′ , � ↦ �′ , 
� ↦ �′ and is represented by an orthonormal matrix � . We take an arbitrary color-
ing m and construct a coloring m′ , defined as m�(�) = m(��) . The values of �, �,� 
are summing up to c in any coloring; hence also for m′ , then

We say that rotation and reflection preserve coloring. Now we may continue with 
the equations:

We determined the value of m at a single ray, � . As colorings are preserved by rota-
tions, the same arguments apply to the images of � (and all rays used in the con-
struction) under any rotation. Due to the spherical symmetry, � can be mapped to 
any other ray by some rotation, and m attains the constant value 1 at all rays.

The other case is when the rays � , � , � are not coplanar. If the vectors are not pair-
wisely orthogonal, they contain a non-orthogonal pair. Without loss of generality, 

c = m�(�)⊕ m�(�)⊕ m�(�) = m(��)⊕ m(��)⊕ m(��) = m(��)⊕ m(��)⊕ m(��).

m(�)⊕ m(��)⊕ m(�) = 1 ,

m(�)⊕ m(��)⊕ m(�) = 1 ,

m(�)⊕ m(��)⊕ m(�) = 1 ,

m(�)⊕ m(�)⊕ m(�)
���������������������������

c

⊕ m(��)⊕ m(��)⊕ m(��)
�������������������������������

c

⊕ m(�)⊕ m(�)⊕ m(�) = 1 ,

m(�) = 1 .
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we assume that it is (�,�) , i.e., � ̸⟂ � . The reflection w.r.t. the plane span({�, �}) 
maps � and � to themselves, but maps � to �′ ≠ � . It preserves colorings, thus each 
coloring m satisfies

for two different rays �,�′ . A direct application of Theorem 4.2 finishes the proof. 	
� ◻

Theorem 4.4  There is no non-constant ℤ2-coloring of a sphere in ℝ3.

Proof  This is a straightforward consequence of Theorem 4.3, applied to rays �, �, � 
from the construction described in Sect. 3. 	�  ◻

Remark 4.5  The rays �, �, � , constructed in Sect. 3, are not coplanar. However, the 
proof of this fact (cf. Rem. 3.1) is more complicated than the proof of the “coplanar” 
part of Theorem 4.3, which, possibly, could find application elsewhere.

We proved that there are two distinct sufficient properties (see Theorems 4.2, 4.3) 
for the coloring to be constant. Our collection of vectors satisfies the first one3, and by 
taking the union of our collection with its reflected copy about the plane span({�, �}) , 
we arrive at a set of 40 vectors4, satisfying the second5 property. We proved Theo-
rem 4.3 in a more general form than needed and for c not necessarily equal to 1.

5 � Conclusions

The problem of hidden variables in quantum mechanics is equivalent to the exist-
ence of {0, 1}-colorings. It was proved in the sixties that they are impossible in 
dimensions more than two. One of the elegant proofs [2] allowed to prove also the 
non-existence of ℤ2-colorings in dimensions greater than three [6, 11]. The case of 
dimension three remained an open problem. Here we answer it by proving the non-
existence of ℤ2-colorings also in this case, thus answering the problem completely. 
From it, the version for {0, 1}-colorings follows easily; thus we get another alterna-
tive proof of Bell–Kochen–Specker Theorem.

Our construction uses either 21 vectors to construct a gadget which forces certain 
three vectors to sum up to 1 in every coloring, or alternatively, a gadget of 40 vec-
tors forcing certain two vectors to equal in every coloring. Here, a gadget stands for 
a collection of vectors having certain property. The use of gadgets in the context of 

m(�)⊕ m(�)⊕ m(�) = c,

m(�)⊕ m(�)⊕ m(��) = c,

m(�) = m(��)

3  There are three different vectors, not pairwisely orthogonal, summing up to a constant in every color-
ing.
4  Two of the 21 vectors belong to the plane of symmetry, the remaining 19 are reflected, thus we use 
2 + 2 ⋅ 19 vectors in total.
5  There are two different vectors that equal in every coloring.



1 3

Foundations of Physics (2021) 51:67	 Page 7 of 7  67

Bell–Kochen–Specker constructions was recently employed in [15]. They showed 
that every collection of vectors which cannot be {0, 1}-colored necessarily uses a 
01-gadget. The 01-gadget is a {0, 1}-colorable collection of vectors, with two distin-
guished ones, � , � , � ̸⟂ � , and for any {0, 1}-coloring m it holds that m(�) + m(�) ≤ 1

.
The gadgets we constructed admitted to prove the more difficult case of ℤ2-color-

ings, and they also extend possible techniques of proving no-go theorems because 
they are based on new ideas. They enrich the gallery of clever techniques, proving 
an important result of quantum mechanics using elementary tools.
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