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Abstract
The symplectic quantization scheme proposed for matter scalar fields in the com-
panion paper (Gradenigo and Livi, arXiv:​2101.​02125, 2021) is generalized here 
to the case of space–time quantum fluctuations. That is, we present a new formal-
ism to frame the quantum gravity problem. Inspired by the stochastic quantization 
approach to gravity, symplectic quantization considers an explicit dependence of the 
metric tensor g�� on an additional time variable, named  intrinsic time at variance 
with the coordinate time of relativity, from which it is different. The physical mean-
ing of intrinsic time, which is truly a parameter and not a coordinate, is to label the 
sequence of g�� quantum fluctuations at a given point of the four-dimensional space–
time continuum. For this reason symplectic quantization necessarily incorporates a 
new degree of freedom, the derivative ġ𝜇𝜈 of the metric field with respect to intrinsic 
time, corresponding to the conjugated momentum ��� . Our proposal is to describe 
the quantum fluctuations of gravity by means of a symplectic dynamics generated by 
a generalized action functional A[g�� ,���] = K[g�� ,���] − S[g��] , playing formally 
the role of a Hamilton function, where S[g��] is the standard Einstein–Hilbert action 
while K[g�� ,���] is a new term including the kinetic degrees of freedom of the 
field. Such an action allows us to define an ensemble for the quantum fluctuations 
of g�� analogous to the microcanonical one in statistical mechanics, with the only 
difference that in the present case one has conservation of the generalized action 
A[g�� ,���] and not of energy. Since the Einstein–Hilbert action S[g��] plays the role 
of a potential term in the new pseudo-Hamiltonian formalism, it can fluctuate along 
the symplectic action-preserving dynamics. These fluctuations are the quantum fluc-
tuations of g�� . Finally, we show how the standard path-integral approach to gravity 
can be obtained as an approximation of the symplectic quantization approach. By 
doing so we explain how the integration over the conjugated momentum field ��� 
gives rise to a cosmological constant term in the path-integral approach.
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1  Introduction

A general consensus on a quantum gravity theory has still to be found, although 
very promising candidates such as string theory [2–5], loop quantum gravity [6–10], 
causal dynamic triangulations [11–13] and non-perturbative renormalization group 
approaches [14, 15] are already in the arena. In our opinion any attempt to correctly 
frame the study of quantum gravity must cope in first instance with the problem of time 
in general relativity. The question of time comes first. When we talk about “dynamics” 
of the gravitational field we refer to the possibility for the metric field g��(�) to experi-
ence a sequence of changes at a given point � ∈ M of the four-dimensional space–time 
manifold M . The existence of such a sequence of changes is indeed very natural when 
thinking, for instance, to any numerical protocol which, starting from an arbitrary con-
figuration of the field g��(�) , projects it by means of an iterative procedure onto a cer-
tain solution of the Einstein equation, the one corresponding to a given distribution of 
matter and energy. In this case the dynamics is the one of the algorithm iterative proce-
dure and time is the number of iteration steps. It is evident that this “time of the com-
puter”, which, as an evolution parameter, closely resembles the notion of time we have 
from classical and quantum mechanics, is totally different from the coordinate time of 
relativity, both special and general, which is simply a coordinate and not a parameter, 
as the name itself suggests. This fact was already well recognized within the attempt 
to frame general relativity into the Schrödinger representation of quantum mechanics 
by means of the Wheeler–DeWitt equation Ĥ𝜓 = 0 [16, 19], where Ĥ is the general-
relativistic Hamiltonian of the gravitational field, � the world wave-function and the 
time derivative term, usually appearing in the Schrödinger equation, is set to zero. This 
is done precisely for the reason that in a relativistic context time is just a coordinate, not 
an evolution parameter as in quantum mechanics. The Wheeler DeWitt equation, con-
sistently with Einstein equations, is just a constraint equation, not an evolution equa-
tion: it is the wave equation for the frozen block universe of Einstein, there is no time 
flowing. It is then not by a coincidence that the Wheeler–DeWitt canonical approach to 
quantum gravity gave rise to Loop Quantum Gravity (LQG) [6–10], a theory character-
ized by the absence of time at the microscopic level [21]. But here we are not interested 
in the microscopic degrees of freedom of space–time. We want to understand which 
sort of thing could be, physically and not just in a computer simulation, the dynamics 
of the field g�� . The answer turns out to be quite simple: as the dynamics of g�� we 
can simply refer to the sequence of its quantum fluctuations. And as the corresponding 
time parameter we opt in favour of the  intrinsic time introduced [1]: the fifth variable 
of symplectic quantization. Consider in fact the classical Einstein equations for pure 
gravity:

where R�� is the Ricci tensor and R is the curvature scalar. One may think to 
a gedanken experiment where the field g�� is set to a very atypical configuration 
across the whole space–time manifold M and then is let free to relax towards a 
solution of the Einstein equations by means of its quantum fluctuations. When we 

(1)R�� −
1

2
g��R = 0,
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talk about the dynamics of g�� we are of course not talking about a sequence of 
frames along a time-like trajectory in the space–time manifold but rather about the 
sequence of changes experienced by g�� due to quantum fluctuations at each point 
� ∈ M of space–time. The existence of a dynamics for the gravitational field quan-
tum fluctuations represents a compelling logical necessity as soon as one accepts the 
existence of quantum fluctuations themselves: there must be a process, be it stochas-
tic or deterministic, which takes the field through their sequence. We propose here a 
generalization to gravity of the symplectic quantization procedure introduced in [1] 
for a scalar field theory. The basic idea is the same of [1]: we try to define a pseudo-
microcanonical ensemble built on the conservation of an appropriately defined gen-
eralized action rather than on the conservation of energy. This generalized action, 
which formally plays the role of a Hamilton function, is the generator of a symplec-
tic dynamics, the dynamics of quantum fluctuations.

As done in the companion paper [1] we introduce symplectic quantization for 
the gravitational field by recalling first the results on the stochastic quantization 
approach to gravity reported in [22]. This is because symplectic quantization stems 
from stochastic quantization. We need in fact to acknowledge that the “problem of 
time” in general relativity has been in a sense “already solved” within the stochastic 
quantization approach in general [23] and in particular in the application of these 
ideas to gravity [22]. In fact the true notion of gravitational field dynamics as the 
ordered sequence of its quantum fluctuations was already present in [22]. Unfor-
tunately, at the time the stochastic quantization approach to gravity was proposed 
[22], the parameter of the stochastic process controlling the dynamics of g�� was just 
considered a fictitious variable. On the contrary, symplectic quantization promotes 
this fictitious time to be a true physical entity. Furthermore, symplectic quantiza-
tion allows us to define a functional approach to quantum gravity [see, e.g., Eq. (25) 
below] which is well-defined irrespectively to the scale-invariance properties of the 
theory, in such a way that the non-renormalizability problem is apparently less com-
pelling in the present context.

We start by discussing first the stochastic quantization approach to gravity in 
Sect. 2. Then in Sect. 3 we introduce symplectic quantization and in Sect. 4 we show 
how, within the symplectic quantization framework, the microcanonical partition 
function of a theory without cosmological constant can be mapped onto the path 
integral of an Einstein–Hilbert action with cosmological constant Λ . Sect. 5 is left 
for a concluding summary.

2 � Stochastic Quantization

Since the proposal of symplectic quantization has been mainly inspired from sto-
chastic quantization, let us start with a discussion of the latter, in particular of its 
application to the problem of quantum gravity [22]. The main goal of stochastic 
quantization is to introduce a stochastic equation for the metric field in terms of a 
fifth parameter � , named fictitious time in [22] and termed by us  intrinsic time in 
[1]:
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where the symbol � denotes the metric tensor and S is the Euclidean version of the 
Einstein–Hilbert action,

In Eq. (3) R is the Ricci curvature scalar, the symbol g on the right-hand side denotes 
the determinant of the metric tensor, g = det(g��) , � = 8�G∕c4 is the Einstein gravi-
tational constant and ���(x, �) is a white noise:

The symbol G��,��(x, y, �) denotes the DeWitt supermetric in four-dimensional 
space–time, introduced in [19] with the purpose to define an invariant measure for 
the path-integral approach to quantum gravity. Its dependence on � comes from the 
fact that G��,��(x, y, �) is, as we are going to see, a function of g��(x, �) . By using the 
natural units ℏ = c = 1 and choosing the convention according to which the metric 
tensor g�� is dimensionless we have that in Eq.  (3) the Einstein gravitational con-
stant has the dimensions of a length squared, [�] = L2 , while the Ricci curvature 
scalar has the dimensions of an inverse length squared, [R] = L−2 . The main result of 
[22] is the perturbative evaluation of metric field correlation amplitude in the � → ∞ 
limit:

where the amplitude on the left hand side of Eq.  (5) is computed averaging over 
the time-dependent probability distribution of the metric field obtained by solving 
the Fokker–Planck equation associated to Eq. (2). Not surprisingly an exact solution 
of this Fokker–Planck equation is out of reach and the results are only perturbative 
[22]. The problem of non-renormalizability is also not cured, since g�� is allowed to 
fluctuate at all scales. For gravity the only true advantage of stochastic quantization 
is to remove the need of gauge fixing procedures [23]: gauge orbits are naturally 
explored by the dynamics, the latter still yielding the euclidean path-integral meas-
ure in the � → ∞ limit. The good term of comparison to understand why stochas-
tic quantization removes the problem of gauge fixing is to consider the overdamped 
Langevin dynamics of a colloidal particle confined by a potential U(x):

where �(t) is a white noise of amplitude ⟨�2⟩ = 2�−1 . The “gauge invariance” hidden 
in equilibrium statistical mechanics amounts to the fact that any realization of the 
Gaussian noise �(t) allows us to sample correctly the equilibrium distribution e−�U(x) 
in the t → ∞ limit. Things work in the same manner for the euclidean path-integral 
measure of a field theory and stochastic quantization.

(2)
�g��(x, �)

��
= −∫ d4y G��,��(x, y, �)

�S[�]

�g��(y, �)
+ ���(x, �),

(3)S[�] =
1

2� ∫ d4x |g|1∕2 R.

(4)⟨���(x, �)���(y, ��)⟩ = �(� − ��) G��,��(x, y, �).

(5)lim
�→∞

⟨g��(x, �)g��(y, �)⟩ = ⟨g��(x)g��(y)⟩

(6)ẋ = −
𝜕U

𝜕x
+ 𝜂(t),
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Let us now spend a couple of words on the bi-tensor density G��,��(x, y, �) of 
Eq.  (2), where it guarantees invariance of the equation under the action of dif-
feomorphisms in 3 + 1 dimensions. In particular, in the general case we have 
G��,��(x, y, �) ∼ �(4)(x, y) , so that the Langevin equation can be written as:

where the bitensor density G��,��[�(x, �)] is defined as [19, 22]:

with � ≠ 1∕2 a dimensionless constant and the dependence on � comes clearly 
by the one of g��(x, �) . The bitensor density in Eq.  (8) represents a field of 
d(d + 1)∕2 × d(d + 1)∕2−dimensional matrices Ĝ[�(x, 𝜏)] on the space–time mani-
fold, each matrix having determinant [19]:

Quite remarkably, the expression of det Ĝ[�(x, 𝜏)] is such that it turns out to be sim-
ply a constant only in d = 4:

It is the above property of the determinant which guarantees the triviality of the 
path-integral measure for gravity [19]. In the framework of stochastic quantization 
no dependence on � is assumed for the adimensional constant � [22], so that we are 
going to do the same for the symplectic quantization approach to be introduced in 
Sect. 3. The importance of chosing a bitensor density G��,��[�(x, �)] precisely of the 
form written in Eq.  (8) was noticed already before the attempt to apply stochastic 
quantization to gravity [22] and was related to the definition of an invariant measure 
for gravitational path-integral [19]:

where Dg =
∏

x

∏
��
g��(x) and where �

[
�
]
 is a functional measure. If one, in facts, 

takes the functional measure �[�] to be invariant under the action of diffeomor-
phisms, i.e., of the form

the choice of the operator Ĝ[�(x)] made in Eq. (8) yields that det Ĝ[�(x)] is constant 
in d = 4 . Accordingly, the functional measure �[�] is also constant. The depend-
ence from � of �(x, �) has been obviously dropped in the partition sum of Eq. (11) 
and in the expression of the measure, Eq.  (12). The deep physical implications of 

(7)G𝜇𝜈,𝛼𝛽[�(x, 𝜏)]ġ𝜇𝜈(x, 𝜏) = −
𝛿S[�]

𝛿g𝛼𝛽(y, 𝜏)
+ G𝜇𝜈,𝛼𝛽[�(x, 𝜏)]𝜉𝜇𝜈(x, 𝜏),

(8)G��,��[�(x, �)] =
C

2
|g|1∕2

[
g��g�� + g��g�� + � g��g��

]
,

(9)det Ĝ[�(x, 𝜏)] = (−1)d−1
(
1 +

d𝜆

2

)
g

1

4
(4−d)(d+1).

(10)det Ĝ[�(x, 𝜏)] = −(1 + 2𝜆).

(11)Zgrav = ∫ eiS[�]∕ℏ �
[
�
]
Dg,

(12)𝜇
[
�
]
∝

∏

x

det Ĝ[�(x)],
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this apparently technical motivation for the choice of G��,��[�(x)] will be fully high-
lighted in Sect. 4.

From the point of view of dimensional analysis, the requirement of homogeneity 
among all elements in Eq.  (7) implies that [G��,��] = L−1 in the natural units where 
[�] = L . As a consequence, the constant C in the definition of G��,��[�(x, �)] carries the 
dimension of an inverse length-scale (inverse time-scale):

Only two comments are now in order before moving to the discussion of symplectic 
quantization. In our opinion the main breakthrough of stochastic quantization was 
the proposition of the Langevin equation in Eq. (2). In particular, stochastic quan-
tization gave a clear indication of a plausible solution for the “problem of time” in 
general relativity. Quite unfortunately, since the additional time variable needed to 
this purpose was not regarded as a physical entity, but merely as a technical device 
(disappearing at the end of the calculation), this insightful approach was quite 
underrated. From the conceptual point of view, the main problems of stochastic 
quantization were related to the properties of ���(x, �) , only fixed by the require-
ment of overall self-consistency for the theory and apparently lacking any physical 
interpretation. In fact, quite obviously, the presence of ���(x, �) in Eq. (2) does not 
represent the action of a thermostat. In conclusion, any possible deep conceptual 
implication of the stochastic quantization approach to gravity was ruled out for the 
reason that the fifth time variable was regarded just a fictitious one, a fact related 
to the lack of a physical interpretation for ���(x, �) . On the technical side the the-
ory was working, but not remarkably better than other proposals. In particular the 
worst plague of quantum gravity, the non-renormalizability problem, was still there. 
There have been some very interesting recent progresses on the stochastic quantiza-
tion approach to gravity, where higher order derivatives with respect to the fictitious 
time were added to the Langevin equation for g�� and where it is clearly alluded 
to some physical relevance of the fictitious time [20]. Nevethertheless, as long as 
the presence of noise is a cornerstone of the approach proposed [20], the intepreta-
tive problems of the fictitious time remain. We will show in the next section that 
both conceptual and technical problems related to noise completely disappear in the 
context of symplectic quantization, which is a deterministic process. Furthermore, 
since the value of the generalized action is fixed and the cornerstone of the approach 
is an action preserving symplectic dynamics, the non-renormalizability problem 
of gravity is possibly less severe in this context than in the Euclidean path-integral 
approach. The reason is that alongside with symplectic quantization one introduces 
a sort of microcanonical measure which is well defined irrespectively to whether the 
theory is or not renormalizable.

(13)[C] = L−1.
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3 � Symplectic Quantization

The key idea of symplectic quantization is to replace the stochastic dynamics of 
Eq.  (2) with a deterministic one. This choice, which is motivated and explained 
in great detail in [1], comes from the following argument. The Langevin equation 
of stochastic quantization is a fictitious stochastic dynamics which allows one to 
sample, for asymptotically long times, field configurations with the Boltzmann-
like weight appearing in the euclidean version of the path-integral for gravity. In 
[1] it has been shown that the “canonical” ensemble which is in that way implic-
itly defined by stochastic quantization can, and sometimes has to, be replaced with 
a fixed-action “microcanonical” ensemble, for which an appropriate generalized 
action has to be drawn [1]. This generalized action is obtained by adding the kinetic 
terms containing the derivative of the field with respect to intrinsic time, usually 
absent in any standard field theoretic action S, which usually contains derivatives 
only with respect to space–time coordinates. Soon after the first appearance of 
the present work as a preprint on public repositories we knew [17] of a previous 
attempt to build a generalized action for quantum fields containing momenta with 
respect to a fifth time variable: the functional approach to field theory proposed by 
De Alfaro, Fubini and Furlan in 1983 [18]. The additional kinetic term therein was 
build according to a logic similar to the one followed here, but making different 
choices on the technical level (vierbeins Va

�
 were used instead of g�� and the DeWitt 

supermetric was not considered). Then, most importantly, in [18] the symplectic 
dynamics and the microcanonical ensemble introduced in [1] and generalized here 
to the case of gravity were never considered nor alluded and the fifth time variable 
was not considered a physical one. Coming back to the present proposal, we have 
that for gravity the kinetic term corresponding to the one of Eq. (20) in [1] has to 
be an object quadratic in ġ𝜇𝜈 , where the dot now indicates derivative with respect to 
intrinsic time � . At variance with [1], where the only constraint on the new kinetic 
term was to be a Lorentz scalar, in the case of gravity we need it to be a scalar with 
respect to the action of diffeomorphisms. As the key ingredient to define a kinetic 
term fulfilling this requirement we used the DeWitt supermetric G��,��[�(x, �)] [19]. 
Taking inspirantion from the analysis of [1] we propose a generalized action for the 
gravitational field where S[�] is treated as a potential term:

with

where we have introduced the dimensionless supermetric 
G
��,��

[g(x, �)] = G��,��[g(x, �)]∕C . Due to the properties of the supermetric the 
expression in Eq.  (15) clearly behaves as a scalar under the action of diffeomor-
phisms. S[�] is the Einstein–Hilbert action. In particular S[�] is the original Ein-
stein–Hilbert action for a Lorentzian space–time, not the Euclidean version of the 
action. In fact, as explained in full detail in [1], symplectic quantization allows one to 

(14)A[�, �̇] = K[�, �̇] − S[�],

(15)K[�, �̇] =
1

2𝜅g ∫ d4x |g|1∕2 ġ𝜇𝜈(x, 𝜏) G𝜇𝜈,𝛼𝛽[�(x, 𝜏)]ġ𝛼𝛽(x, 𝜏),
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define the probability of configurations directly in a space–time with Minkowskian 
signature, with no need to consider a Wick rotation to the Euclidean theory. For 
consistency we introduced the constant �g with dimensions [�g] = L2 . If we regard 
the generalized action A[�, �̇] as pseudo-Hamiltonian which generates the evolution 
in intrinsic time � , in Eq. (14) the Einstein–Hilbert action S[�] clearly plays in the 
role of a potential term, since it contains no intrinsic time derivative terms. In order 
to dissipate any possible doubt, let us stress that intrinsic time � is a parameter, a 
sort of internal degree of freedom of the metric field, so that the kinetic term K[�, �̇] 
has to be a scalar under the action of diffeomorphisms in 3 + 1 dimensions, not in 
3 + 2 dimensions. We are not adding extra-dimensions to space–time. In order to 
introduce Hamilton equations it is convenient to rewrite K[�, �̇] in terms of the con-
jugated momentum

We thus have

or, what is equivalent,

where, to get Eq.  (17) from Eq.  (16) and Eq.  (15), we have used the identity 
G��,��G

��,��
= d(d + 1)∕2 and to get Eq.  (18) we have raised/lowered indices with 

the help of the metric tensor, taking always advantage of the identity g��g�� = d:

In Eq.  (17) constants coming from the contraction of tensor indices have been 
adsorbed into the definition of �g . Since the supermetric is now dimensionless, 
[G

��,��
] = 0 , and in natural units intrinsic time has dimensions of length we have 

that the intrinsic time derivative of the metric field has dimensions

 while its conjugated momentum [𝜋𝜇𝜈] = [G
𝜇𝜈,𝛼𝛽 ġ𝛼𝛽∕𝜅g] has dimensions

Let us notice that, despite having the same physical dimension, the Einstein gravi-
tational constant � and the new dimensional constant �g appearing in K[�, �̇] do not 
need to be the same. And in fact we will see they are different constants. We also 
assume, consistently with the stochastic quantization approach proposed in [22], that 

(16)𝜋𝜇𝜈(x, 𝜏) =
1

𝜅g
G𝜇𝜈,𝛼𝛽[�(x, 𝜏)]ġ𝛼𝛽(x, 𝜏).

(17)K[�,�] =
�g

2 ∫ d4x |g|1∕2 ���(x, �) G��,��[�(x, �)] �
��(x, �),

(18)K[�,�] =
�g

2 ∫ d4x |g|1∕2 ���(x, �) G��,��[�(x, �)] ���(x, �),

(19)
G����,���� = G

��,��g���g���g���g���

����� = ���g���g��� .

(20)[ġ𝜇𝜈] = L−1,

(21)[���] = L−3
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the adimensional constant � appearing in the definition of G��,��[�(x, �)] is a con-
stant with respect to intrinsic time �.

A close look at Eq. (18) reveals that the new generalized action, which we may 
also call the pseudo-Hamiltonian of symplectic quantization, is non-separable 
because the DeWitt supermetric depends on the metric field �(x, �) . This non-sep-
arability of the pseudo-Hamiltonian is the most remarkable difference between the 
symplectic quantization of gravity and that of a prototypical matter field discussed 
in [1]. We will see in Sect. 4 that this fact has very interesting consequences. For the 
moment let us write down the Hamilton equations which, according to the symplec-
tic quantization scenario, govern the dynamics of the gravitational field quantum 
fluctuations:

The quantity A[�,�] is fixed by the choice of initial conditions, due to the symplec-
tic nature of dynamics. This means that the quantum fluctuations of the gravitational 
field, which are nothing but the fluctuations of the “potential” term S[�] driven by 
the action-preserving dynamics of Eq. (22), are only those compatible with the con-
servation of A[�,�].

If then, rather than following the dynamics of the metric field fluctuations, one 
wants to sum other them by assuming the “bona fide” ergodicity of the dynamics in 
Eq. (22), the appropriate statistical ensemble must be chosen. As it has been already 
outlined in the companion paper [1], for a relativistic field theory the most appro-
priate choice is that of a microcanonical-type of ensemble, defined with respect to 
the generalized action A[�,�] , rather than a canonical-type one, which would corre-
spond to the standard path-integral approach. As we did for the scalar field theory in 
[1], let us point out the main and only assumption at the basis of the microcanonical 
ensemble for the quantum fluctuations of space–time:

“All configurations of the tensorial fields �(x) and �(x) which correspond to the 
same value of the generalized action A[�,�] are realized with identical probability.”

This is the microcanonical postulate for the metric field in the general relativistic 
context. Clearly this generalized microcanonical ensemble has nothing to do with 
temperature or thermal fluctuations, since the quantity which is conserved is action, 
not energy. For this ensemble the partition function reads as:

where Dg can be simply taken as Dg =
∏

x

∏
��
g��(x) , consistently with the choice 

of the functional measure �[�] shown in Eq. (12), while D� is:

(22)
ġ𝜇𝜈(x, 𝜏) =

𝛿A[�,�]

𝛿𝜋𝜇𝜈(x, 𝜏)

𝜋̇𝜇𝜈(x, 𝜏) = −
𝛿A[�,�]

𝛿g𝜇𝜈(x, 𝜏)

(23)Ω(A) = ∫ Dg D� �(A −A[�,�]),

(24)D� =
∏

x

∏

��

[
�3∕2
g

d���(x)

]
= (�V

g
)3∕2

∏

x

∏

��

d���(x),
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where the dimensional constant �g has been added as a factor for each infinitesi-
mal volume element of functional integration in order to keep the partition function 
dimensionless, while the symbol V in �V

g
 denotes the invariant integration volume.

Let us stress that the partition function in Eq. (23) is well defined irrespectively 
to the renormalizability of the theory. The expression may look formal, but it is not. 
As already outlined in [1], the advantage of an expression like the one in Eq. (23) is 
to be a functional integral with a clear probabilistic interpretation, at variance with 
the Feynman path integral. Then, similarly to the path integral, one has the prob-
lem of functional integration, but nothing more. In particular, while the theoretical 
justification of path integrals in quantum field theory comes only “à posteriori” as 
long as they allow to compute finite amplitues, and to this purpose renormalizability 
is crucial in order for a theory to be well defined, this is not the case for the parti-
tion function in Eq. (23), which comes from first principles and has a clear physical 
interpretation on its own. Within symplectic quantization the fundamental level of 
description of the systems is assumed to be, as in classical statistical mechanics, 
the microscopic symplectic dynamics. Then, under the assumption of ergodicity for 
the latter, one can write a partition function such as the one in Eq. (23). Quantum 
fluctuations are controlled in first place by the dynamics of Eq.  (22), from which 
the microcanonical partition function in Eq.  (23) follows. There might be “patho-
logical” configurations which satisfy the fixed-action constraint by putting a very 
large, but compensating, amount of action respectively in the “kinetic”, K[�, �̇] , and 
in the “potential”, S[�] , terms of the generalized action. But this is not a problem, 
since within this approach the physical consistency of the theory does not rely on 
renormalizability. From such a perspective, where the scale-invariance property of 
the theory is not compelling as usual, the problem of functional integration can be 
easily solved by putting the theory on a lattice (recipes for this have been devised in 
the past [24]) and by sampling configurations with probability

The key point is that the probability density in Eq. (25) comes directly from the orig-
inal theory with no need of Wick-rotating to Eucliden path-integrals. The rotation 
from real to immaginary time has in fact no physical motivation other than allow-
ing us to work with a well-defined probability measure. Such a measure allows for 
non-perturbative approaches, for instance to cast strong-coupling expansions on the 
lattice for non-abelian gauge theories as high-temperature expansions in statistical 
mechanics [25]. But the whole justification of working with Euclidean field theory 
comes only “à posteriori”: it is thus very appealing to have a functional approach 
to field theory which already in real time is well defined from the point of view 
of probability. Moreover, recent results pertaining precisely the stochastic quanti-
zation approach to gravity [20], showed that in certain circumstances (e.g., during 
inflation) it is not even possible to rotate the Euclidean theory back to the original 
quantum field theory. Therefore, in particular for gravity, a formalism allowing us to 
write functional integrals well defined probabilistically already in Minkowski space 
seems particularly useful.

(25)PA(�,�) =
1

Ω(A)
�(A −A[�,�]).
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The problem of gravity non-renormalizability becomes more compelling 
when we try to change the statistical ensemble of quantum fluctuations, that is, 
when we try to transform the microcanonical type of partition sum in Eq.  (23) 
into a canonical one. For the same reason explained in [1], namely the non-defi-
niteness of a relativistic action sign, the integral transformation which allows us 
to change ensemble must be a Fourier transform:

For an expression like the one in Eq. (26) we are back to the old problem: it makes 
sense as long as the theory it is renormalizable. Nevertheless now there are two 
intermediate steps which could be forbidden for physical reasons: first, the assuption 
that an equilibrium measure, like the one in Eq. (23), really exists, assumption which 
is based on the ergodicity of dynamics in Eq. (22); second, the assumption that the 
ensemble with a hard constraint on the action, Eq. (23), and the “canonical” ensem-
ble of Eq. (26), characterized by a soft constraint, are equivalent. If we believe that 
in most cases of interest ergodicy holds, we are then left with the hypothesis that for 
gravity the two ensembles just mentioned are not equivalent. Something not at all 
suprising, if true, since the lack of equivalence of statistical ensembles is not uncom-
mon in statistical mechanics. Moreovere, precisely the gravitational potential in the 
non-relativistic regime is a well-known case were inequivalence of statistical ensem-
bles for thermal fluctuations takes place [27]. In particular, the non equivalence of 
thermal ensembles for gravitating systems comes from the long-range nature of the 
gravitational interaction [27], which makes energy non-extensive.

In summary, while it is standard knowledge that different statistical ensem-
bles are not equivalent for the large-scale thermal fluctuations of gravity [27], in 
the present work we also put forward the hypothesis that a similar “non-equiv-
alence” holds even for the statistical ensembles of quantum fluctuations at high 
energy. In this perspective, as soon as consensus will be gathered around one of 
the high-energy regulators proposed for a quantum theory of gravity (e.g., loop 
quantum gravity [9, 10]), this finding will also have an impact on the problem of 
statistical ensembles inequivalence for the quantum fluctuations of gravity. But, 
since a general agreement on such a UV regulator has not been reached so far, 
we rely here on the most agnostic, at present, hypothesis: the pseudo-microca-
nonical ensemble of Eq.  (23) and the path-integral of Eq.  (26) are not equiva-
lent. In what follows the path-integral approach to gravity will be thus regarded 
just as a low-energy approximation of the theory.

In [1] we have shown that the pseudo-microcanonical partition function for 
a relativistic scalar field reduced to the Feynman path-integral of the corre-
sponding field theory, after Fourier transforming with respect to the action and 
integrating over momenta. In what follows we are going to do the same for the 
pseudo-microcanonical partition function of Eq. (23).

(26)Zgrav = ∫ dA e−iA∕ℏ Ω(A) = ∫ D�Dg e−iℏA[�,�].
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4 � Cosmological Constant

We expect that the main goal of symplectic quantization will be represented by the 
possibilities it opens up to describe in a consistent manner the dynamics of the gravi-
tational field in all situations where this can be relevant. For instance, we have in mind 
the non-equilibrium aspects of the quantum fluctuations relaxational dynamics in infla-
tionary cosmology [30–34]. We also expect that symplectic quantization will allow us 
to give a simple and unequivocal definition in the framework of quantum cosmology 
of concepts typical of statistical systems such as non-equilibrium dynamics and irre-
versibility. For example, we expect symplectic quantization to be the good formalism 
to go beyond the Einstein’s frozen-block universe scenario, i.e., the good formalism 
to represent an evolutionary dynamics of the universe [28]. But right now we leave 
these speculations as a matter for future investigations and we present an analysis more 
limited in scope. We want to show how the new kinetic degrees of freedom introduced 
in the context of symplectic quantization are directly related to the appearance of a cos-
mological constant term in Einstein equations passing via the path-integral approach to 
gravity. In particular we want to show that the symplectic quantization of pure gravity 
without a cosmological constant term produces, by simply integrating over the conju-
gated momenta ���(x) , a theory of gravity with a cosmological constant Λ . This deriva-
tion of Λ is therefore still quantum in nature but is different from the usual one, where Λ 
is interpreted as the vacuum energy of matter fields: here Λ is solely related to intrinsic 
properties of pure gravity, in particular to the fact that g�� has its own dynamics. Let us 
stress that the procedure outlined here, though provinding a new physical interpretation 
and derivation of the cosmological constant, is in first instance motivated by the neces-
sity to relate the new kinetic degrees of freedom of the field, ���(x) , so far unobserved, 
to known physics.

The procedure which allows us to relate the momenta ���(x) to the cosmological 
constant requires to transform the partition function in Eq.  (23) from the hard-con-
straint ensemble, where the value of A[�,�] is fixed with a Dirac delta, to the ensemble 
where the constraint is soft, for instance by means of an integral (Fourier) transform:

where we have defined

The integration over momenta is technically quite easy, since the pseudo-Hamilto-
nian A[�,�] depends quadratically on them, but it is at the same time non-trivial 
due to the non-separable nature of A[�,�] . This non-separability comes from the 
dependence of the kinetic term K[�,�] on the metric itself, a characteristic which is 

(27)
Zgrav(z) = ∫ dA e−izA Ω(A) = ∫ Dg D� e−izA[�,�]

= ∫ Dg Zkin[z, �] e
izS[�],

(28)Zkin[z, �] = ∫ D� e−izK[�,�].
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typical of the symplectic quantization of gravity and not of ordinary matter fields. 
By choosing z = 1 (in natural units, which means z = ℏ−1 ), one can write:

Intermediate steps of the not difficult calculation yielding the right hand side of 
Eq. (29) are reported in the Appendix.

We need now to recall a quite remarkable coincidence: only in four space–time 
dimensions it happens that the determinant of the bi-tensor Ĝ[�(x)] is constant 
across the whole space–time manifold [19, 22]:

In [22] it is proposed the value � = −1 for the adimensional constant in order to have 
physical consistency of the stochastic quantization procedure. In the case of sym-
plectic quantization we find convenient to ask for a small deviation from this value, 
i.e., we propose

where we take �Λ , which is the only free parameter of the new theory, as a small 
positive number, 𝜀Λ < 1 . The choice of the subscript Λ in �Λ will be immediately 
clear.

We have achieved an interesting result: the integration over the kinetic degrees 
of freedom of the metric field represents a possible way to derive the existence of 
a cosmological term in Einstein equations.

In fact defining

and plugging into Eq. (30) the definition of � given in Eq. (31) we get

The choice made for the parameter � in Eq. (31) is therefore consistent with a posi-
tive cosmological constant, Λ > 0 , and we can finally recover the path-integral for 
the Einstein–Hilbert action of pure gravity with a cosmological constant term:

(29)

Zkin[1, �]

= � D𝜋(x) e
−i

𝜅g

2
∫ d4x |g|1∕2 𝜋𝜇𝜈 (x) G

𝜇𝜈,𝛼𝛽
[�(x)] 𝜋𝛼𝛽 (x)

= exp

(
−

i

2𝜅2
g
� d4x |g|1∕2 log[det Ĝ[�(x)]]

)
.

(30)det Ĝ[�(x)] = −1 − 2𝜆.

(31)� = −

(
1 +

�2
Λ

2

)
,

(32)2Λ =
𝜅

𝜅2
g

log det Ĝ[�(x)]

(33)2Λ =
�

�2
g

log[1 + �2
Λ
] ≃ �2

Λ

�

�2
g

.
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The derivation of Eq.  (34) from the pseudo-microcanonical partition function in 
Eq. (23) is the main result of this paper: the integration over the kinetic degrees of 
freedom of the field �(x) give rise to a cosmological constant term.

We want to recall at this point that in order to define the symplectic quantiza-
tion ensemble for the quantum fluctuations of gravity we have introduced only 
one new physical constant, �g , the one appearing in the definition of K[�,�] in 
Eq.  (17). The constant � appearing in the definition of the DeWitt supermetric 
G
��,��

[�(x)] is in fact just a dimensionless number. Now, by reverse engeneering 
the relation between constants in Eq. (33), we can see that �g is not really a new 
object but can be written as a combination of known constants:

That is, rather than saying that the dynamics of g��(x) , which is controlled by �g , 
give rise to a cosmological constant term, we can see the relation between con-
stants from the point of view of Eq. (35): it is Λ that determines the typical scale for 
the symplectic dynamics of �(x, �) . In order to make this clear one can rewrite the 
kinetic term K[�,�] , taking advantage of Eq. (33), as:

It is easy to see that the expression in Eq. (36) is dimensionless, as it has to be, since 
[�Λ] = [G] = [g] = 0 , [Λ] = L−2 , [�] = L2 and [ġ𝜇𝜈] = L−1.

In conclusion we have shown how to obtain from the microcanonical partition 
function of symplectic quantization, Eq.  (23), the standard Feynman path-inte-
gral for gravity [26], showing that the cosmological constant term in Einstein 
equations is a fingerprint of the existence of kinetic degrees of freedom for g�� . 
The theory proposed is therefore predictive: it describes a new phenomenon, the 
existence of an intrinsic dynamics for the field �(x, �) , and relates a feature of 
this new phenomenon, i.e., the characteristic time-scale of the gravitational field 
quantum fluctuations dynamics, to known physical constants: the Einstein gravi-
tational constant � and the cosmological constant Λ , which has to be taken as an 
input from observational data. In the new theory there is only one dimensionless 
parameter let free to be fixed, the constant �Λ appearing in the definition of the 
DeWitt supermetric G��,��

[�(x)].

(34)
Zgrav = ∫ Dg(x) D�(x) e−iA[�,�]

= ∫ Dg(x) exp

(
i
1

2� ∫ d4x |g|1∕2[R − 2Λ]

)
.

(35)�g ≃

√
�

2Λ
.

(36)K[�,�] =
1

2𝜀Λ

√
2Λ

𝜅 ∫ d4x |g|1∕2 ġ𝜇𝜈(x, 𝜏) G𝜇𝜈,𝛼𝛽
[�(x)] ġ𝛼𝛽(x, 𝜏)
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5 � Conclusions

Let us summarize here the main logical steps explaining how symplectic quantization, 
first proposed for a scalar field in [1], works for gravity. The most relevant novelty of 
the approch is the claim that fields, in particular the metric field �(x) in the present 
case, depend on an additional variable � with physical dimensions of time, i.e. we have 
�(x, �) . This variable, here referred to as intrinsic time � , is not an additional coordi-
nate of the space–time continuum: � is the parameter which controls the sequence of 
quantum fluctuations at each point of the space–time manifold and is different from 
the coordinate time x0 = ct . Intrinsic time � , which indeed already appeared as a ficti-
tious variable in the stochastic quantization approach [22, 23], it is raised here to its 
full dignity of physical time. In the framework of symplectic quantization it is there-
fore possible to consistently define a dynamics for the quantum fluctuations of �(x, �) . 
This dynamics, which is deterministic, is generated by a generalized action of the kind 
A[�,�] = K[�,�] − S[�] . While S[�] , which can be taken as any general relativis-
tic action for the gravitation field (e.g., Einstein–Hilbert, but the approach works for 
modified gravity theories as well [29]), plays the role of a potential term, we have 
that K[�,�] is a kinetic term, controlling the rate of change of �(x, �) with respect to 
intrinsic time. The term K[�,�] appears for the first time in the present paper, up to 
our knowledge. The knowledge of A[�,�] allows then us to write down the symplec-
tic dynamics in intrinsic time generated by the Hamilton equations in (22). The fluc-
tuations of the term S[�] along the action-preserving dynamics represent the quantum 
fluctuations of the gravitational field. By then assuming a sort of ergodicity for this 
symplectic dynamics, a fact which is far from trivial and might not be true in some 
extreme conditions (e.g., close to cosmological singularities and black holes), it is then 
possible to define a pseudo-microcanonical ensemble based on the hypothesys that all 
the configurations of the fields �(x) and �(x) corresponding to the same value of the 
generalized action A = A[�,�] have identical probability. This is the only and main 
assumption of the paper. Remarkably, within the framework of symplectic quantiza-
tion the non-renormalizability problem of gravity is much more limited in scope. In 
particular, it does not cause problems to the definition of the hard-constraints ensem-
ble for quantum fluctuations, Eq.  (23). Finally, by considering a sort of low-energy 
approximation where the ensemble defined by a hard constraint on the functional 
A[�,�] is replaced with the ensemble characterized by a soft constraint on A[�,�] 
(e.g., by means of an integral transform), we have shown that the integration over the 
momentum field �(x) gives rise to a cosmological constant in a theory of pure grav-
ity initially free from it. We have therefore shown that within the framework of sym-
plectic quantization the appearance of a cosmological constant Λ in Einstein equations 
is still a quantum effect, but it solely related to the intrinsic properties of the metric 
field �(x) , in particular to its rate of change with respect to intrinsic time expressed by 
the momentum field �(x) . Quite remarkably, exploiting the definition of the DeWitt 
supermetric G��,��

[�(x)] to build the kinetic term K[�,�] of symplectic quantization, Λ 
turns out to be constant across the whole space–time manifold only in d = 4.

Thanks to the additional  intrinsic time � variable of the symplectic quantization 
approach we have thus been able to reincorporate the most natural notion of time as 
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a flux of events in a quantum theory of gravity. We also provided a new interpreta-
tion of the cosmological constant Λ and hopefully defined a consistent framework 
for the study of cosmological problems where an explicit dependence on time is 
needed. Finally, we want to stress that the symplectic quantization of gravity, though 
in some sense closer to the canonical approach to quantum gravity (it does not 
require any sort of supersymmetry or extra-dimensions), does not make any claim 
on the microscopic degree of freedom of the gravitational field and can be therefore 
equally well compatible with different microscopic theories.

Appendix

Appendix A: Gaussian Functional Integral

The result of the Gaussian functional integral in Eq. (29) can be obtained as follows. 
The first step is to introduce the dimensionless integration variable

so that the functional integral to be calculated reads as

where, for convenience, we have considered the Euclidean version of the path inte-
gral. It is then natural to introduce the invariant and dimensionless infinitesimal vol-
ume element

and simply write

(37)𝜋̂𝜇𝜈(x) = 𝜅3∕2
g

𝜋𝜇𝜈(x)

(38)

Z(1) = ∫
∏

x

∏

𝜇𝜈

d𝜋̂𝜇𝜈(x) exp

(
−

1

2𝜅2
g
∫ d4x |g|1∕2 𝜋̂𝜇𝜈(x) G𝜇𝜈,𝛼𝛽

[g(x)] 𝜋̂𝛼𝛽(x)

)
,

(39)d�(x) =
d4x |g|1∕2

�2
g

,

(40)

Z(1) = ∫
�

x

�

𝜇𝜈

d𝜋̂𝜇𝜈(x) exp

�
−
1

2 ∫ d𝜇(x) 𝜋̂𝜇𝜈(x) G
𝜇𝜈,𝛼𝛽

[g(x)] 𝜋̂𝛼𝛽(x)

�

= ∫
�

�

�

𝜇𝜈

d𝜋̂𝜇𝜈(�) exp

�
−
1

2

�

�

𝜋̂𝜇𝜈(�) G
𝜇𝜈,𝛼𝛽

[g(�)] 𝜋̂𝛼𝛽(�)

�

=
�

�

1√
det[G(�)]

= exp

�
−
1

2

�

�

log det[Ĝ(�)]

�

= exp

�
−

1

2𝜅2
g
∫ d4x �g�1∕2 log det[Ĝ(x)]

�
.
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The only subtelty of the calculation in Eq. (40) above is that we have discretized the 
path integral on a disordered lattice (a lattice consistent with local Lorenz invari-
ance) such that each point � is surrounded by a unitary invariant volume. The origi-
nal continuum measure is restored in the last line, at the end of the calculation, so 
that the particular choice of the discretization should be irrelevant.
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