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Abstract
Assuming that the free energy of a gas depends non-locally on the logarithm of its 
mass density, the body force in the resulting equation of motion consists of the sum 
of density gradient terms. Truncating this series after the second term, Bohm’s quan-
tum potential and the Madelung equation are identically obtained, showing explic-
itly that some of the hypotheses that led to the formulation of quantum mechanics 
admit a classical interpretation based on non-locality.

1  Introduction

In 1927 Madelung [1] showed that the Schrodinger equation for one-electron prob-
lems can be transformed into hydrodynamical equations. These equations describe 
the time evolution of the density and velocity fields of an ideal (i.e., non-viscous) 
gas subjected to the action of both classical and quantum potentials. This latter 
represents the novelty of the Madelung equation; it is generally referred to as the 
Bohm potential [2, 3] and is a central concept of the de Broglie-Bohm formulation 
of quantum mechanics (see review in [4]). Accordingly, the Schrodinger equation 
can be interpreted as a Hamilton-Jacobi equation associated to the Madelung hydro-
dynamic equations, so that Madelung could conclude [1] that there is thus a chance 
of erecting the quantum theory of the atom on this basis. In fact, the Madelung equa-
tions are the basis for a full description of quantum fluids [5].

Since then, many researchers have observed that, as the Bohm quantum poten-
tial derives from the Laplacian term of the Schrodinger equation, quantum effects 
must be the consequence of some sort of non-local interaction. The non-local nature 
of quantum mechanics is further stressed by the fact that, due to the instantaneous 
nature of the collapse of the wavefunction, possible actions performed in a certain 
space region can induce immediate changes in distant regions [4–7]. Nevertheless, a 
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clear explanation of how the Schrodinger equation derives from the non-locality of 
the force field is still missing.

In this work, we propose to fill this gap, starting from a non-local characteri-
zation of an ideal, i.e., non-viscous, fluid. Then, considering particle density as a 
phase field, we show that its evolution is described by the Madelung hydrodynamic 
equations.

2 � From Non‑locality to Schrödinger Equation

Consider an ideal fluid in isothermal conditions, that is a system composed of a 
large number of identical particles of mass m that do not interact with each other 
except for instantaneous thermalizing collisions. Its governing equations, expressing 
the conservation of mass and momentum, read [8]:

with dA∕dt = �A∕�t + � ⋅ ∇A denoting the material derivative. Here, � is the density, 
� is the fluid velocity, while � is a force per unit mass, so that �� is a body force, 
i.e., a force per unit volume. Note that � and � are mean values, defined within an 
elementary point volume, assuming local equilibrium. In addition, � is proportional 
to the probability distribution to find a particle in a unit volume located in � at time 
t. Now, considering that the probability distribution for a combination of two mutu-
ally independent subsystems is equal to the product of the distribution functions of 
the two subsystems separately, we reach the conclusion that ln � must be a scalar and 
additive integral of motion, and therefore it must be proportional to the energy (see 
Landau et al. [9]. Therefore, we may assume that the free energy per particle mass, 
f̂ (�, t) , of a gas at constant temperature T has the following form:

where �(�, t) is the potential energy per unit mass resulting from the action of an 
external conservative force, while u(x) is an interaction kernel between particles 
located at a distance x = |� − �

�| , with the normalization condition, ∫ u(x)d3� = 1 . 
Dropping for convenience the time dependence, this expression can be rewritten in 
the more convenient form,
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is the thermodynamic part, corresponding to the free energy of a uniform ideal gas. 
Expanding in Taylor series,

and truncating the series after the second term (there can be no ∇ ln � term, due the 
isotropy of the fluid), we find,

where the leading-order correction term,

is the non-local part, with

denoting the square of a characteristic length, a. Note the negative sign in Eq. (9), 
revealing that particles are assumed to attract each other.

Now we define a free energy per unit volume, �f̂  , so that the total free energy is 
given by the following functional:

where V is the total volume, that we assume to be infinite. Integrating by parts with 
the assumption that � → 0 exponentially as r → ∞ , find:

where f denotes the effective free energy per unit volume.
At equilibrium, the free energy functional (11) is minimal, under mass conserva-

tion constraint, ∫ �d3� = M constant . Therefore, applying the Euler-Lagrange equa-
tion, we see that the Legendre multiplier defines the following generalized chemical 
potential,

Here, the first term on the RHS denotes the thermodynamic chemical potential (i.e., 
Gibbs’ free energy per unit mass),
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where v̂ = �−1 and P = −df̂th∕dv̂ are the specific volume and the pressure, 
respectively.

The second term on the RHS of Eq. (12) is the non-local contribution to the 
generalized chemical potential, i.e.,

The equations of motion can be determined applying a variational principle [10] to 
derive the Euler Eq. (2) for a compressible, inhomogeneous fluid where � is a body 
force, driven by density gradients in the fluid. The same result can be obtained more 
heuristically by applying Noether’s theorem [11] or by the least action principle 
[12]. At the end, we find Eqs. (1) and (2), with the following force per unit mass:

Let us consider the two terms on the RHS separately. On one hand we have:

and therefore, considering that P =
kT

m
�,

On the other hand, from Eqs. (14) and (15), we define a non-local reversible body 
force, which is usually referred to as the Korteweg force:

The non-local potential (14) can be expressed in the following equivalent form:

In fact:

When a is the thermal de Broglie wavelength [13],
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then �nl reduces to Bohm’s quantum potential [2, 3], i.e.,

Finally, summarizing, from Eq. (2), the force balance per unit mass yields the Made-
lung equation:

with

Here, V denotes the thermodynamic potential energy (5), while Q = �nl is its non-
local counterpart, that is the Bohm potential.

Since the fluid is frictionless, the flow is irrotational (i.e., with zero curl), and the 
fluid velocity can be expressed as the gradient of a real scalar function, namely the 
velocity potential, S, that is,

Substituting (25) into (23) we see that S satisfies the following Hamilton-Jacobi 
equation, describing the motion of a particle of mass m in a conservative force field, 
characterized by a classical potential energy, V, and the quantum potential field, Q 
(see Eqs. (22) and (23)),

This equation, together with the continuity equation (1),

can be obtained using the Madelung transform,
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where the RHS denotes the gradient of the total energy, E, that is the sum of kinetic 
energy, potential energy, and quantum potential energy. With some manipulation, 
we can write Eq. (30) in the following equivalent form,

with �Q denoting the quantum stress tensor. Finally, it must be noted that the non-
local term is not a small correction to its thermodynamic counterpart, as in Eq. (18) 
∇2� ≈ �∕a2 , so that the non-local potential Q is not necessarily smaller than the 
local, O(kT∕m) term.

Equation (31) (or, equivalently, Eqs. (23) and (31)), together with Eq. (1), are known 
as the superfluid hydrodynamic equations [5].

3 � Higher‑Order Terms

Considering the higher-order terms in the expansion (6), we obtain the following 
expansion for the free energy,

where c0 = 1 and c2 = 1 (this is the definition (9) of a2 ), while,

are the normalized central moments of the u(x) distribution.
The total free energy then becomes, after integrating by parts:

where Fth =
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Eqs. (10) and (11). Now, minimizing this functional with the constraint of mass con-
servation we obtain:
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where �th is the thermodynamic chemical potential (13), while the non-local poten-
tials �(2n)

nl
 read:

In particular, c2 = 1 and �(2)

nl
= Q . Finally, the body force appearing in the Bernoulli 

equation (2) is again equal to the expression (15), with the Korteweg force now 
being equal to the sum of the gradients of the non-local potential (37),

The last term on the RHS of Eq. (38) represents a presumably small correction to 
the Madelung hydrodynamic equation (23).

4 � Comments and Conclusions

In this work, Bohm’s quantum potential is derived assuming non-local effects, 
namely a non-local dependence of the free energy of the system on the logarithm 
of its mass density through an interaction kernel, u(x) . This implies that the body 
force in the Madelung hydrodynamic equations of quantum fluids consists of a 
density gradient expansion (see Eq. (38)), truncated after the second term. Clearly, 
that means that considering all the hierarchy of density gradient terms, the interac-
tion kernel u(x) must  lead to very small corrections to the Schrödinger equation. 
For example, assume that u(x) consists of a hard-core, short-range repulsion term of 
range d and a long-range attractive, exponentially decaying potential of range � , i.e.,

In the limit d∕� = O(�) , with 𝜖 ≪ 1 , assuming that n0d3 ≈ n1�
3 = O(�−1) , the nor-

malization condition, ∫ u(x)d3� = 1 , leads to n0 = 9n1�
3∕d3 , while Eq. (9) yields: 
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3) , showing that a∕� = n0d

3 = O(�−1∕2) . In general, Eq. (33) 
gives:

showing that, as � ≪ a , the moments decrease as n increases. In particular, we con-
firm that c2 = 1 , while c4 = −30(�∕a)2 = O(�) , c6 = 1680(�∕a)4 = O(�2) , etc. 
Consequently, assuming that the interaction kernel is given by Eq. (39), we see that 
the additional terms, correcting the Madelung equation (26), are very small.

Concluding, we have shown that some of the hypotheses that led to the formula-
tion of quantum mechanics admit a simple classical interpretation, based on non-
locality, so that quantum mechanics could be interpreted as a sort of mean field 
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theory, that is a coarse-grained approximation of a more microscopic physical real-
ity. What remains to be seen is the physical nature of the underlying non-local inter-
action field (see discussion by L. Smolin [14]). In fact, although this hypothesis is 
not used in the mathematical development of the model, it is essential for its physi-
cal understanding, analogously to the background field hypothesis leading to the for-
mulation of stochastic mechanics (see Nelson [15]).

Funding  Open access funding provided by Università di Pisa within the CRUI-CARE Agreement.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article 
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is 
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​
ses/​by/4.​0/.

References

	 1.	 Madelung, E.: Quantum theory in hydrodynamical form. Z. Phys. 40, 322 (1927)
	 2.	 Bohm, D.: A suggested interpretation of the quantum theory in terms of “hidden” variables. I. Phys. 

Rev. 85, 166 (1952)
	 3.	 Bohm, D.: A suggested interpretation of the quantum theory in terms of “Hidden” variables. II. 

Phys. Rev. 85, 180 (1952)
	 4.	 Bohm, D., Hiley, B.J.: Non-locality and locality in the stochastic interpretation of quantum mechan-

ics. Phys. Rep. 172, 93 (1989)
	 5.	 Barenghi, C.F.F., Parker, N.G.: A Primer on Quantum Fluids. Springer, Berlin (2016)
	 6.	 Holland, P.R.: The de Broglie-Bohm theory of motion and quantum field theory. Phys. Rep. 224, 95 

(1993)
	 7.	 Bassi, A., Ghirardi, G.-C.: Dynamical reduction model. Phys. Rep. 379, 257 (2003)
	 8.	 De Groot, S.R., Mazur, P.: Non-Equilibrium Thermodynamics. North Holland, Amsterdam (1962)
	 9.	 Landau, L.D., Lifshitz, E.M., Pitaevskii, L.P.: Statistical Physics I. Pergamon, Oxford (1980)
	10.	 Lamorgese, A., Mauri, R., Sagis, L.M.C.: Modeling soft interface dominated systems: a comparison 

of phase field and Gibbs dividing surface models. Phys. Rep. 675, 1 (2017)
	11.	 Anderson, D., McFadden, G., Wheeler, A.: Diffuse-interface methods in fluid mechanics. Ann. Rev. 

Fluid Mech. 30, 139 (1998)
	12.	 Lowengrub, J., Truskinovsky, L.: Quasi-incompressible Cahn-Hilliard fluids and topological transi-

tions. Proc. R. Soc. Lond. A 454, 2617 (1998)
	13.	 Gaveau, B., Schulman, L.S.: Reconciling kinetic and quantum theory. Found. Phys. 50, 55 (2020)
	14.	 Smolin, L.: Could quantum mechanics be an approximation to another theory? arXiv:​quant-​ph/​

06091​09 (2016)
	15.	 Nelson, E.: Quantum Fluctuations. Princeton University Press, Princeton (1985)

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published 
maps and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://arxiv.org/abs/quant-ph/0609109
http://arxiv.org/abs/quant-ph/0609109

	A Non-local Phase Field Model of Bohm’s Quantum Potential
	Abstract
	1 Introduction
	2 From Non-locality to Schrödinger Equation
	3 Higher-Order Terms
	4 Comments and Conclusions
	References




