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Abstract
This paper investigates various properties that may by possessed by quantum states, 
which are believed to be specifically “quantum” (entanglement, nonlocality, steer-
ability, negative conditional entropy, non-zero quantum discord, non-zero quantum 
super discord and contextuality) and their opposites. It also considers their “abso-
lute” counterparts in the following sense: a given state has a given property abso-
lutely if after an arbitrary unitary transformation it still possesses it. The known 
relations between the listed properties and between their absolute counterparts are 
summarized. It is proven that the only two-qubit state that has zero quantum discord 
absolutely is the maximally mixed state. Finally, related conceptual issues concern-
ing the terms “classical” and “quantum” are discussed.

Keywords Quantumness · Unitary operations · Quantum discord

1 Introduction

Quantum mechanics differs in various ways from classical physics because it is 
based on a different space of states. In quantum mechanics states are density opera-
tors on Hilbert space, which have various properties that may be labelled as “non-
classical”. The first aim of this paper is to review most prominent of these properties 
and relations between them. The second aim is to study how these properties (and 
their opposites) change under unitary operations performed on states possessing 
them. To this purpose, for each property X, its “absolute” version (the property of 
being absolutely X) will be introduced: a quantum state � is said to be an absolutely 
X state iff for any unitary operator U, the state �� = U�U† has the property X. The 
importance of these absolute variants of properties comes from the physical mean-
ing of unitary transformations and is explained in Sect. 2.2. The main new technical 
result of this paper is that the only two-qubit state that has zero quantum discord 
absolutely is the maximally mixed state 1
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The paper is organised as follows. Section  2 will provide the basic framework 
and fix the notation for the rest of the work. In Sect. 3 properties of quantum states 
discussed in the literature will be reviewed. In Sect. 4 relations between them will 
be analysed: whether possessing of one property by a given state implies possessing 
another property by the same state. In Sect. 5 the central notion of the paper will 
be introduced, namely possessing a given property in an absolute vs. non-absolute 
way. I will apply this notion to all properties listed in Sect. 3. Two main questions 
asked here will be as follows: Can a given property be possessed both in an absolute 
way and in a non-absolute way (by different classes of states)? If so, what are neces-
sary and sufficient conditions for a state possessing a given property in an absolute 
way? In Sect. 6 relations between different absolute properties as well as between 
absolute properties and their “ordinary” counterparts will be investigated. Section 7 
will discuss what exactly one can mean by “classical” when saying that the states 
of quantum mechanics have various non-classical features. And finally Sect. 8 will 
summarize the results.

The results presented here are of both theoretical and practical interest. From 
a theoretical point of view, the concept of possessing a given property absolutely 
gives us a better understanding of the nature of crucial properties of quantum states, 
by revealing their relativity (in some cases) to the choice of a basis in the Hilbert 
space. From a practical point of view, unitary operations can be used to transform a 
given state that lacks a property that is needed for a certain quantum computational 
task to another state that possesses this property. Therefore, it is important to know 
the class of states that allow for such a transformation in order to improve our capa-
bility of obtaining states useful for a certain quantum computational task from use-
less ones.

In the analyses of this paper I try to be neutral (as far as possible) with respect to 
the issues concerning the interpretation of quantum mechanics and the measurement 
problem (cf. footnote 2). The results reviewed and obtained here make sense (at 
least) for all interpretations of quantum mechanics that do not change the standard 
Hilbert space formalism; however, depending on the interpretation, the exact physi-
cal meaning of these results may differ. Some interpretational problems will arise, 
however, in Sect. 7, which has more conceptual character.

2  Framework

2.1  Quantum States

Let us denote the n-dimensional Hilbert space by Hn (we will restrict to n < ∞ 
and often consider only n = 4 ) and the space of all operators on Hn by H̃n . States 
of physical objects are assumed to be represented by density operators 𝜌 ∈ H̃n , 
� ∶ Hn → Hn . In finite cases such operators can be represented by density matrices 
(denoted here by the same symbol). A state is called pure if there exist ��⟩ ∈ H such 
that � = ��⟩⟨��.

A composite physical system consists of two or more subsystems. If this is the case, 
all the subsystems are represented by density operators defined on Hilbert spaces of 
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appropriate dimensions and the whole system is represented by a density operator 
defined on the Hilbert space that is the tensor product of all those Hilbert spaces. For 
example, let us consider a system �AB composed of two subsystems �A and �B , one 
of dimension n ( �A ∶ Hn → Hn ) and one of dimension m ( �B ∶ Hm → Hm ). Then a 
composite system is 𝜌AB ∶ Hn ⊗Hm → Hn ⊗Hm . The subsystems can be obtained 
from a given composite system by taking partial trace of the respective density matrix: 
�A = TrB�

AB , �B = TrA�
AB.

2.2  Unitary Operations

One of the most important classes of quantum operations that can act on quantum 
states are unitary operators, which by definition satisfy UU† = U†U = � , where � is 
an identity operator. Mathematically, unitary transformations are symmetries of Hilbert 
spaces—they leave invariant all their structure, in particular they do not change the val-
ues of inner product. Physically, they can be interpreted in two different ways. On the 
one hand, unitary transformations describe the time evolution of isolated quantum sys-
tems. On the other hand, they can be viewed as a change of a basis in a Hilbert space. 
Under the second interpretation, what changes is not the physical content of a state, but 
only our way of representing it (for a scrupulous argumentation that unitarily-related 
states are indeed physically equivalent at least in ordinary quantum mechanics see [50, 
pp. 24–29]).

These interpretations are not competitive: this distinction means only that two physi-
cally different operations (the change of a state in time, which is physically real and the 
change of a basis, which is only a formal manipulation) are represented by the same 
mathematical operation. The choice of an interpretation depends on a situation that is 
analysed and should be clear from the context.

For composite systems one can distinguish between local and global unitary opera-
tions. Local unitary operations have a form U = UA ⊗ UB , where UA and UB are unitary 
operators that act independently on each subsystem. These operations cannot change 
relations between subsystems (such as those listed in Sects. 3.1–3.7; see Fact 5.1). 
Global unitary operations do not have this form and therefore intertwine both subsys-
tems, possibly changing relations between them. Therefore, although unitary opera-
tions do not change the physical content of a state of a system, they may change a way 
in which the system is divided into subsystems; and under a new division, the relation-
ships between subsystems may be different. This reveals a kind of relativity of entan-
glement and similar properties of quantum systems (namely, to the choice of a basis), 
which is, however, unsurprising: these properties capture relations between subsystems 
of a given system, so one may expect they will change with a new choice of subsys-
tems (even if the whole system is the same). Interestingly, they are not totally free to 
change—the constraints to this will be investigated in Sect. 6.
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2.3  Measurements

Another important type of quantum operations is quantum measurement. The 
standard notion of measurement is the so-called projective (or von Neumann) 
measurement.

Definition 2.1 Projective measurement (von Neumann measurement) is described by 
an observable, M, which is a hermitian operator on the state space of the observed 
system. The observable has a spectral decomposition

where Pm is the projector onto the eigenspace of M with eigenvalue m. Projectors 
satisfy 

∑
m Pm = � and PmPm� = �mm�.

The von Neumann measurement “detects” the value of a given physical quantity 
(observable) of a quantum system in a given state and projects this state into the 
eigenstate of this observable associated with the measured value. This “detecting” 
is usually not deterministic in the sense that more than one value can be obtained 
in a given measurement with non-zero probability; but these values and probabili-
ties are uniquely determined by the measured quantity and the state of the system. 
One can generalize this notion to the so-called generalized measurements, which are 
a mathematical representation of detectors with non-ideal efficiency, measurement 
outcomes that include additional randomness, measurements that give incomplete 
information, etc.

Definition 2.2 Generalised measurement (POVM—Positive Operator Valued 
Measure) is described by a collection of measurement operators Mm that satisfy ∑

m M†
m
Mm = � (but are not necessarily projectors).

A special case of the generalised measurement is the weak measurement, first 
introduced in the paper [2]. With a view to its application in context of quantum 
super discord, instead of the original definition I will use the following one by 
Oreshkov and Brun [46]:

Definition 2.3 Weak measurement is given by a pair of operators:

where Π1 and Π2 are two orthogonal projectors satisfying Π1 + Π1 = � and |𝜉| ≪ 1 is 
the strength of the measurement.

(1)M =
∑
m

mPm,

(2)P(�) =

√
1 − tanh�

2
Π1 +

√
1 + tanh�

2
Π2,

(3)P(−�) =

√
1 + tanh�

2
Π1 +

√
1 − tanh�

2
Π2,
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One can also define a measurement performed on a single part of a composite 
system:

Definition 2.4 For a bipartite state �AB , a local von Neumann measurement on the 
subsystem A is a family of one-dimensional orthogonal projections on the space of 
subsystem A, {ΠA

i
} , such that 

∑
i Π

A
i
= �

A.

Definition 2.5 For a bipartite state �AB , a local weak measurement on the subsystem 
A is a pair of weak measurement operators acting on a subsystem A, {PA(x),PA(−x)}

.

Analogous definitions can be formulated for the subsystem B.

2.4  Entropy of Quantum States

Classical probability of some random variable A can be described by a vector of 
probabilities p(a) of obtaining the particular values a of this variable. For such vec-
tors one can define entropy and some derivative notions, which measure its informa-
tion content:

• Shannon entropy: H(A) = −
∑

a p(a) log p(a),
• Joint entropy: H(A,B) = −

∑
a,b p(a, b) log p(a, b),

• Conditional entropy: H(A�B) = −
∑

a,b p(a, b) log p(a�b),
• Mutual information: I(A ∶ B) = H(A) + H(B) − H(A,B).

One can show the following relations between conditional entropy on the one hand, 
and the joint entropy and entropies of the random variables considered separately on 
the other:

Quantum probability is encoded in density operators describing quantum systems. It 
is possible to define quantum analogues of classical entropies (see e.g. [44, ch. 11]). 
The analogy is rather straightforward, with the exception of conditional entropy, for 
which the definition is based on the relations (4) and (5). The analogue of Shan-
non entropy concerning a quantum state � is called von Neumann entropy S(�) . The 
derivative notions have the same names as in the classical case. Therefore, we obtain 
the following list of quantum entropies:

• von Neumann entropy: S(�) = −Tr(� log �),
• Joint entropy: S(�AB) = −Tr(�AB log �AB),
• Conditional entropy: S(�A|�B) = S(�AB) − S(�B),
• Mutual information: I(�A ∶ �B) = S(�A) + S(�B) − S(�AB).

(4)H(A|B) = H(A,B) − H(B),

(5)H(B|A) = H(A,B) − H(A).
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In contrast to its classical counterpart, quantum conditional entropy can be less 
than zero. More specifically, its bounds are: −S(B) ≤ S(A|B) ≤ S(A) . However, one 
needs to remember that in the quantum case the basic entropy, that is, von Neumann 
entropy, is always positive and conditional entropy is only some algebraic combina-
tion of such entropies, not an entropy in the proper sense.

2.5  Fano‑Bloch Decomposition

Any bipartite state �AB of dimension dA × dB can always be represented in the so 
called Fano-Bloch form [14]:

where am = Tr𝜌AB(𝜎A
m
⊗ �B) , bn = Tr𝜌AB(�A ⊗ 𝜎B

n
) are Bloch vectors of reduced 

states �A, �B , tmn = Tr𝜌AB(𝜎
A
m
⊗ 𝜎B

n
) is a correlation tensor and �A

m
 , �B

n
 are generalised 

Pauli matrices satisfying Tr(�i
m
�i
n
) = 2�mn , Tr(�i

n
) = 0 , where i = A,B . This decom-

position is often convenient and simplifies many reasonings.

2.6  Some Special Classes of Quantum States

Some classes of quantum states have a special status because they have particularly 
simple form (allowing for substantial simplifications in calculations), while still 
being non-trivial. Two examples relevant for our purposes are the Weyl states (that 
include the Bell states and the Werner states) and the Gisin states.

2.6.1  Weyl States

The first class of states that will be used here are the locally maximally mixed states, 
also known as the Weyl states. For dA = dB = 2 the Weyl states can be represented, 
up to local unitaries, as

A special case of the Weyl states are the Werner states, introduced in [59], where 
they were used to prove that entanglement does not imply nonlocality (some entan-
gled Werner states are local). The Werner states are convex combinations of one of 
the maximally entangled states and the maximally mixed state:

where 𝜌Ψ− =
1

4

(
�4 − 𝜎x ⊗ 𝜎x − 𝜎y ⊗ 𝜎y − 𝜎z ⊗ 𝜎z

)
 is one of the Bell states. The par-

ticularly important fact about the Werner states is that they are parametrized by a 

(6)

𝜌AB =
1

dAdB

⎛
⎜⎜⎝
�AB +

d2
A
−1�

m=1

am𝜎
A
m
⊗ �B +

d2
B
−1�

n=1

�A ⊗ bn𝜎
B
n
+

d2
A
−1�

m=1

d2
B
−1�

n=1

tmn𝜎
A
m
⊗ 𝜎B

n

⎞
⎟⎟⎠
,

(7)𝜌Weyl =
1

4

(
�AB +

3∑
n=1

t̃n𝜎
A
n
⊗ 𝜎B

n

)
.

(8)𝜌Werner = w𝜌Ψ− +
1

4
(1 − w)�4 =

1

4

(
�2 ⊗ �2 − w�⃗� ⊗ �⃗�

)
,
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single parameter w, which takes values w ∈ [−
1

3
, 1] . On the other hand, this fam-

ily of states is theoretically nontrivial, as it encompasses some entangled states, the 
maximally mixed state and the spectrum of intermediate states.

2.6.2  Gisin States

Another interesting class of states, the Gisin states, was introduced in [20]. They 
have been used to prove the existence of the phenomenon of hidden nonlocality: 
some of the Gisin states which are local (do not violate CHSH inequality) lose this 
feature after applying a purely local operations, so called local filtering. The Gisin 
states are expressed by the following formula:

where

and the ranges of the parameters are 0 ≤ � ≤ �

2
,1 0 ≤ � ≤ 1.

Their eigenvalues are: 0, 1−�
2
,
1−�

2
, � . Observe, that these eigenvalues are depend-

ent only on the parameter � and are independent of the second parameter � . This fact 
will be important later, in Sect. 6.1, where we will use these eigenvalues  to check 
which of the Gisin states possess some absolute properties. The Gisin states are not 
the subset of the Weyl states, but these two classes of states have a non-empty inter-
section, as the Gisin states are locally maximally mixed for � =

�

4
.

3  Properties of Quantum States

Quantum states differ with each other in many ways and there are many formal tools 
to describe these differences. In this work the following properties will be consid-
ered: nonlocality/locality, steerability/unsteerability, entanglement/separability, neg-
ative/non-negative conditional entropy, non-zero/zero quantum discord (connected 
with the properties of being a classical–classical, quantum–classical and classi-
cal–quantum state), non-zero/zero quantum super discord (connected with the prop-
erty of being a product state) and contextuality/noncontextuality. In each of these 
pairs one property is the opposite of the other, so a given state possesses exactly one 
property from each pair.

(9)�G(�, �) = ��� + (1 − �)�top,

(10)�� =
����⟩⟨��

��, ����⟩ = sin ��01⟩ + cos ��10⟩,

(11)�top =
1

2
(�00⟩⟨00� + �11⟩⟨11�)

1 Originally the Gisin states were defined only for 0 < 𝜃 <
𝜋

2
 , but the broader range of the parameter � 

does not spoil their physicality and will be useful in our analysis of some properties and some absolute 
properties of the Gisin states in Sects. 4.1 and 6.1.
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3.1  Separability vs. Entanglement

Let 𝜌AB ∈ H̃A ⊗ H̃B be a bipartite state of an arbitrary dimension. It always 
belongs to at least one of the following three types of states:

Definition 3.1 A bipartite state �AB is said to be a product state iff there exist �A and 
�B such that 𝜌AB = 𝜌A ⊗ 𝜌B . It is is called separable iff there exist states �A

k
 and �B

k
 

and numbers p1,… , pr , pk > 0 , 
∑r

k=1
pk = 1 such that 𝜌AB =

∑r

k=1
pk𝜌

A
k
⊗ 𝜌B

k
 (a sep-

arable state is a convex combination of product states). If it is not separable, then it 
is called entangled.

Note that the above three notions gain their meaning only after the composed 
system is splitted into two subsystems, called A and B, so that the tensor product 
H̃A ⊗ H̃B is defined. Between the above properties the following relation holds: 
any product state is separable but (in general) not vice versa. For pure states, 
separability and being a product state coincide, but for mixed states they do not. 
Entanglement is the most important and most widely analysed feature of quantum 
states. It is recognised as a resource for most of quantum computation tasks, in 
the sense that it is responsible for specifically quantum effects in these tasks. For 
a review of current research concerning quantum entanglement see [27].

Definitions of separability and entanglement involve universal quantifica-
tion over the set of density matrices and weights, so on the basis of this defini-
tion alone it is difficult to check whether a given state is separable or entangled. 
Therefore, it would be helpful to find some simpler criterions of separability and 
entanglement. Such criterions were found only for some special cases and a gen-
eral criterion, working for any state of arbitrary dimension, is still not known. For 
pure bipartite states the criterion is given by the following theorem:

Criterion 3.1 A state �AB is separable iff the entropy of the reduced state is positive, 
S(𝜌A) > 0 (equivalently: S(𝜌B) > 0).

For mixed bipartite states there is no universal criterion that gives necessary 
and sufficient conditions for separability. However, for Hilbert spaces of dimen-
sion 2 × 2 or 2 × 3 such conditions are given by the so-called PPT (Positive Par-
tial Transpose) criterion. The following definition of partial transpose allows one 
to formulate the PPT criterion:

Definition 3.2 For a given state � , its partial transpose with respect to a subsystem 
B, 𝜌⊤B , is given by ⟨m�⟨𝜇�𝜌⊤B �n⟩�𝜈⟩ ∶= ⟨m�⟨𝜈�𝜌�n⟩�𝜇⟩ . Analogously for a subsystem 
A.

Criterion 3.2 [25, 48] A quantum state � of dimension 2 × 2 or 2 × 3 is separable iff 
𝜌⊤B ≥ 0 (equivalently: 𝜌⊤A ≥ 0).
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3.2  Locality vs. Nonlocality

Some of the famous works in foundations of quantum mechanics concern quantum 
nonlocality. Nonlocality was discovered by Bell (see his collected papers in [5]) and 
later analysed by many others, including [11]. This phenomenon can be described 
as follows: the source produces a physical system, which is divided into two subsys-
tems. They are send to two distant observers, called Alice and Bob. Upon receiving 
their subsystems, each observer performs a measurement on it. The measurement 
chosen by Alice is labeled x and its outcome is a. Similarly, Bob chooses measure-
ment y and gets outcome b. The experiment is characterised by the joint probability 
distribution p(a, b|x, y) of obtaining outcomes a and b when Alice and Bob choose 
measurements x and y, respectively. It turns out that the joint probability distribution 
predicted by quantum mechanics in general is not a product of probability distribu-
tions obtained by Alice and Bob considered separately: p(a, b|x, y) ≠ p(a|x)p(b|y) , 
so these distributions are not independent, irrespectively of how large the distance 
between the observers is. One may wonder whether this independence is real or the 
quantum-mechanical description is incomplete and it is possible to introduce an 
additional factor, so called hidden variable, which enables one to describe the two 
subsystems as uncorrelated. The second option has been explored under the name of 
hidden variable models for quantum systems. In fact, possessing such a model is the 
defining condition for a state to be local.

Definition 3.3 A bipartite state �AB is called local iff it can be described by a local 
hidden variable model, that is, there exists a hidden variable � ∈ Λ and a probability 
measure � on the space Λ such that for every measurement choices x, y, one can 
reconstruct joint probability distribution p(a, b|x, y) predicted by quantum mechan-
ics from another probability distribution conditionalised on �:

where

If a bipartite state is not local, it is called nonlocal.
Bell observed that the existence of a hidden variable model leads to some con-

straints on probabilities of the outcomes, which are known under the name of the 
Bell inequality. There are several versions of this inequality and the most popular is 
CHSH (Clauser–Horne–Shimony–Holt) inequality [11], which is more general than 
Bell’s original one. Let us assume that a, b ∈ {−1,+1} and define expectation value 
of joint measurement of values a and b with measurement choices x and y:

It can be proven that states  that are nonlocal are precisely those states that violate 
the CHSH inequality:

(12)p(a, b|x, y) = ∫Λ

d� q(�)p(a, b|x, y, �),

(13)p(a, b|x, y, �) = p(a|x, �)p(b|y, �).

(14)⟨axby⟩ =
�
a,b

ab p(a, b�x, y).
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Theorem 3.1 [11] A bipartite state is nonlocal iff for some settings a⃗, a⃗′, b⃗, b⃗′ it vio-
lates the CHSH inequality

In general, Bell-type scenarios are characterised by three numbers: the number of 
subsystems, the number of possible measurements, and the number of outcomes of 
each measurement. Here we are interested in the CHSH inequality, which concerns 
the scenario with two subsystems, two measurements and two outcomes; there-
fore, it is the (2,2,2)-type Bell inequality. With different types of scenarios there are 
connected different types of nonlocality, but from now on we will use this term to 
denote only one particular kind of nonlocality, namely the CHSH-nonlocality.

The above results can  also be formulated in terms of the formalism of density 
operators. We need to use the CHSH operator, defined as follows:

and the Hilbert–Schmidt inner product: (A|B)HS ∶= Tr(A†B) . Using the CHSH oper-
ator, one can show the analogue of CHSH inequality:

Theorem 3.2 A bipartite state �AB is nonlocal iff for some settings ⃗a, a
′
, ⃗b, b

′
 it vio-

lates the inequality

where �CHSH is given by Eq. (16).

As in the case of separability and entanglement, the definition of nonlocality 
involves a quantification over a large set. Thus, relying only on the definition, it is 
difficult to check whether a given state is local or not. Again, no universal crite-
rion providing relatively simple necessary and sufficient conditions for nonlocality 
is known. However, for two-qubit states the following criterion has been found:

Criterion 3.3 (CHSH operator criterion [24]) Let � be a density operator of a two-
qubit state with correlation tensor t = (tmn) , defined in (6), and let �1 and �2 be the 
two largest eigenvalues of M𝜌 = t⊤t . The state is nonlocal iff

3.3  Quantum Steering

The concept of quantum steering was introduced in Schrödinger [53]. It captures 
the fact that one of the parties (A or B) can change the state of the other (B or A, 

(15)⟨ab⟩ + ⟨ab�⟩ + ⟨a�b⟩ − ⟨a�b�⟩ ≤ 2.

(16)�CHSH ∶= a⃗ ⋅ �⃗�A ⊗ (b⃗ + b⃗�) ⋅ �⃗�B + a⃗� ⋅ �⃗�A ⊗ (b⃗ − b⃗�) ⋅ �⃗�B

(17)(2� −�CHSH|�)HS ≥ 0,

(18)max
a⃗,a⃗�,b⃗,b⃗�

⟨�CHSH⟩ = 2
√
𝜇1 + 𝜇2 > 2.
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respectively) by choosing a basis for local measurement (the state of the second 
party must collapse according to this choice).2 If a bipartite state allows steering, 
it is called steerable. In contrast to nonlocality and entanglement, this property of 
quantum states is not symmetric between A and B (A’s being steerable by B does not 
imply B’s being steerable by A). The notion was defined mathematically in [60]. For 
a review of recent research on this topic see [9]. Similarly to nonlocality scenarios, 
steering scenarios can be characterised by a number of subsystems (here we restrict 
to two), a number of possible measurements and a number of their outcomes. The 
definition is also similar—instead of local hidden variables models, it uses the 
notion of local hidden state models, which can be described roughly as local hidden 
variable models for one subsystem only.

Definition 3.4 A bipartite state �AB is said to be steerable from A to B iff there 
exists  a measurement in Alice’s part that produces an assemblage that does not 
admit a local hidden state model, that is, there exists no hidden variable � ∈ Λ and 
no probability measure � on the space Λ such that

where �a|x = p(a|x)�a|x , 𝜌a|x = TrA(Ma|x ⊗ �)𝜌AB∕p(a|x) are Bob’s states after 
Alice’s measurement (with the setting x and the outcome a) and p(a|x) are probabili-
ties of these states.

The following theorem describes the relationship between steerability and nonlo-
cality of the type (2,2,2):

Theorem 3.3 [19]) If a two-qubit state � is steerable with CHSH-type measurements, 
i.e., with a set-up (2,2,2), then it violates the CHSH inequality.

From this theorem it follows that in the (2, 2, 2) case nonlocality and steerability 
are equivalent. However, there are some states that are steerable with three measure-
ments but not CHSH-nonlocal (for the examples see [9]). Necessary and sufficient 
conditions for steerability are in general not known. The exception is a two-qubit 
case, for which necessary and sufficient conditions are analysed in Nguyen and Vu 
[43] and Yu et al. [61]. For other dimensions there are some partial results, for exam-
ple, many inequalities providing sufficient conditions for steerability are derived in 
Calvacanti et al. [8].

(19)�a|x = ∫Λ

d� �(�)p(a, x|�)�B
�
,

2 What exactly this “changing” means, depends of course on our interpretation of quantum states in gen-
eral. If they are interpreted in an instrumentalistic manner, as mere means for making predictions without 
any ontological significance, then this should not be understood as a real change in the world, but only as 
a change in the predictions concerning the state of the second party that are allowed by quantum mechan-
ics. If instead one interprets both the quantum state and its collapse realistically, then this change is a real 
physical process that takes place in the world. In this paper I do not opt for any particular interpretation 
of quantum states but only analyse their properties that follow from the standard mathematical formalism 
of quantum mechanics.
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3.4  Negative vs. Non‑negative Conditional Entropy

As mentioned in Sect. 2.4, conditional entropy of a quantum state can be negative, which 
is impossible in the classical case. The physical meaning of such a phenomenon is ana-
lysed in [26]. Conditional entropy provides the answer to the following question: Given 
an unknown quantum state distributed over two systems, how much quantum communi-
cation is needed to transfer the full state to one system? If the conditional entropy is posi-
tive, its sender needs to communicate this number of quantum bits to the receiver; if it 
is negative, then the sender and the receiver instead gain the corresponding potential for 
future quantum communication. These intuitions are formalised in the so called quantum 
state merging protocol, whose details can be found in the mentioned paper.

3.5  Quantum Discord

Quantum discord was introduced in Ollivier and Zurek [45] as a new measure of 
quantum correlations that encompasses broader class of states than entanglement. 
The definition is as follows:

Definition 3.5 Quantum entropy of a state �AB with respect to a measurement on the 
subsystem A, {ΠA

i
} , is S(�B�{ΠA

i
}) =

∑
i piS(�

B�ΠA
i ) , where pi = Tr((ΠA

i
⊗ �B)𝜌

AB) , 
and 𝜌B|ΠA

i = TrA((Π
A
i
⊗ �B)𝜌

AB)∕pi.

Definition 3.6 Quantum discord of a state �AB under a measurement on the subsys-
tem A, {ΠA

i
} , is the difference D(B|A) ∶= I(B ∶ A) − J(B ∶ A) , where I(B  : A) is a 

mutual information defined in Sect.  2.4, J(B ∶ A) = max{ΠA
i
}J(B|{ΠA

i
}) , 

J(B|{ΠA
i
}) ∶= S(B) − S(B|{ΠA

i
}).

Classical counterparts of I and J coincide: I
cl
(A ∶ B) ∶= S(A) + S(B) − S(A,B)

= S(B) − S(B|A) =∶ J
cl
(B ∶ A) and this is why this  quantity has been called “dis-

cord”. It has been argued Datta et  al. [13] that a non-zero quantum discord of a 
given state indicates its usefulness for quantum computation, sometimes even in the 
absence of entanglement.

There is no general formula for computing quantum discord even for two-qubit 
states. Only results for special classes of states are available. There exist analytic 
results for Weyl states [40] and also for a broader class of states,  the so-called 
X-states, that is, the states  that have non-zero values only on their diagonal and 
anti-diagonal positions in the computational basis [1]. However, checking whether 
a given quantum state has zero discord is much easier than computing quantum dis-
cord in the case when it is non-zero. There exist some relatively simple criteria for 
checking whether a given bipartite state has zero discord, one of which will be used 
in this paper (for some other criteria see e.g. [12, 16]):

Criterion 3.4 [28] A bipartite quantum state 𝜌AB ∈ H̃A ⊗ H̃A has zero quantum 
discord, D(A|B) = 0 , iff all the square blocks of its density matrix of dimension 
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d = dim(HB) are normal matrices and commute with each other. For D(B|A) = 0 
one needs to consider all the blocks of dimension d = dim(HA).

It can be proven [16] that the set of zero discord states is of measure zero. For 
comparison: separable pure states are of measure zero in the set of all pure states, but 
separable states have a positive measure in the set of all density matrices [62]. There-
fore, there are significantly less state with zero quantum discord than states which are 
separable. This fact can be understood as an indication that quantum discord is able to 
“detect” more quantum correlations than the properties described earlier.

3.6  Classical–Classical, Quantum–Classical and Classical–Quantum States

One can define three interesting classes of states, which turn out to be strictly con-
nected with the notion of quantum discord. These are classical–classical, quan-
tum–classical and classical–quantum states, defined as follows (see e.g. [15]):

Definition 3.7 A state �AB is called classical–classical iff it has a form 
𝜌AB =

∑
i,j p

AB
ij
ΠA

i
⊗ ΠB

j
 , where {pAB

ij
} is a classical probability distribution, 

ΠA
i
∶= �i⟩A⟨i� and ΠB

j
∶= �j⟩B⟨j� are spectral projections of the reduced states 

�A = trB�
AB and �B = trA�

AB , respectively, {�i⟩} and {�j⟩} are orthonormal bases 
for subsystems A and B, respectively.

Definition 3.8 A state �AB is called classical–quantum iff it has a form 
𝜌AB =

∑
i p

A
i
ΠA

i
⊗ 𝜌B

i
.

Definition 3.9 A state �AB is called quantum–classical iff it has a form 
𝜌AB =

∑
j p

B
j
𝜌A
j
⊗ ΠB

j
.

It is useful to compare these definitions with Definition 3.1 of separable states. All 
of them postulate similar forms of states: they should be sums of the tensor products 
of the states of their subsystems. The difference lies in the details of the form of the 
states of the subsystems: sometimes we require that they should be spectral projec-
tions of the reduced states (in the case of classical–classical for both subsystems, 
in the case of quantum–classical and classical–quantum for one subsystem—called 
“classical”), and sometimes we do not impose on them any additional conditions (in 
the case of separable states for both subsystems, in the case of quantum–classical 
and classical–quantum for one subsystem—called “quantum”).

The name “classical–classical” is justified by the fact that such a state is in some sense 
encoded in the classical probability distribution (although to reconstruct the state fully 
we need to know the related choice of projectors as well). In the case of classical–quan-
tum and quantum–classical states, only one of the subsystems can be represented by a 
classical probability distribution, whereas the other is represented by a density matrix.

Another “classical” aspect of classical–classical states is that they are not per-
turbed by local von Neumann measurements on their subsystems ΠA

i
⊗ ΠB

j
 in the 
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sense that 
∑

i,j Π
A
i
⊗ ΠB

j
𝜌ABΠA

i
⊗ ΠB

j
= 𝜌AB (see e.g. [38]), but only if we under-

stand these measurements as non-selective, that is, not selecting a particular out-
come; under the standard interpretation of measurement the states would of 
course be perturbed. Similarly, non-selective measurements on the subsystem A 
does not perturb the state of the subsystem B in classical–quantum states and vice 
versa for quantum–classical states.

One can prove the theorem connecting the above classes of states with quan-
tum discord (see e.g. [6]):

Theorem 3.4 The following equivalences hold:

A bipartite state �AB is classical–classical iff D(A|B) = D(B|A) = 0.

A bipartite state �AB is classical–quantum iff D(B|A) = 0.

A bipartite state �AB is quantum–classical iff D(A|B) = 0.

3.7  Quantum Super Discord

The notion of super quantum discord was introduced in [52]. It is similar to the notion 
of quantum discord—the only difference lies in the fact that it uses weak measure-
ments (see Definition 2.3) instead of the standard von Neumann measurements (see 
Definition 2.1). One of the differences between these two concepts of a measurement 
(understood, again, as non-selective measurements) is that a von Neumann measure-
ment on one subsystem destroys the entanglement, whereas after performing a weak 
measurement on one subsystem, the state may still remain entangled [52].

Super quantum discord measures the correlation in a state �AB as seen by an observer 
who performs a weak measurement on one of the subsystems. Now, let us state a formal 
definition of super quantum discord with respect to the subsystem A [52]:

Definition 3.10 Quantum entropy of a state �AB with respect to weak measurement on 
the subsystem A, {PA(±�)} , is S(�B|{PA(�)}) = p(�)S(�B|PA(�)) + p(−�)S(�B|PA(−�)) , 
where p(±𝜉) = Tr((PA(±𝜉)⊗ �B)𝜌

AB) , 𝜌B|PA(±𝜉) = TrA((P
A(±𝜉)⊗ �B)𝜌

AB)∕p(±𝜉)

Definition 3.11 Quantum super discord of a state �AB under a weak measurement 
on subsystem A, {PA(±x)} , is the difference D(B|A) ∶= I(B ∶ A) − J(B ∶ A) , where 
J(B ∶ A) = max�J(B|{PA(±�)}) , J(B|{PA(±�)}) ∶= S(B) − S(B|{PA(±�)}).

In the above definitions � is fixed, so the sums contain only two components, 
for � and for −� . The following properties of super quantum discord will be inter-
esting for us:

Theorem 3.5 [52] For any bipartite state �AB , the quantum super discord is greater 
than or equal to the quantum discord: Dw(A|B) ≥ D(A|B).
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Theorem  3.6 [39] A bipartite  state �AB has zero super quantum discord 
Dw(A|B) = Dw(B|A) = 0 iff �AB is a product state.

In the case of quantum discord it is possible to have D(A|B) = 0 and D(B|A) ≠ 0 
or the other way around. In contrast, if a super quantum discord is zero with respect 
to one subsystem, it is also zero with respect to the other subsystem.

3.8  Contextuality vs. Noncontextuality

The last pair of properties to be analysed in this paper consists of contextuality and 
noncontextuality. In general, noncontextuality means that the measured value of any 
observable is independent on other observables that are measured jointly with it. 
Of course, we restrict only to observables that are compatible with a given observ-
able (i.e., commuting with it), because otherwise they could not be measured jointly. 
There are two senses of contextuality: it can be understood as a state-independent 
property of a set of projectors [33] or as a state-dependent property, which is pos-
sessed by some states but not the others. In this paper I will be interested only in the 
second sense of contextuality. It can be formalised in terms of the nonexistence of a 
contextual hidden variable theory, which leads to a certain inequality (in analogy to 
nonlocality). There are many versions of this inequality with different numbers of 
projectors and the best known of them is KCBS (Klyachko–Can–Binicioğlu–Shu-
movsky) inequality Klyachko et al. [32]. First, let us formally define the notions of 
contextuality and noncontextuality:

Definition 3.12 A state ��⟩ is noncontextual iff there exists a hidden variable � ∈ Λ , 
a probability measure � on the space Λ and a value assignment on observables that 
can be measured on � , i.e., a function � ∶ 𝔸 × Λ ↦ ℝ satisfying for any two com-
muting observables A, B: 

1. �(A + B|�) = �(A|�) + �(B|�),
2. �(AB|�) = �(A|�)�(B�),
3. �(�|�) = 1,
4. �(0|�) = 0,
5. ⟨��A��⟩ = ∫

Λ
�(A��)�(�)d�.

Definition 3.13 A state ��⟩ is contextual iff it does not satisfy the noncontextuality 
condition.

The following theorem gives the necessary and sufficient conditions for the non-
contextuality of a quantum state:

Theorem 3.7 [32] A state ��⟩ is noncontextual iff for any family of projectors P0 , P1 , 
P2 , P3 , P4 such that each Pi commutes with Pi+1 (where the sum should be under-
stood modulo 5), the KCBS inequality holds:
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According to the theorem, a state is contextual iff for some family of projectors 
satisfying conditions specified above, the KCBS inequality (20) is violated, that is, 
⟨𝜓�(P0 + P1 + P2 + P3 + P4)�𝜓⟩ > 2 . There are known examples both of states that 
are contextual and of states that are noncontextual. The simplest noncontextual state 
is the identity operator [31]. Examples of contextual states are provided in [29]; that 
paper contains also results of experimental tests that confirm the  violation of  the 
KCBS inequality.

4  Relations Between Different Properties

4.1  Relations for Special Classes of States

The previous section reviewed some properties of quantum states, which may be 
thought of as different ways of capturing their deviation from “classicality”. One 
may then ask a question whether these properties are really different from each other 
(in other words, whether the sets of states that possess them are different) and if so, 
what are the relations between them (do some of these properties imply some other 
properties). This section gives answers to these questions. First, let us look at the 
properties of two classes of states introduced in Sect. 2.6.

In Table 1 there are shown ranges of parameters for which the Werner states (8) 
and the Gisin states (9) are product states, have zero discord, are separable, unsteer-
able, local and have non-negative conditional entropy. They are also illustrated in 
Fig. 1 and 2. The results have been obtained with the use of Criteria: 3.2, 3.3 and 
3.4. Most of these numerical results have already been presented in the literature: 
[59] (separability and locality for the Werner states), [55] (steerability for Werner 
states), [20] (separability and locality for the Gisin states), [17] (non-negative condi-
tional entropy for the Werner states and for the Gisin states), [45] (quantum discord 
for the Werner states).

For the Werner states, the ranges of parameters are different with the excep-
tion of the product and zero discord states. However, the Gisin states are prod-
uct states  and have  zero discord for different ranges of parameters. Therefore, 

(20)⟨��(P0 + P1 + P2 + P3 + P4)��⟩ ≤ 2.

Fig. 1  Properties of the Werner states. The only product state (Prod) is the state with w = 0 (green 
point); it is also the only state with zero discord (and therefore classical–classical CC, classical–quantum 
CQ and quantum–classical QC). The other properties are: separability (Sep, blue), unsteerability (UnSt, 
violet), locality (Loc, purple) and non-negative conditional entropy (NNCE, brown) (Color figure online)
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these two families of states are sufficient to distinguish between all the mentioned 
properties completely. From these results it follows that no two of the mentioned 
properties are equivalent.  

4.2  General Relations for Bipartite States

We have seen that no two properties analysed here are equivalent. However, 
at least for the Werner states and the Gisin states there are some implications 
between them. One may ask whether these implications are specific to these 
classes of states or they hold in general. It turns out that in some cases the answer 
is positive and  in some cases it  is negative. For example, we have already seen 
that although for the Werner states negative conditional entropy implies nonlocal-
ity, this is no longer true for the Gisin states. The following theorem summarises 
what is known about these relations in the general case (see Fig. 3):

Theorem 4.1 For any bipartite state � , the following implications hold:

Fig. 2  Properties of the Gisin states (9) in the space of parameters �, � . The shaded regions are: NLoc 
nonlocal (violet), NCE negative conditional entropy (brown), Ent entangled (blue). The white region 
contains all and only separable Gisin states (Sep). Observe that there are states nonlocal and with nega-
tive conditional entropy, states local and with negative conditional entropy, as well as states nonlocal 
with non-negative conditional entropy, so there is clearly no implication between nonlocality and nega-
tive conditional entropy. This figure is inspired by a similar one in Friis [17] (Color figure online)
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1. � is nonlocal ⇒ � is steerable,
2. � is steerable with n settings ⇒ � is steerable with n + 1 settings,
3. there exist n ≥ 2 such that � is steerable with with n settings ⇒ � is entangled,
4. � is entangled ⇒ � is not classical–quantum D(B|A) ≠ 0,
5. � is entangled ⇒ � is not quantum–classical D(A|B) ≠ 0,
6. � is not quantum–classical ⇒ � is not classical–classical,
7. � is not classical–quantum ⇒ � is not classical–classical,
8. � is not classical–classical ⇒ � is not a product state, i.e. � has non-zero super 

quantum discord Dw(A|B) ≠ 0 , Dw(B|A) ≠ 0.

Proof 

1. See Cavalcanti and Skrzypczyk [9].
2. If one has n + 1 settings at the disposal and the method of steering a state by n 

settings, then one can perform this method with use of n from n + 1 available 
settings.

3. See Cavalcanti and Skrzypczyk [9].
4. This follows from Definitions 3.1 and 3.8.
5. This follows from Definitions 3.1 and 3.9.
6. This follows from Definitions 3.7 and 3.9.
7. This follows from Definitions 3.7 and 3.8.
8. This is a consequence of Theorem 3.5 [52].

  ◻

The implications in Theorem  4.1 do not hold the other way around. For the 
opposites of these properties we have an analogous theorem (see Fig. 4):

Fig. 3  Relations between 
properties of bipartite quantum 
states: Prod product states, CC 
classical–classical states, CQ 
classical–quantum states, QC 
quantum–classical states, Sep 
separable states, UnSt unsteer-
able states, Loc local states, 
NLoc nonlocal states. We have 
mentioned that the states with 
zero discord are of measure zero 
in the set of all density matrices, 
so the figure is out of scale
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Theorem 4.2 For any bipartite state � the following implications hold:

1. � is a product state, i.e. � has zero super quantum discord Dw(A|B) = Dw(B|A) = 0 
⇒ � is classical–classical, i.e. � has both quantum discords zero 
D(A|B) = B(B|A) = 0,

2. � is classical–classical ⇒ � is both classical–quantum D(B|A) = 0 and quantum–
classical D(A|B) = 0,

3. � is either classical–quantum or quantum–classical ⇒ � is separable,
4. � is separable ⇒ � is unsteerable (for any number of settings),
5. � is unsteerable with n + 1 settings ⇒ � is unsteerable with n settings,
6. � is unsteerable (with any number of settings) ⇒ � is local.

Proof This theorem follows from Theorem 4.1 and the respective definitions. ◻

The property of negative/non-negative conditional entropy does not belong to 
the above hierarchy, because the following theorem holds:

Theorem  4.3 [17] In general nonlocality does not imply negative conditional 
entropy and negative conditional entropy does not imply nonlocality.

We can see that this is true by looking at Table 1 and Fig. 2. For the Werner 
states there is an implication from negative conditional entropy to nonlocality. 
However, this is only a special case, as there are nonlocal Gisin states with posi-
tive conditional entropy and Gisin states with negative conditional entropy  that 
are local. While negative conditional entropy is not related to nonlocality, it does 
require entanglement:

Fig. 4  Relations between 
properties of bipartite quantum 
states: NLoc nonlocality, St 
steerability, Ent entanglement, 
NCC states that are not classi-
cal–classical, NCQ states that 
are not classical–quantum, NQC 
states that are not quantum–clas-
sical, NonProd states that are 
not product, Prod product states. 
As before, the figure is out of 
scale
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Theorem 4.4 [10] All states with negative conditional entropy are entangled.

It is known that for pure states some of the analysed properties become 
equivalent:

Theorem  4.5 If � is a pure bipartite state, the following equivalences hold: � is 
nonlocal ⇔ � is steerable ⇔ � is entangled ⇔ � has negative conditional entropy. 
Equivalently: � is local ⇔ � is not steerable ⇔ � is separable ⇔ � has non-negative 
conditional entropy.

The only property, which has not been mentioned yet in the above theorems, is 
contextuality. It is different from the other properties because its definition does 
not rely on the division of a physical system into subsystems. In fact, there are 
contextual states even in 3 dimensions, whereas the other properties are defined 
for systems of dimension at least 4 (for composite systems the dimension cannot 
be a prime number). Therefore, for sure contextuality does not collapse to any 
other property described here. What is more, the set of contextual states does not 
contain and is not contained in any set of states possessing one of the other prop-
erties. However, one may ask what is the relation between contextuality and other 
properties in spaces where all of them are well-defined and, as far as the author 
knows, this relation has not been investigated.

5  Absolute Properties of Quantum States

Each of the properties defined in Sect.  3 can be possessed by a given quantum 
state “absolutely” or “non-absolutely” in the following sense. A property is 
possessed by a given state absolutely iff it is preserved under arbitrary unitary 
operation on that state; otherwise it is possessed non-absolutely. Therefore, the 
investigation of absolute vs. non-absolute properties reveals an interplay between 
properties that are constitutive for quantum nature of physical states on the one 
hand, and the crucial symmetry of quantum theory, namely, unitary symmetry. As 
we will see, in each pair of properties, usually exactly one of them can be pos-
sessed absolutely, for example, there exist states absolutely separable, but there 
are no states absolutely entangled (the only exception is contextuality and non-
contextuality). In this section we will present necessary and sufficient conditions 
for a given state to possess a given property absolutely (as far as these conditions 
are known). We will start from observing that only global unitary transformations 
matter in this context:

Fact 5.1 For any bipartite state � , none of the following properties of � : being a 
product state, entanglement/separability, locality/nonlocality, being classical–clas-
sical, being classical–quantum, being quantum–classical can  be changed by per-
forming local unitary transformations.
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Proof Observe that some of the properties introduced in Sect.  3 (being 
a product state, separability, being classical–classical, being classi-
cal–quantum and being quantum–classical) are defined by a state possess-
ing a particular form, which cannot be changed by local unitary opera-
tions. For illustration, consider a separable state 𝜌AB =

∑r

k=1
pk𝜌

A
k
⊗ 𝜌B

k
 . 

When applying to it a local unitary operation UA ⊗ UB , we obtain 
𝜌�AB = (UA ⊗ UB)

∑r

k=1
pk𝜌

A
k
⊗ 𝜌B

k
(U†

A
⊗ U

†

B
) =

∑r

k=1
pk(UA𝜌

A
k
U

†

A
)⊗ (UB𝜌

B
k
U

†

B
)  , 

which is again a separable state. For the same reason, being a product state is pre-
served. Concerning the preservation of being a classical–classical, classical–quan-
tum or quantum–classical state, we need additionally the fact that any unitary opera-
tion applied to a projector gives again a projector.

If a state �AB is nonlocal, then it violates the inequality (17), which is then also 
violated by UA ⊗ UB𝜌

ABUA ⊗ UB:

where the second equality follows from the cyclic property of trace and the fourth 
follows from the unitary invariance of Pauli matrices. If a state is local, then, by the 
same reasoning, this property is also not changed by local unitary operations.   ◻

5.1  Absolute Separability

The definitions of separability and entanglement (Definition 3.1) assume a particu-
lar choice of a factorisation of the Hilbert space representing a system into the ten-
sor product of Hilbert spaces representing its subsystems. As a consequence, a state 
that is entangled with respect to a given factorisation, can be separable with respect 
to  another factorisation. Therefore, one can formulate the following definition of 
absolutely separable states:

(2� −�CHSH|UA ⊗ UB𝜌
ABU

†

A
⊗ U

†

B
)HS

= Tr
(
UA ⊗ UB𝜌

ABU
†

A
⊗ U

†

B
)(2� − a⃗ ⋅ �⃗�A ⊗ (b⃗ + b⃗�) ⋅ �⃗�B − a⃗� ⋅ �⃗�A

⊗(b⃗ − b⃗�) ⋅ �⃗�B)†
)

= Tr
(
𝜌AB

(
(UA ⊗ UB)(2� − a⃗ ⋅ �⃗�A ⊗ (b⃗ + b⃗�) ⋅ �⃗�B − a⃗� ⋅ �⃗�A ⊗ (b⃗ − b⃗�) ⋅ �⃗�B)

(U†

A
⊗ U

†

B
)
)†

)

= Tr
(
𝜌AB

(
(2� − a⃗ ⋅ (UA�⃗�

AU
†

A
)⊗ (b⃗ + b⃗�) ⋅ (UB�⃗�

BU
†

B
)

−a⃗� ⋅ (UA�⃗�
AU

†

A
)⊗ (b⃗ − b⃗�) ⋅ (UB�⃗�

BU
†

B
)
)†

)

= Tr

(
𝜌AB

(
(2� − a⃗ ⋅ �⃗�A ⊗ (b⃗ + b⃗�) ⋅ �⃗�B − a⃗� ⋅ �⃗�A ⊗ (b⃗ − b⃗�) ⋅ �⃗�B

)†
)

= (2� −�CHSH|𝜌AB)HS < 0,
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Definition 5.1 [35] A bipartite state � is called absolutely separable iff for any uni-
tary operator U, the state �� = U�U† is separable.

The following three theorems describe the conditions under which a quantum 
state is absolutely separable:

Theorem 5.1 [56] Any separable pure state can be transformed by a unitary opera-
tion into an entangled state and the other way around. Therefore, no pure separable 
states are absolutely separable.

Theorem  5.2 [57] If � is a mixed two-qubit state with an ordered spectrum 
d1 ≥ d2 ≥ d3 ≥ d4 , then � is absolutely separable iff

The next theorem provides a generalisation of this result for a higher dimension 
of the second subsystem, where the first subsystem remains 2-dimensional:

Theorem 5.3 [23] for 2 × 3 case, [30] for the remaining cases) If � is a bipartite state 
of dimension 2 × n (for arbitrary n) with an ordered spectrum d1 ≥ d2 ≥ ⋯ ≥ d2n , 
then � is absolutely separable iff

As we have seen, there is an asymmetry between separability and entanglement. 
Any state is separable in some basis (so there are no absolutely entangled states), but 
there are some states that are absolutely separable.

5.2  Absolute Locality

As in the previous case, one can formulate the following definition of an absolute 
version of the property of locality:

Definition 5.2 A bipartite state � is called absolutely local iff for any unitary opera-
tor U, the state �� = U�U† is local.

The necessary and sufficient conditions for a state being absolutely local have 
been found:

Theorem  5.4 [18] If � is a two-qubit state with an ordered spectrum 
d1 ≥ d2 ≥ d3 ≥ d4 , then � is absolutely local iff

In the proof of this theorem the following lemma has been used (it will be also 
needed in our proof in Sect. 5.5):

(21)d1 − d3 − 2
√
d2d4 ≤ 0.

(22)d1 − d2n−1 − 2
√
d2n−2d2n ≤ 0.

(23)(2d1 + 2d2 − 1)2 + (2d1 + 2d3 − 1)2 ≤ 1.
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Lemma 5.1 (Cartan decomposition of SU(4), [34]) Every matrix belonging to SU(4) 
can be decomposed into two local unitary matrices UA ⊗ UB,VA ⊗ VB and a global 
unitary matrix Ug in the so-called Cartan form:

where UA,UB,VA,VB ∈ SU(2) and Ug is given by

with �1, �2, �3 ∈ [0, 2�].

5.3  Absolutely Unsteerable States

Similarly to absolute locality, one can define absolute unsteerability:

Definition 5.3 A bipartite state � is called absolutely unsteerable iff for any unitary 
operator U, the state �� = U�U† is unsteerable.

The necessary and sufficient conditions for a state being absolutely unsteerable 
are not known. However, there is in the literature the following partial result, con-
cerning only steerability with three settings:

Theorem 5.5 [7] If � is a two-qubit state with spectrum d1d2, d3, d4 , then � is abso-
lutely unsteerable with three settings iff its eigenvalues satisfy

5.4  Absolute Non‑negativity of Conditional Entropy

Similarly to the previous properties, non-negative conditional entropy can also be 
possessed absolutely:

Definition 5.4 [47] A bipartite state � is said to have absolutely non-negative condi-
tional entropy iff for any unitary operator U, the state �� = U�U† has non-negative 
conditional entropy.

The necessary and sufficient conditions for absolute non-negativity of conditional 
entropy are known:

Theorem  5.6 [47] A two-qubit state � has absolutely non-negative conditional 
entropy iff S(�) ≥ 1.

(24)U =
(
UA ⊗ UB

)
Ug

(
VA ⊗ VB

)
,

(25)Ug = e−i(𝜆1𝜎1⊗𝜎1+𝜆2𝜎2⊗𝜎2+𝜆3𝜎3⊗𝜎3)

(26)3(d2
1
+ d2

2
+ d2

3
+ d2

4
) − 2(d1d2 + d1d3 + d1d4 + d2d3 + d2d4 + d3d4) ≤ 1.



1669

1 3

Foundations of Physics (2020) 50:1645–1685 

5.5  Absolute Zero Quantum Discord

In contrast to the properties analysed before, quantum discord is quantitative, that 
is, to a given quantum state there is assigned its numerical value. To formulate an 
analogous problem as before, one can divide states into discordless (with quan-
tum discord equal to zero) and states with non-zero quantum discord. Then one 
can ask in which cases the value of quantum discord is absolutely zero:

Definition 5.5 A bipartite state � is said to have zero quantum discord absolutely iff 
for any unitary operator U, the state �� = U�U† has zero quantum discord.

In this section we will use Criterion 3.4 [28] of zero quantum discord to deter-
mine the necessary and sufficient conditions for a two-qubit state to have  zero 
quantum  discord absolutely. For a two-qubit system represented by a density 
matrix

with blocks

this criterion means that the following equalities must be satisfied:

and

The first simplification follows from the fact that every density matrix is hermitian 
and therefore can be diagonalized by some unitary matrix. If a given state has zero 
discord absolutely, in particular it has zero discord after diagonalization (because 
diagonalizing matrix belongs to the class of unitary matrices). Therefore, each 
equivalence class of states has a representative that is a diagonal matrix and to find 
the class of all states with absolute zero discord it suffices to restrict to the class of 
diagonal density matrices.

Recall from Sect. 5.2 that every SU(4) matrix can be decomposed into a local 
part and a special global matrix Ug given by (25). One idea is to act with the 
global unitary matrix (24) in its most general form and then solve the equations 
that follow from the conditions (29) and (30). However, these equations are rather 
complicated, so from the practical point of view it is better to divide our task into 
two steps. In the first step, we will act on arbitrary diagonal density matrix with 

(27)� =

⎛⎜⎜⎜⎝

r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44

⎞⎟⎟⎟⎠
≡
�
A B

C D

�

(28)

A =

(
r11 r12
r21 r22

)
, B =

(
r13 r14
r23 r24

)
, C =

(
r31 r32
r41 r42

)
, D =

(
r33 r34
r43 r44

)

(29)[A,A†] = [B,B†] = [C,C†] = [D,D†] = 0

(30)[A,B] = [A,C] = [A,D] = [B,C] = [B,D] = [C,D] = 0.
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Ug only, obtaining necessary conditions for having zero discord absolutely. As we 
will see, the result will be a one-parameter family of states. In the second step, we 
will act on this family with U in its general form (including local parts and the 
special global part). It turns out that it is possible to make a further simplification 
by putting some parameters in local matrices to zero and such a less general form 
is sufficient to eliminate all potential candidates for being absolutely zero discord 
state with one exception—the maximally mixed state 1

4
�4 . It is easy to see that 

this state indeed has zero discord absolutely because after an arbitrary unitary 
transformation it remains unchanged.

Let us perform the first step. Consider an arbitrary diagonal density matrix

where d1, d2, d3 ∈ ℝ . The unitary matrix Ug can be written in the Cartan form (25), 
which simplifies to

Under the action of Ug the state �d is transformed as follows:

where S+ = sin(2�1 + 2�2) , S− = sin(2�1 + 2�2) , C+ = cos(2�1 + 2�2) , 
C− = cos(2�1 − 2�2).

To this transformed state �′
d
 we apply conditions (29) and (30). Three of them 

are always satisfied: [A,A†] = [D,D†] = [A,D] = 0 . The rest gives us equations 
for eigenvalues of �d , which have the following solutions: d1 = d2 = d3 =

1

4
 and 

d1 =
1

2
− d2, d3 = d2 . This gives us the following necessary condition: If a two-qubit 

state with eigenvalues d1, d2, d3, 1 − d1 − d2 − d3 has zero discord absolutely, then 
its eigenvalues satisfy the following relation:

or some of its permutations.
Now, let us perform the second step. Any unitary matrix belonging to SU(2) can 

be parameterised in the following way:

(31)�d =

⎛
⎜⎜⎜⎝

d1 0 0 0

0 d2 0 0

0 0 d3 0

0 0 0 1 − d1 − d2 − d3

⎞
⎟⎟⎟⎠
,

Ug =




e−iλ3 cos (λ1 − λ2 00) −ie−iλ3 sin (λ1 − λ2)

0 eiλ3 cos (λ1 + λ2) sin (λ1 + λ2) (sinλ3 − i cosλ3) 0
0 sin (λ1 + λ2) (sinλ3 − i cosλ3) eiλ3 cos (λ1 + λ2) 0

−ie−iλ3 sin (λ1 − λ2 00) e−iλ3 cos (λ1 − λ2)



 .

(32)

ρ′d = U†
gρdUg

=
1
2




(2d1 + d2 + d3 − 1)C− − d2 − d3 001+ i(2d1 + d2 + d3 − 1)S−

0 (d2 − d3)C+ + d2 + d3 i(d2 − d3)S+ 0
0 −i(d2 − d3)S+ (d2 − d3)C+ + d2 + d3 0

−i(2d1 + d2 + d3 − 1)S− 00 −(2d1 + d2 + d3 − 1)C− − d2 − d3 + 1



 ,

(33)

(34)d1 =
1

2
− d2, d3 = d2
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Each of the matrices UA,UB,VA,VB has this form, so the whole matrix U given by 
(24) contains four independent matrices of the type (35). We will add to each param-
eter �, �,� indices associated with matrices UA,UB,VA,VB , so, for example,

and similarly for UB,VA and VB.
Consider the case 

�UA = �UB = �VA = �VB = �UA = �UB = �VA = �VB = �UB = �VA = 0 (only �UA 
and �VB are non-zero). We apply a transformation of this type to our state (31) sat-
isfying (34). From the conditions (29) and (30) we again obtain the set of equations 
constraining d2 , the only solution of which is the state 1

4
�4 . This means that we do 

not need to consider a more general U (with all parameters potentially non-zero), 
because our special case already restricts the class of 4 × 4 density matrices to one 
element, of which we know that it has zero discord absolutely. Therefore the follow-
ing theorem holds:

Theorem 5.7 The only two-qubit state that has zero discord absolutely is the maxi-
mally mixed state 1

4
�4.

Taking into account Theorem 3.4, one can define absolute versions of being clas-
sical–classical, classical–quantum and quantum–classical:

Definition 5.6 A bipartite state � is called absolutely classical–classical/classical–
quantum/quantum–classical iff for any unitary operator U, the state �� = U�U† is 
classical–classical/classical–quantum/quantum–classical, respectively.

The criteria for belonging to these classes of states are the same as for having 
vanishing discord: for absolutely quantum–classical states D(A|B) must vanish abso-
lutely, for absolutely classical–quantum states D(B|A) must vanish absolutely and 
for absolutely classical–classical states both of these conditions must be satisfied. 
Of course, as a corollary to the previous theorem, the following holds for two-qubit 
states:

Theorem  5.8 The only two-qubit state that is absolutely classical–classical is the 
maximally mixed state 1

4
�4.

The only two-qubit state that is absolutely classical–quantum is the maximally 
mixed state 1

4
�4.

The only two-qubit state that is absolutely quantum–classical is the maximally 
mixed state 1

4
�4.

(35)Uloc =

(
ei� cos� ei� sin�

−e−i� sin� e−i� cos�

)
.

(36)UA =

(
ei�UA cos�UA ei�UA sin�UA

−e−i�UA sin�UA e−i�UA cos�UA

)



1672 Foundations of Physics (2020) 50:1645–1685

1 3

5.6  Absolute Zero Quantum Super Discord

Similarly to the case of quantum discord, we can define absolute version of having 
zero quantum super discord:

Definition 5.7 A bipartite state � is said to have zero quantum super discord abso-
lutely iff for any unitary operator U, the state �� = U�U† has zero quantum super 
discord.

Theorem 3.6 [39] implies that having zero super discord absolutely is equivalent 
to being absolutely product, where the last property is defined as follows:

Definition 5.8 A bipartite state � is said to be an absolutely product state iff for any 
unitary operator U, the state �� = U�U† is a product state.

From Theorems 3.5 [52] and 5.7 we can conclude that

Theorem 5.9 The only two-qubit state that has zero quantum super discord abso-
lutely is the maximally mixed state 1

4
�4.

From the relation between zero super discord and being a product state it follows, 
as a corollary, that

Theorem 5.10 The only two-qubit state that is absolutely product is the maximally 
mixed state 1

4
�4.

5.7  Absolute Contextuality and Noncontextuality

Contextuality and non-contextuality is the only pair of properties analysed here such 
that both elements of the pair have non-trivial absolute counterparts.

Definition 5.9 A bipartite state � is called absolutely contextual/absolutely noncon-
textual iff for any unitary operator U, the state �� = U�U† is contextual/noncontex-
tual, respectively.

Contextuality and noncontextuality are different from other properties considered 
in this paper because they do not refer to the division of system into subsystems. 
Therefore, we can expect that the distinction between local and global unitary opera-
tions does not matter for preserving these properties. In fact, one can prove an even 
stronger result:

Theorem 5.11 Contextuality and noncontextuality are always absolute, that is, if a 
given state � (of arbitrary dimensionality) is contextual, then it is also absolutely 
contextual and if it is noncontextual, then it is also absolutely noncontextual.
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Proof Suppose that for a given � there exist projectors Pi , i = 1,… , 5 such that 
PiPi+1 = 0 and Tr(𝜌P) > 2 , where � =

∑5

i=1
Pi . Consider  the rotation of � by an 

arbitrary unitary matrix U: �� = U�U† . It can be shown that for this new state there 
also exist projectors that are witnesses for the violation of the KCBS inequality: it 
suffices to take P�

i
= UPiU

† , whose sum is �� =
∑5

i=1
P�
i
= U�U† . These projectors 

satisfy the condition of orthogonality P�
i
P�
i+1

= UPiU
†UPi+1U

† = UPiPi+1U
† = 0 . 

For this choice of projectors, the state � violates  the KCBS inequality: Tr(����) = 
Tr(U�U†U�U†) = Tr(U��U†) = Tr(U†U��) = Tr(𝜌�) > 2 .   ◻

One may wonder why do we not have a similar argument for nonlocality, as both 
contextuality and nonlocality consist of violation of a certain inequality for some 
choice of an  appropriate operator ( �CHSH or � , respectively). The difference lies 
in the dissimilarity of the criteria imposed on these operators. The CHSH opera-
tor must have a certain structure given by Eq. (16). This structure can be spoilt by 
global unitary operations, whereas, as we have seen, the conditions defining � are 
still satisfied after an arbitrary unitary operation.

6  Relations Between Different Absolute Properties

6.1  Relations for Special Classes of States

In Table  2 there are shown ranges of parameters for which the Werner states (8) 
and the Gisin states (9) are absolutely product states, have zero  quantum discord 
absolutely, are absolutely separable, absolutely unsteerable, absolutely local and 
have non-negative conditional entropy absolutely. These results have been obtained 
with the use of the following Theorems: 5.2 [57], 5.4 [18], 5.5 [7], 5.6 [47], 5.7 and 
5.9. Note that for the Gisin states the parameter � does not matter in this context; 
this is because possessing absolute properties depends only on  the eigenvalues of 
the state and for the Gisin states the  eigenvalues depend only on the  parameter � 

Table 2  Selected absolute properties of the Werner states and the Gisin states in function of their param-
eters

Werner states Gisin states

Parameters w � �

Range of the parameter w ∈ [−
1

3
, 1] � ∈ [0,

�

2
] � ∈ [0, 1]

Absolutely product state w = 0 Never Never
Absolutely zero discord w = 0 Never Never
Absolutely separable w ∈ [−

1

3
,
1

3
] Never Never

Absolutely unsteerable w ∈ [−
1

3
,

1√
3
] � arbitrary � ∈ [0,

2

3
]

Absolutely local w ∈ [−
1

3
,

1√
2
] � arbitrary � ∈ [0,

1√
2
]

Absolutely non-negative condi-
tional entropy

w ∈ [−
1

3
,w1] , 

w1 ≈ 0.7476

� arbitrary � ∈ [0, �1] , �1 ≈ 0.7729
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(see Sect.  2.6.2). Most of these  numerical results have  already  been presented in 
the literature: [18] (absolute separability and absolute locality for the Werner states, 
absolute locality for the Gisin states), [47] (absolutely non-negative conditional 
entropy for the Werner states), [7] (absolute unsteerability for the Werner states and 
the Gisin states).

When we compare these results with Table 1 as well as with Fig. 1 and 2, we can 
observe that for the Werner states there is no difference between possessing a given 
property and possessing a given property absolutely. In contrast, for the Gisin states 
the ranges of parameters are changed in all the cases.3 Therefore, the equivalence 
between the properties and the respective absolute properties holds only for very 
special families of states (such as the Werner states) and in general is not true. The 
comparison between the properties and the respective absolute properties for Gisin 
states is illustrated in Fig. 5.

The results for the Werner states and the Gisin states allow one to distinguish 
between almost all of the absolute properties analysed here: only being an absolutely 
product state and having zero quantum discord absolutely are impossible to distin-
guish (and as we have seen in Sect. 5.6, in fact they are generally equivalent).

Fig. 5  Properties of the Gisin states. Left figure: ALoc absolutely local states (dark purple), Loc local 
states (dark purple and light purple), NLoc nonlocal states (white). Right figure: ANNCE absolutely non-
negative conditional entropy (dark brown), NNCE non-negative conditional entropy (light brown and 
dark brown), NCE negative conditional entropy (white) (Color figure online)

3 We do not know the ranges of the parameters for which the Gisin states are unsteerable. However, we 
know that the set of unsteerable states must contain the set of separable states (Theorem 4.2) and that the 
set of absolutely unsteerable states must be contained in the set of absolutely local states (Theorem 6.2). 
As a consequence, if the sets of Gisin unsteerable states and of Gisin absolutely unsteerable states were 
the same, the set of separable Gisin states would be contained in the set of absolutely local Gisin states. 
As there are Gisin states  that are separable but not absolutely local, the sets of unsteerable states and 
absolutely unsteerable states are not the same.
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6.2  General Relations for Bipartite States

The relations between absolute versions of the properties are very much similar 
to the relations between “ordinary” versions of these properties, as summarised in 
the following theorem:

Theorem 6.1 Assume that for any quantum state possessing the property A implies 
possessing the property B. It follows that if a given state � has the property A abso-
lutely, then it also has the property B absolutely.

Proof Assume that � has the property A absolutely and that for any quantum state, 
possessing the property A implies possessing the property B. Let us transform the 
state � by some unitary operator U, obtaining �� = U�U† . Because � has the prop-
erty A absolutely, �′ must have the property A. Therefore, from the implication, �′ 
must have the property B. As the unitary operator U was arbitrary, it follows that � 
has the property B absolutely.   ◻

From Theorem 6.1 it follows that the analogue of Theorem 4.2 holds for abso-
lute versions of the respective properties (see Fig. 6):

Theorem 6.2 For any bipartite state � , the following implications hold:

1. � is a product state absolutely, i.e. � has zero super quantum discord 
Dw(A|B) = Dw(B|A) = 0 absolutely ⇒ � is absolutely classical–classical, i.e. � 
has both quantum discords zero D(A|B) = B(B|A) = 0 absolutely,

2. � is absolutely classical–classical ⇒ � is both absolutely classical–quantum 
D(B|A) = 0 and absolutely quantum–classical D(A|B) = 0,

3. � is either absolutely classical–quantum or absolutely quantum–classical ⇒ � is 
absolutely separable,

4. � is absolutely separable ⇒ � is absolutely unsteerable (with any number of set-
tings),

5. � is absolutely unsteerable with n + 1 settings ⇒ � is absolutely unsteerable with 
n settings,

6. � is absolutely unsteerable (with any number of settings) ⇒ � is absolutely local.

The implication from absolute separability to absolute locality has been 
already noted in Roy et al. [49] and Ganguly et al. [18]. The relation between the 
above properties and absolute non-negativity of conditional entropy is less under-
stood. Its relation with absolute separability is known:

Theorem 6.3 [47] The class of absolutely separable two-qubit states forms a proper 
subset of the class of two-qubit states that have non-negative conditional entropy 
absolutely.
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Being a subset follows from the Theorem 6.1. Being a proper subset follows from 
the fact, that there exist two-qubit states that have non-negative conditional entropy 
absolutely but are not absolutely separable. Examples of such states are Gisin states 
for � ∈ [0, �1] , �1 ≈ 0.7729 and arbitrary � (see Table 2).

The relation between absolutely local two-qubit states and two-qubit states that 
have non-negative conditional entropy absolutely is in general not known. For the 
Werner states absolute separability implies absolute non-negative conditional 
entropy, as the Werner states are absolutely separable for w ≤ 1

3
 and have non-nega-

tive conditional entropy absolutely for w ≤ we , where we is the solution of the equa-
tion 3(1 − we) log(1 − we) + (1 + 3we) log(1 + 3we) = 4 and its numerical value is 
we ≈ 0.7476 [47].

7  The Meaning of “Classical” as Opposed to “Quantum”

In the introduction I have made an ambiguous claim that quantum mechanics dif-
fers when compared with classical physics. The ambiguity comes from the fact that 
“classical physics” can be given at least three different meanings in this context: 
(non-relativistic4) classical mechanics, classical statistical mechanics, or classical 
probability theory (which is not, strictly speaking, a physical theory, but rather a 
broader mathematical framework that may be applied in various fields). Let us dis-
cuss which of these options fits best the analyses of this paper, that is, to which 
theory belong the “classical states”, compared to which our quantum states reveal 
some non-classical properties.

Fig. 6  Relations between differ-
ent absolute properties: AProd 
absolutely product states, ACC  
absolutely classical–classical 
states (with both discords equal 
zero absolutely), ACQ abso-
lutely classical–quantum states, 
AQC absolutely quantum–clas-
sical states, ASep absolutely 
separable states, AUnSt abso-
lutely unsteerable states, ALoc 
absolutely local states. Note that 
the green circle denotes only 
one point ( 1

4
�
4
 ), so the figure is 

out of scale

4 Because we are only dealing with non-relativistic quantum mechanics here.
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Of course, for any of the mentioned classical theories, one can find properties that 
are possessed by quantum states analysed in this paper, but are not possessed by the 
states of that given theory. Therefore, at the purely formal level, the states of any of 
these theories can be compared to quantum states analysed here. However, it seems 
to me that this is not the most natural reading of the claim that a quantum theory 
reveals some specifically quantum effects that are absent at the classical level. Such 
a claim seems to make most sense if one considers the same system or the same phe-
nomenon and two different descriptions of it: one classical and one quantum. Only 
in such a situation quantum theory and classical theory can be regarded as saying 
different things about the same subject. In the light of this observation, I understand 
the question posed at the end of the previous paragraph as asking something like the 
following: which of the classical theories is such that the states of this theory can 
be used to describe physical systems of some type and the quantum states analysed 
in this paper can also be used to describe physical systems of the same type (in the 
same respects), and using the latter description provides us with predictions con-
cerning these systems that are specifically quantum and cannot be obtained by using 
the former description. With respect to these classical states our quantum states 
can be said to reveal some non-classical properties and they will be called classical 
counterparts of our quantum states. The non-classical properties, to recall, include 
the properties analysed in this paper, that is: entanglement, nonlocality, steerability, 
negative conditional entropy, non-zero quantum discord, non-zero quantum super 
discord and contextuality. Because the results reviewed and obtained in this paper 
are not easily generalizable, I will consider the question concerning classical coun-
terparts only with respect to the states explicitly analysed here, namely, quantum 
states belonging to finitely-dimensional Hilbert spaces.

Let us start with the first of the mentioned options. Quantum mechanics is typi-
cally compared with classical mechanics. In this approach, the main difference 
between the quantum and classical case is that classical states determine the results 
of measurements of physical quantities (observables) uniquely, whereas quantum 
states determine only probabilities of measurements results, which for many choices 
of a quantum state and an observable are non-trivial, that is, different from 0 and 
1. This approach is present in various comparisons between quantum and classical, 
as well as in many analyses of quantum–classical correspondence (for example, the 
one based on the Ehrenfest theorem, which relates quantum expectation values to 
the predictions of classical mechanics). This seems to be the most common point of 
view and may be found in many textbooks (e.g. [54]), as well as in popular presenta-
tions of the subject.

Among the properties analysed here, entanglement is perhaps regarded as non-
classical mostly in the sense of being absent in classical mechanics. The phenom-
enon of entanglement is possible because of the fact that the quantum state space 
for a system composed of two or more subsystems is the tensor product of the state 
spaces for its subsystems. In classical mechanics, the state space for a composite 
system is a Cartesian product of the state spaces for its subsystems, so the phenom-
enon of entanglement cannot occur (all states are product states).

Another approach is to compare quantum mechanics with classical statistical 
mechanics rather than with classical mechanics. Among the classics of quantum 
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mechanics, Max Born expressed the conviction that this is a more adequate point 
of view:

It is misleading to compare quantum mechanics with the deterministically 
formulated classical mechanics; instead, one should first reformulate the 
classical theory, even for a single particle, in an indeterministic, statistical 
manner. After that some of the distinctions between the two theories disap-
pear, [while] others emerge with great clarity. (Born, quoted in Mehra and 
Rechenberg [42, p. 1200])

Among modern textbooks, this point of view is explored, for example, by Bal-
lentine [3, pp. 388–405] and Landsman [36]. Indeed, classical statistical mechan-
ics is more similar to quantum mechanics in that both theories are probabilistic, 
whereas classical mechanics is not. The states in classical statistical mechanics 
are probability distributions over states in the sense of classical mechanics. This 
enables to make comparisons between classical and quantum states that do not 
make sense when on the “classical” side one chooses classical mechanics: for 
example, those concerning entropy of the states. Entropy provides  us  with the 
information about the uncertainty concerning the system, given its state. If there 
is no such uncertainty (which is the case in classical mechanics), the entropy 
is 0 (or, alternatively, the states of classical mechanics, being non-probabilistic 
objects, do not have well-defined entropy at all). In both quantum mechanics and 
classical statistical mechanics there are states with non-trivial entropies, so it 
makes more sense to compare these two theories in this respect.

This second approach (comparing  quantum mechanics with classical statistical 
mechanics) seems to be more promising in our case (because many of our compari-
sons involve probability-based concepts), but it is also not fully adequate. There are 
some general interpretative problems (which will be only indicated here) and some 
problems specific for the issues discussed here (which are more important from the 
point of view of this paper).

Let us start with the former group of problems. First, the states of classical statis-
tical mechanics are often interpreted as describing an ensemble of systems, whereas 
the states of quantum mechanics are interpreted as representing a single system. 
If this is correct, then the comparison of quantum mechanics states with classical 
statistical mechanics states would make no sense (unless we are interested only in 
purely formal properties of the theories, in abstraction from their physical meaning), 
because they do not represent the same objects, so they cannot be regarded as saying 
different things about the same physical phenomena. Some authors, however, avoid 
this discrepancy by treating quantum states also as describing ensembles. For exam-
ple, Sakurai in his textbook ([51], p. 24) writes: “to determine probability [of a par-
ticular measurement result on a given state] empirically, we must consider a great 
number of measurements performed on an ensemble—that is, a collection of identi-
cally prepared physical systems”. This observation leads him to the conclusion that 
quantum states (both pure and mixed) represent ensembles rather than single (one- 
or multi-particle) systems. On the other hand, the proponents of Boltzmannian (as 
opposed to Gibbsian) approach to statistical mechanics interpret this theory as being 
about individual systems rather than ensembles of systems (see e.g. [21]). If one of 
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these approaches is correct, then quantum and classical theory can be claimed to 
describe physical systems of the same type and our problem will be resolved, but 
this issue is far from being non-controversially established.

Second, probabilities of classical statistical mechanics are commonly interpreted 
as accounting for our lack of knowledge about the exact state of the system, whereas 
probabilities of quantum mechanics are usually thought of to be an objective feature 
of the world, revealing the indeterministic nature of quantum processes. Again, if 
this is correct, then the comparison of states of these theories (in our sense of com-
parison, explained at the beginning of this section) would make no sense, because 
the states of the two theories represent something ontologically entirely different. 
However, both these claims have been challenged, that is, there are authors who 
interpret probabilities in classical statistical mechanics in an objective manner (e.g. 
[22, 37]) as well as authors who interpret quantum probabilities in an epistemic way 
(such as the proponents of Quantum Bayesianism, see e.g. Baeyer [4])5; see also 
Wallace [58, pp. 211–213] for the claim that the controversy concerning the mean-
ing of probabilities in classical statistical mechanics should be resolved with the ref-
erence to quantum mechanics and McCoy [41] for the similarities in interpretative 
problems of quantum mechanics and classical statistical mechanics. Therefore, we 
have some potential ways out of our second problem, but, as previously, the issue 
is highly debatable. The two mentioned interpretative problems, although perplex-
ing, do not settle the issue against what I called here the second approach (namely, 
treating the states of classical statistical mechanics as the classical counterparts of 
quantum states, compared to which the latter reveal some non-classical properties), 
although much more would need to be said for its defense.

More importantly for the context of this paper, there are some problems spe-
cific to the class of states under consideration here, which are all associated with 
finite-dimensional Hilbert spaces. (These are not problems of a general importance, 
but only obstacles for treating the states of classical statistical mechanics as clas-
sical counterprats of these particular quantum states.) The state space of classical 
mechanics has the cardinality of the set of real numbers, so the states of classical 
statistical mechanics built upon it must be continuous probability distributions, 
which cannot be represented as probability vectors (cf. the beginning Sect.  2.4).6 
Such probability distributions form an infinitely-dimensional space. However, this 
paper is restricted to quantum states that belong to finite-dimensional Hilbert spaces 
and it is difficult to generalize its results to infinite-dimensional cases (this would 

5 The main thesis of Quantum Bayesianism, also called QBism, as formulated by Baeyer [4, p. 131] is as 
follows: ”The principal thesis of QBism is simply this: quantum probabilities are numerical measures of 
personal degrees of belief.” (Perhaps to be more precise, one should replace in this formulation ”degrees 
of belief” by ”rational degrees of belief”.) This does not automatically entail that the ”real” state of the 
physical system is itself determinate and only unknown to us; but the main point is that the states of the 
theory represent states our knowledge, not objective states of the physical system.
6 By ”states” of classical statistical mechanics I do not mean here the states of the underlying classical–
mechanical description (which are finite-dimensional, namely, 6N-dimensional for an N-particle system), 
but continuous probability distributions over these states (which themselves belong to an infinite-dimen-
sional space). This is because it is these probability distributions, not classical–mechanical states, that are 
considered here to be (candidate) counterparts of quantum-mechanical states.
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require changing even the definitions of the basic notions we are using, such as sep-
arability and entanglement, see e.g. [27, pp. 917–921]). Therefore, there is a dif-
ference in dimensionality here: quantum states considered in this paper belong to 
finite-dimensional Hilbert spaces, whereas states of classical statistical mechanics 
belong to infinite-dimensional spaces. Because of this difference in dimensionality, 
quantum states associated with finite-dimensional Hilbert spaces cannot be straight-
forwardly compared with states of classical statistical mechanics. Therefore, the 
states of classical statistical mechanics cannot be regarded as a classical counterpart 
of quantum states belonging to finite-dimensional Hilbert spaces (i.e., these quan-
tum states cannot be conceived as more refined descriptions of the same physical 
phenomena as are described by these classical statistical states).

This is less surprising if one notices that what these quantum states of finite 
dimension represent are particles with spin, which is a physical quantity that does 
not appear in classical physics at all. To represent positions and momenta, which 
have classical counterparts (and which are what classical mechanics, as well as clas-
sical statistical mechanics deals with), one needs to move to an infinite-dimensional 
Hilbert space. Therefore, even if finite-dimensional states of quantum mechan-
ics and the states of classical statistical mechanics (i.e., probability distributions) 
describe the same physical systems, they describe them in different respects, as they 
take into account different physical quantities.

Our last option is that quantum states of finite-dimensional Hilbert spaces can be 
compared with classical discrete probability distributions and it seems that indeed 
this is the approach chosen more or less explicitly by many authors in the field. For 
example, in quantum information literature, where classical and quantum informa-
tion is compared, it is assumed that the classical counterpart of a (finite-dimen-
sional) quantum state is a classical (discrete) probability distribution, because classi-
cal information theory is formulated in terms of such distributions (see e.g. [44, pp. 
500–527]).

Our third approach, contrasting (finite-dimensional) quantum mechanics with 
classical probability theory, seems to fit best some of the analyses of this paper, 
but still there are some complications. The comparison of entropies of quantum 
and classical states (Sect. 3.4) indeed assumes about the latter only their agreement 
with classical probability theory; the same concerns the notion of quantum discord, 
which is defined in terms of entropy. The properties of being classical–classical, 
classical–quantum and quantum–classical (Sect. 3.6) capture the extent to which a 
quantum state can or cannot be encoded by a classical (discrete) probability distribu-
tion, so they also fit ideally with the third approach.

To see more clearly why comparing our quantum states with discrete classical 
probability distributions makes more sense than comparing them with the states 
of classical mechanics (at least for some non-classical properties on our list), con-
sider the case of negative conditional entropy. It is called a non-classical property 
of quantum states not because the states of classical mechanics, being non-proba-
bilistic objects, have zero or ill-defined entropy, but because classical probability 
vectors have always non-negative conditional entropy. Therefore, when we analyse 
the meaning of the claim “negative conditional entropy is a non-classical property”, 
by “classical” in the expression “non-classical” we cannot mean “belonging to/being 
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related to classical mechanics”, but “belonging to/being related to classical prob-
ability theory”. In contrast, as observed earlier, when we analyse the meaning of the 
claim “entanglement is a non-classical property”, by “classical” in the expression 
“non-classical” we can reasonably mean (and in fact, we usually mean) “belonging 
to/being related to classical mechanics”. This is because the concept of a product 
state could be defined for classical mechanics and it can be shown that all its comp-
iste states are product states, which implies that they are not entangled.

One may object that discrete classical probability distributions do not describe 
particles with spin, so they also do not to satisfy our conditions for being a clas-
sical counterpart of finite-dimensional quantum states and we should simply con-
clude that there is no such counterpart. A possible answer is that the common type 
of physical systems that could be described by both classes of states are informa-
tion-carrying systems. This is not in conflict with the claim that our quantum states 
describe particles with spin, because any actual physical system belongs to different 
types under different descriptions and a group of particles with spin can be con-
sidered as an information-carrying system. Quantum mechanics, from this point 
of view, reveals non-classical properties of information-carrying systems that are 
absent in classical information theory that is based on classical probability theory.

What about other properties on our list? Are they also non-classical in the sense 
of being not allowed by classical probability theory? The definitions of nonlocal-
ity and steerability also refer to the concept of classical probability distribution, but 
they additionally use some independence conditions (indicated by the word “local” 
in the phrase “local hidden variable model”), whose motivation comes from physi-
cal assumptions rather than from classical probability theory itself. A similar situa-
tion is with contextuality, which is defined by the non-existence of hidden variable 
models of a different type. Therefore, in the case of these three properties (nonlo-
cality, steerability, and noncontextuality), their non-classicality is not merely a 
deviation from what is allowed by classical probability theory, but from the latter 
supplemented by some additional assumptions. And if one were to look for the justi-
fication of the assumption of locality in some theory of classical physics, this would 
be relativistic classical mechanics rather than non-relativistic classical mechanics, 
as the latter does not forbid nonlocal phenomena, which makes the issue even more 
complicated. Therefore, when we analyse the meaning of the claim “nonlocality is 
a non-classical property”, the term “classical” is related to a combination of classi-
cal probability theory and some principles of relativistic provenience (i.e., a rather 
hybrid object, not belonging to any theory actually used in physics).

We need to conclude that various properties of quantum states labelled in the 
literature as “non-classical” are “non-classical” in not exactly the same sense. 
Quantum states may be compared with states of different classical theories and 
the conclusions vary depending on the particular choice. There is no single clas-
sical theory such that its states can be used to describe some physical system, 
which can also be described (in the same respects) by quantum states analysed 
in this paper and relative to which these quantum states reveal all the non-clas-
sical properties listed in this paper. Classical mechanics is not a good candidate, 
because some of these properties (namely, those based on probabilistic con-
cepts) do not make sense within it. Classical statistical mechanics is also not a 
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good candidate, because its probability distributions are infinitely-dimensional, 
whereas our quantum states are finitely dimensional and, relatedly, they describe 
different phenomena (classical statistical mechanics concerns positions and 
momenta, which can be captured only be means of infinitely-dimensional Hil-
bert spaces, whereas finitely-dimensional Hilber spaces analysed here describe 
spins). Finally, classical probability theory seems to be the best candidate in our 
case, because its states are probabilistic and some of them are finite-dimensional. 
However, it is not a physical theory, strictly speaking, and it is our point of com-
parison only in the case of some properties (e.g. negative conditional entropy). 
For some other properties (e.g. nonlocality and the like) the point of comparison 
are not states of some classical theory, but some hybrid objects, which combine 
principles originating from different theories.

8  Summary

This paper provides a review of some properties of quantum states, which express 
the dissimilarity of quantum mechanics from classical physics, relations between 
these properties, and their behaviour under unitary transformations. It also con-
tributes some results that are believed to be new:

• The only two-qubit state that has zero quantum discord absolutely is the maxi-
mally mixed state �4—see Theorem 5.7;

• The only two-qubit state that has zero quantum super discord absolutely is the 
maximally mixed state �4—see Theorem 5.9;

• Contextuality and noncontextuality are always absolute, that is, if a given state 
� (of arbitrary dimensionality) is contextual, then it is also absolutely contex-
tual and if it is noncontextual, then it is also absolutely noncontextual—see 
Theorem 5.11;

With regard to specific classes of states, for the Gisin states, the range of parameters 
for which they are product, zero quantum discord, absolutely product and absolutely 
zero quantum discord have been determined—see Table 1 in Sect. 4.1 and Table 2 
in Sect. 6.1.

The presented results clearly do not exhaust the topic. For example, the theo-
rems concerning absolute zero quantum  discord and absolute product states have 
been proven only for two-qubit states. The conjecture that they also hold for higher 
dimensions seems to be natural. Given the parametrisation of unitary matrix for the 
dimension m × n , one can extend the method used in the proof of Theorem 5.7 to 
check the conjecture for the m × n case. However, the number of equations to solve 
will be large and, what is worse, this method could not be used to confirm the con-
jecture in its full generality. Therefore, some other methods would be needed.
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