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Abstract
It is well-known that the conformal structure of a relativistic spacetime is of profound
physical and conceptual interest. In this note, we consider the analogous structure for
Newtonian theories. We show that the Newtonian Weyl tensor is an invariant of this
structure.
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1 Conformal Leibnizian Spacetimes

We begin by introducing a Leibnizian spacetime, which is a triple
(
M, ta, hab

)
, where

(i) M is a differentiable manifold; (ii) ta is a non-vanishing, closed 1-form; and (iii)
hab is a positive semidefinite symmetric tensor such that habtb = 0. A connection ∇
on M is said to be compatible with this spacetime if and only if

∇atb = 0, (1a)

∇ah
bc = 0. (1b)

We will confine our attention to spacetimes which are spatially flat: that is, which
are such that the Riemann tensor Ra

bcd of any compatible connection obeys
hrbhschtd Ra

bcd = 0. (One can show that if this holds of any one compatible connec-
tion, it holds of all of them.)

Because of the separation of the spatial and temporal metrical structure, we have
scope to vary conformally the spatial and temporal structure independently of one
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another (although aswe shall see, there are reasons to couple the twokinds of conformal
transformation). Consider, first, a conformal transformation of the temporal structure

ta �→ ξ2ta, (2)

where ξ is a nowhere-vanishing and spatially constant scalar field. To say that ξ is
spatially constant means that habdbξ = 0. This is equivalent to ensuring that the
conformally transformed temporal 1-form is still closed and thus that there exists a
global time function (and so a notion of Newtonian absolute time) in the conformally-
transformedmodel.1 If we replace the temporal 1-form in a Leibnizian spacetime with
a conformal equivalence class thereof, we obtain Machian spacetime.

Second, consider a conformal transformation of the spatial structure,

hab �→ λ2hab, (3)

where λ is, again, a nowhere-vanishing and spatially constant scalar field. This time,
we require that λ be spatially constant in order to preserve spatial flatness of the
spacelike hypersurfaces. If we replace the spatialmetric in a Leibnizian spacetimewith
a conformal equivalence class of spatial metrics, then we obtain spatially conformal
Leibnizian spacetime.

Finally, we may consider joint conformal transformations of the spatial and tem-
poral structure:

ta �→ 1

λ2
ta, (4a)

hab �→ λ2hab. (4b)

where λ is a nowhere-vanishing and spatially constant scalar field. As we will show in
the next section, it is conformal transformations of this kindwhich preserve theNewto-
nian analogue of theWeyl tensor. A spacetime equipped with a conformal equivalence
class of (ta, hab) pairs will be referred to as a conformal Leibnizian spacetime.2

2 Invariance of the NewtonianWeyl Tensor

Consider a relativistic spacetime (M, gab). From gab and its associated Levi–Civita
derivative operator, one can define the Weyl tensor of this spacetime, which is the
trace-free part of the Riemann tensor:3

Ca
bcd = Ra

bcd − 1

2

(
δa [d Rc]b + gb[c Rd]a

) − 1

3
Rδa [cgd]b. (5)

1 Cf. [16, Chap. 4], [3]. Note that throughout this work we assume that the manifoldM is simply connected.
2 For definitions of Newtonian conformal structure complimentary to our own, see [5,7,8,12]. The former
two of these papers define a notion of Newtonian conformal structure in order to generalise the constructive
axiomatics of [10] to the case of Newton–Cartan theory.
3 For the generalisation to arbitrary spacetime dimensions, see e.g. [19, p. 40].
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This object is invariant under conformal transformations of gab; thus, it will be the
same for all points in the affine space of connections compatiblewith a given conformal
structure.

Now consider a Leibnizian spacetime endowedwith aNewtonian connection. At [6,
p. 574], the authors proposed the following Newtonian analogue of the Weyl tensor:4

Ca
bcd = Ra

bcd − 2

3
δa [d Rc]b. (6)

Dewar andWeatherall [6] were not the first to construct a NewtonianWeyl tensor—[9]
apply ‘frame theory’ (a unified framework for both relativistic and classical space-
times5) in order to take the non-relativistic limit of the general relativity Weyl tensor;
the result is:6

Ca
bcd = Ra

bcd − 8πGρ

3
tbδ

a [ctd]. (7)

On-shell in Newton–Cartan theory—so that the geometrised Poisson equation

Rab = 4πGρtatb (8)

holds—(6) is identical to (7). This gives us confidence that (6) is indeed the correct
object to represent a Newtonian Weyl tensor. We should flag, though, that it is not
obviously appropriate to use the on-shell version of theWeyl tensor (7), for the Poisson
equation is not invariant under conformal rescalings (just as the Einstein equation in
general relativity is not invariant under conformal rescalings of the metric field gab).7

Thus, in the remainder we focus upon the version of the Weyl tensor (6)—our goal
now is to show that this object is invariant under conformal rescalings of ta and hab,
and thus is (one might say) a gauge-invariant quantity in any theory set in a conformal
Leibnizian spacetime. One further benefit of using (6) rather than (7) is that we do not
commit ourselves to working with the dynamics of Newton–Cartan theory.

We now show that this object, in analogy with the Newtonian case, is invariant
under (an important class of) conformal rescalings of ta and hab. We begin with a
spatially flat classical spacetime (M, ta, hab,∇), where M is simply connected and ∇
4 The generalisation to arbitrary spacetime dimensions is straightforward: one replaces the denominator of
the second term on the right hand side with (n − 1). This object is sometimes referred to as the projective
Weyl tensor, and can be defined for any derivative operator; David Malament has helpfully pointed out to
us that it is invariant under a class of projective transformations.
5 Fletcher [13] claims that a topology can be introduced on the space of solutions of frame theory, such
that Newton–Cartan theory can be understood as the non-relativistic limit of general relativity; this (he
claims) affords a precise sense in which Newton–Cartan theory can be reduced to general relativity. Though
we concur with these results, we wish to flag that there are other senses of the reduction of Newton–
Cartan theory to general relativity which do not involve taking limits—for example null reduction, in which
Newton–Cartan theory is directly embedded into (certain solutions of) five-dimensional general relativity.
6 Another definition of the Newtonian Weyl tensor, equivalent to that of [6], can be found in [8].
7 To see this, one need only take (8), conformally transform both ta and hab , and substitute for Rab with
(16), where Ua

bc is the difference tensor associated with the derivative operator compatible with ta and
hab , and the derivative operator compatible with their conformally transformed versions (see below). Note,
in particular, that (8) is not invariant even under the specific class of conformal transformations given by
(4a) and (4b).
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satisfies the curvature condition

Ra
b
c
d = Rc

d
a
b. (9)

In light of these facts,8 we may introduce an observer field Na : a unit timelike field
which is geodesic and twist-free with respect to ∇, i.e. which satisfies

Na∇aN
b = 0, (10a)

hab∇bN
c = hcb∇bN

a . (10b)

Relative to this field, we may introduce a spatial metric hab, which is the unique
symmetric field satisfying the conditions

habN
a = 0, (11a)

habhbc = δac − Natc. (11b)

Now suppose we apply the conformal transformations9

ta �→ ta = 1

λ2
ta, (12a)

hab �→ h
ab = λ2hab. (12b)

where λ is a spatially constant, nowhere-vanishing scalar field: hab∇bλ = 0. It fol-
lows10 that there is a scalar field κ such that ∇aλ = κta ; explicitly,

κ = Na∇aλ. (13)

Note that κ , too, is spatially constant: for,∇nκ = ∇n(Na∇aλ) = tn(Na∇aκ). We will
use this observation below.

We now wish to find the ‘conformally transformed’ version of ∇. Unlike in the
relativistic case, we do not obtain such a transformed connection merely from having

8 [16, Proposition 4.3.7].
9 These are not quite the transformations one would have expected: purely on dimensional grounds, one
might have expected that hab �→ λ4hab (given ta �→ λ−2ta ). Our reason for using the transformations
presented in the main text is simply that this choice yields invariance of the Newtonian Weyl tensor; as
DavidMalament has pointed out to us, the reason that these transformations work is because they lead to the
difference tensor associated with the derivative operators compatible with the original and scaled metrics
to be one associated with a certain projective transformation, and we know that the Newtonian Weyl tensor
is invariant under a class of projective transformations including this particular projective transformation.
We are very grateful to Prof. Malament, and also to Jim Weatherall, for discussions here.
It bears mentioning in addition that the above two ‘expected’ transformations yield invariance of the New-
tonian Weyl tensor, without imposition of the restriction of spatial constancy, but at the price that the
transformed derivative operator compatible with the rescaled hab and ta need not be torsion-free. If one
desires the conformal transformations retain torsion-freeness, then one must choose the transformations
discussed in the main body of this text, and also impose the spatial constancy condition (which guarantees
spatial flatness).
10 [16, Proposition 4.1.1].
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transformed the temporal and spatial metrics, since they do not uniquely determine
the connection. However, the metrics together with a unit timelike field do uniquely
determine a connection: namely, the unique connection with respect to which the
timelike field is an observer field (i.e., is geodesic and twist-free).11 We therefore
define12

N
a := λ2Na, (14)

which is a unit timelike field relative to ta . We then define ∇ := (∇,Ua
bc), where

Ua
bc := 2κ

λ
t(bδ

a
c). (15)

Some straightforward computations verify that ∇ is compatible with ta and h
ab
, and

that N
a
is geodesic and twist-free with respect to ∇. Since Ua

bc is independent of
Na , we may indeed regard ∇ as the conformally transformed version of ∇: had we
chosen to represent ∇ via a different observer field N ′a , we would nevertheless have
obtained the same Ua

bc, and hence the same ∇ (This said, note that the requirement
of geodesy and twist-freeness is important: if it is relaxed, then there are infinitely
many derivative operators compatible with the rescaled metrics, and in general the
Newtonian Weyl tensor of those derivative operators will not vanish).

Next, recall that13

Ra
bcd = Ra

bcd + 2∇[cUa
d]b + 2Un

b[cU
a
d]n. (16)

Plugging in (15), we obtain

R
a
bcd = Ra

bcd + 2

(
Nn∇nκ

λ

)
tbt [cδad]. (17)

Note that it follows from this that R
abcd = 0, i.e. the conformally transformed space-

time is spatially flat (given that the original spacetime was spatially flat). From here,
it is easy to compute the Ricci tensor Rbc = R

a
bca

14:

Rbc = Rbc + 3

(
Nn∇nκ

λ

)
tbtc (18)

It remains only to substitute these expressions into (6), from which we obtain

C
a
bcd = Ca

bcd . (19)

11 [16, Proposition 4.3.4].
12 This condition can be interpreted as a conformal transformation of the derivative operator ∇—cf. [8,
§4.2].
13 [16, Problem 1.8.1]
14 Note that here the number of dimensions becomes relevant, since we have used the fact that in four
dimensions, δaa = 4.
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I.e., the Newtonian Weyl tensor, like its relativistic cousin, is invariant under these
conformal transformations. This nuances a suggestion in [6, p. 573] that this object
is not conformally invariant, and also the subsequent suggestion that “conformal
transformations just do not have any physical significance in geometrized Newtonian
gravitation”—what we find is that, under a certain class of conformal transformations
(namely, thosewhich are spatially constant), theNewtonianWeyl tensor is conformally
invariant.15

Finally, we note that since the symmetries of the Riemann tensor are the same as
those of the Levi-Civita connection in the relativistic case [16, p. 258], we also expect
the Newtonian Weyl tensor to vanish identically in spacetime dimensions D ≤ 3.

3 A DegeometrisedWeyl Tensor

Newton–Cartan theory and Newtonian gravitation theory are related via the Traut-
man geometrisation and recovery theorems [16, Chap. 4]. Ellis [11] remarks that the
degeometrised Newtonian analogue of the Riemann tensor is ∇ i∇ jφ, and that the
trace-free part of this object is (here, we follow Ellis in using spatial indices)16

Ei j := ∇ i∇ jφ − 1

3
hi j∇k∇kφ. (20)

A result with the same structural form as Ellis’ Ei j can be derived directly, and in
a coordinate-independent way, using Trautman recovery. First, recall that a Newton–
Cartan connection ∇̃ is related to a degeometrised Newtonian connection ∇ via ∇̃ =
(∇,Ca

bc), whereCa
bc = −tbtc∇aφ. The Riemann and Ricci tensors for the Newton–

Cartan connection can then be written in terms of the degeometrised gravitational
potential φ, as17

R̃a
bcd = −2tbt [d∇c]∇aφ, (21a)

R̃bc = tbtc∇n∇nφ. (21b)

One can then substitute (21a) and (21b) into (6) in order to express the Weyl tensor in
terms of φ; one finds:

C̃a
bcd = −2tbt [d∇c]∇aφ − 2

3
δa[d tc]tb∇n∇nφ. (22)

This is the four-dimensional analogue of Ellis’ object. As shown by [9], (20) is the
‘electric’ part of the Newtonian Weyl tensor (when expressed in terms of the gravita-
tional potential φ).

15 Cf. also footnote 9.
16 See [4] and [20] for further discussion of this object, sometimes called the Newtonian tidal tensor.
17 [16, pp. 268–269].
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4 Applications

There remains much work to be done with the Newtonian Weyl tensor. For example:

1. Demonstrate that the Newtonian Weyl tensor is appropriately related to the New-
tonian analogues of e.g. the Schouten, Lanczos, and Plebanski tensors.

2. Use the Newtonian Weyl tensor to construct a non-relativistic analogue of the
Petrov classification.18

3. Use the Newtonian Weyl tensor to explore gravitational waves in Newton–Cartan
theory.19

4. Use the conformal Newtonian spacetimes to write e.g. shape dynamics in terms
of fields on spacetime.20

A more general moral of this work is the following. There are various geometrical
sources of non-geodesic motion of test particles, in a given spacetime theory. One
is torsion—as is well-known from the framework of teleparallel gravity (see e.g.
[1]). In [18], it was shown that Trautman recovery can be understood as a case of
teleparallelisation; thus, themechanismviawhich one can source non-geodesicmotion
in both Newtonian and relativistic theories by the introduction of torsion is exactly
parallel. In this paper, we have considered another potential source of non-geodesic
motion: the non-metricity naturally associated with conformal rescalings (see e.g.
[2]); again, we have shown that, technically, the introduction of such non-metricity
into both contexts is parallel, for in both cases (e.g.) the Weyl tensor is an invariant of
the associated conformal structure. Thus, the structural aspects of both Newtonian and
relativistic theories, once one introduces geometrical sources of non-geodesic motion
such as torsion and non-metricity, are closely related.
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18 See e.g. [19, p. 179].
19 The status of gravitational waves inNewtonian theories is amatter of ongoing debate: [14, p. 6] claim that
these do not exist, while [6, p. 574] demur. In [15], the authors explicitly construct (albeit using unorthodox
compositions of standing waves) propagating wave solutions in Newton–Cartan theory, and associate these
with a non-vanishingWeyl tensor. Although there is certainly more to be done on these fronts (for example,
one might reasonably question that naturalness of the constructions of [15]), it is exactly this kind of work
which we have in mind when we make this point.
20 See [17] for an introduction to shape dynamics.
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