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Abstract
The difficulties of relativistic particle theories formulated bymeans of canonical quan-
tization, such as those of Klein–Gordon andDirac, ultimately led theoretical physicists
to turn to quantum field theory to model elementary particle physics. In order to over-
come these difficulties, the theories of the present approach are developed deductively
from the physical principles that specify the system, without making use of canonical
quantization. For a free particle these starting assumptions are invariance of the theory
and covariance of position with respect to Poincaré transformations. In pursuing the
approach, the effectiveness of group theoretical methods is exploited. The coherent
development of our program has shown that robust classes of representations of the
Poincaré group, discarded by the known particle theories, can in fact be taken as bases
for perfectly consistent theories. For massive spin zero particles, six inequivalent theo-
ries have been determined, two of which do not correspond to any of the current ones;
all of these theories overcome the difficulties of Klein–Gordon one. The present lack
of the explicit transformation properties of position with respect to boosts prevents the
complete determination of non zero spin particle theories. In the past a particular form
of these transformation properties was adopted by Jordan and Mukunda. We check its
consistency within the present approach and find that for spin 1

2 particles there is only
one consistent theory, which is unitarily related to Dirac’s; yet, once again, it requires
classes of irreducible representations previously discarded.

1 Motivations and Overview

Canonical quantization was the primary method for formulating specific relativistic
particle theories [1–3]; unlike the non-relativistic case, the results were affected by
problems. The first problem was the order of the wave equation for a spin zero free
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particle, i.e. theKlein–Gordon equation, that turned out to be second orderwith respect
to time, while according to the general laws of quantum theory it should have been
first order. A related problem concerns the probability density ρ̂ of the position of
the particle, that the theory allowed to be negative [4]. The proposals [5] to solve
this paradoxical situation, by a posteriori reinterpreting ρ̂ in terms of charge density,
violate the peculiar relativistic invariance required by the theory [6]. The difficulties
of relativistic particle theory, effectively shown by Weinberg in full detail [7] also for
Dirac equation [8–10], ultimately led theoretical physicists to turn to quantum field
theory to model elementary particle physics.

The inability to solve these problems is bound up with the methodological fea-
tures of canonical quantization. In order to formulate the quantum theory of a particle,
canonical quantization prescribes to replacing the dynamical variables q j and the con-
jugate momenta p j of its classical theory with operators Q j and Pj , and to replacing
the Poisson brackets { , } with operatorcommutators i[ , ] in the dynamical equations
of the classical theory, to obtain the dynamical equations of the quantum theory of the
particle. We see that the implementation of canonical quantization provides no deduc-
tive path that leads to results from physical principles. For this reason the real causes
of problematic or inconsistent predictions cannot be singled out and thus resolved.

In order to overcome these inconsistencies, the present work does not apply canon-
ical quantization; instead, the quantum theories of a particle are constructed according
to a strictly deductive development starting from the symmetry and covariance prin-
ciples that characterize the concept of free particle. This methodology avoids the
shortcomings arising with canonical quantization, because the eventual occurrence of
inconsistencies, whenever ascertained, would be the proof of the failure of the starting
assumptions, which should be accordingly modified. This approach has turned out
to be very effective in developing non-relativistic quantum theories of an interacting
particle [11–13], by making use of group theoretical methods. Here we undertake the
approach for the relativistic quantum theory of an isolated system and of a “massive”
free particle in particular. From the results, we have found not only that

alternative theories of a free Klein–Gordon particle are completely derivable from
the physical principles without the problems suffered by the earlier theory,

(a task not accomplished before) but even that

new species of particle theories, i.e. consistent theories that correspond to none of
the known theories, can be coherently developed.

The principle we start from for an isolated physical system is relativistic invariance
established by stating that the Poincaré group P is a group of symmetry transfor-
mations. After the needed mathematical prerequisites in Sect. 2, in Sect. 3 we show
that this invariance principle implies the existence of a generalized projective repre-
sentation g → Ug of the Poincaré group that realizes the quantum transformations
of observables according to A → Sg[A] = Ug AU−1

g . Though this implication is
widely exploited in the literature [14–19], it could in fact not be derived from the
symmetry principle by making use of the standard quantum concept of transforma-
tion. We overcome this obstacle by introducing a more adequate concept of quantum
transformation.
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Then, the concept of free particle is introduced as an isolated system specified by the
existence of a unique triple Q = (Q1, Q2, Q3) of commuting quantum observables
that represent the three coordinates of the position.1 Accordingly, it is required that
for each g ∈ P the transformed position operator Sg[Q] = UgQU−1

g and the untrans-
formedQmust be related by the peculiar transformation properties of the coordinates
of position with respect to g. For an elementary free particle the projective represen-
tation U such that Sg[Q] = UgQU−1

g must be irreducible. Thus, a consistent theory
of a free elementary particle is identifiable by checking which irreducible general-
ized projective representations of P admit a triple Q satisfying these transformation
conditions.

The work of Sect. 3 shows that the identification of the irreducible generalized
projective representations of P lays the groundwork for developing theories of ele-
mentary free particle. Several well known approaches based on relativistic invariance,
from the fundamental works of Wigner [14], Wigner and Bargmann [15], to more
recent contributions [7,16–18], deal with this task. These approaches, however, dis-
card robust classes of irreducible representations ofP . For instance, in [19] irreducible
representations with anti-unitary space inversion operators are not taken into account.
One reason put forward for this exclusion [7,16,27] is that anti-unitarity space inver-
sion operators change the sign of the spectral values of the self-adjoint generator of
time translations P0, that in these studies is identified with energy, and it is usually
assumed that this change cannot happen (see [27, p. 135]). But we know that Dirac
theory of spin- 12 particles does admit both signs for this spectrum; moreover, we shall
show in Sect. 5 that perfectly consistent theories can be formulated with anti-unitary
space inversion operators. In the present work no such a priori exclusion is assumed;
any space inversion or time reversal operator is discarded only if it gives rise to incon-
sistencies.

The irreducible (positive “mass”) generalized projective representations ofP with-
out a priori preclusions are reported in Sect. 4.

The explicit determination of the theories of an elementary free particle is addressed
in Sect. 5 by selecting which of the already identified irreducible representations of P
admits a position operator Q with the required transformation properties. As a result,
for each positive value of the mass parameter μ six inequivalent theories for spin
zero particles are fully determined. Two of these theories coincide with well known
theories with positive or negative spectrum σ(P0) of the Hamiltonian operator P0
and spin zero. Two further theories are characterized by symmetrical spectrum σ(P0)
of the Hamiltonian operator P0, hence recalling Klein–Gordon particles, albeit with
fundamental differences with respect to the earlier theory; first of all, both theories
are based on irreducible representations in the new classes with anti-unitary space
inversion operator, and one has anti-unitary time reversal operator as well; moreover,
being developed deductively, they avoid the problems of interpretative consistency

1 The commutativity condition [Q j , Qk ] = O establishes the possibility of performing a measurement
that yields all three values of the position coordinates. The nonexistence of commutative position operators
in certain circumstances [20] has led to search for more general concepts of position [21], such as non-
commutative concepts [22–25], and for unsharp position (see [26] and references therein), circumstances.
In the present work we are interested in the commutative concept of position only.
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associated with the Klein–Gordon theory. Two other theories are new species: they
have no correspondence with currently known theories.

In the case of non zero spin particles, our selection of the representations that admit
an observable position does not uniquely determine Q. Section 6 explains how this
indeterminacy is due to the present unavailability of a general form of the transforma-
tion properties ofQwith respect to boosts. A particular form (JM) of these properties,
expressed as commutation relations, was adopted by Jordan and Mukunda [18]. In
Sect. 6 the selection is performed by making tentative use of (JM). For spin- 12 parti-
cles with symmetrical spectrum of the Hamiltonian operator P0, only one theory turns
out to be consistent with (JM), which is unitarily related to Dirac theory. Moreover
this theory requires an irreducible generalized projective representation of P in the
new classes with anti-unitary space inversion operator.

Section 7 discusses the problem of identifying the real particles described by a
given theory from those developed in the work.

In the final Sect. 8 future perspectives stemming from the presentwork are indicated.

2 Notation andMathematical Prerequisites

First of all we introduce the notation for the mathematical structures of general interest
in a quantum theory based on a Hilbert space H.

– The set�(H) of all self-adjoint operators ofH; in a quantum theory these operators
represent quantum observables.

– The lattice �(H) of all projections operators of H; in a quantum theory they
represent observables with outcome’ spectrum {0, 1}.

– The set �1(H) of all rank one orthogonal projections of H.
– The set S(H) of all density operators of H; in a quantum theory these operators
represent quantum states.

– The set V(H) of all unitary or anti-unitary operators of the Hilbert spaceH.
– The set U(H) of all unitary operators ofH; trivially, U(H) ⊆ V(H) holds.

2.1 Representations of Groups; the Poincaré Group

The following definition introduces general notions concerning group representations.

Definition 2.1 Let G be a separable, locally compact group with identity element e. A
correspondence U : G → V(H), g → Ug , with Ue = 1I, is a generalized projective
representation of G if the following conditions are satisfied.

(i) A complex function σ : G × G → C, called multiplier, exists such that
Ug1g2 = σ(g1, g2)Ug1Ug2 ; the modulus |σ(g1, g2)| is always 1;

(ii) for all φ,ψ ∈ H, the mapping g → 〈Ugφ | ψ〉 is a Borel function in g.

Whenever Ug is unitary for all g ∈ G, U is called projective representation, or σ -
representation.

A generalized projective representation is said to be continuous if for any fixed
ψ ∈ H the mapping g → Ugψ from G toH is continuous with respect to g.
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If U : G → V(H) is a generalized projective representation and θ(g) ∈ R for
all g ∈ G, with eiθ(e) = 1I, then the generalized projective representation Ũ : G →
V(H), g → Ũg = eiθ(g)Ug is said to be equivalent to U : G → V(H).

In [12] we have proved that the following statement holds.

Proposition 2.1 If G is a connected group, then every continuous generalized pro-
jective representation U of G is a projective representation, i.e. Ug ∈ U(H), for all
g ∈ G.

Given any vector x = (x0, x) ∈ R
4, we call x0 the time component of x and x =

(x1, x2, x3) the spatial component of x . The proper orthochronous Poincaré group
P↑

+ is the separable locally compact group of all transformations of R4 generated by
the ten one-parameter sub-groups T0, T j ,R j , B j , j = 1, 2, 3, of time translations,
spatial translation, proper spatial rotations and Lorentz boosts, respectively, relative
to the axes x j . Euclidean group E is the sub-group generated by all T j and R j . The

sub-group generated by all R j , B j is the proper orthochronous Lorentz group L↑
+

[17]. It does not include time reversal �t and space inversion �s. Time reversal �t
transforms x = (x0, x) into (−x0, x); space inversion �s transforms x = (x0, x) into
(x0,−x). The group generated by {P↑

+, �t, �s} is the separable and locally compact

Poincaré group P . By L+ we denote the subgroup generated by L↑
+ and �t, while L↑

denotes the subgroup generated by L↑
+ and �s; analogously, P+ denotes the subgroup

generated by P↑
+ and �t, while P↑ is the subgroup generated by P↑

+ and �s.
Since P↑

+ is a connected group, according to Proposition 2.1 every continuous

generalized projective representation of P↑
+ is a projective representation.

All sub-groups T0, T j ,R j , B j of P↑
+ are additive; in fact, B j is not additive with

respect to the parameter relative velocity u, but it is additivewith respect to the parame-
terϕ(u) = 1

2 ln
1+u
1−u . For every continuous projective representation Ũ : P↑

+ → U(H),
according to Stone’s theorem [28], an equivalent continuous projective representation
U : P↑

+ → U(H) exists with ten self-adjoint generators P0, Pj , J j , K j , j = 1, 2, 3, of
the ten one-parameter unitary subgroups {ei P0t }, {e−i Pj a j , a ∈ R}, {e−i J j θ j , θ j ∈ R},
{e−i K jϕ(u j ), u j ∈ R}ofU(H) that represent the one-parameter sub-groupsT0,T j ,R j ,
B j according to the projective representation U .

2.2 Commutation Relations in Representations ofP

The structural properties of P↑
+ as a Lie group imply that every continuous projective

representation of P↑
+ admits an equivalent projective representation whose generators

satisfy the following commutation relations [19].

(i) [Pj , Pk] = O, (ii) [J j , Pk] = i ε̂ jkl Pl , (iii) [J j , Jk] = i ε̂ jkl Jl ,
(iv) [J j , Kk] = i ε̂ jkl Kl , (v) [K j , Kk] = −i ε̂ j,k,l Jl , (vi) [K j , Pk] = iδ jk P0,
(vii) [Pj , P0] = O, (viii)[J j , P0] = O, (ix) [K j , P0] = i Pj ,

(1)
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where ε̂ jkl is the Levi-Civita symbol ε jkl restricted by the condition j 	= l 	= k.
Let U : P → V(H) be a generalized projective representation whose restriction

to P↑
+ is continuous, for which the commutation relations (1) hold. Each operator

Ug can be unitary or anti-unitary, but according to Proposition 2.1 Ug is unitary if

g ∈ P↑
+. Since time reversal �t and space inversion �s are not connected with the

identity transformation e ∈ P , the operators �T = U�t and �S = U�s that represent
�t and �s are not necessarily unitary: each of them can be unitary or anti-unitary. By
making use of the structural properties of the full Poincaré group P it can be shown
[19] that the phase factor eiθ(g) can always be chosen so that, besides (1), the following
statements also hold in the equivalent representation.
If �S is unitary, then the following relations hold.

[�S, P0] = O, �SPj = −Pj �S, [�S, Jk] = O, �SK j = −K j �S; �S−1 = �S.

(2)

In the case that �S is anti-unitary, instead we have

�SP0 = −P0�S, [�S, Pj ] = O, �SJk = −Jk�S, �SK j = K j �S ;
�S−1 = c�S, with c = ±1. (3)

The following relations hold in the case that �T is unitary.

�TP0 = −P0
�T, [�T, Pj ] = O, [�T, Jk] = O, �TK j = −K j

�T; �T−1 = �T
(4)

Instead, for anti-unitary �T we have

�TP0 = P0
�T, �TPj = −Pj

�T, �TJk = −Jk
�T, �TK j = K j

�T, ;
�T−1 = c�T, with c = ±1. (5)

The commutation condition to be satisfied by the pair �S, �T, independently of their
unitary or anti-unitary character, is simply

�S�T = ω�T�S, with ω ∈ C and |ω| = 1. (6)

3 Single Particle Quantum Theories

In order to develop the specific quantum theories of a free particle, we interpret P
as the group of changes of reference frame, according to special relativity. Hence,
given a reference frame 
 in the class F of the (inertial) reference frames that move
uniformly with respect to each other, for every g ∈ P let 
g denote the reference
frame related to 
 just by g, and let g : R

4 → R
4 be the mapping such that if

x = (t, x1, x2, x3) ≡ (x0, x) is the vector of the time-space coordinates of an event
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with respect to 
, then g(x) is the vector of the time-space coordinates of that event
with respect to 
g .

Let us now consider an isolated physical system. The following statement estab-
lishes as a physical principle that P is a group of symmetry transformations.

Sym The theory of an isolated system is invariant for changes of frames in F .

We now introduce the concept of relative indistinguishability between measuring pro-
cedures of quantum observables, which allows to show that for each g ∈ P a specific
quantum transformation Sg : �(H) → �(H), A → Sg[A] of the quantum observ-
ables must exist, with peculiar properties (S.1)-(S.3).
Relative indistinguishability of measuring procedures. Given two reference frames

1 and 
2 in F , if a measuring procedure M1 is with respect to 
1 identical to
another measuring procedure M2 with respect to 
2, we say that M1 and M2 are
indistinguishable relative to (
1, 
2).

Given 
1 and 
2 in F , for every measuring procedure M1 another measuring
procedure M2 must exist such that M1 and M2 are indistinguishable relative to
(
1, 
2), otherwise the invariance stated by Sym would not hold; this existence con-
fers consistency to the following definition.

Definition 3.1 Quantum transformation.
Fixed any reference frame 
 ∈ F , for every g ∈ P the mapping

Sg : �(H) → �(H), A → Sg[A] , (7)

such that the quantum observables A and Sg[A] respectively are measurable by two
measuring procedures M1 and M2 indistinguishable relatively to (
,
g), is called
quantum transformation of g.

The following properties are compelled by the present specific concept of quantum
transformation.

(S.1) Every Sg : �(H) → �(H) is bijective;
(S.2) for every A ∈ �(H) and every real function f such that f (A) ∈ �(H),

the equality Sg[ f (A)] = f (Sg[A]) holds.
We show how this property is compelled by conceptual coherence. Let us con-
sider two procedures M1 and M2 that measure A and Sg[A] respectively, M1
andM2 being indistinguishable relative to 
 and 
g . General quantum theory
[29] establishes that the quantum observable B = f (A) can be measured by
performing the same measuring procedureM1 for measuring A and then trans-
forming the obtained outcome a of A by the mathematical function f into the
outcome b = f (a) of B = f (A); thus the same argument applies to Sg[A] and
D = f (Sg[A]). Therefore, the two procedures thatmeasure the quantumobserv-
ables f (A) and f (Sg[A]) can be realized by transforming the outcomes yielded
by the relatively indistinguishable M1 and M2 through the same function f ;
adding the application of the same mathematical function f to the outcomes of
the procedures forM1 andM2 does not affect their relative indistinguishability.
Thus Sg[ f (A)] = f (Sg[A]) follows.
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(S.3) Sgh[A] = Sg [Sh[A]], for all g, h ∈ P and every A ∈ �[H).

Thus, from (Sym) the following further physical principle is implied.

(QT ) A quantum transformation Sg : �(H) → �(H) exists for every symmetry
transformation g ∈ P , such that (S.1), (S.2) and (S.3) hold.

Properties (S.1) and (S.2) are sufficient [12] to prove that for each quantum transfor-
mation Sg a unitary or anti-unitary operator Ũg must exist such that

Sg[A] = Ũg AŨ
−1
g , for every A ∈ �(H). (8)

Remark 3.1 It is important not to confuse the present concept of quantum transforma-
tion with the “active” concept more often adopted. The transformation in this latter
sense is obtained by “Moving everything by an element [g ∈ P]” [30]. The active
concept is not in fact adequate for our approach. Let us explain why. Let the appara-
tus M measuring A be at rest with respect to 
, but with an “internal” component
endowed with a velocity v with respect to 
, and let g be a boost. According to the
active concept, the apparatusM′ measuring Sactiveg [A] is the apparatusMmeasuring
A endowed with the velocity u characterizing the boost g. Clearly apparatusM′ is at
rest with respect to
g , but the velocity of the moving component is not v with respect
to 
′, because of the relativistic composition law of velocities. Therefore, M and
M′ are not indistinguishable relative to (
,
′). Since such an indistinguishability is
required in order to state that (S.2) holds, the present approach could not be developed
with the active concept of transformation.

3.1 Theories of Isolated Systems

Given any real function θ of g, the operators Ũg and eiθ(g)Ũg yield the same quan-

tum transformation as Ũg , i.e. Ũg AŨ−1
g =

(
eiθ(g)Ũg

)
A

(
eiθ(g)Ũg

)−1
, and, hence,

Ug = eiθ(g)Ũg can replace Ũg in the specific quantum theory of the system. In particu-
lar, we can setUe = 1I. Condition (S.3) implies that Ug1g2 = σ(g1, g2)Ug1Ug2 where
σ(g1, g2) is a complex number of modulus 1. In general therefore the correspondence
U : P → V(H) for which Sg[A] = Ug AU−1

g is a generalized projective represen-
tation that satisfies (1)-(6). We assume that the correspondence g → Sg restricted to

P↑
+ is continuous, according to the Bargmann topology [12]; this assumption can be

justified by arguing that a small transformation g ∈ P↑
+ determines a small change

from A to Sg[A]. Now, it has been proved [12] that if the correspondence g → Sg
assigning each transformation g ∈ P↑

+ its quantum transformation Sg is continuous
with respect to the Bargmann topology, then a choice of the free phase θ(g) exists
such that the restriction U : P↑

+ → U(H) turns out to be continuous, and therefore a
continuous projective representation, according to Proposition 2.1.

Thus, from the principles Sym and its“corollary” (QT ), we have shown that the
Hilbert space of the quantum theory of an isolated system must necessarily be the
Hilbert space of a generalized projective representation U of P , that determines the
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quantum transformation of the observables as Sg[A] = Ug AU−1
g ; moreover, under

our continuity hypothesis for g → Sg , the restriction U |P↑
+
is continuous.

Though this implication is widely shared [14–19], its proof in fact requires
the present concept of quantum transformation, unike the one usually adopted, as
explained in Remark 3.1.

3.2 Theories of a Localizable Free Particle

By localizable free particle, or free particle, wemean an isolated systemwhose specific
quantum theory is endowed with a unique position observable, namely with a unique
triple (Q1, Q2, Q3) ≡ Q of self-adjoint operators, whose components Q j are called
coordinates of position, characterized by the following conditions.

(Q.1) [Q j , Qk] = O, for all j, k = 1, 2, 3.
This condition establishes that a measurement of position yields all three values
of the coordinates of the same specimen of the particle (see footnote 1, Sect. 1).

(Q.2) For every g ∈ P , the triple (Q1, Q2, Q3) ≡ Q and the transformed position
operators Sg[Q] satisfy the specific relations implied by the transformation prop-
erties of position with respect to g.

Example 3.1 Let E be the Euclidean group, i.e. the group generated by spatial transla-
tions and rotations. Condition (Q.2) implies that for g ∈ E ∪{�t, �s} the occurrence of
x = (x1, x2, x3) as outcome of a measurement of the position at time t = 0 in a ref-
erence frame 
 is equivalent to the occurrence of g(x) as outcome of a measurement
of the position at time t ′ = 0 in the reference frame 
g . Therefore, by making use of
spectral theory [31], from (Q.2) we derive

(Q.2.a) S�t[Q] = Q and S�s[Q] = −Q, i.e. �TQ = Q�T and �SQ = −Q�S by (2)-(5),
(Q.2.b) Sg[Q] = UgQU−1

g = g(Q) for every g ∈ E .
So, if g is a spatial translation, i.e. if g(x) = x − a, then the transformation property
is Sg[Q] ≡ UgQU−1

g = Q− a1I. It must be remarked that the extension of (Q.2.b) to
boosts is yet to be found, as we shall explain in Sect. 6.

Condition (Q.2.b) implies relations that tie Q with the self-adjoint generators P0,
P, J,K. For instance, if g is a translation by a along x1, so that g(x) = (x1−a, x2, x3)
and Ug = e−i P1a hold, then (Q.2.b) yields the transformation properties

Sg[Qk] = e−i P1aQke
i P1a = Qk − δ1ka ;

by expanding with respect to a, these properties can be expressed as the commutation
relation [Qk, P1] = iδ1k ; in general, the following canonical commutation rules hold.

[Qk, Pj ] = iδ jk . (9.i)

Analogously, the transformation properties with respect to spatial rotations imply

[J j , Qk] = i ε̂ jkl Ql . (9.i i)
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Relations (9) are an equivalent form of transformation properties with respect to E .

3.3 Theories of Elementary Free Particle

In the quantum theory of a localizable free particle, the system of operators {U (P),Q}
may or may not be reducible. Following a customary procedure, we introduce the
following elementary particle concept.

Definition 3.2 A free particle is said to be elementary if the system of operators
{U (P),Q} is irreducible.

For elementary free particles, the generalized projective representationU that realizes
the quantum transformations must be irreducible. Let us explain why. If U were
reducible, then a unitary operator V would exist such that [V ,Ug] = O for all g ∈ P ,
but [V , Q j ] 	= O for some j − if [V , Qk] = O held for all k, then {U (P),Q} would
be reducible, and this is not possible for elementary particles. Hence, if we define
Q̂k = V QkV−1, then Q̂ 	= Q, while VUgV−1 = Ug for all g ∈ P . The mathematical
relations between the operators Q̂ = VQV−1 and each Ug = VUgV−1 must be
the same as the mathematical relations between Q and that Ug , because {U (P),Q}
and {U (P), Q̂} are unitarily isomorphic. Then the triple Q̂ satisfies (Q.2), because Q
does, and therefore Q̂ would be a position operator in all respects. Thus, for the same
elementary particle two different position operators would exist, in contradiction with
the required uniqueness.

Since in a theory of an elementary particle the generalized projective representation
U : P → V(H) for which Sg[A] = Ug AU−1

g must be irreducible, the possible
theories can be concretely identified by selecting the irreducible generalized projective
representationsU ofP that admit a tripleQ satisfying (Q.1) and (Q.2). An irreducible
representation can be excluded as basis of a particle theory only if it gives rise to
inconsistency, not a priori. Therefore, the aimed identification requires selection on
a as large as possible set of irreducible representations, including those discarded by
the literature. In Sect. 4 we explicitly identify the irreducible generalized projective
representations of P of positive “mass”; in Sects. 5 and 6 we perform the selection
described above. The zero “mass” case will be dealt within a separate work.

4 Irreducible Representations ofP
In this section we render explicit the form of the irreducible generalized projective
representations of P , without exclusions based on the unitary or anti-unitary charac-
ter of operators �T, �S. A determination of these representations was worked out in
[32], through a generalization of the imprimitivity theorem of Mackey [30]. Another
approach was developed in [33,34] by Cariñena and Santander, who also proposed
a criterion to establish whether symmetry transformation can be represented by anti-
unitary operators in a quantum theory [35]; unfortunately, such a criterion turned out
to be ineffective in the relativistic case. In the present work we shall make use of
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the explicit form of the representations of P as determined in [36] and shown in this
section, because this form is particularly suitable for our aims.

Let us denote the class of all such representations by IP . Given any U in IP , we
define the projection operators E+ = ∫ ∞

0 dEp0 and E− = ∫ 0
−∞ dEp0 = 1I − E+,

where p0 → Ep0 is the resolution of the identity of the generator P0 (if the observable
represented by P0 is called “energy”, then we can say that E+ and E− project onto
the positive energy and negative energy self-spaces of H, respectively). So

IP = IP (u) ∪ IP (d) ∪ IP (s) ,

where IP (u) (resp.,IP (d) is formed by the representations in IP such that E+ = 1I
(resp,. E− = 1I), and IP (s) is formed by the representations in IP such that E+, and
hence E−, is different from O and 1I.

WheneverU ∈ IP (s), the restrictionU |P↑
+
always turns out to be reduced [36] by

E+ into U+ : P↑
+ → U(H), g → U+

g = E+UgE+ and by and E− into U− : P↑
+ →

U(H), g → U−
g = E−UgE−, so that U |P↑

+
= U+ ⊕ U−. In its turn, U+, could be

reducible, though the unrestricted representationU ofP is irreducible. This also holds
if U ∈ IP (u) or U ∈ IP (d), for which we have U+ = U |P↑

+
and U− = U |P↑

+
.

Moreover, in the case U ∈ IP (s) it can be shown that U+ is reducible if and only if
U− is reducible [36]. So

IP = IP (U±irred.) ∪ IP (U±red.),

where IP (U±irred.) is the class of the representations in IP for which each U+
or U− is irreducible, and IP (U±red.) is formed by the representations in IP for
whichU+ orU− is reducible. The class IP (U±irred.) can be brokendown into three
non-overlapping subclasses:

IP (U±irred.) = IP (U+irred.u) ∪ IP (U−irred.d) ∪ IP (U±irred.s),

where IP (U+irred.u) (resp., IP (U+irred.d)) is the subset of those representations
in IP (u) (resp., IP (d)) such that U |P↑

+
is irreducible, while IP (U+irred.s) is the

subset of those representations in IP (s) such that U+ is irreducible.
Analogously, class IP (U±red.) can be brokendown into three non-overlapping

subclasses:

IP (U±red.) = IP (U+red.u) ∪ IP (U−red.d) ∪ IP (U±red.s),

with obvious meaning of the notation.
The next subsections provide a complete specification of the three subclasses of

IP (U±irred.) and show that the subclasses of IP (U±red.) are not empty.
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4.1 SubclassIP (U+irred.u)

The representations in this subclass, aswell as those inIP (U−irred.d), arewell known
[14]; each representation is characterized by a unique pair (μ, s), where μ ∈ R+ is
called mass parameter and s ∈ 1

2N is called spin. Fixed any pair μ > 0 and s ∈ 1
2N,

modulo unitary isomorphism there is only one representation U characterized by
(μ, s); its Hilbert space is the space L2(R

3,C2s+1, dν) of the functions ψ : R3 →
C
2s+1, p → ψ(p) square integrable with respect to themeasure dν(p) = dp1dp2dp3√

μ2+p2
, in

the sense that
∫
R3 ‖ψ(p)‖2

C2s+1
dν(p) < ∞. The self-adjoint generators are identified

by the following statements.

– generators Pj are the multiplication operators defined by (Pjψ)(p) = p jψ(p),
– generator P0 is given by (P0ψ)(p) = p0ψ(p) where p0 = +√

μ2 + p2,

– generators J j are given by J j = i
(
pk

∂
∂ pl

− pl
∂

∂ pk

)
+ Sk , where ( j, k, l) is any

cyclic permutation of (1, 2, 3), and S1, S2, S3 are the self-adjoint generators of an
irreducible projective representation L : SO(3) → C

2s+1 such that S21+S22+S23 =
s(s + 1)1I; hence, they can be fixed as the three spin operators of C2s+1,

– generators K j are given by K j = i p0
∂

∂ p j
− (S∧p) j

μ+p0
.

The unitary space inversion operator and the anti-unitary time reversal operator are

�S = ϒ and �T = τKϒ , where (10)

– ϒ is the unitary operator defined by (ϒψ)(p) = ψ(−p),
– τ is a unitary matrix of C2s+1 such that τ S jτ

−1 = −S j , for all j ; such a matrix
always exists and it is unique up a complex factor of modulus 1; moreover, if s ∈ N

then τ is symmetric and ττ = 1, while if s ∈ (
N + 1

2

)
then τ is anti-symmetric

and ττ = −1 [19];
– K is the anti-unitary complex conjugation operator defined by Kψ(p) = ψ(p).

These operators determine the projective representation.
The spectrum σ(P) of the four-operator P = (P0, P1, P2, P3) is the positive hyper-
boloid

σ(P) = S+
μ ≡ {p ∈ R

4 | p20 − p2 = μ2, p0 > 0}.

4.2 SubclassIP (U−irred.d)

Each representation U in this subclass is characterized by a unique pair (μ, s), where
μ > 0 and s ∈ 1

2N. For every pair μ > 0 and s ∈ 1
2N, modulo unitary isomorphism

there is only one representation U characterized by (μ, s); it differs from the repre-
sentation of IP (U+irred.u) characterized by the same pair only for generators P0 and

K, that are given by (P0ψ)(p) = −p0ψ(p) and K j = −i p0
∂

∂ p j
+ (S∧p) j

μ+p0
.

The spectrum of P is the negative hyperboloid

σ(P) = S−
μ ≡ {p ∈ R

4 | p20 − p2 = μ2, p0 < 0}.
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4.3 SubclassIP (U±irred.s)

Each representation U ∈ IP (U±irred.s) is characterized by a unique pair (μ, s),
μ > 0, s ∈ 1

2N. For every pairμ > 0 and s ∈ 1
2N there are six inequivalent irreducible

generalized projective representationsU (l), l = 1, 2, . . . , 6 of P; modulo unitary iso-
morphisms, the Hilbert space of eachU (l) is L2(R

3,C2s+1, dν)⊕L2(R
3,C2s+1, dν).

If each vector ψ ∈ H is represented as a column vector ψ =
[

ψ+
ψ−

]
, with

ψ± ∈ L2(R
3,C2s+1, dν), then E+ =

[
1 0
0 0

]
, E− =

[
0 0
0 1

]
, and the generators

of U (l) |P↑
+
are represented in their canonical form

Pj =
[
p j 0
0 p j

]
, P0 =

[
p0 0
0 −p0

]
, Jk =

[
jk 0
0 jk

]
, K j =

[
k j 0
0 −k j

]
, (11)

where jk = i
(
pl

∂
∂ p j

− p j
∂

∂ pl

)
+ Sk and k j = i p0

∂
∂ p j

− (S∧p) j
μ+p0

. (The matrix entries

“1” and “0” denote the identity and null operators of C2s+1. This notation is adopted
throughout the paper.)

The six representations U (l), l = 1, 2, . . . , 6 differ just for the different pairs of
time reversal and space inversion operators, according to the following list.

U (1) has unitary �T =
[
0 1
1 0

]
and unitary �S = ϒ

[
1 0
0 1

]
;

U (2) has unitary �T =
[
0 1
1 0

]
and unitary �S = ϒ

[
1 0
0 −1

]
;

U (3) has unitary �T =
[
0 1
1 0

]
and anti-unitary �S =

[
0 τ

τ 0

]
K ;

U (4) has unitary �T =
[
0 1
1 0

]
and anti-unitary �S =

[
0 τ

−τ 0

]
K ;

U (5) has anti-unitary �T = τKϒ

[
0 1
1 0

]
and anti-unitary�S =

[
0 τ

τ 0

]
K ;

U (6) has anti-unitary �T = τKϒ

[
0 1
1 0

]
and anti-unitary�S =

[
0 τ

−τ 0

]
K .

The combination �S unitary and �T anti-unitary is not in this subclass [36].
The spectrum of P is the set theoretic union of the positive and negative hyperboloids:
σ(P) = S+

μ ∪ S−
μ .

Representations U (1),U (2) are adopted in the literature as bases of particle the-
ories. Instead, U (3),U (4),U (5),U (6) have never been considered, to the best of our
knowledge.

4.4 The ClassIP (U±red.)

Once fixed μ and s, Sects. 4.1–4.3 show that there are eight inequivalent irreducible
generalized projective representations of P with U+ or U− irreducible. The class of
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all such octets does not exhaust class IP , because the class IP (U±red.) is not empty.
These representations, which have never been considered for particle theories, will
give rise to new species of particle theories.

4.4.1 Subclasses IP (U+red.u), IP (U−red.d).

Fixed any pair μ > 0, s ∈ 1
2N, let us consider the Hilbert space H =

L2(R
3,C2s+1, dν) ⊕ L2(R

3,C2s+1, dν); let every vector ψ = ψ1 + ψ2 in H, with

ψ1, ψ2 ∈ L2(R
3,C2s+1, dν) be represented as the column vector ψ ≡

[
ψ1
ψ2

]
, so

that every linear (resp., anti-linear) operator A of H can be represented by a matrix[
A11 A12
A21 A22

]
, where Amn is a linear (resp., anti-linear) operator of L2(R

3,C2s+1, dν),

and

Aψ =
[
A11 A12
A21 A22

] [
ψ1
ψ2

]
=

[
A11ψ1 + A12ψ2
A21ψ1 + A22ψ2

]
. Let us define

P0 =
[
p0 0
0 p0

]
, Pj =

[
p j 0
0 p j

]
, Jk =

[
jk 0
0 jk

]
, K j =

[
k j 0
0 k j

]
, (12)

where jk = i
(
pl

∂
∂ p j

− p j
∂

∂ pl

)
+ Sk and k j = i p0

∂
∂ p j

− (S∧p) j
μ+p0

. Thus, a reducible pro-

jective representationU : P↑
+ → L2(R

3,C2s+1, dν) ⊕ L2(R
3,C2s+1, dν) satisfying

(1) is determined. The operators

�S = ϒ

[
0 1
1 0

]
, �T = τϒK

[
0 1

−1 0

]
(13)

satisfy all conditions (2)–(6). By defining U�t = τϒK
[

0 1
−1 0

]
and U�s = ϒ

[
0 1
1 0

]
,

therefore, the projective representationU ofP↑
+ is extended to a generalized projective

representation ofP . Moreover, if A =
[
A11 A12
A21 A22

]
is any self-adjoint operator ofH =

L2(R
3,C2s+1, dν) ⊕ L2(R

3,C2s+1, dν), then the conditions [A, P0] = [A, Pj ] =
[A, Jk] = [A, K j ] = [A, �S] = [A, �T] = O imply A =

[
a 0
0 a

]
≡ a1I, and therefore

the generalized projective representation U is irreducible.
The identification of a concrete irreducible representation of IP (U−red.d) is analo-
gous.

4.4.2 SubclassIP (U±red.s).

Once again for these representations the combination �S unitary and �T anti-unitary
is forbidden [36]. We now give an irreducible representation U of P with σ(P) =
S+
μ ∪ S−

μ , s = 0, and U+ reducible, where �T is unitary and �S is anti-unitary.
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H = L2(R
3, dν) ⊕ L2(R

3, dν) ⊕ L2(R
3, dν) ⊕ L2(R

3, dν) is the Hilbert space
of the representation. Every vector ψ ∈ H is represented as a column vector ψ =⎡
⎢⎢⎢⎣

ψ
(1)
+

ψ
(1)
−

ψ
(2)
+

ψ
(2)
−

⎤
⎥⎥⎥⎦, with ψ

(m)
± ∈ L2(R

3, dν).

The projections E+, E− and the self-adjoint generators relative to P↑
+ satisfying (1)

are

E+ =

⎡
⎢⎢⎣
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

⎤
⎥⎥⎦ , E− =

⎡
⎢⎢⎣
0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1

⎤
⎥⎥⎦ , P0 =

⎡
⎢⎢⎣
p0 0 0 0
0 −p0 0 0
0 0 p0 0
0 0 0 −p0

⎤
⎥⎥⎦ ,

Pj =

⎡
⎢⎢⎣
p j 0 0 0
0 p j 0 0
0 0 p j 0
0 0 0 p j

⎤
⎥⎥⎦ , Jk =

⎡
⎢⎢⎣
jk 0 0 0
0 jk 0 0
0 0 jk 0
0 0 0 jk

⎤
⎥⎥⎦ , K j =

⎡
⎢⎢⎣
k j 0 0 0
0 −k j 0 0
0 0 k j 0
0 0 0 −k j

⎤
⎥⎥⎦ .

So, we have a reducible projective representation of P↑
+. Now we extend it to an

irreducible generalized representation of P by introducing a unitary �T and an anti-

unitary �S satisfying (2)-(6), as �T =

⎡
⎢⎢⎣
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎤
⎥⎥⎦ and �S = K

⎡
⎢⎢⎣

0 0 0 1
0 0 1 0
0 −1 0 0

−1 0 0 0

⎤
⎥⎥⎦.

Indeed, let A =

⎡
⎢⎢⎣
A11 A12 A13 A14
A21 A22 A23 A24
A31 A32 A33 A34
A41 A42 A43 A44

⎤
⎥⎥⎦ be any self-adjoint operator of H; the condi-

tions [A, P0] = [A, Pj ] = [A, Jk] = [A, K j ] = [A, �T] = [A, �S] = O are satisfied

if and only if A =

⎡
⎢⎢⎣
a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

⎤
⎥⎥⎦ ≡ a1I with a ∈ R. Thus the extended representation

is irreducible.

5 Identifying Quantum Theories of an Elementary Free Particle

In line with our program, we now identify the quantum theories of an elementary free
particle, by selecting those irreducible representations of P for which a tripleQ exists
such that (Q.1) and (Q.2) in Sect. 3 hold, in themore general domain of representations
identified in Sect. 4. A representation can be excluded only if it is inconsistent with
(Q.1) and (Q.2). Each theory so identified corresponds to a possible kind of particle;
theories that are unitarily inequivalent correspond to a different kind of particle.
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We will show that if the spin parameter s is zero, then there are precisely identified
cases in which conditions (Q.1) and (Q.2.a,b) turn out to be sufficient to determine the
position operator; this means that in these cases the lack of an explicit formulation,
analogous to(Q.2.b), of the transformation properties with respect to boosts is not an
insuperable barrier; in fact, the knowledge of the transformation properties missed by
(Q.2a,b) is easily attained a posteriori as Sg[Q] = eiK jϕ(u)Qe−i K jϕ(u), since Q has
been explicitly identified. For the irreducible generalized projective representations
in IP (U+irred.u) and IP (U−irred.d) our results agree with those in the literature.
For representations in IP (U±irred.s) the irreducible generalized projective represen-
tations for which the position operator is determined belong to the new class with
anti-unitary �S (Sects. 5.2, 5.3). In Sect. 5.4 we show that consistent particle theories
can be based on representations in IP (U−red.u) or IP (U−red.d), though previously
unconsidered.

In the case s > 0 there are no free particle theories univocally determined by
(Q.1), (Q.2.a) and (Q.2.b). In Sect. 6 we shall investigate these theories in relation
with the work of Jordan and Mukunda who assumed a particular form of the lacking
transformation property.

5.1 Elementary Particle Theories Based onIP (U+irred.u) orIP (U−irred.d)

In theHilbert space L2(R
3,C2s+1, dν)of an irreducible representation inIP (U+irred.u)

with spin s, let us define the self-adjoint operators Fj = i ∂
∂ p j

− i
2p20

p j , known

as Newton and Wigner operators [37]. From [Fj , Pk] = iδ jk and (9i) we derive
Q j − Fj = d j (P), i.e.

(
(Q j − Fj )ψ

)
(p) = d j (p)ψ(p), where d j (p) ∈ �(C2s+1)

for all p ∈ R
3. On the other hand, [J j , Fk] = i ε̂ jkl Fl and (9ii) imply

[J j , dk(P)] = i ε̂ jkldl(P). (14)

In case s = 0,wehave Sk = 0,�(C2s+1) = �(C) ≡ R, and τ = 1.Then (14) together
with [J j , Pk] = i ε̂ jkl Pl implies d j (P) = h(‖p‖)p j ; by redefining h(‖p‖) = f (p0),
with p0 = √

μ2 + p2, we have

d(P) = f (p0)p, where f (p0) ∈ �(C) ≡ R. (15)

Now, �TFj = Fj
�T holds and (Q.2.a) implies �TQ j = Q j

�T, so that we obtain
�Td j (p) = d j (p)�T; from this equality, since �T = Kϒ , by (20) we derive

f (p0) = − f (p0). (16)

Since f (p0) ∈ R, (21) implies f (p0) = 0. Therefore,Q = F. The condition S�s[Q] =
−Q, i.e. �SQ = −Q�S, turns out to be automatically satisfied.

Thus, if s = 0, there is a unique position operatorQ = F completely determined by
(Q.1) and (Q.2.a),(Q.2.b). This result agrees with that of the well known derivations
of the Newton and Wigner position operators [37,38].
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Bymeans of a similar derivation, the same resultQ = F is obtained for representations
in IP (U−irred.d)

5.2 Elementary Particle Theories Based onIP (U±irred.s)

The irreducible generalized projective representations in IP (U±irred.s) are explicitly
identified in Sect. 4.3. To identify the triple Q representing the three coordinates of

position we introduce the difference D = Q − F̂, where F̂ = F1I ≡
[
F 0
0 F

]
is the

Newton-Wigner operator in this representation.
Now, [F̂j , Pk] = iδ jk and [J j , F̂k] = iε jkl F̂k hold; on the other hand [Q j , Pk] =

iδ jk and [J j , Qk] = iε jkl Qk are conditions to be satisfied by Q according to (9);
therefore, the relations [Dj , Pk] = O and [J j , Dk] = iε jkl Dk must hold too. Thus
we have

Q = F̂ + D, where Dj =
[
d( j)
11 (p) d( j)

12 (p)

d( j)
21 (p) d( j)

22 (p)

]
, (17)

with the conditions [j j , d(k)
nm (p)] = i ε̂ j,k,ld

(l)
nm(p), for all p ∈ R

3 , (18)

where each d( j)
mn (p) is (2s + 1) × (2s + 1) matrix such that d( j)

mn (p)
t

= d( j)
nm (p), the

apex t denoting matrix transposition.
For s = 0, similarly to Sects. 5.1, (18) and [j j , pk] = i ε̂ jkl pl imply d( j)

mn (p) =
dmn(p0)p j , with dmn(p0) ∈ C. Hence

Q j = Fj + Dj , where Dj =
[
d11(p0) d12(p0)
d21(p0) d22(p0)

]
p j and dmn(p0)

= dnm(p0) ∈ C. (19)

So, in order to identifyQwe have to determine the functions dmn of p0. The conditions�TQ = Q�T and �SQ = −Q�S can help in solving the indeterminacy; however,
according to Sect. 4.2, now the explicit form of �T and �S depends on their unitary or
anti-unitary character; so we shall explore all possible combinations.
(UU) Let us begin with the case where both �T and �S are unitary, i.e. with U (1)

and U (2), the only cases considered in the literature. We have �T =
[
0 1
1 0

]
, while

�S = ϒ

[
1 0
0 1

]
in U (1) and �S = ϒ

[
1 0
0 −1

]
in U (2). By making use of the explicit

form of �T we find that

�TQ = Q�T implies Dj =
[
d1(p0) d2(p0)
d2(p0) d1(p0)

]
p j . (20)
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(i) If �S = ϒ

[
1 0
0 1

]
, then �SQ = −Q�S is satisfied whatsoever functions d1(p0),

d2(p0) are used. Hence Q remains undetermined.

(ii) If �S = ϒ

[
1 0
0 −1

]
then �SQ = −Q�S holds whenever d2(p0) = 0.

In the combination (UU) therefore, the position operator Q is still undetermined.

(UA) If �T is unitary and �S is anti-unitary, i.e. in casesU (3),U (4), we have �T =
[
0 1
1 0

]

so that �TQ = Q�T holds, while �S = K
[
0 1
1 0

]
in U (3) and �S = K

[
0 1

−1 0

]
in U (4).

(i) If �S = K
[

0 1
−1 0

]
, i.e. in U (4), then �SQ = −Q�S is satisfied for d1(p0) = 0 and

arbitrary d2(p0).
Therefore Q is still undetermined.

(ii) InU (3) we have �S = K
[
0 1
1 0

]
, so that �SQ = −Q�S implies d1(p0) = d2(p0) =

0.
Therefore Q is uniquely determined, and Q = F̂.
(AA) In U (5) and U (6), being �T anti-unitary, �S must be anti-unitary too. We have

�T = Kϒ

[
1 0
0 1

]
, while �S = K

[
0 1
1 0

]
in U (5) and �S = K

[
0 1

−1 0

]
in U (6). With

this explicit form of �T we find that

�TQ = Q�T implies Dj =
[

0 id(p0)
−id(p0) 0)

]
p j . (21)

(i) In U (6), where �S = K
[

0 1
−1 0

]
, it follows that �SQ = −Q�S is always satisfied.

Therefore Q is still undetermined.

(ii) In U (5), where �S = K
[
0 1
1 0

]
, we have that �SQ = −Q�S implies d(p0) = 0, i.e.

Dj = 0.
Therefore Q is uniquely determined and Q = F̂.

Thus, conditions (Q.1) and (Q.2.a), (Q.2.b) determine Q only in the cases (UA.ii)
and (AA.ii), where �S is anti-unitary. This anti-unitarity, however, is perfectly consis-
tent within the respective theories.

5.3 Klein–Gordon Particles

For every value of the mass parameterμ > 0, four inequivalent single particle theories
have been singled out in Sects. 5.1 and 5.2, according to methodological commitments
that avoid the shortcomings of canonical quantization. In each of these the position
operator is uniquely determined as the Newton-Wigner operator.

To complete the theories, the explicit form of the wave equations is needed. In all
theories of the present approach time evolution from time 0 to time t is a translation
of time, operated by the unitary operator
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ei P0t ; therefore if the state vector is ψ at time 0, then it is ψt = e−i P0tψ at time t ,
so that Schroedinger equation

i
∂

∂t
ψt = P0ψt (22)

immediately follows. The explicit wave equation is attained by replacing P0 with the
the specific time translation operator, rendered explicit in each specific theory.

In order to explore how previous theories for spin 0 particles relate to the present
ones, we re-formulate the latter in the following equivalent forms, obtained by means
of unitary transformations operated by the unitary operator Z = Z1Z2, where Z2 =
1√
p0
1I and Z1 is the inverse of the Fourier-Plancherel operator.

T .1 The theory in Sect. 5.1, based on an irreducible representation in IP (U+irred.u)

with s = 0, can be reformulated in Hilbert space H = Z
(
L2(R

3, dν)
) ≡

L2(R
3). Generators Pj are transformed into P̂j = Z Pj Z−1 = −i ∂

∂x j
;

analogously we find P̂0 = √
μ2 + ∇2, Ĵ j = −i

(
xk

∂
∂xl

− xl
∂

∂xk

)
, K̂ j =

1
2 (x j

√
μ2 + ∇2 + √

μ2 + ∇2x j ), while �̂S = ϒ, �̂T = K. In this representation
the Newton-Wigner operators representing position become the multiplication
operators Q̂ j , defined by Q̂ jψ(x) = x jψ(x). Accordingly, the wave equation
is

i
∂

∂t
ψt (x) =

√
μ2 − ∇2ψt (x) . (23)

T .2 The new formulation of the theory based on an irreducible representation in
IP (U−irred.d) with s = 0, as shown in Sect. 5.1, differs from T .1 just for
P̂0 = −√

μ2 + ∇2 and K̂ j = − 1
2 (x j

√
μ2 + ∇2 + √

μ2 + ∇2x j ); hence, in the
equivalent theory the wave equation is

i
∂

∂t
ψt (x) = −

√
μ2 − ∇2ψt (x). (24)

T .3 The theory corresponding to (UA.ii) in Sect. 5.2, that is based on the irre-
ducible representation U (3) of Sect. 4.3 with σ(P) = S+

μ ∪ S−
μ and s = 0,

identified by �T =
[
0 1
1 0

]
and �S = K

[
0 1
1 0

]
, can be reformulated in Hilbert

space H = Z
(
L2(R

3, dν) ⊕ L2(R
3, dν)

) ≡ L2(R
3) ⊕ L2(R

3); the new self-

adjoint generators are P̂j =
[−i ∂

∂x j
0

0 −i ∂
∂x j

]
, P̂0 = √

μ2 − ∇2

[
1 0
0 −1

]
, Ĵ j =

−i
(
xk

∂
∂xl

− xl
∂

∂xk

) [
1 0
0 1

]
, K̂ j = 1

2

(
x j

√
μ2 − ∇2 + √

μ2 − ∇2x j
) [

1 0
0 −1

]
,

while �̂T =
[
0 1
1 0

]
and �̂S = Kϒ

[
0 1
1 0

]
.
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The position operator is Q̂ j =
[
x j 0
0 x j

]
.

The wave equation is

i
∂

∂t

[
ψ+
t (x)

ψ−
t (x)

]
=

[ √
μ2 − ∇2ψ+

t (x)
−√

μ2 − ∇2ψ−
t (x)

]
. (25)

T .4 The theory corresponding to (AA.ii) in Sect. 5.2, based on the irreducible repre-

sentationU (5) with σ(P) = S+
μ ∪ S−

μ and s = 0, identified by �T = ϒK
[
1 0
0 1

]

and �S = K
[
0 1
1 0

]
, differs from T .3 only for �̂T, that is now �̂T = K

[
1 0
0 1

]
.

The early theory [1–3] for spin 0 particle establishes that the wave equation is the
Klein–Gordon equation

(
∂2

∂t2
− ∇2

)
ψt (x) = −m2ψt (x) , (26)

that is second order with respect to time. This is the first evident difference vis-à-
vis theories T .1–T .4, where all wave equations are first order. However, if in each
theory T .1–T .4 the respective wave equation is solved byψt , then the derivative of the
equation with respect to time yields − ∂2

∂t2
ψt = i P0

∂
∂t ψt = P2

0 ψt , since ∂
∂t commutes

with P0 in all cases, obtaining

∂2

∂t2
ψt (x) − ∇2ψt (x) = −μ2ψt (x) . (27)

Hence, Eq. (27) holds in all the theories T .1–T .4, which coincides with the Klein–
Gordon equation, once parameter μ with m is identified. This coincidence does not
mean that the theories T .1–T .4 are equivalent to Klein–Gordon’s. The first difference
is that in our approach there are four inequivalent theories for spin 0 and “mass” μ

particles. In T .1 there are no wave functions corresponding to negative spectral values
of P0. In T .2 positive values are not permitted. Klein–Gordon’s theory does not have
this differentiation; in particular, the space of the vector states is only one, namely the
space generated by the solutions of (27).

Another obvious non-equivalence is the difference between the set of solutions of
the respective wave equations: while all solutions of the wave equations of T .1–T .4
are solutions of Klein–Gordon’s equation, the converse is not true.

The third important difference concerns the physical interpretation and its con-
sistency. By means of mathematical manipulation it can be deduced that for every
solution ψt of the Klein–Gordon equation (26) the following equation holds.

∂

∂t

{
i

2m

(
ψt

∂

∂t
ψt − ψt

∂

∂t
ψt

)}
= ∇ ·

{
i

2m

(
ψt∇ψt − ψt∇ψt

)} ; (28)
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since it has the form of a continuity equation for a quantity whose density is ρ̂(t, x) =
i
2m

(
ψt

∂
∂t ψt − ψt

∂
∂t ψt

)
andwhose current density is ĵ(t, x) = i

2m

(
ψt∇ψt − ψt∇ψt

)
,

in the Klein–Gordon theory ρ̂ was interpreted as the density probability of position,
and ĵ as the current density of the position probability. This interpretation is the
source of serious problems for the Klein–Gordon theory. Dirac argued, indeed, that
the presence of the time derivative of the wave function in ρ̂ entails the possibility of
negative values for this probability density [4,7]. One way to overcome the difficulty
was proposed by Feshbach and Villars [5]. They derive an equivalent form of the
Klein–Gordon’s equation as a first order equation i ∂

∂t �t = H�t for the state vector

�t =
[

φt

χt

]
, where φt = 1√

2
(ψt + 1

m
∂
∂t ψt ), χt = 1√

2
(ψt − 1

m
∂
∂t ψt ), and H =

(σ3+σ2)
1
2m (∇+mσ3); in this representation density takes the form ρ̂ = |φt |2−|χt |2,

free from time derivatives of the new quantum state�t . The proposal of Feshbach and
Villars requires a drastic change in the interpretation of the Klein–Gordon equation:
the quantum state is not ψt , but �t . However, the minus sign in ρ̂ implies that the
possibility of negative values is not solved. Feshbach andVillars intepreted ρ̂ as density
probability of charge. Nevertheless, acceptance of the Feshbach and Villars proposal
requires another consistency test for ρ̂, that is to say covariance with respect to boosts,
which implies, according to Barut and Malin [6], that ρ̂ must be the time component
of a four-vector. Barut and Malin however proved that is not the case, so the proposal
of Feshbach and Villars fails this consistency test.

In the theories T .1–T .4 positionmust be represented by themultiplication operator.
The probability density of position therefore must necessarily be ρ(t, x) = |ψt (x)|2
in T .1, T .2 and ρ(t, x) = |ψ+

t (x)|2 + |ψ−
t (x)|2 in T .3, T .4. Thus, the quantum state

at a given time determines the non-negative probability density of position. There is
no need of a posteriori reinterpretations. In the present approach the possibility of
interpreting state vectors belonging to E+H (resp., state vectors in E−H) as positive
charge states (resp., negative charge states) could eventually emerge in a future the-
ory of an interacting particle derived from basic principles without using canonical
quantization.

In T .1–T .4 the covariance properties with respect to boosts, K j andQ being known
explicitly , can be directly expressed by the relations Sg[Q] = eiK jϕ(u)Qe−i K jϕ(u)

which are perfectly consistent with the whole theory.
With reference to the early difficulties of the relativistic quantum theory of a par-

ticle, Weinberg wrote [7, p. 3] “... it became generally clear that relativistic wave
mechanics, in the sense of a relativistic quantum theory of a fixed number of particles,
is an impossibility. Thus, despite its many successes, relativistic wave mechanics was
ultimately to give way to quantum field theory”. The work of Sects. 5.1–5.3 has shown
that coherent free elementary particle theories are possible. In so doing the theories
for Klein Gordon free particles are settled.

5.4 New Species of Particle Theories

In this subsection we show how our approach also leads to particle theories that cannot
be associated with known ones. The new species of particle theories to be identified
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are based on the irreducible representation of IP (U+red.u), with σ(P) = S+
μ and

s = 0, hence with U+ reducible.
Let us consider an irreducible representation in IP (U+red.u) with s = 0 of Sect.

4.4.1. The Hilbert space is H = L2(R
3, dν) ⊕ L2(R

3, dν), its generators are

P0 =
[
p0 0
0 p0

]
, Pj =

[
p j 0
0 p j

]
, Jk =

[
jk 0
0 jk

]
, J j =

[
k j 0
0 k j

]
,

with jk = i
(
pl

∂
∂ p j

− p j
∂

∂ pl

)
, k j = i p0

∂
∂ p j

, while �S = ϒ

[
0 1
1 0

]
and �T =

τϒK
[

0 1
−1 0

]
.

To identify the position operator Q we introduce the difference D = Q − F̃, where

F̃ = F1I ≡
[
F 0
0 F

]
is the Newton-Wigner operator in this representation.

Now, [F̃j , Pk] = iδ jk and [J j , F̃k] = i ε̂ jkl F̃k hold; on the other hand, according to
(9), [Q j , Pk] = iδ jk and [J j , Qk] = iε jkl Qk hold too, so that the relations [Dj , Pk] =
O and [J j , Dk] = iε jkl Dk are implied. Thus we have Q = F̃ + D where Dj =[
d( j)
11 (p) d( j)

12 (p)

d( j)
21 (p) d( j)

22 (p)

]
∈ �(C2). Conditions [J j , Dk] = iε jkl Dk entail [j j , d(k)

nm (p)] =

i ε̂ j,k,ld
(l)
nm(p) for all p ∈ R

3; together with [j j , pk] = i ε̂ j,k,l Pl these relations imply

d( j)
mn (p) = fmn(p0)p j . Now, since �SF̃j = −F̃j �S holds, by making use of (Q.2.a) we
obtain �SDj = −Dj �S, which entails

f11(p0) = − f11(p0) , f12(p0) = − f12(p0) equivalent to f21(p0) = − f21(p0).

Therefore Dj = O and Q = F̃, so that also �TQ = Q�T turns out to be automatically
satisfied since �TF̃ = F̃�T. Thus, we have identified a new complete theory of an
elementary spin 0 free particle. A similar derivation identifies a new complete theory
based on IP (U−red.d); once again Q = F̃ is found. Which particles of nature are
described by these theories, if they exist at all, is not a problem we are able to solve at
present, as we argue in Sect. 7.

It must be remarked that the present argument is not successful if applied to the new
irreducible representation of class IP (U±red.s), in the sense that conditions (Q.1),
(Q.2.a,b) do not uniquely determine Q, so that a complete theory is not identified.

6 Transformation Properties Relative to Boosts

In general, apart from the cases identified in Sect. 5, conditions (Q.1) and (Q.2.a,b)
do not univocally determine the position operatorQ, in particular when s > 0; for the
case U ∈ IP (U+irred.u) (Sect. 5.1) with s > 0 this non-uniqueness was also shown
by Jordan, who in [38] writes “For nonzero spin there is more than one Hermitian
operator [Q] that transforms as a position operator should for translations, rotations,
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and time reversal”. A cause of such indeterminacy is that conditions (Q.2.a,b) miss
the explicit transformation properties of Q with respect to boosts; it is obvious that
the implied further conditions could help to solve the indeterminacy of Q.

In fact, for s > 0 the extension of (Q.2.b) to boosts is not an easy matter. To
attain such an extension, given a boost g – for instance the boost characterized by a
relative velocity u = (u, 0, 0) – we have to consider the reference frame 
 and the
frame 
g related to 
 just by g. Then the explicit relation between Sg[Q] and Q is
required to identify, given the position outcome x at time t = 0 with respect to 
, the
corresponding position outcome yx with respect to 
g , but at time t ′ = 0 with respect
to 
g , because of the condition of relative indistinguishability dictated by the concept
of quantum transformation of Definition 3.1. Special relativity does not provide such
a correspondence as a relation like (Q.2.b); in fact, if the outcome of position is
x = (x1, x2, x3) at time t = 0 in 
, then according to Lorentz transformations we

can state only that it corresponds to position y =
(

x1√
1−u2

, x2, x3
)
in 
g , but at time

t ′ = −ux1√
1−u2

, not at t ′ = 0!
In standard presentations, based on canonical quantization, a necessary condition

of covariance under boosts is taken to be the existence of a probability current density
ĵ(t, x) for every quantum state, which satisfies the continuity equation ∂

∂t ρ̂ = ∇ · ĵ,
where ρ̂(t, x) is the probability density of position, such that ĵ = (ρ̂, ĵ) transforms
as a four-vector. In fact, in the present approach the existence of such a four-current
density of probability does not have a formal proof; it could be assumed to hold by
analogy with the electrical four-current density in non-quantum relativistic theory; but
the proof in this last theory is based on the existence of a real motion of the charges
characterized by a real velocity in every point x = (x0, x); such a simultaneous
existence is inconsistent in a quantum theory, and thus the concept is not viable if we
are to maintain the methodology of the present work.

One way to obviate this problem could be to introduce a time-space position Q =
(Q0,Q), where the operator Q0 is just the time quantum observable, i.e. the time
when the measurement of the spatial coordinates represented by Q occurs. Then,
according to special relativity we could set Sg[Q0] = Q0−uQ1√

1−u2
, Sg[Q1] = Q1−uQ0√

1−u2
,

Sg[Q2] = Q2, Sg[Q3] = Q3. But in a quantum theory of localizable particle such
a time cannot be a quantum observable. Indeed, let us suppose that Q0 is a quantum
observable representing this time, so that the four-operator Q = (Q0, Q1, Q2, Q3)

represents the time-space coordinates of the particle. Accordingly, [Qα, Qβ ] = O,
for all α, β ∈ {0, 1, 2, 3, }. Furthermore, since for every time-space translation gα

such that Ugα = e−i Pαa we have Sgα [Qβ ] = e−i PαaQβei Pαa = Qβ − δαβa, also
[Qα, Pβ ] = iδαβ holds; in particular [Q0, P0] = i and [Q0, Pj ] = O should hold
for j = 1, 2, 3. In an irreducible representation of IP (U+irred.u), the condition
[Q0, Pj ] = O implies (Q0ψ) (p) = q0(p)ψ(p), where q0(p) ∈ �(C2s+1), for
every p ∈ R

3. Thus P0Q0 = p0Q0 = Q0 p0 = Q0P0, i.e. [Q0.P0] = O holds, in
contradiction with [Q0, P0] = i .

The same contradiction also arises with a representation in IP (U−irred.d).
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Finally, if we consider a representation in IP (U±irred.s), the same argument leads

to [Q0, P0] =
[

0 2q12(p)

2q21(p) 0

]
, where each qmn(p) is a (2s+1)×(2s+1)matrix.

Also in this case the hypothesis that Q0 is an observable contradicts [Q0, P0] = i .
This proof can be easily extended to the irreducible generalized projective repre-

sentations of IP (U±red.) identified in Sect. 4.4.
So, the hope of completing the development of the quantum theory of an elementary

free particle remains tied to the possibility of attaining an explicitmathematical relation
expressing the transformation properties of Q with respect to boosts, that is to say,
to the possibility of finding the extension of the commutation rules (9) to [K j , Qk].
In theories T .1–T .4, where (Q.1) and (Q.2.a,b) are sufficient to determine Q, the
commutation relation [K j , Qk] can be simply calculated, K j and Q being known
explicitly, and it turns out to be

[K j , Qk] = 1

2

(
Q j [P0, Qk] + [P0, Qk]Q j

)
. (JM)

Then the theory could be tentatively developed by assuming (JM) to hold in all the-
ories. It is evident that this extension is supported only by heuristic arguments. In
fact, in [39] (JM) was derived by making use of canonical quantization, a method
extraneous to the present work; it also turns out to be the canonical quantization of the
transformation property derived in [40]. However, the consistency of its implications
can be explored. Jordan and Mukunda [18] checked the consistency of (JM) with the
structural properties (1) of P↑

+ and with the transformation properties (Q.2.b) of Q
with respect to the Euclidean group E . The results attained by Jordan and Mukunda
are not homogeneous; an extract is given in Sect. 6.1. It is important to note, however,
that in their work [18] the authors assume the transformation properties of Q with
respect to the subgroup P↑

+, ignoring the transformation properties �TQ = Q�T and
�SQ = −Q�S. On the other hand, in Sect. 5 it was shown that these conditions do have
a decisive role in determining the position operator; therefore, the task of checking
the consistency of (JM) with respect to time reversal and space inversion should be
accomplished. We address this task in Sect. 6.2.

6.1 Jordan andMukunda’s Results

For representations with σ(P) = S±
μ andU± irreducible, Jordan andMukunda identi-

fied [18] which operatorsQ are consistent with (Q.2.b) and (JM); these representations
correspond to those of Sects. 4.1 and 4.2. Jordan and Mukunda find that for s = 0
there is a unique position operator satisfying such a consistency: Q = F. This result
agrees with that obtained in Sect. 5.1 where (JM) was not assumed and replaced by
(Q.2.a). In general, for s ≥ 0 Jordan and Mukunda find that the solutions must have
the form

Q = F − a

p0(p0 + μ)
(P · S)P + aS − P ∧ S

μ(p0 + μ)
, where a ∈ R. (29)
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According to [18], if s > 0 such a solution turns out to be non-commutative for any
a ∈ R , i.e. it does not satisfy (Q.1). Therefore, for s > 0 the transformation property
(JM) is inconsistent with the notion of position expressed by (Q.1), (Q.2.a), (Q.2.b).

For representations with σ(P) = S+
μ ∪ S−

μ and U+ irreducible, corresponding to
those of the present Sect. 4.3, Jordan and Mukunda show that every solution for Q,
which satisfies (JM) and (Q.2.b), must have the form

Q = F̂ + ρ1A(sin B)P + ρ2A(cos B)P +

−ρ1

(
sin B

p20(p0 + μ)
− 2

μ
B ′(cos B)

)
(p · S)P

−ρ2

(
cos B

p20(p0 + μ)
+ 2

μ
B ′(sin B)

)
(p · S)P +

+ρ1

p0
(sin B)S + ρ1

p0
(cos B)S + P ∧ S

p0(p0 + μ)
, (30)

where A = A(p2), B = B(p2) are real functions ofp2, B ′ = d
d(p2) B(p2),ρ1 =

[
0 1
1 0

]

and ρ2 =
[
0 −i
i 0

]
.

We see that if s = 0 then Q depends on A and B; hence, the approach of Jordan
and Mukunda is unable to univocally identify a theory for Klein–Gordon particles.

If s > 0 the operator Q in (30) is not uniquely determined, so generally it differs
from F̂; but, in the case s = 1

2 , if A = 0 and B ≡constant, i.e. B ′ = 0, then by a
suitable unitary transformation that leaves P, P0, J,K unaltered, (30) transforms into

Q = F̂ + ρ2

p20(p0 + μ)
(p · S)P − ρ2

p0
S + P ∧ S

p0(p0 + μ)
. (31)

Jordan andMukunda show that in this particular case the theory is unitarily equivalent
to the theory of Dirac for spin 1

2 particles.

6.2 Consistency of (JM) with �T and �S

In this section we check the consistency of the Jordan-Mukunda position operators
with respect to time reversal and space inversion.

6.2.1 Consistency in the CaseIP (U+irred.u) andIP (U−irred.d).

For representations in IP (U+irred.u) and IP (U−irred.d), provided that s = 0, there
is no problem of consistency of the Jordan and Mukunda transformation property
(JM)with (Q.1), (Q.2.a) and (Q.2.b). Indeed, the unique operatorQ = F determined in
Sects. 5.1 and 5.2 by (Q.1), (Q.2.a) and (Q.2.b) coincides with the operator determined
by Jordan and Mukunda, which satisfies (JM).
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In the case s > 0, according to Sect. 4.1, the anti-unitary time reversal operator
is �T = τKϒ , and the space inversion operator is �S = ϒ . By making use of these
explicit operators and of (29), it turns out that the condition �SQ = −Q�S in (Q.2.a)
implies a = 0. Hence

Q = F − P ∧ S
μ(p0 + μ)

. (32)

This operator satisfies �TQ = Q�T. However, according to Jordan and Mukunda, it
is not commutative. Such non-commutativity has also been demonstrated elsewhere
by alternative arguments [21,25]. Thus, in this case there is no position operator that
satisfies (Q.1), (Q.2.a) and (Q.2.b) consistent with the transformation property (JM).

6.2.2 Consistency in the CaseIP (U±irred.s).

From Sect. 4.3, all combinations �T, �S concerning their unitary or anti-unitary char-
acter are possible in IP (U±irred.s), except �T anti-unitary and �S unitary.

We have seen in Sect. 5.3 that for s = 0 there is a unique position operator Q = F̂
that is consistent with (Q.1), (Q.2.a) and (Q.2.b). This coincides with the operator (30)
for A = B = O; according to Jordan and Mukunda it is also consistent with their
transformation property (JM). Thus, in this particular case there is no consistency
problem. According to Sect. 5.3, this solution is valid only if �T is unitary and �S is

anti-unitary, namely �T =
[
0 1
1 0

]
and �S = K

[
0 1
1 0

]
, or if both �T, �S are anti-unitary,

namely �T = ϒK
[
1 0
0 1

]
and �S = K

[
0 1
1 0

]
. Thus, there is consistency with the new

representations identified in Sect. 4.3.
Now we have to address the theories where s > 0. We begin by checking the cases

where �T is anti-unitary. From Sect. 4.3, �T = τKϒ

[
0 1
1 0

]
; by making use of (30)

we find that �TQ = Q�T holds if and only if sin B = 0 and B ′ cos B = 0. Hence Q
becomes

Q = F̂ + ρ2A(cos B)P − ρ2
cos B

p20(p0 + μ)
(p · S)P + ρ2

p0
(cos B)S

+ P ∧ S
p0(p0 + μ)

. (33)

�T being anti-unitary, also �S must be anti-unitary, i.e. �S =
[
0 τ

τ 0

]
K or �S =

[
0 τ

−τ 0

]
K. If �S =

[
0 τ

−τ 0

]
K, then �SQ = −Q�S would imply ∂

∂ p j
= 0, for

all j . Therefore this possibility must be excluded. If �S =
[
0 τ

τ 0

]
K, by making use

of (33) we find that �SQ = −Q�S holds if and only if cos B = 0, which is impossible
because sin B = 0. Thus, for s > 0 there is no position operator Q that is consistent
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with (Q.1), (Q.2.a), (Q.2.b) and the transformation property (JM) in a theory where
�T is anti-unitary.

Let us check the case where �T is unitary, i.e. �T =
[
0 1
1 0

]
. By making use of (30)

we find that �TQ = Q�T holds if and only if cos B = 0, so that Q becomes

Q = F̂ + ρ1A(sin B)P − ρ1
sin B

p20(p0 + μ)
(p · S)P +

−2ρ2
μ

B ′(sin B)(p · S)P + ρ1

p0
(sin B)S + P ∧ S

p0(p0 + μ)
. (34)

If �S is unitary, then �S = ϒ or �S = ϒ

[
1 0
0 −1

]
. In the case �S = ϒ, �SQ =

−Q�S implies sin B = 0, which is impossible, because cos B = 0. In the case �S =
ϒ

[
1 0
0 −1

]
, then �SQ = −Q�S implies ρ1A(sin B)P + P∧S

p0(p0+μ)
= 0, which is false.

Thus, if both �T and �S are unitary, there is no position operator consistent with (Q.1),
(Q.2.a), (Q.2.b) and (JM).

The last possibility is the case where �S is anti-unitary, i.e. �S =
[
0 τ

τ 0

]
K or

�S =
[

0 τ

−τ 0

]
K. If �S =

[
0 τ

−τ 0

]
K then �SQ = −Q�S cannot hold because it would

imply ∂
∂ p j

= 0, for all j . If �S =
[
0 τ

τ 0

]
K, then by making use of (34) we find that

�SQ = −Q�S holds if and only if A = 0. Now, sin B = ±1, since cos B = 0, and
(34) becomes

Q = F̂ ∓ ρ1
ρ1

p20(p0 + μ)
(p · S)P ± ρ1

p0
S + P ∧ S

p0(p0 + μ)
. (35)

Thus, the unique particle quantum theory based on representations in IP (U±irred.s)
and s > 0, whose position operator is consistent with (Q.1), (Q.2.a), (Q.2.b) and (JM),

has �T unitary and anti-unitary �S =
[
0 τ

τ 0

]
K, and the position operator is given by

(35). By fixing sin B = −1, we have

Q = F̂ + ρ1
ρ1

p20(p0 + μ)
(p · S)P − ρ1

p0
S + P ∧ S

p0(p0 + μ)
. (36)

We see that the position operator is different from the position operator of Dirac’s
theory given by (36). However, by transforming every operator R into WRW−1,

where W = e−i 12ρ3
π
2 , with ρ3 =

[
1 0
0 −1

]
, it turns out that all generators Pj , P0,

Jk , K j are left invariant, while Q of (41) is transformed into that of (31). Therefore,
Dirac’s theory is the unique theory where (Q.1), (Q.2.a), (Q.2.b) and (JM) hold, but,
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once again, the new representations with �S anti-unitary are necessary for the theory
to be consistent.

7 The Problem of Assigning a Theory to a Particle

Sections 5 and 6 identify possible theories of elementary free paricles. The actual
existence in nature of the particle described by each theory is an issue that cannot
be assessed within a purely theoretical investigation dealing with free particles. The
reason is that real particles can be distinguished from each other by their different
behaviour when they undergo a given interaction. So, a particle with a negative elec-
trical charge canbedistinguished fromaparticlewith positive electrical charge because
their paths have opposite curvatures interacting with a magnetic field in a cloud cham-
ber. Yet to establish the relation between the side of the curvature and the sign of an
observable charge of the particle, the theory of the interaction is needed.

This argument shows the fundamental importance of developing the relativistic
quantum theory of an interacting particle, by complying with the methodology fol-
lowed here. Interesting ideas about this have been traced by Lévy-Leblond in his
attempt [40] based on transformation properties; they could be fruitful when applied
to the present framework.An alternative could be to explore the possibility of extending
the methods applied to develop the non-relativistic quantum theory of an interacting
elementary particle [12,13] to the relativistic case.

Such a theory being not available, we can tentatively identify the specific particle
described by a given theory derived in the present work by exploiting its analogies
with some theories of a specific particle present in the literature. For instance, the
elementary particle theory based on representationsU ∈ IP (U±irred.s) of kindU (5)

with spin s = 1
2 identified in Sect. 6.2.2 turns out to be equivalent to Dirac’s theory

under the assumption that [K j , Qk] = 1
2

(
Q j [P0, Qk] + [P0, Qk]Q j

)
holds. Now,

Dirac presented his model as the theory of electrons and positrons [9]; therefore, the
theory of the present work based on U (5) with s = 1

2 can be considered as the theory
of electrons and positrons to the same extent as Dirac. Needless to say, in so doing an
anti-unitary space-inversion operator must be admitted, of course.

Analogously, the theories T .1 and T .2 in Sect. 5.3 can be considered as the theories
of restmassμ spinless particles. According to this analogy-basedmethod both theories
T .3 and T .4 could be considered as the theories of the particles identified as Klein–
Gordon particles in the literature.

The differences between the two inequivalent theories T .1 and T .2 can only be
consistently interpreted once their different ways of interacting have been discovered.
The same applies to T .3 and T .4.

It must be remarked that these corespondences cannot be considered as definitive.
The reason is that, due to the profound difference of our methodology with repect to
canonical quantization, the theories developed in the present work do not necessarily
have to fit with the theories obtained by canonical quantization. So the identification
of the specific particle decribed by a given theory from those here identified, whenever
it exists, ultimately depends on the availability of a theory of the interacting particle.
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This is especially true for the case of the new species of theory in Sect. 5.4 for
which there is no exisiting theory with the same formalism. For this case, given the
form of the generators P0, Pj , J j , K j and of the space inversion and time reversal
operators shown in Sect. 5.4, we see that the observable represented by the operator

N =
[
1 0
0 −1

]
turns out to be invariant under spatial translations, spatial rotations and

boosts, while the two possible values of N , i.e. 1 and −1, exchange with each other
by space inversion and time reversal. So, a particle described by such a theory must
be a spinless particle with rest mass μ, characterized by the existence of a two value
observable satisfying these transformation properties.

8 Conclusions

In order to develop consistent relativistic quantum theories of a single free particle,
we have pursued an approach based on group theoretical methods, that avoids the
shortcomings inherent in canonical quantization. In so doing, from the principles of
relativistic invariance and position covariance we have derived six complete inequiva-
lent theories for spin 0 particles that are a coherent alternative to Klein–Gordon theory,
two of which are a new species of particle theoriy.

For the case of non zero spin, our approach is still unable to determine complete the-
ories, because of the present lack, in quantum theory, of explicit relations establishing
the transformation properties of position with respect to boosts. Such transformation
properties can be determined only in the complete theories for spin zero particles,
where they can be calculated directly. They turn out to coincide with the transfor-
mation properties (JM) proposed by Jordan and Mukunda [18] also for the non zero
spin case. Next we checked the consistency of the transformation property (JM) with
the theories developed in our approach and found that Dirac’s theory is the unique
theory for s = 1

2 and σ(P) = S+
μ ∪ S−

μ such that (JM) are satisfied. On the other
hand, (JM) is inconsistent with the existence of localizable particle with σ(P) = S+

μ

and s > 0. Hence there are arguments in favor but also against the general validity of
(JM). Nevertheless, that said there is a way that would certainly solve the dilemma: to
derive from the symmetry and covariance principles the explicit mathematical relation
that expresses the transformation properties of position with respect to boosts, anal-
ogously to the method used to obtain (Q.2a) and (Q.2b). Let us denote these aimed
mathematical relations by (KQ). Whenever such a deduction is successful, one of the
following statements should hold.

Either (KQ) are equivalent to (JM). In this case there would be precise consequences;
for instance, one consequencewould be that Poincaré invariance is incompatible
with the existence of particles with σ(P) = S+

μ , or σ(P) = S−
μ , and s >

0. Another consequence would be that only Dirac theory is consistent with
Poincaré invariance.

Or (KQ) are not equivalent to (JM) in some theories. Let us suppose that equiva-
lence fails for σ(P) = S+

μ ∪ S−
μ and s = 1

2 . In this case we should investigate
which of the candidates for position operators identified by (22), (23) in Sect.
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5.2 are consistent with (KQ). If exist, we would have determined an alterna-
tive theory to that of Dirac, based on physical principles without canonical
quantization.

The arguments above highlight the importance of working for a determination of the
relation (KQ), in order to advance the understanding of relativistic quantum particle
theory.
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